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ABSTRACT
Motivation: MicroRNAs (miRNAs) are small endogenous RNAs that
can play important regulatory roles via the RNA-interference pathway
by targeting mRNAs for cleavage or translational repression. We pro-
pose a computational method to predict miRNA regulatory modules
(MRMs) or groups of miRNAs and target genes that are believed to
participate cooperatively in post-transcriptional gene regulation.
Results: We tested our method with the human genes and miRNAs,
predicting 431 MRMs. We analyze a module with genes: BTG2,
WT1, PPM1D, PAK7 and RAB9B, and miRNAs: miR-15a and miR-
16. Review of the literature and annotation with Gene Ontology terms
reveal that the roles of these genes can indeed be closely related
in specific biological processes, such as gene regulation involved in
breast, renal and prostate cancers. Furthermore, it has been repor-
ted that miR-15a and miR-16 are deleted together in certain types of
cancer, suggesting a possible connection between these miRNAs and
cancers. Given that most known functionalities of miRNAs are related
to negative gene regulation, extending our approach and exploiting
the insight thus obtained may provide clues to achieving practical
accuracy in the reverse-engineering of gene regulatory networks.
Availability: A list of predicted modules is available from the authors
upon request.
Contact: sryoon@stanford.edu

1 INTRODUCTION
MicroRNAs (miRNAs) are endogenous 21–22 nt RNAs that can play
crucial regulatory roles in animals and plants by targeting transcripts
for cleavage or translational repression (Bartel, 2004). Hundreds
of different miRNAs have now been identified in complex euka-
ryotes, implying that they mediate a vast network of unappreciated
regulatory interactions (Lai, 2004).

Computational methods have been applied to the studies of
miRNAs largely in two ways. First, techniques to identify miRNA
host genes have been proposed (Ohleret al., 2004; Limet al., 2003;
Rodriguezet al., 2004; Laiet al., 2003). These methods rely upon
the observation that miRNAs generally derive from phylogenetically
conserved stem-loop precursor RNAs with characteristic features.
Second, given that miRNA target gene selection is guided by the
sequence, algorithms have been suggested to systematically identify
miRNA targetsin silico (Lewis et al., 2003; Johnet al., 2004;
Rajewsky and Socci, 2003; Kiriakidouet al., 2004; Smalheiser and
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Torvik, 2004; Starket al., 2003; Rehmsmeieret al., 2004; Enright
et al., 2003).

Typically, multiple miRNAs regulate one message, reflecting
cooperative translational control. Conversely, one miRNA may have
several target genes, indicative of target multiplicity (Enrightet al.,
2003). This multiplicity of targets and cooperative signal integra-
tion on target genes are key features of the control of translation by
miRNAs (Johnet al., 2004). However, this many-to-many relation-
ship between miRNAs and target genes is often complicated (e.g.
see Fig. 5c), and we thus need an automated analysis tool.

In this paper, we mathematically formulate the biological obser-
vations on the interactions of miRNAs and their targets and present a
way to identify important patterns hidden in the complex interactions.
In particular, we propose a computational method to predict miRNA
regulatory modules (MRMs) or groups of miRNAs and their targets
that are believed to participate cooperatively in post-transcriptional
gene regulation. The proposed method provides groups of miRNAs
and co-targeted genes automatically. We can thus avoid manually
enumerating combinations of miRNAs and their target genes (or vice
versa), which can be prohibitively time-consuming.

We apply our method to the prediction of human MRMs and here
report a predicted module that contains the genes:BTG2, WT1,
PPM1D, PAK7 andRAB9B, and the miRNAs:miR-15a andmiR-
16. As will be detailed later, it has been reported that these genes
are mostly regulators and their anomaly can be found in breast,
renal and prostate cancers (Struckmannet al., 2004; Kawakubo
et al., 2004; Ficazzolaet al., 2001). Interestingly,BTG2, WT1 and
PPM1D have been shown to be directly associated with the function
of p53, a tumor-suppressor gene (Vogelsteinet al., 2000). Further-
more, the human miRNAsmiR-15a and miR-16 are clustered on
chromosome 13q14, and this region has been shown to be deleted
together in several types of cancer (Liet al., 2002; Saito-Oharaet al.,
2003). The annotation of this module with the terms in the database
Gene Ontology (GO) (The Gene Ontology Consortium, 2000) also
suggests that the genes in this module indeed share some common
roles in biological processes.

