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Abstract

Clustering has been one of the most popular methods
to discover useful biological insights from DNA microar-
ray. An interesting paradigm is simultaneous clustering of
both genes and experiments. This “biclustering” paradigm
aims at discovering clusters that consist of a subset of the
genes showing a coherent expression pattern over a sub-
set of conditions. The pClustering approach is a technique
that belongs to this paradigm. Despite many theoretical ad-
vantages, this technique has been rarely applied to actual
gene expression data analysis. Possible reasons include the
worst-case complexity of the clustering algorithm and the
difficulty in interpreting clustering results. In this paper, we
propose an enhanced framework for performing pCluster-
ing on actual gene expression analysis. Our new framework
includes an effective data preparation method, highly scal-
able clustering strategies, and an intuitive result interpreta-
tion scheme. The experimental result confirms the effective-
ness of our approach.

1. Introduction

The invention of DNA microarray spurred numerous ef-
forts to acquire relative mRNA expression information from
complex cellular systems [8]. Clustering has been one of the
most popular among such efforts to discover useful biolog-
ical insights from gene expression data [4, 7], and many
novel clustering techniques have been proposed. An inter-
esting paradigm is simultaneous clustering of genes and ex-
perimental conditions [3, 5, 6, 10, 11, 14]. The common ob-
jective is to discover clusters represented by a subset of the
genes showing a coherent expression pattern over a subset
of conditions. This paradigm is often referred to as biclus-
tering, and such clusters are called biclusters. The concept
of bicluster is common and intuitive, but its formal defini-
tion varies, depending on the measure of coherence and the
clustering strategies.

The biclustering paradigm is more appropriate for the
analysis of large-scale data than the traditional cluster-
ing methods for several reasons. First, the biclustering ap-
proach can better cope with the curse of dimensionality [4],
which is frequently encountered in the analysis of high-
dimensional data. In addition, biclustering is biologically
more compatible with our understanding of cellular pro-
cesses: we expect subsets of genes to be co-regulated and
co-expressed under certain experimental conditions, but to
behave almost independently under other conditions [3].
Discovering such local expression patterns may be the key
to uncovering many genetic pathways that are otherwise not
apparent.

The pClustering technique [14] belongs to this bicluster-
ing paradigm, and has many useful properties, compared
with the well-known δ-biclustering method [5]. By mea-
suring the coherence with finer granularity, the biclusters
discovered by pClustering, or pClusters, are more homoge-
neous than δ-biclusters. Subclusters of a pCluster are also
pClusters, whereas subclusters of a δ-biclusters are not nec-
essarily a δ-bicluster. This property is more intuitive and
convenient for designing efficient algorithms. In addition,
the pClustering approach can find multiple clusters simulta-
neously, detects overlapping clusters better, and is more re-
silient to outliers [14].

Despite these theoretical advantages, it has been imprac-
tical to perform pClustering on actual gene expression data.
First, the pioneering pClustering algorithm [14] depends
on a nearly exhaustive procedure, and its worst-case com-
plexity is exponential to the data size. Second, the origi-
nal pClustering algorithm may fail to discover some impor-
tant patterns existing in expression data. This is because the
original algorithm is outperformed by an alternative algo-
rithm presented in this paper, not only with respect to the
response time, but also in terms of the number of pClus-
ters that can be discovered. Third, pClustering can detect
either translation (addition by a constant) or scaling (mul-
tiplication by a constant) patterns, but not both simultane-
ously. In actual expression data, the two patterns can coex-
ist. Finally, it is hard to decide which pClusters are more
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valuable than others, since all pClusters are defined to be
equally valid.

Our objective is to enhance the original pClustering
method so that we can apply it to actual gene expression
data analysis. Our contributions include the following.

• The enhanced pClustering algorithm EPC-EXACT that
is more scalable than the original and can find all
pClusters existing in a given data set.

• The polynomial-time pClustering algorithm EPC-
POLY that is applicable under a certain condition;
a polynomial-time algorithm to test the condi-
tion.

• A technique that can divide the huge expression data
into subsets of manageable sizes, without compromis-
ing any global pCluster discovery. This method is use-
ful to perform pClustering of very large-scale data,
as well as to quickly produce representative pClusters
without generating all.

• A data preparation method that helps our algorithm
to detect complicated expression patterns more effec-
tively. Also, a scoring scheme to help the users to in-
terpret pClustering results.

