
Networks on chips:

A new paradigm for component-based MPSoC design

L. Benini G. De Micheli

DEIS Università di Bologna
Bologna, Italy 40136

CSL Stanford University
Stanford, CA 94305

1 Introduction

We consider multi-processor systems on chips (MPSoCs) that will be designed and produced in deep submicron
technologies (DSM) with minimal features in the [100− 25]nm range. Such systems will be designed using pre-
existing components, such as processors, controllers and memory arrays. The major design challenge will be to
provide a functionally-correct, reliable operation of the interacting components. The physical interconnections
on chip will be a limiting factor for performance and possibly for energy consumption.

In this chapter, we address a methodology for the design of the interconnection among components, that satisfies
the needs for modular and robust design, under the constraints provided by the physical interconnect.

1.1 Technology trends

In the projections of future silicon technologies, the operating frequency and transistor density will continue to
grow, making energy dissipation and heat extraction a major concern. At the same time, supply voltages will
continue to decrease, with adverse impact on signal integrity. The voltage reduction, even though beneficial,
will not suffice to mitigate the energy consumption problem, where a major contribution will be due to leakage.
Thus, SoCs will incorporate Dynamic Power Management (DPM) techniques in various forms to satisfy energy
consumption bounds [9].

Global wires, connecting different functional units, are likely to have propagation delays largely exceeding the
clock period [33]. Whereas signal pipelining on interconnections will become common practice, correct design
will require knowing the signal delay with reasonable accuracy. Indeed, a negative side effect of technology
downsizing will be the spreading of physical parameters (e.g., variance of wire delay per unit length) and its
relative importance as compared to the timing reference signals (e.g., clock period).

Synchronization of future chips with a single clock source and negligible skew will be extremely hard or im-
possible. The most likely synchronization paradigm for future chips is globally-asynchronous locally-synchronous
(GALS), with many different clocks. Global wires will span multiple clock domains, and synchronization failures
in communicating between different clock domains will be rare but unavoidable events [20].

1.2 Non-determinism in SoC abstraction models

As SoCs complexity scales, it will be more difficult, if not impossible, to capture their functionality with fully
deterministic models of operation. For example, a transaction request may not be satisfied within a fixed worst-
case time window, unless this window is so large to make the constraint useless. On the other hand, average

1



response time will be a more realistic objective to pursue. Similarly, high-level abstraction of components will
lead to non-deterministic models. For example, the time for context restoration in a processor waking up from
sleep mode cannot always be assessed deterministically at design time, because it often depends on the amount
of state information that needs to be restored to resume operation.

SoC designs will rely on tens, if not hundreds of information processing components that can dialogue among
each other. Global control on the information traffic will be unlikely to succeed, because of the need of keeping
track of the states of each component. Thus components will initiate autonomously data transfer according to
their needs. The global communication pattern will be fully distributed, with little or no global coordination.
Overall, SoC design will be based on both deterministic and stochastic models. There will be a definite trend in
quantifying design objectives (e.g., performance, power) by probabilistic metrics (e.g., average values, variance).
This trend will lead to a major change in design methodologies. Engineers are not new to large-scale design under
stochastic models. Networks are examples of systems that are well understood and successfully designed with
stochastic techniques and models [15, 56].

1.3 A new design approach to SoCs

To tackle the above-mentioned issues we can borrow models, techniques and tools from the network design
field and apply them to SoCs design. In other words, we view a SoC as a micro-network of components. The
network is the abstraction of the communication among the components and has to satisfy quality of service (QoS)
requirements (e.g., reliability, performance and energy bounds) under the limitation of intrinsic unreliable signal
transmission and non-negligible communication delays on wires. We postulate that SoC interconnect design can
be done using the micro-network stack paradigm, which is an adaptation of the protocol stack [56] (Figure 1).
Thus the electrical, logic, and functional properties of the interconnection scheme can be abstracted.

SoCs differ from wide-area networks because of local proximity and because they are much more predictable at
design time. Local, high-performance networks (such as those developed for large-scale multiprocessors) have
closer characteristics. Nevertheless, SoCs place computational and storage elements very close to each other. The
use of the same substrate for computing, storage and communication, the lack of bottlenecks (such as I/O pads)
and the freedom in designing wiring channels yield different design constraints and opportunities.

Overall, the most distinctive characteristics of micro-networks are energy constraints and design-time special-
ization. Whereas computation and storage energy greatly benefits from device scaling (smaller gates, smaller
memory cells), the energy for global communication does not scale down. On the contrary, projections based on
current delay optimization techniques for global wires [53] show that global communication on chip will require
increasingly higher energy consumption. Hence, communication-energy minimization will be a growing concern
in future technologies. Furthermore, network traffic control and monitoring can help in better managing the
power consumed by networked computational resources. For instance, clock speed and voltage of end nodes can
be varied according to available network bandwidth.