The MRMs predicted can further be useful in some important tasks
including the reconstruction of gene regulatory networks as well as
the biological validation of miRNA-target duplexes. Specifically, the
regulatory interactions newly revealed by MRMs may provide a miss-
ing piece in the puzzle of gene regulation mechanisms, enabling us
to reverse-engineer more accurate gene regulatory networks. In addi-
tion, the genes included in MRMs can be reasonable candidates for
the experimental validation of miRNA targets, since these genes are
detected multiple times by distinct miRNAs. Focusing on the genes
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included in MRMs may be an effective way to design an experiment
for target validation.

The remainder of this paper is organized as follows. Section 2
formally defines MRMs and presents our approach to predict them.
Section 3 provides the details of our analysis of a predicted module
through a literature review and annotation with GO.

2 METHOD
Our method consists of five major steps, each of which will be detailed in
this section.

(1) Target identification: given a set of miRNAs, their target genes are
identified (Section 2.1).

(2) Relation graph representation: the relation between miRNAs and their
targets are represented by a weighted bipartite graph called relation
graph (Section 2.2).

(3) Seed finding: a seed or a set of miRNAs that bind a common target
with similar binding strength is identified (Section 2.3).

(4) Merging seeds to find candidate modules: the seeds found in the pre-
vious step are collected and merged to produce candidates for MRMs
(Section 2.4).

(5) Post-processing: statistically significant MRMs are selected by com-
puting theP -value or the probability of finding a module by chance
(Sokal and Rohlf, 1994) (Section 2.5).

2.1 Identification of miRNA target sites
Target selection is guided by the miRNA sequence, as informally shown in
Figure 1 (Lai, 2004). In plants, probable targets of most miRNAs can be found
simply by searching for highly complementary sequences in mRNA coding
sequences or untranslated regions (UTRs). In contrast, animal miRNAs do not
generally exhibit extensive complementarity to any endogenous transcripts
(Fig. 1a). Various configurations for miRNA–target duplexes are possible, as
presented in Figure 1b. In particular, when multiple binding sites exist on
a target, the strength of each binding is not too strong or weak but modest
and similar, according to Lai (2004, page 115.2). This observation will be
reflected in our mathematical formulation in Section 2.2.

We first brief the reader on the existing target identification techniques,
upon which the first step of our method depends. Most algorithms to identify
animal miRNA targets rely on three properties: (1) sequence complementarity
using a position-weighted local alignment algorithm, (2) free energies of
miRNA-target duplexes and (3) evolutionary conservation of target sites in
homologous genes. In particular, the conservation filter tends to be the most
predictive criterion for accurate target detection (Enrightet al., 2003). The
complementarity displayed by a miRNA and its binding site is usually not
enough to be statistically significant, since a miRNA is only 21–22 nt long.
Thus, this conservation filter plays a crucial role in reducing the number of
false positives.

In the first step of our method, we identify miRNA–mRNA duplexes by
the method described in Lewiset al. (2003) and Johnet al. (2004). (Other
methods can also be used as long as they can quantify the strength of miRNA–
target binding, as is usually the case.) We refer to the local alignment score
and the free energy of a miRNA–target duplex assA andsE , respectively. The
scoressA andsE are (negatively) correlated in most cases, because a duplex
with a high local alignment score tends to have a low free energy and vice
versa.

2.2 Relation graph representation
In the second step of our method, we represent the many-to-many relation
between miRNAs and target genes by a weighted bipartite graph termed
relation graph.

Definition 1. Let M denote a set of miRNAs and T a set of tar-
gets (typically |M| � |T |). The relation graph is a weighted bipartite

single

multiple

Fig. 1. miRNAs and targets (Lai, 2004). (a) Plant miRNAs exhibit extensive
complementarity to their targets, but animal miRNAs generally do not. (b)
Various configurations for miRNA–target duplexes: one near-perfect binding
site for one miRNA (upper left), one strong site for one miRNA (lower left),
multiple ‘modest’ sites for one miRNA (upper right), and multiple ‘modest’
sites for multiple miRNAs (lower right).

graph G = (V ,E,w) with the vertex set V = M ∪ T , the edge set
E = {{m, t}|miRNA m ∈ M binds target t ∈ T }, and the weight function
w : E → R.