2. Preliminaries

We assume the reader is familiar with the microarray
technologies [7]. Let UG be the set of genes and UE be
the set of experiments we are monitoring. Given a gene ex-
pression data matrix D ∈ R

|UG|×|UE |, let O be a subset of
rows in D (O ⊆ UG), and let T be a subset of columns
(T ⊆ UE). The pair C = (O, T ) denotes a submatrix of D.

2.1. Overview of pClustering

The pClustering approach [14] uses a coherence mea-
sure called pScore, in order to define pCluster, or the bi-
cluster in the pClustering context.

Definition 1 Given g1, g2 ∈ O and e1, e2 ∈ T , the pScore
of the 2 × 2 matrix is defined as

pScore

([
vg1e1 vg1e2

vg2e1 vg2e2

])
= |(vg1e1−vg1e2)−(vg2e1−vg2e2)|

where vgiej
is the expression level of gene gi in experiment

ej . Pair (O, T ) forms a pCluster if, for any 2 × 2 subma-
trix X in (O, T ), we have pScore(X) ≤ δ for some δ ≥ 0.
A maximal pCluster is one that is not a subcluster of other
pClusters.

The problem of pClustering can be stated as follows.
Given: (1) δ, a cluster threshold, (2) MG, a minimal num-
ber of rows, and (3) ME , a minimal number of columns,
the task of pClustering is to find all pairs (O, T ) such that

(O, T ) is a maximal pCluster according to Definition 1, and
|O| ≥ MG, |T | ≥ ME .

2.2. Pairwise maximal pClusters

The pClustering problem is in general intractable, but
we can find all maximal pClusters in a 2 × n matrix in
O(nlogn) time [14]. Based upon this observation, pClus-
tering starts with finding all the pairwise maximal pClus-
ters in data, and then derive other pClusters from the pair-
wise maximal pClusters.

Definition 2 (Pairwise pCluster and πE) Assume
C = ({gi, gj}, T ) is a 2 × |T | pCluster. We call C
pairwise pCluster of two genes gi, gj . The set of experi-
ments T , is denoted as πE(gi, gj), if there does not exist
T ′ ⊃ T such that ({gi, gj}, T ′) is also a 2 × |T ′| pClus-
ter. That is, πE(gi, gj) is the set of experiments in a pair-
wise maximal pCluster.

Each πE and πG usually contain the elements that do not
contribute to the derivation of other clusters. The process of
pruning [14] is to remove those elements.

2.3. Pairwise cluster tables (PCTs)

There can be multiple πE(gi, gj), given a pair of two dis-
tinct genes gi, gj , and so we define two more concepts to
collectively refer to multiple πE conveniently.

Definition 3 (ΠE and PCTgene) Given a pair of distinct
genes gi, gj , we denote a set of all πE(gi, gj) as ΠE(gi, gj).
PCTgene is a set of all possible πE in a given data matrix.

By switching the roles of genes and experiments,
πG(ei, ej), ΠG(ei, ej), and PCTexp are defined mu-
tatis mutandis. We refer the interested to [14] for the
details about how to generate a PCT. There is no expo-
nential growth of a PCT with regard to the data matrix
size.

Figure 1(a) shows a gene expression matrix
D ∈ R

5×5. (For simplicity, integer values were
used). There exist 4 maximal pClusters on the data,
with the parameters of (MG,ME , δ) = (3, 2, 1).
The PCTgene and PCTexp derived from the data
are also shown in the figure. The reader can verify
πG(e0, e4) = {g0, g1, g3}, ΠE(g1, g2) = {{e0, e4},
{e0, e2}}, and PCTexp = {{g0, g1, g2, g3}, {g0, g1, g3},
{g0, g1, g3, g4}, {g1, g3, g4}}.