Design-time specialization is another facet of the SoC network design problem that raises many new challenges.
Macroscopic networks emphasize general-purpose communication and modularity. Communication network de-
sign has traditionally been decoupled from specific end applications, and strongly influenced by standardization
and compatibility constraints with legacy network infrastructures. In SoCs networks, these constraints are less
restrictive. The communication network fabric is designed on silicon from scratch. Standardization is needed only
for specifying an abstract network interface for the end nodes, but the network architecture itself can be tailored
to the application, or class of applications, targeted by the SoC design. Hence, we envision a vertical design flow
where every layer of the micro-network stack is specialized and optimized for the target application domain. Such
application-specific on-chip network synthesis paradigm represents, in our view, an open and exciting research
field. Needless to say, specialization does not imply complete loss of flexibility. From a design stand-point, net-
work reconfigurability will be key in providing plug-and-play use of components, since they will interact with the
others through (reconfigurable) protocols.

2



transport

ARCHITECTURE

CONTROL
&

data link
network

system

PHYSICALPHYSICAL

wiring

SOFTWARE

application

Figure 1: Micro-network stack

2 Signal transmission on chip

We consider now on-chip communication and its abstraction as a micro-network. We analyze the physical layer
of the micro-network stack in this section. Wires are the physical realization of communication channels in
SoCs. (For our purposes, we view busses as ensembles of wires.) Even though components may be hierarchically
designed, we shall focus on components and their interconnection with global wires. We neglect the internals of
components and their wiring by local wires, because the properties of such wires can be made to scale with the
technology, and it is likely that present design styles and methods will still apply [53].

2.1 Global wiring and signalling

Global wires are the physical implementation of the communication channels. The technologies under consider-
ation will exceed 10 wiring levels. Most likely, global wires will be routed on the top metal layers provided by
the technology. The pitch (i.e., width plus separation) of such wires is reverse scaled, i.e., wiring pitch increases
(with respect to device pitch) with higher wiring levels. Wire widths also grow with wiring levels. Wires at
top levels can be much wider and thicker than low-level wires [54]. There are several good reasons for routing
global communication on top wires. Increased pitch reduces cross-coupling and offers more opportunities for wire
shielding, thereby improving noise immunity. Increased width reduces wire resistance (even considering the skin
effect), while at the same time increased spacing around the wire prevents capacitance growth. At the same time,
inductive effects will grow relatively to resistance and capacitance [23]. As a result, future global wires are likely
to be modeled as lossy transmission lines, as opposed to today’s lumped or distributed RC models.

Physical layer signalling techniques for lossy transmission lines have been studied for a long time by high-speed
board designers and microwave engineers [7, 20]. Non-negligible line resistance causes signal attenuation and
dispersion in frequency of fast signals, thereby increasing intersymbol interference, and ultimately limiting com-
munication bandwidth. The impact of attenuation and frequency dispersion can be reduced by splitting wires in
several sections with signal regeneration buffers in between. Buffering significantly improves bandwidth, and it is
also beneficial for latency, especially when the RC component is dominant [33]. Line inductance requires careful
impedance matching at the transmitting or receiving end of the line, in order to avoid signal reflections that
largely increase intersymbol interference and noise [20]. Traditional rail-to-rail voltage signalling with capacitive
termination, as used today for on-chip communication, is definitely not well-suited for high-speed, low-energy
communication on future global interconnect [20].

In light of these trends, we believe that physical-layer signalling techniques for on-chip global communication will
evolve in the near future. High-speed communication is achieved by reducing the voltage swing, which has also a
beneficial effect on power dissipation. A reduced swing, current-mode transmitter requires careful receiver design,

3



Fc(f) Fc(f) Fr(f)Ft(f)

F(f)=1

x xy x

Figure 2: Channel transfer function and equalization

0 0 11

Figure 3: Current-pulse signalling: a simple AM scheme.

with good adaptation to line impedance, and high-sensitivity sensing, possibly with the help of sense amplifiers.