We determine the weight functionw by performing Principal Component
Analysis (PCA) (Jolliffe, 2002) on the space spanned bysA andsE . After
making the populations ofsA andsE have a zero mean, we find the unit vector
u so that when the data is projected onto the direction corresponding tou the
variance of the projected data is maximized. This unit vectoru is equivalent
to the principal eigenvector of�, the empirical covariance matrix of the data,
defined as

� = 1

N

N∑
i=1

([
sA
sE

]
i

·
[
sA
sE

]T

i

)
, (1)

whereN represents the number of edges,[
sA
sE

]
i

is a score vector for thei-th edge, andT means the transpose operator.
Finally, for eache ∈ E, its weightw(e) is calculated as the projection of
a score vector ontou, namely,

w(e) =
[
sA
sE

]T

u. (2)

2.2.1 Modeling MRMs We model the MRM by a biclique or a complete
subgraph in a bipartite graph (Ahoet al., 1983). In particular, we search only
those bicliques in which, for each target vertext , the edges incident ont have
similar weights, following the biological observation explained in Section 2.1.
To avoid redundancy, we find only maximal bicliques that are not contained
by other bicliques as a proper subgraph.

Definition 2. For set A on R, range(A) denotes the difference between
the largest and the smallest elements of A.

Definition 3. Let G = (M ∪ T ,E,w) be the relation graph and
δ ≥ 0 be given as a parameter. Graph G′ = (M ′ ∪ T ′,E′,w) is called
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Fig. 2. (a) Example relation graphG = (M ∪ T ,E,w), whereM =
{m0,m1,m2,m3}, andT = {t0, t1, t2, t3} with some hypothetical weights.
(b) An MRM found inG with the parameterδ = 0.5.

a MRM, if G′ is a maximal biclique in G, and for each t ∈ T ′, range({w|w =
w({m, t}), ∀m ∈ M ′}) ≤ δ.

Example 1. Figure 2 shows an example of the relation graph and an MRM
found in this relation graph.

2.3 Finding seeds
The third step of our method is to find seeds for each predicted target gene.

Definition 4. Let t be a target gene and Mt be a set of miRNAs that binds
the target gene t . A seedfor t , denoted by S(t), is a subset of Mt such that
(i) range(S(t)) ≤ δ, and (ii) there is no M ′ ⊃ S(t) such that M ′ ⊆ Mt and
range(M ′) ≤ δ.

Algorithm 1 presents our approach to generate a seed set for a given target
transcript. This algorithm takes as input a target gene and a set of all the

Table 1. The seeds generated by Algorithm 1 from the relation graph in
Figure 2a with the parameterδ = 0.5

t : target gene S(t): seed for target genet No. of seeds

t0 {m0,m2,m3}, {m1,m3} 2
t1 {m0,m1,m3}, {m0,m2} 2
t2 {m0,m1} 1
t3 {m0,m1}, {m1,m3} 2

miRNAs binding the target gene regardless of binding strength. The output
is a seed for the target gene or a maximal set of miRNAs whose binding
strength to the target gene is similar in the sense that the difference between
the maximum and the minimum strength is less than givenδ.

The key idea of Algorithm 1 is simple: when the elements of setAare sorted
and arranged in the corresponding order, range(A) is simply the absolute
difference between the first and the last elements ofA.

In Lines 1–6, miRNAs are sorted in ascending order by their binding
strength. The variables ‘begin’ and ‘end’ in Lines 7–8 are to point to the first
and the last elements of the sub-array under consideration at some point. The
set of seedsS, which is to be returned as output, is initialized in Line 9. Inside
the while loop in Lines 10–21, seeds are generated as the variables begin and
end are incremented. Since the miRNAs are sorted, we only need to compare
the first element(s[begin]) and the last element(s[end]), as is done in Line
11, in order to see if all the elements in the sub-array are similar. In Lines
11–12, the variable end is extended as long ass[end].w − s[begin].w ≤ δ.
A seed is found and collected in Lines 14–15 and Lines 17–18. Lines 19–21
are to adjust the variable begin after a seed is found.

Note that multiple seeds can exist for a single target gene, and thus a set
of all the seeds for the given target gene is returned as output. Also notice
that two distinct seeds for the same target gene can overlap. The worst-case
complexity of the algorithm is polynomial in|Mt |.

Example 2. Table 1 shows all the seeds generated by Algorithm 1 from
the relation graph in Figure 2a with the parameterδ = 0.5.