3. The enhanced pClustering algorithm

Our approach is to classify the pClustering problem into
three categories, according to a certain property of PCTs,
and then to employ a different clustering strategy for each
category.
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e0 e1 e2 e3 e4

g0 1 3 2 5 4
g1 2 5 4 3 6
g2 2 2 3 6 7
g3 3 2 5 2 6
g4 4 9 3 1 4

(a) A data matrix D

# O T

0 {g0, g1, g3} {e0, e2, e4}
1 {g0, g1, g2, g3} {e0, e2}
2 {g0, g1, g3, g4} {e2, e4}
3 {g1, g3, g4} {e3, e4}

(b) Maximal pClusters on D

Genes ΠE

(g0, g1) {e0, e1, e2, e4}
(g0, g2) {e0, e2, e3}
(g0, g3) {e0, e2, e4}
(g0, g4) {e2, e4}
(g1, g2) {e0, e4}, {e0, e2}
(g1, g3) {e0, e2, e4}, {e3, e4}
(g1, g4) {e2, e3, e4}
(g2, g3) {e0, e2}, {e0, e1}, {e1, e4}
(g3, g4) {e2, e3, e4}

(c) PCTgene

Experiments ΠG

(e0, e2) {g0, g1, g2, g3}
(e0, e4) {g0, g1, g3}
(e2, e4) {g0, g1, g3, g4}
(e3, e4) {g1, g3, g4}

(d) PCTexp

Figure 1. A data matrix, maximal pClusters and pairwise cluster tables (PCTs).

3.1. Problem classification

We first introduce the ⊗ operator and the concept of well-
shaped PCTs.

Definition 4 (⊗ operator) Given two set of subsets A and
B, A ⊗ B = {η|η = α ∩ β, ∀α ∈ A and ∀β ∈ B}.

Definition 5 The table PCTgene is well-shaped if,
PCTgene ⊃ {π|π ∈ ΠE(gi, gj) ⊗ ΠE(gl, gm), and |π| ≥
ME}, for any two distinct gene set pairs (gi, gj) and
(gl, gm) in PCTgene. We define well-shaped PCTexp simi-
larly.

For instance, PCTgene in Figure 1(c) is well-shaped, be-
cause the result of the ⊗ operation on any pair of ΠE is a
subset of PCTgene, ignoring the sets of cardinality less than
ME = 2.

We can classify the pClustering problem into three cate-
gories, according to the well-shapedness of PCTs.

Type 1 Both PCTexp and PCTgene are well-shaped. We
use the EPC-POLY algorithm presented in Section 3.2.

Type 2 Either PCTexp or PCTgene is well-shaped (not
both). Section 3.3.3 explains how to solve Type 2 prob-
lems as a special case of Type 3 problems.

Type 3 No PCT is well-shaped. We use the EPC-EXACT

algorithm in Section 3.3.

We can test in polynomial time if a PCT is well-shaped,
since there is no exponential growth of PCTs and the rela-
tion in Definition 5 can be verified in polynomial time with
respect to the size of D.

3.2. The EPC-POLY algorithm

The well-shaped PCTgene has a very desirable property:
for any arbitrary maximal bicluster (O, T ), its experiment
set T exists in PCTgene. Thus, we can discover any T , by
probing PCTgene. Suppose O = {g1,g2, g3, . . . , gN}. By

Property 1 in Section 3.3,

T ∈
⊗

∀(gi,gj)∈O

ΠE(gi, gj)

= ΠE(g1, g2) ⊗ ΠE(g1, g3)︸ ︷︷ ︸
�Π1⊂PCTgene

⊗ΠE(g1, g4) · · ·

= Π1 ⊗ ΠE(g1, g4)︸ ︷︷ ︸
�Π2⊂PCTgene

⊗ΠE(g1, g5) · · ·

= · · ·
= ΠN(N−1)

2 −1
⊂ PCTgene.

Π1,Π2, . . . ,ΠN(N−1)
2 −1

⊂ PCTgene, since PCTgene is

well-shaped. Therefore, T can be found in PCTgene if it
is well-shaped. The well-shaped PCTexp has the same ad-
vantage for discovering O.

If both PCTs are well-shaped, as is the case for Type
1 problems, the building blocks for any maximal pCluster
(O, T ) already exist in PCTexp and PCTgene, respectively.
We only need to pair them appropriately. Figure 2 gives the
outline of the EPC-POLY algorithm.

input : well-shaped PCTgene and PCTexp

output : all maximal pClusters
for each πG in PCTexp do

for each πE in PCTgene do
if (πG, πE) forms a pCluster then

report (πG, πE);

Remove nonmaximal pClusters;

Figure 2. The EPC-POLY algorithm
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3.3. The EPC-EXACT algorithm

Not all PCTs are well-shaped in general, and we intro-
duce a property that holds in any maximal pCluster, regard-
less of the well-shapedness of a PCT.