Example 1 Low swing drivers and receivers are already common in current integrated circuits. The bit-lines of
fast SRAMs use a differential, pre-charged, low-swing signalling scheme to improve speed and energy efficiency.
The transmitter is made of the precharge transistors (one for each bit line), and the selected cell. The receiver is
the sense amplifier at the end of bit-line pairs. During SRAM readout, the addressed cell is connected to the bit
line, and it draws a small, almost constant discharge current (the cell’s transistors are in saturation). A small
differential deviation (e.g., 100 mV) from the precharged value on the bit lines is sufficient for the sense amplifier
to detect the information stored in the addressed cell, and to restore it to full-swing logic values. A well-designed
SRAM read circuit based on this signalling scheme is more than ten times faster and approximatively two orders
of magnitude more energy-efficient than single ended, rail-to-rail signaling [20].

Example 2 Dynamic voltage scaling can be applied to interconnect wires, with the objectives of lowering the
voltage swing as much as possible, while preserving correctness of the transmitted information. Worm et al. [61]
devised a feedback scheme by which voltage swing on wires (busses) for a communication link is determined on-
line by monitoring the error rate of the information. In particular, this scheme supports packetized information
transmission, with retransmission of the corrupted packets. As retransmission rate increases over (decreases
below) a threshold, the voltage swing is increased (decreased).

This scheme is useful in setting the voltage swing according to the operating conditions of the SoC (environmental
noise, temperature), as well as for self-calibrating the SoC with respect to technological parameters, which may
have a wide spread in future technologies.

In general, transmitter and receiver design for on-chip communication should follow the well-known channel
equalization paradigm employed in digital communication, as shown in Figure 2. In this approach, the channel
is abstracted by a transfer function FC(f) in the frequency domain. The transmitter and the receiver should
equalize the transfer function by jointly implementing its inverse: FT (f)·FR(f) = F−1

C (f). Notice that, in general,
effective channel equalization may require non-linear transformations of the signal by transmitter and receiver.

Signal modulation is probably the simplest non-linear transformation that could be applied to optimize channel
efficiency. Currently, no modulation is employed for standard on-chip communication, but several modulation
schemes are being investigated, e.g., [64]. Modulation can greatly enhance the effective communication band-
width: (i) by shifting the information content of a signal out of frequency regions where the channel does not
transmit reliably; (ii) by enabling multiple channels to be carried over the same wire.

Example 3 Current-pulse signalling [20], as shown in Figure 3, is a simple example of amplitude modulation,
where the carrier is a square current waveform with duty cycle much smaller than 50%. The amplitude of the

4



waveform is modulated by multiplying it by −1 (a negative current pulse) when transmitting a zero, by +1 (a
positive current pulse) when transmitting a one.

A more complex example of on-chip modulation has been presented by Yoshimura et al. [64], who introduced a
new multi-master bus architecture where several transmitters share the same bus, by modulating their output data
using a code-division multiple access (CDMA) scheme. The frequency spreading and de-spreading is achieved by
multiplying the information by a pseudorandom sequence generated by linear feedback shift registers (LFSRs) at
both the transmitting and receiving ends. Thus, superimposed signals can be discriminated by just knowing the
characteristics of the LFSRs. In this approach, multiple simultaneous bus driving is achieved by using charge
pumps in the bus drivers.

Non-linear transformations can also help in increasing communication energy efficiency. In most current on-chip
signalling schemes power is consumed during signal transitions. Thus, signal encoding (a non-linear transforma-
tion) for reduced transition activity can help optimize communication energy. Numerous encoding techniques
have been proposed for this purpose [11].

2.2 Signal integrity

With present technologies, most chips are designed under the assumption that electrical waveforms can always
carry correct information on chip. We believe that guaranteeing error-free information transfer (at the physical
level) on global on-chip wires will become harder, if not impossible, in future technologies because of several
reasons:

• Signal swings are going to be reduced, with a corresponding reduction of voltage noise margins.

• Cross-talk is bound to increase, and the complexity of avoiding cross-talk by identifying all potential on-chip
noise sources will make it unlikely to succeed fully.

• Electromagnetic interference (EMI) by external sources will become more of a threat because of the smaller
voltage swings and smaller dynamic storage capacitances.

• The probability of occasional synchronization failures and/or metastability will rise. These erroneous con-
ditions are possible during system operation, because of transmission speed changes, local clock frequency
changes, timing noise (jitter), etc.

• Alpha particles (from the package) and collisions of thermal neutrons (from cosmic ray showers) can create
spurious pulses, which can affect signals on chip and/or discharge dynamic storage capacitances. This
problem, known as soft errors, used to be relevant only for large DRAMs. It is now conjectured to be a
potential hazard for large SoCs as well [50]

Example 4 A soft error occurs when a particle induces the creation of electron-hole pairs, corresponding to an
electric charge that is larger than a critical charge. The critical charge is a characteristic of the cell node (e.g.,
memory or register node), technology and operating voltage. Typical values range from 10 to 100 pC in current
technologies. The shrinking of layout geometries and corresponding reduction of node capacitances, as well as the
reduction in supply voltages, contribute to a reduction of the critical charge. Recent experiments [17] have shown
that the soft error rate can grow by two order of magnitudes in the current decade.