2.3.1 Related data mining tasks Before describing the next step of
our method, we show how the process of finding MRMs is related to several
data mining techniques, in order to put the description in proper context.

First, the problem of frequent itemset mining (Agrawalet al., 1993) is to
find a group of items that occur together frequently in a database. Formally,
let I be a set of all items in databaseD. A set, I ′, is called anitemset if
I ′ ⊆ I . A transaction is pair(tid, I ′), wheret.i.d. is the transaction identifier
andI ′ is an itemset. The transaction(tid, I ′) is said tosupport itemsetIs if
Is ⊆ I ′. Thecover of an itemset is the set of the identifiers of transactions
that support the itemset. That is, for itemsetIs ,

cover(Is ) = {tid|(tid, I ′) ∈ D, Is ⊆ I ′}. (3)

The itemsetIs is called frequent if|cover(Is )| ≥ β, whereβ is a given
threshold.

In the current problem, the set of miRNAs and the set of targets forming
an MRM are similar to a frequent itemset and its cover, respectively. One
difference is that a target can have multiple seeds whereas a transaction has
only one itemset in a typical setup.

Second, the term biclustering (or co-clustering) (Madeira and Oliveira,
2004) refers to a class of clustering techniques that perform simultaneous
clustering of rows and columns in a data matrix. The objective is to discover
biclusters or patterns appearing in the form of overlapping submatrices in the
matrix.

A matrix can be converted to a weighted bipartite graph, and vice versa.
Thus, the relation graphG = (M ∪ T ,E,w) can be converted to a matrix of
weights with the row setM and the column setT . Then, a MRM is similar to
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a bicluster with constant values on columns, according to the classification
of biclusters by Madeira and Oliveira (2004).

An issue is that the relation graph is usually sparse, and converting it to a
matrix will result in many empty entries in the matrix (Figure 5c), thus often
making it inappropriate to use matrix-based biclustering algorithms. Bigraph-
based biclustering algorithms may be more effective, but certain assumptions
some algorithms rely on, such as the maximum degree constraints, can be
less meaningful in the present problem.

2.4 Deriving MRMs from seeds
The fourth step of our method is to collect all the seeds and derive MRMs from
the seed collection. To collect seeds in a systematic and effective manner, we
exploit a trie, a compact data structure to represent sets of character strings
(Aho et al., 1983). Many overlaps often occur between the seeds, and a trie
can provide compact representations. The seeds stored in the nodes of the trie
are then merged to form MRMs as the trie is traversed. This technique bears
some similarities to that used by some biclustering methods (Madeira and
Oliveira, 2004; Yoonet al., 2005), but is more suitable to handle the sparsity
of data.

Algorithm 2 details our approach. In addition to the seeds found by
Algorithm 1, the algorithm takes as input two parameters, minT and minM ,
to specify the minimum size of MRMs to find.

In Lines 2–6, each seed is inserted into a trie. To decide the location of the
node into which a seed is inserted, we first assume a total order among the
elements ofM (the set of all miRNAs in Definition 1), of which every seed is
a subset. For each seedS(t) of targett , we then sort its elements with respect
to the total order. The sorted seed can now be inserted into the node whose
path is specified by the ordered elements.

To keep track of the seeds and associated target genes represented by the
trie efficiently, two setsn.S andn.T are associated with each noden, as seen
in Lines 5–6. Suppose thatS(t), a seed for targett , is inserted into node
n. Then the setn.S storesS(t) proper, and the setn.T contains the target
genet . Later in Line 10, the setn.T will be expanded in such a way that
n.T = {τ ∈ T |n.S ⊆ S(τ)}.

Example 3. The trie in Figure 3a collectively represents the seeds in
Table 1.

In Lines 8–10, the algorithm expands the trie to systematically merge the
seeds and find candidates for MRMs. For each noden encountered in the
post-order traversal of the trie, the setn.T is distributed to every noden′ in
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Fig. 3. (a) The trie representation of the seeds in Table 1. The edge labeled
i represents miRNAmi . (b) The seeds merged by Algorithm 2 with the
parameters minT = 3, and minM = 2. The solid-circled vertices represent a
candidate for MRMs.

which |n′.M| = |n.M| − 1 and|n′.M| ≥ minM . The noden′ is a node such
that the number of elements inn′.S is one smaller thann, but not less than
minM .