Property 1 Given a maximal pCluster C = (O, T ),

T ∈
⊗

∀(gi,gj)∈O

ΠE(gi, gj), and O ∈
⊗

∀(ei,ej)∈T

ΠG(ei, ej).

Example 1 For the cluster 0 in Figure 1(b),
O = {g0, g1, g3} and T = {e0, e2, e4}. T ∈ ΠE(g0, g1) ⊗
ΠE(g0, g3) ⊗ ΠE(g1, g3) = {{e0, e2, e4}, {e4}}.

For simplicity, we use the second relation only in the se-
quel. Discovering pClusters through this relation is a two-
step process: we first find T , and then perform ⊗ operations
in order to determine O. For T , it is enough to try each πE ,
and its subsets not smaller than ME , since T ⊆ πE and
|T | ≥ ME . In order to avoid excessive and repetitive enu-
meration of the subsets of πE , we keep track of them us-
ing the trie data structure [1]. Since there frequently exist
overlaps among πE , the trie also provides an effect of com-
paction.

3.3.1. Generating and pruning the Trie In a trie, each
path from the root to a leaf corresponds to one word or char-
acter string in the represented set.

(Step 1) For each πE(gi, gj) in PCTgene, we first sort
the elements in πE(gi, gj) in an ascending order. Then in-
sert {gi, gj} into the node whose path is specified by the or-
dered elements. In Figure 3(a), {g0, g1} of πE(g0, g1) =
{e0, e1, e2, e4} is inserted into the leftmost leaf by follow-
ing the path “0,1,2,4”. The nodes whose level (the level of
the root is 1) is less than ME are empty, since no πE has
less elements than ME .

(Step 2) We expand the trie according to the following
observation: if two genes {gi, gj} form a pCluster with πE ,
then they must form a pCluster with subsets of πE , too.
Thus, traversing the trie in post-order, we distribute all the
gene elements of a node n to other nodes whose path is one
shorter than the path to n, but not less than ME . (Figure
3(b))

(Step 3) We now reduce the size of the trie by remov-
ing those nodes that have less than MG genes. We can do
this step efficiently by the pre-order traversal of the trie.
This is because the genes a node has are always the same as
or more than those its children have. Thus, if a node has less
than MG genes, then none of its children can have more. For
this reason, we can safely remove the entire subtree whose
root is located at that node. (Figure 3(c))

(Step 4) Now we can consider the genes in each node
and the experiments represented by the path to that node as
a candidate cluster. In a certain node the genes and exper-
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Figure 3. An example of the trie construction,
expansion, and pruning. (G1 = {g0, g1, g2, g3},
G2 = {g0, g1, g3, g4}, G3 = {g0, g1, g2, g3, g4}.)
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Figure 4. Example for reducing
⊗

operations.

iments can be already forming a pCluster. We collect the
pCluster and remove the node if it is a leaf. (Figure 3(d))

3.3.2. Reducing total number of ⊗ operations It is im-
portant to reduce the number of ⊗ operations as much as
possible, since they are computationally expensive. Our ap-
proach is similar to dynamic programming, where previ-
ously calculated results are exploited.

In the example in Figure 4, the node ei and the
edge (ei, ej) in the graph represents experiment ei

and ΠG(ei, ej), respectively. The left figure repre-
sents the case where previous results are not saved. With
n nodes in the graph, we need to look at all

(
n
2

)
edges, re-

sulting in
(
n
2

) − 1 ⊗ operations. In contrast, by storing
the previous results as in the right figure, we can re-
duce the number of edges to look at to (n − 1). Let
Π1 denote the intermediate result obtained by perform-
ing (n − 2) ⊗ operations among these edges. Π2 or
the shaded triangle represents the stored result. The fi-
nal answer can be obtained by Π1 ⊗ Π2. That is, we now
need only (n − 2 + 1) = (n − 1) ⊗ operations. We ap-
ply this idea to the trie as follows.