Soft errors may be permanent or transient. Transient soft errors can be seen as voltage pulses, that propagate
through a circuit when the pulse width is larger than the transition times of logic gates. The arrival of a pulse at
a latch boundary when a clock transition occurs may cause the wrong information to be stored. Nicolaidis et al.
[46] developed and commercialized error correcting techniques based on timing redundancy. Latches are replaced
by latch pairs, with identical inputs and whose outputs feed comparators. One latch has a delay line on its input.
Thus, the comparator detects spurious pulses that arrive at the latch boundary. Standard error recovery techniques
can then be used when a soft error is detected.

5



From the aforementioned considerations, we conclude that it will not be possible to abstract the physical layer
of on-chip networks as a fully reliable, fixed-delay channel. At the micro-network stack layers above the physical
one, we can view the effects of synchronization losses, crosstalk, noise, ionizing radiation, etc., as a source of local
transient malfunctions. We can abstract malfunctions as upsets. This is a simple and yet powerful model that
parallels the stuck-at fault model in the testing field. In particular, an upset is the abstraction of a malfunction
that causes the wrong binary information to be read or stored. Upset modeling consists of deriving analytical
models of crosstalk and radiation-induced disturbances, and derive the upset probability. Upset probability can
vary over different physical channels and over time. It is important to understand that upset probability is
negligible (but not null) in current technologies, but it will not be so in future technologies.

A number of new design challenges are emerging at the micro-network physical layer, and a paradigm shift is
needed to effectively address them. Indeed, current design styles consider wiring-related effects as undesirable
parasitics, and try to reduce or cancel them by specific and detailed physical design techniques. It is important
to realize that a well-balanced design should not over-design wires so that their behavior approaches an ideal one,
because the corresponding cost in performance, energy-efficiency and modularity may be too high. Physical layer
design should find a compromise between competing quality metrics and provide a clean and complete abstraction
of channel characteristics to micro-network layers above.

3 Micro-network architecture and control

Network design entails the specification of network architectures and control protocols. The architecture specifies
the topology and physical organization of the interconnection network, while the protocols specify how to use
network resources during system operation. Even though architecture and protocol design are tightly intertwined,
we shall first focus on different network architectures and then will address protocol design issues.

Network design is influenced by many design metrics. Whereas both micro-network and general network design
must meet performance requirements, on-chip network implementations will be differentiated by the need of
satisfying tight energy bounds. Design choices are strongly impacted by physical channel characteristics as well
as by expected workloads. In many cases it is possible to extract some information on usual communication
patterns and workload. This information can be used to optimize some design parameters. For example, for SoC
executing embedded software programs, the characteristics of the embedded instruction stream can be modeled
and used for the memory-processor interconnection design [10]. When no expected workload information is
available, network design should emphasize robustness.

3.1 Interconnection network architectures

On-chip networks are closely related to interconnection networks for high-performance parallel computers with
multiple processors, where processors are individual chips. Similarly to multiprocessor interconnection networks,
nodes are physically close and link reliability is high. Furthermore, multiprocessor interconnections have tra-
ditionally been designed under stringent bandwidth and latency constraints to support effective parallelization.
Similar constrains will drive the design of micro-networks. For these reasons we survey different on-chip network
architectures using the same taxonomy proposed by Duato et al. [25] for multiprocessor interconnections. We
show that current on-chip interconnections can be classified in a similar way and that their evolution follows a
path similar to multiprocessor interconnection architectures.

3.1.1 Shared-medium networks

Most current SoC interconnection architectures fall within the shared medium class [3, 18, 51, 57, 60]. These are
the simplest interconnect structures, in which the transmission medium is shared by all communication devices.
Only one device can drive the network at a time. Every device connected to the network has a network interface,
with requester, driver, and receiver circuits. The network is usually passive and it does not generate control or

6



data messages. A critical issue in the design of shared-medium networks is the arbitration strategy that assigns the
mastership of the medium and resolves access conflicts. A distinctive property of these networks is the support
for broadcast of information, which is very advantageous when communication is highly asymmetric, i.e., the flow
of information originates from few transmitters to many receivers.