In Lines 14–15, every noden in which |n.T | < minT is deleted. This step
can be performed efficiently by a pre-order traversal of the trie. Target genes
were distributed in post-order in Lines 8–10. Consequently, noden in the trie
always has a superset of the genes its children have. Thus, if the noden has
less than minT target genes, then none of its children can have more. For this
reason, we can safely remove the entire subtree whose root is located at the
noden without visiting its child nodes.

In Lines 17–18, candidates for MRMs are collected, and the maximal ones
are returned as MRMs.

Example 4. Figure 3b shows the trie after the seeds have been merged.
Table 2 lists two candidate MRMs predicted from our running example.

The problem of enumerating maximal bicliques is inherently intractable
(Madeira and Oliveira, 2004), and the worst-case complexity of Algorithm 2
is exponential in the number of miRNAs in the relation graph. However,
the execution time of the algorithm on typical benchmarks is practical (see
Section 3). This is because a seed seldom contains all the miRNAs in the
relation graph, and the trie-based representation of seeds helps to prevent
unnecessary enumeration of intermediate results.

2.5 Post-processing
Out of the MRMs found by Algorithm 2, we select those with a lowP -value.
We estimate theP -value of an MRM, or the probability of finding it by chance,
on top of the statistical framework by Califanoet al. (2000). They calculated
the probability that a random submatrix of a gene expression data matrix
has near-constant values on rows. They also reported that the distribution
of the number of such matrices can be well approximated by the Poisson
distribution. As previously stated, an MRM can be viewed as a matrix in
which the values of each row are similar. Thus, we take advantage of the result
by Califanoet al. (2000) with minor modifications in order to approximate the
P -values of MRMs. More precise assessment of their statistical significance
will be possible as more exact mechanisms of miRNA–target interaction are
revealed.

We assume that the number of MRMs withm miRNAs andt targets in the
relation graph is a Poisson random variable denoted byXm×t . That is,

P(Xm×t = k) = λke−λ

k! , k = 0, 1, 2,. . . (4)

The parameterλ corresponds to the average number of the MRMs withm

miRNAs andt targets in the relation graph, namely,

λ =
(|M|

m

) (|T |
t

)
Pm×t , (5)

wherePm×t is the probability that a random(m × t) biclique in the relation
graph satisfies the condition to be a(m × t) MRM. Based upon the result by
Califanoet al. (2000),Pm×t can be approximated by

Pm×t � ζ t [1 − ζ ]|T |−t [1 − (1 + m−1)t δt ]|M|−m, (6)

ii96



Prediction of regulatory modules

Table 2. miRNA regulatory modules predicted with the parametersδ = 0.5,
minT = 3 and minM = 2

MRM # Targets in the module miRNAs in the module

1 { t1, t2, t3} { m0,m1}
2 { t0, t1, t3} { m1,m3}

where

ζ = mδm−1 − (m − 1)δm. (7)

TheP -value of the MRM withm miRNAs andt targets is then defined
to be the probability that one or more such MRMs occur by chance in the
relation graph, namely,

P(Xm×t ≥ 1) = 1 − P(Xm×t = 0) = 1 − e−λ. (8)

Finally, we choose those MRMs whoseP -value computed by Equa-
tion (8) is less than a certain threshold, highlighting statistically significant
modules.

3 RESULTS AND DISCUSSION
We tested our method with the miRNAs and genes inHomo sapiens
and predicted 431 MRMs. On average, an MRM consists of 3.58
miRNAs and 6.74 target genes. Among these predicted modules,
here we present a cancer-related module and analyze it at length as
an attempt to reveal the biological meanings implied. The analysis
of the other modules is omitted due to the space limitation but can
be performed in a similar manner.

Our data showed that a set of genesPAK7, BTG2, WT1, PPM1D
andRAB9B are candidate targets for humanmiR-15a, miR-16 and
miR-195. Table 3 lists more details of this module. In what follows,
we considermiR-15a andmiR-16 only, sincemiR-195 is a predicted
miRNA based on homology to a verified miRNA from mouse (Lagos-
Quintanaet al., 2003), and the expression of this miRNA has not been
verified in human.

3.1 Validation with Gene Ontology
Using GO (The Gene Ontology Consortium, 2000) has become a
standard way to validate the functional coherence of genes in a
list. Typically, this type of validation is accompanied by a statistical
significance analysis.