(Step 5) We calculate the intermediate data correspond-
ing to Π1 in Figure 4 for each node, traversing the trie in
pre-order. If this result at a certain node is empty, we re-
move the entire subtree rooted at that node, because apply-
ing further ⊗ to a null set is meaningless. (Figure 3(e))

(Step 6) As traversing the trie in pre-order, we perform
the operation corresponding to P = Π1 ⊗ Π2 in Figure 4.
Π1 corresponds to the result stored in the parent node. If P
is empty for a node, we prune the entire subtree rooted at
that node. Otherwise, we collect pClusters (denoted by el-
ements in P and the path to that node), if any, and store P
for the later use by the children.

(Step 7) We remove any nonmaximal pClusters, if any,
from the collection of pClusters discovered so far, and re-
port the remaining pClusters.

3.3.3. Clustering of type 2 problems If PCTgene is well-
shaped and PCTexp is not, we run the same EPC-EXACT

algorithm, only skipping Step 2. This is because we do not
need to consider subsets of πE at all, if PCTgene is well-
shaped. With no expansion of the trie, this modified algo-
rithm is faster than EPC-EXACT. In the opposite case where

only PCTexp is well-shaped, we insert πG rather than πE

into the trie, and follow the same procedure.

3.4. Remarks

The original pClustering algorithm in [14] is a special
case of the EPC-EXACT algorithm. The original algorithm
is for the case where |ΠG(ei, ej)| = 1 for any ei, ej .
Although the EPC-EXACT algorithm has the worst-case
complexity above polynomial, its running time on typical
benchmarks is practical. The worst-case complexity of the
EPC-POLY algorithm depends on the size of PCTs, which
are polynomial with respect to the data size even in worst-
case.

4. Additional enhancements

4.1. Dividing data matrices

We introduce a technique to divide the whole expres-
sion data matrix into submatrices, without compromising
any global pCluster discovery. The resulting submatrices
will be small enough to apply EPC-EXACT or EPC-POLY,
even if the original data matrix is so huge that the algo-
rithms are not applicable. We can discover all pClusters as
before, if we run the algorithms on every submatrix. Oth-
erwise, we can quickly produce a representative sample of
pClusters by focusing on a well-distributed set of submatri-
ces.

The basic idea is to divide the data matrix into subma-
trices specified by (πG, UE). The motivation is that for any
pCluster (O, T ), O is always a subset of a certain πG. If
we examine every πG, we can discover all pClusters. More-
over, this division can be done very quickly, since πG gen-
eration is trivial even for large-scale data. In most gene ex-
pression data, πG 
 |UG| and |UE | 
 |UG|, so the size of
each submatrix is manageable.

If the objective is to quickly generate a sample of pClus-
ters rather than discover all, we can divide the matrix ac-
cording to the algorithm.

(1) We first construct PCTexp from the data matrix D, as
shown in Figure 5. Each a-f in the PCTexp represents
a |πG| × 2 submatrix corresponding to (πG, {ei, ej}).
(If we want to find all pClusters, we run EPC-EXACT

or EPC-POLY on each (πG, UE), and finish.)
(2) We choose n πG from the PCTexp in such a way that

they cover UG. For each selected πG(ei, ej), we form a
|πG|×2 submatrix corresponding to (πG, {ei, ej}) and
call it a seed. In Figure 5, we assumed a and c were se-
lected as seeds, because the union of πG in a and c is
equal to UG.

(3) For each πG(el, em) not selected as a seed, we com-
pare it with the gene set π′

G in each seed and mea-
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Figure 5. Dividing a large data matrix into submatrices of manageable sizes.

sure similarity between them. If πG and π′
G are deter-

mined to be close enough by a certain criterion (such
as “overlap greater than 95%”), we merge that πG with
the seed. That is, we expand the seed vertically by tak-
ing a union of πG and π′

G, as well as horizontally by
taking a union of the experiment sets. If that πG is not
similar to any of the π′

G in the seeds, then we remove
it. This heuristic does not affect the quality of clusters
forming on the expanded seeds.

(4) We perform EPC-EXACT or EPC-POLY on each of the
n expanded seeds.

4.2. Data preparation

The translation or scaling patterns that can be discov-
ered by the original pScore model would be quite limited,
as mentioned in Section 1. This limitation can be alleviated
by a proper preprocessing. One obvious way is normaliza-
tion of the data matrix. If we do not want the piecewise
derivative of a pattern curve to be changed, which can hap-
pen in normalization, we can perform a simple signal range
transformation.