Within current technologies, the most common embodiment of the on-chip, shared-medium structure is the
backplane bus. This is a very convenient, low-overhead interconnection for a small number of active processors
(i.e., bus masters) and a large number of passive modules (i.e., bus slaves) that only respond to requests from
bus masters. The information units on a bus belong to three classes, namely: data, address and control. Data,
address, and control information can either be time-multiplexed on the bus, or they can travel over dedicated
busses/wires, spanning the tradeoff between performance and hardware cost (area). Most on-chip busses value
performance and use a large number of dedicated wires.

A critical design choice for on-chip busses is synchronous versus asynchronous operation. In synchronous opera-
tion, all bus interfaces are synchronized with a common clock, while in asynchronous busses all devices operate
with their own clock and use a handshaking protocol to synchronize with each other. The tradeoffs involved in
the choice of synchronization approach are complex and depend on a number of auxiliary constraints, such as
testability, ease of debugging and simulation, and the presence of legacy components. Currently, all commercial
on-chip busses are synchronous, but the bus clock is slower than the clock of fast masters. Hence, simplicity and
ease of testing/debugging is prioritized over sheer performance.

Bus arbitration mechanisms are required when several processors attempt to use the bus simultaneously. Arbitra-
tion in current on-chip busses is performed in a centralized fashion by a bus arbiter module. A processor wishing
to communicate must first gain bus mastership from the arbiter. This process implies a control transaction and
communication performance loss, hence arbitration should be as fast as possible and as rare as possible. Together
with arbitration, the response time of slow bus slaves may cause serious performance losses, because the bus re-
mains idle while the master waits for the slave to respond. To minimize the waste of bandwidth, split transaction
protocols have been devised for high performance busses. In these protocols, bus mastership is released just after
a request has completed, and the slave has to gain access to the bus to respond, possibly several bus cycles later.
Thus the bus can support multiple outstanding transactions. Needless to say, bus masters and bus interfaces for
split transaction busses are much more complex than those of simple atomic-transaction busses. Even though the
majority of current on-chip busses support only atomic transactions, some split transaction organizations have
begun to appear [1].

Example 5 The AMBA 2.0 bus standard has been designed for the ARM processor family [3]. It is fairly simple
and widely used today. Within AMBA, the high-performance bus protocol (AHB) connects high-performance
modules, such as ARM cores and on-chip RAM. The bus supports separate address and data transfers. A bus
transaction is initiated by a bus master, which requests access from a central arbiter. The arbiter decides priorities
when there are conflicting requests. The arbiter is implementation specific, but it must adhere the ASB protocol.
Namely, the master issues a request to the arbiter. When the bus is available, the arbiter issues a grant to
the master. Arbitration address and data transfer are pipelined in AM*BA AHB* to increase the bus effective
bandwidth, and burst transactions are allowed to amortize the performance penalty of arbitration. However,
multiple outstanding transactions are supported only to a very limited degree: the bus protocol allows a split
transaction, where a burst can be temporarily suspended (by a slave request). New bus transactions can be initiated
during a split burst.

The Lucent Daytona chip [1] is a multi-processor on a chip that contains four 64-bit processing elements. These
elements generate transactions of different sizes. Thus, a special 128-bit split-transaction bus was chosen. The
bus was designed to minimize the average latency when simultaneous requests are made. Large transfers are
partitioned into smaller packets enabling bus bandwidth to be better utilized. Each transaction is associated with
an ID. Thus, multiple outstanding transactions can be serviced and be prioritized under program control. Thus
feature is critical for system performance. In fact, the recently announced most advanced version of the AMBA
bus protocol (AMBA AXI) fully supports multiple outstanding transactions.

Shared-medium network organizations are well-understood and widely used, but their scalability is seriously
limited. The bus-based organization is still convenient for current SoCs that integrate less than five processors

7



and rarely more than ten bus masters. Multiprocessor architects have realized long ago that bus-based systems
are not scalable, as the bus invariantly becomes the bottleneck when more processors are added. Another critical
limitation of shared-medium network is their energy inefficiency. In these architectures, every data transfer is
broadcast. Broadcasts must reach each possible receiver at a large energy cost. Future integrated systems will
contain tens to hundreds of units that generate information to be transferred. For such systems, a bus-based
network would become the critical performance and power bottleneck.

3.1.2 Direct and indirect networks

The direct or point-to-point network is a network architecture that overcomes the scalability problems of shared-
medium networks. In this architecture, each node is directly connected with a subset of other nodes in the
network, called neighboring nodes. Nodes are on-chip computational units, but they contain a network interface
block, often called a router, which handles communication-related tasks. Each router is directly connected with
the routers of the neighboring nodes. Different from shared-medium architectures, as the number of nodes in the
system increases, the total communication bandwidth also increases. Direct interconnect networks are therefore
very popular for building large-scale systems.