Figure 4 shows the annotation of the genes in this module
with the terms in Biological Process category of GO. In partic-
ular, Figure 4a shows the distribution of the GO terms over the
genes, and Figure 4b presents how these terms are related in the
GO dag. We observe that the abundant terms include GO:0007582
(physiological process), GO:0008152 (metabolism), GO:0050875
(cellular physiological process), GO:0008151 (cell growth and/or
maintenance) and GO:0008283 (cell proliferation).

Furthermore, we used the tool GO::TermFinder (Boyleet al.,
2004) to find significantly over-represented GO terms. This tool cal-
culates aP -value relative to the hypergeometric distribution and also
performs the multiple comparison correction. For example, Table 4
presents some more details on one of the enriched GO term shown
in Figure 4b.

3.2 Supporting evidence from the literature
BTG2 is a negative regulator of cell cycles, and impaired expres-
sion ofBTG2 has been found in breast, renal and prostate cancers in
human (Struckmannet al., 2004; Kawakuboet al., 2004; Ficazzola
et al., 2001).WT1 is a gene encoding zinc-finger transcription factor,
and defects inWT1 are a cause of Wilms’ tumor (WT), an embry-
onal malignancy of the kidney (Loeb and Sukumar, 2002).PPM1D
is a p53-inducible protein phosphatase and its overexpression has
been reported to cause breast cancer and neuroblastoma in human
(Li et al., 2002; Saito-Oharaet al., 2003).

Interestingly,BTG2, WT1 andPPM1D have been shown to be dir-
ectly associated with the function ofp53, a tumor-suppressor gene
whose activation results in cell cycle arrest and apoptosis upon DNA
damage, viral infection and oncogene activation (Vogelsteinet al.,
2000). Since inactivation ofp53 by deletion or mutation can cause
tumor, it is also possible that the impaired function ofp53 by dysreg-
ulation ofBTG2, WT1 or PPM1D mediated bymiR-15a andmiR-16
might develop tumor in an indirect way.

Several lines of evidence suggest that miRNAs may be related
with leukemia and other cancers. For example, the humanmiR-15a
andmiR-16 are clustered within 0.5 kb on chromosome 13q14, and
this region has been shown to be deleted in B cell chronic lympho-
cytic leukemia (B-CLL), mantle cell lymphoma, multiple myeloma
and prostate cancer cases (Stilgenbaueret al., 1998; Migliazzaet al.,
2000; Calinet al., 2002). A recent study by Calinet al. (2002) demon-
strated thatmiR-15a andmiR-16 are located within a 30 kb region
of loss in CLL, and both genes are deleted or downregulated in more
than two-thirds of CLL cases, strongly suggesting the involvement
of miRNA genes in human cancers.

Given thatmiR-15a andmiR-16 are detected together and found to
regulate a set of genes that are actively involved in tumorigenesis by
the use of our method, further studies should be focused on elucid-
ating the direct role ofmiR-15a andmiR-16 in many types of cancer
through dysregulation of their target gene expression.

3.3 Discussion
3.3.1 Extension of our computational method As the understand-
ing of in vivo miRNA target selection mechanisms deepens, more
advanced methods to computationally identify miRNA targets will
emerge. New findings on miRNA-target interactions will need to be
represented by a new relation graph. Our method can then be applied
to the augmented relation graph without further modifications. In
fact, identifying animal miRNA targets is computationally difficult
and there is much room for improvements. This is because animal
miRNAs are short and only partially complementary to their targets.
Enhanced methods may consider interactions involving RNA binding
proteins, conservation filtering through sophisticated phylogenetic
profiling techniques and handling for some unusual structures in
targets. For example, a very long loop structure in the target sequence
cannot easily be detected without adversely affecting the rate of false
positive detection (Enrightet al., 2003).