We replace the original value x in the data with a certain
f(x). We observe that f(x) = sign(x)

√|x| and its variants
work well. By such f(x), x is made bigger under a certain
value t and smaller above it. On average, the chance of be-
ing dropped from further considerations increases for sub-
threshold or “small” x, whereas it decreases for “large” x.
This transformation is statistically meaningful [9] and also
conforms with the biological observation that the correla-
tion between highly expressed genes are more important
than that between the vaguely expressed [6].

4.3. Cluster interpretation

Sometimes a large number of pClusters can be reported.
We can reduce the number by adjusting parameters. Gen-
erating many pClusters is often inevitable, however, if we
use the exact pClustering algorithms in order to monitor all
pClusters. This large number of pClusters makes it difficult
to interpret the results, since all pClusters are equally valid
by definition, unless discriminated by other measures. In or-

der to pay more attention to interesting results, we propose
to rank pClusters according to a certain measure that can
summarize the degree of coherence existing in clusters. We
use the mean square residue (MSR) score, which is the mea-
sure of the coherence in δ-biclustering [5]. Using the MSR
score also makes it possible to compare the result from
our enhanced pClustering and that from δ-biclustering, as
shown in Section 5.

5. Experimental Results

We implemented both our enhanced pClustering algo-
rithm and the original algorithm in [14] for comparison. We
used the synthetic and the real gene expression data listed in
Table 1. The synthetic data were generated by the method

Data ID |UG| |UE | Origin Ref.

DiK i × 1,000 30 Synthetic [14]
Dtumor, D+

tumor 1,000 16 Liver [13]
Dyeast 2,884 17 Yeast [5, 12]
Dlymp 4,026 96 B-cell [2]

Table 1. Data sets for the experiment.

introduced in [14]. For the real data, we used the expres-
sion data from yeast [5, 12], human B-cell lymphoma [2],
and human liver cancer [13]. |UG| and |UE | denote the row
and column size of the data matrix, respectively. In the syn-
thetic data set, D8K , for instance, has 8,000 rows. For each
DiK , we prepared 10 different data sets. D+

tumor is the pre-
processed version of Dtumor by f(x) = sign(x)

√|x|.
All the experiments were conducted on a 900 MHz

SPARC-III+ with 1 GB RAM, except for the one in Ta-
ble 2, which was ran on a 3.06 GHz Linux machine with
4 GB RAM.

5.1. Comparison with the original algorithm

We first experimented our algorithm on the syn-
thetic data sets to show its correctness and perfor-
mance improvements. Figure 6 shows the average run-
ning time (in seconds) on synthetic data set DiK , with
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Figure 6. Running time comparison.

i = 1000, 2000, . . . , 9000. We noticed a larger speedup
for bigger data matrices. We also verified that our algo-
rithm can discover all clusters inserted in advance to the
synthetic data sets.

We then applied the algorithm to Dyeast to show that
our approach can discover more pClusters. Table 2 presents
the results. In the table, #pC and #Add mean the total num-

MG ME δ RT (s) |PCT| #pC #Add.

38 8 1 31.21 12,915 5 0
20 10 4 49.62 3,447 22 0
40 7 1 42.30 39,777 106 0
42 7 2 50.69 37,969 67 0
35 7 2 75.29 43,559 404 165
33 7 2 131.69 49,223 645 362
32 7 2 158.74 51,085 807 433
40 6 1 113.71 136,265 1,204 1,189
42 6 2 174.60 127,876 910 891
40 5 1 172.87 345,413 4,095 4,086

Table 2. The number of pClusters discovered.

ber of pClusters reported and that of pClusters found by our
method only, respectively. The data set was Dyeast. The two
algorithms gave the same result for some cases. However,
more pClusters were found by our algorithm when the size
of PCT is relatively large and thus most ΠG are expected
to have multiple elements (Section 3.4). We also confirmed
the validity of the additional pClusters our method discov-
ered.

5.2. Additional experiments

In the following experiments, the original pCluster al-
gorithm could not respond in reasonable time, and thus we
present the results from our algorithms only.