Indirect or switch-based networks are an alternative to direct networks for scalable interconnection design. In these
networks, a connection between nodes has to go through a set of switches. The network adapter associated with
each node connects to a port of a switch. Switches do not perform information processing. Their only purpose is
to provide a programmable connection between their ports, or, in other words, to set up a communication path
that can be changed over time [25]. Interestingly enough, the distinction between direct and indirect networks
is blurring, as routers (in direct networks) and switches (in indirect networks) become more complex and absorb
each other’s functionality.

Most current field-programmable gate arrays (FPGAs) consist of a homogeneous fabric of programmable elements
connected by a switch-based network. FPGAs can be seen as the archetype of future programmable SoCs: they
contain a large number of interconnected computing elements. Current FPGAs communication networks differ
from future SoC micro-networks in granularity and homogeneity.

The concept of dynamic reconfigurability of FPGAs also applies to the design of micro-networks. SoCs benefit
from programmability in the field (e.g., to match environmental constraints) and to run-time reconfiguration (e.g.,
to adapt to a varying workload). Reconfigurable micro-networks exploit programmable routers and/or switches.
Their embodiment may leverage multiplexers whose control signals are set by configuration bits in local storage,
as in the case of FPGAs.

Processing elements in FPGAs implement simple bit-level functional blocks. Thus communication channels in
FPGAs are functionally equivalent to wires that connect logic gates. Since future SoCs will house complex
processing elements, interconnect will carry much coarser quanta of information. The different granularity of
computational elements and communication requirements has far-reaching consequences on the complexity of the
network interface circuitry associated with each communication channel. Interface circuitry and network control
policies must be kept extremely simple for FPGAs, while they can be much more complex when supporting
coarser-grain information transfers. The increased complexity will introduce also larger degrees of freedom for
optimizing communication.

Example 6 The Xilinx Spartan-II FPGA chips are rectangular arrays of configurable logic blocks (CLBs). Each
block can be programmed to perform a specific logic function. CLBs are connected via a hierarchy of routing
channels. Thus each chip has an indirect network over a homogeneous fabric.

The RAW architecture [2] is a fully programmable SoC, consisting of an array of identical computational tiles
with local storage. Full programmability means that the compiler can program both the function of each tile and
the interconnections among them. The name RAW stems from the fact that the ”raw” hardware is fully exposed
to the compiler. To accomplish programmable communication, each tile has a router. The compiler programs the
routers on all tiles to issue a sequence of commands that determine exactly which set of wires connect at every
cycle. Moreover, the compiler pipelines the long wires to support high clock frequency. Thus, RAW can be viewed
as a direct network.

8



The Xilinx Virtex-II are FPGAs with various configurable elements to support reconfigurable digital signal pro-
cessor (DSP) design. The internal configurable rectangular array contains CLBs, RAMs, multipliers and clock
managers. Programmable interconnection is achieved by routing switches. Each programmable element is con-
nected to a switch matrix, allowing multiple connections to the general routing matrix. All programmable elements,
including the routing resources, are controlled by values stored in static memory cells. Thus, Virtex-II can be also
seen as an indirect network over a heterogeneous fabric.

From an energy viewpoint, direct networks have the potential for being more energy-efficient than shared medium
networks, because energy per transfer on a point-to-point communication channel is smaller than that on a large
shared-medium architecture. Clearly, communication between two end-nodes may go through several point-to-
point links, and the comparison should take this effect into account [49]. When local communication between
neighboring nodes dominates, the energy advantage of point-to-point networks is hardly disputable and some
recent experimental work has quantified such advantage [41]. It is also interesting to observe that point-to-point
networks are generally much more demanding in terms of area than shared-medium networks. In this case the
positive correlation between area and power dissipation breaks down.

3.1.3 Hybrid networks

Direct and indirect networks yield the scalability required to support communication in future SoCs and they
can provide, with the support of effective control techniques (discussed in the next subsection) the performance
levels required to avoid communication bottlenecks. Current FPGAs show convincing evidence that multi-stage,
scalable networks can be implemented on-chip, and current high-performance multiprocessors demonstrate that
these advanced network topologies can sustain extremely high performance levels. However, the communication
infrastructure of both FPGAs and multiprocessors are strongly oriented toward homogeneity in information
transfer.

Homogeneous interconnection architectures have important advantages: they facilitate modular design, and they
are easily scaled up by replication. Nevertheless, homogeneity can be an obstacle to flexibility and fine-tuning
of architectures to application characteristics. While homogeneous network architectures may be the best choice
for general-purpose computing, systems developed for a particular applications (or a class of applications) can
benefit from a more heterogeneous communication infrastructure, that provides high bandwidth in a localized
fashion only where it is needed to eliminate bottlenecks.