The MRM defined in this work consists of miRNAs and their
targets. Since computational methods have been proposed to identify
the gene that encodes miRNAs (Ohleret al., 2004; Limet al., 2003;
Rodriguezet al., 2004; Laiet al., 2003), it is possible to redefine
the MRM as a group of host genes, the miRNAs encoded by the
host genes, and the target genes bound by the miRNAs. This will
complete the regulatory chain of ‘host gene→ miRNA → target
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Table 3. A predicted human MRM. The first column represents the genes in the module, and the last three columns show the miRNAs with their binding
strength to each target in terms of the weight calculated by Equation (2). The parameters used are listed in Table 5

Target (HUGO ID) Ensemble ID Description hsa-miR-15a hsa-miR-16 hsa-miR-195a

PAK7 ENSG00000101349 p21-activated kinase 7 1.609 −0.789 0.676
RAB9B ENSG00000123570 Ras-associated oncogenic protein 9b 1.303 −0.746 −0.956
BTG2 ENSG00000159388 B cell translocation gene 2 −0.162 −0.816 −1.259
PPM1D ENSG00000170836 protein phosphatase 1D Mg-dependent, delta isoform−0.487 −0.817 −1.143
WT1 ENSG00000184937 Wilms’ tumor 0.275 1.019 −0.514

aHas not been verified experimentally in human.
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Fig. 4. Annotation with GO terms. (a) Each row represents a target gene, and each column a GO term in Biological Process. A colored box exists at row
i and columnj if target i has GO termj . The abundant terms are GO:0007582 (physiological process), GO:0008152 (metabolism), GO:0050875 (cellular
physiological process), GO:0008151 (cell growth and/or maintenance) and GO:0008283 (cell proliferation). (b) The blue vertices are for the terms in levels
6–10 associated with the targets in the predicted MRM. The ancestor vertices are also included, where the most abundant terms in each level are coloredin
red (level 2), orange (level 3), yellow (level 4) and green (level 5). Further analysis of each enriched GO term is possible. For example, Table 4 presents some
detailed analysis of the term negative regulation of cell proliferation.

gene’. This new piece of information can be incorporated into the
modeling of gene regulatory networks.

3.3.2 Detailed experiment procedure The input to our method was
the human miRNA sequences (http://www.sanger.ac.uk/Software/
Rfam/mirna) and the human gene sequences (http://www.ensembl.

org/EnsMart). The output was a list of MRMs. The methods
described in Lewiset al. (2003) and Johnet al. (2004) were first used
to identify 7886 human miRNA-mRNA duplexes. 2888 genes and
156 miRNAs were found to participate in forming a duplex (Table 5).
After scalar weights were calculated by Equation (2), the relation
graph was constructed. Figure 5 shows the distributions ofsA andsE
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Fig. 5. (a) The distributions of the scoressA andsE . (b) The edge weight distribution withµ = 0, σ = 1.20, min= −1.79 and max= 10.26. (c) The relation
graph represented by a 156× 2, 888 matrix. A dot exists at rowi and columnj , if targetj has a binding site for miRNAi. This plot visualizes the initial raw
dataset, clearly showing a need for an automated tool to identify important patterns underlying the complex interactions between miRNAs and targets.

Table 4. Further details on an enriched GO term in Figure 4b, obtained by
the tool GO::TermFinder (Boyleet al., 2004)

Item Value

GO ID GO:0008285
Term Negative regulation of cell proliferation
P -value 0.000259
CorrectedP -value 0.0184
Annotated genes BTG2, PPM1D
Genome frequency of use 134 out of 23531 genes

Table 5. The parameters used for the experiment and some statistics obtained

Parameters/statistic Value/reference

Parameters (sA cutoff, sE cutoff) (91,−17 kcal/mol)
Parameters(minT , minM , δ) (3, 3, 2σ a = 2.40)
Size of the relation graph(|T |, |M|, |E|) (2888, 156, 7886)
Weights in the relation graph Figure 5
Total number of modules found 431
Average size of modules (# targets, # miRNAs) (6.74, 3.58)

aThe standard deviation of the weight distribution in Figure 5b.

and a matrix representation of the relation graph. Algorithms 1 and
2 were invoked with the parameters listed in Table 5. Statistically
significant MRMs were selected with theP -value threshold of 0.01.
The annotation of selected modules with the terms in Gene Ontology
(http://www.geneontology.org) was finally performed. The compu-
tation ran on a 3.06 GHz Linux machine with 4 GB RAM, and the
response time for Algorithms 1 and 2 was in the order of minutes.

3.3.3 Update Lewis et al. (2005) recently revised their method
for miRNA target identification. This updated method uses simplified
detection rules and predicts more miRNA targets, which include most
target genes already detected by the previous method (Lewiset al.,
2003). Newly identified miRNA–target duplexes can be added into
the relation graph. This expanded, more complex relation graph can

provide our method with more opportunities to identify interesting
modules for further analysis.
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