5.2.1. Distribution of problem type We observed that
Type 1 and Type 3 were more common than Type 2. An
interesting observation was, the problem type can vary de-
pending upon the choice of (MG,ME , δ), even for the same
data set. When we used the parameters generating many
overlaps, for instance, the problem normally belonged to

MG ME δ RT1(s) RT3(s) TT (s)

40 10 5 647.8 2068.29 2.34
30 10 5 658.2 2341.64 2.76
40 8 5 667.9 1627.91 8.64
30 8 4 673.7 1664.50 8.79
30 7 5 860.8 1693.20 4.01
20 10 3 1230.3 2052.15 5.49

(a) Running time
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Type test

PCT pruning

PCT generation

(b) Running time breakdown

Figure 7. Effects of problem type.

Type 3. In contrast, when we chose such parameters that re-
sulted in few overlaps, the problem was mostly Type 1. The
synthetic data sets DiK all belonged to Type 1, regardless
of parameters. This is because the clusters were inserted, by
design, without overlaps. The original pClustering was ap-
plicable to large-scale Type 1 problems such as DiK , but
not to most Type 2 or 3 problems.

5.2.2. EPC-EXACT versus EPC-POLY We also tested
our algorithm on Dlymph to show the effect of problem type
on performance. We tried many different sets of parameter
triplet, some of which are shown in Figure 7. The first ta-
ble gives the running time with different parameters on Type
1 problems. The data set was Dlymph and RT1, RT3, and
TT stand for the runtime for Type 1 algorithm, Type 3 al-
gorithm, and the test algorithm to figure out the problem
type, respectively. In this particular data set, we observed
that most test cases belong to Type 1. To show the effective-
ness of our Type 1 algorithm, we also listed running time of
Type 3 algorithm. We observe that the time to test the prob-
lem type is negligible.

The plot in Figure 7(b) shows the running time break-
down according to the problem type. The PCT generation
step dominates in Type 1 problems. The clustering step
dominates in Type 3 problems. The DiK was used for Type
1 and Dyeast for Type 3.

Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’04) 
0-7695-2173-8/04 $ 20.00 © 2004 IEEE 



ID row col MSR

86 28 5 115.6
72 18 7 134.5
98 9 7 161.5
90 28 7 186.2
80 23 8 217.7
83 9 8 220.9
84 11 10 249.9

(a) δ-biclusters [5]

ID row col MSR

228 28 5 44.0
152 30 5 46.6
185 29 5 47.3
207 28 5 58.9

0 10 7 43.9
12 10 7 47.8
1 10 7 51.1

(b) pClusters

Table 3. MSR score comparison.

5.2.3. Comparison with δ-biclusters We compared
pClusters and δ-biclusters, in terms of the mean residue
square (MSR) score. The details are listed in Table 3.
Among the 100 δ-biclusters on Dyeast reported in [5], we
selected 7 δ-biclusters of reasonable size and relatively low
MSR scores, as listed in Table 4(a). For comparison, we
generated pClusters of similar sizes, and ranked them ac-
cording to their MSR scores, as shown in Figure 4(b). The
first 4 were generated with (MG,ME , δ) = (28, 5, 51).
We show only the pClusters that have 4 lowest MSR
scores. The other entries are the pClusters that have 3 low-
est MSR scores among the pClusters produced with
(MG,ME , δ) = (10, 7, 48). We observed that the MSR
scores of the pClusters are consistently lower than the
δ-biclusters of similar size, meaning that more coher-
ently regulated gene expression patterns were detected by
the pClusters.

5.2.4. Effect of pre-processing We ran our enhanced
pClustering algorithm on Dtumor and D+

tumor and com-
pared the result. Figure 8(a) shows some pClusters discov-
ered on Dtumor with δ = 0.7. When the signal range was

-2.0

1.0

-0.4

0.5

(a) No preprocessing

-2.0

1.0

-0.4

0.5

(b) With processing

Figure 8. Effect of pre-processing.

quite bigger than δ (the upper plot in the figure), the clus-
ter formation was reasonable. In contrast, when the sig-

nal range was comparable to δ (the lower plot), the cluster
was noisy. Figure 8(b) presents some pClusters discov-
ered on D+

tumor with δ =
√

0.7. The pClusters found on
D+

tumor were less affected by the signal range.

6. Conclusions

In this work, we proposed a suite of new algorithms to
perform pClustering on large-scale expression data. The ex-
perimental results confirmed that our enhanced pClustering
approach is more scalable, finds more pClusters, and de-
tects more complicated patterns than the original pCluster-
ing technique. Leveraged by our new framework, we hope
more applications of pClustering to gene expression data
analysis will come out.
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