The advantages of introducing a controlled amount of non-uniformity in communication network design are widely
recognized. Many heterogeneous, or hybrid interconnection architectures, have been proposed and implemented.
Notable examples are multiple-backplane and hierarchical (or bridged) busses. These organizations enable cluster-
ing of tightly coupled computational units with high communication bandwidth, and provide lower bandwidth
(and/or higher latency) inter-cluster communication links. Compared to a homogeneous, high-bandwidth archi-
tecture, they can provide comparable performance using a fraction of the communication resources, and at a
fraction of the energy. Thus, energy efficiency, is a strong driver toward hybrid architectures.

Example 7 The AMBA 2.0 standard [3] specifies three protocols: the high performance bus (AHB), the advanced
system bus (ABS) and the advanced peripheral bus (APB). The latter is designed for lower-performance transac-
tions related to peripherals. An AMBA-based chip can instantiate multiple bus regions which cluster components
with different communication bandwidth requirements. Connections between two clusters operating with differ-
ent protocols (and/or different clock speed) is supported through bus bridges. Bridges perform protocol matching
and provide the buffering and synchronization required to communicate across different clock domains. Note that
bridges are also beneficial from an energy viewpoint, because the high-transition rate portion of the bus is decoupled
from the low-speed, low transition-rate, peripheral section.

3.2 Micro-network control

Effective utilization of the physical realization of micro-network architectures depends on protocols, i.e., on
network control algorithms which are often distributed. We shall describe control algorithms following the micro-

9



network stack of Figure 1 from the bottom up. Network protocols can be implemented either in software or in
hardware. In our analysis, this distinction is immaterial, because we focus only on the various control functions,
and not on how to implement them. In synthesis, network control is responsible for dynamically managing network
resources during system operation, striving to provide the required quality of service.

3.2.1 Data Link layer

As seen in Section 2 and in Figure 1, on-chip global wires are the physical support for communication. The
data-link layer abstracts the physical layer as an unreliable digital link, where the probability of bit upsets is
non null. Such upset probabilities are increasing as technology scales down. Furthermore, we have seen that
reliability can be traded off for energy. The main purpose of data-link protocols is to increase the reliability of
the link up to a minimum required level, under the assumption that the physical layer by itself is not sufficiently
reliable. Another important function of the data-link layer is to regulate the access to a shared-medium network,
where contention for a communication channel is possible. Thus we can see this layer as the superposition of two
sub-layers. The lower sublayer (i.e., closest to the physical channel) is called media access control (MAC), while
the higher sublayer is the data-link control (DLC). The MAC regulates access to the medium, while the DLC
increases channel reliability, e.g., by providing error detection and/or correction capabilities.

Error detecting and correcting codes (ECCs) can be used in different ways. When only error detection is used,
error recovery involves the retransmission of the faulty bit or word. When using error correction, some (or all)
errors can be corrected at the receiving end. Error detection and/or correction requires an encoder/decoder pair
at the channel’s end, whose complexity depends on the encoding being used. Obviously, error detection is less
hardware intensive than error detection and correction. In both cases, a small delay has to be accounted for in
the encoder and decoder. Data re-transmission has a price in terms of latency. Moreover, both error detection
and correction requires additional (redundant) signal lines. When ECC techniques are used in conjunction with
packetized information, the redundant lines can be avoided by adding the redundant information at the tail of
the packet, thus trading off space for delay.

There are several error detecting and correcting codes. For example, Berger codes can detect all unidirectional
codes. Other codes, like Hamming codes, address the issues of bidirectional errors, such as those found in noisy
channels. Error detection may reveal single or multiple errors in a data fragment (e.g., word). Similarly, error
correction can restore the correct information caused by single or multiple errors. When errors go undetected,
their effect can be catastrophic. When errors are detected and cannot be corrected (e.g., multiple errors with a
single-error correction scheme), data retransmission has to be used. In the general case, one has often to admit
that some errors may go undetected, and the designer’s goal is to make this event very unlikely. In practice, one
can choose a mean time to failure (MTTF) as a design specification. For example, one can chose an encoding
scheme that has a MTTF of ten years, much above the SoC projected lifespan.

Latency and energy consumption for data transmission using ECC are very important design parameters. While
the former has been studied for long time, the latter has been object of research only recently, especially in
view of the fact that energy consumption in micro-networks has to be curtailed. Overall, energy depends on the
switching activity in the communication link (including the redundant lines), on the encoder and decoder, on the
retransmission scheme, and of course on the noisiness of the channel.

Example 8 Bertozzi et al. [14] applied error correcting and detecting codes to an AMBA 2.0 AHB bus and
compared the energy consumption in five cases: (1) original unencoded data; 2) single-error correction (SEC),
(3) single-error correction and double-error detection (SECDEC), (4) multiple-error detection (ED), (5) parity.
Hamming codes were used. Note that in case 3, a detected double error requires retransmission. In case 4, using
(n, k) linear codes, 2n−2k errors patterns of length n can be detected. In all cases, some errors may go undetected
and be catastrophic. Using the property of the codes, it is possible to map the MTTF requirement into bit upset
probabilities, and thus comparing the effectiveness of the encoding scheme in a given noisy channel (characterized
by the upset probability) in meeting the MTTF target.

Bertozzi investigated the energy efficiency of various encoding schemes. We summarize here one interesting
case, where three assumptions apply. First, wires are long enough so that the corresponding energy dissipation

10



4600 46 0.46 0.0046 4.6e-5 4.6e-7 4.6e-9

MTTF (days)

Figure 4: Energy efficiency for various encoding schemes on an AMBA bus connecting a memory controller to an
I-cache of a LEON processor.

dominates encoding/decoding energy. Second, voltage swing can be lowered until the MTTF target is met. Third,
upset probabilities are computed using a white Gaussian noise model [32].

Figure 4 shows the average energy per useful bit as a function of the MTTF (which is the inverse of the residual
word error probability). In particular, for reliable SoCs (i.e., for MTTF = 1 year), multiple-error detection with
retransmission is shown to be more efficient than error-correcting schemes. We refer the reader to [14] for results
under different assumptions.

An additional source of errors, not considered in Section 2, is contention in shared-medium networks. Contention
resolution is fundamentally a non-deterministic process, because it requires synchronization of a distributed
system, and for this reason it can be seen as an additional noise source. In general, non-determinism can be
virtually eliminated at the price of some performance penalty. For instance, centralized bus arbitration in a
synchronous bus eliminates contention-induced errors, at the price of a substantial performance penalty caused
by the slow bus clock and by bus request/release cycles.

Future high-performance shared-medium on-chip micro-networks may evolve in the same direction as high-speed
local area networks, where contention for a shared communication channel can cause errors, because two or more
transmitters are allowed to concurrently send data on a shared medium. In this case, provisions must be made
for dealing with contention-induced errors.

An effective way to deal with errors in communication is to packetize data. If data is sent on an unreliable channel
in packets, error containment and recovery is easier, because the effect of errors is contained by packet boundaries,
and error recovery can be carried out on a packet-by-packet basis. At the data link layer, error correction
can be achieved by using standard error correcting codes that add redundancy to the transferred information.
Error correction can be complemented by several packet-based error detection and recovery protocols, such as
alternating-bit, go-back-N, selective repeat, which have been developed for macroscopic networks [56, 15]. Several
parameters in these protocols (e.g., packet size, number of outstanding packets, etc.) can be adjusted depending
on the goal to achieve maximum performance at a specified residual error probability and/or within given energy
consumption bounds. The choice of protocol and optimization of its parameters for micro-networks is an open
problem.

We stress that contention for communication resources is unavoidable in all scalable network architectures.
Contention-free communication is achievable either at the price of a large performance penalty (through global
synchronization and centralized arbitration), or at the price of a large and poorly scalable contention-free inter-
connection architecture (e.g., a complete crossbar). Hence, almost every practical on-chip network will have to

11



account for the effects of contention caused by shared channels. Packetization of information flow is needed to
effectively deal with contention: it limits the effects of contention-related errors, but it is also instrumental in
implementing fair sharing of communication resources. For these reasons, we believe that future on-chip micro-
networks will be packet-based, and designers will need guidelines and tools to decide packetization granularity
and to trade off packet data and control content.

Example 9 The scalable programmable integrated network (SPIN) is an on-chip micro-network [5, 31] that de-
fines packets as sequences of 36-bits words. The packet header fits in the first word. A byte in the header identifies
the destination (hence, the network can be scaled up to 256 terminal nodes), and other bits are used for packet
tagging and routing information. The packet payload can be of variable size. Every packet is terminated by a
trailer, which does not contain data, but a checksum for error detection. Packetization overhead in SPIN is 2
words. The payload should be significantly larger than 2 words to amortize the overhead. A SPIN on-chip network
consists of two macro-cell circuits, a router and two wrappers respecting the virtual component interface (VCI)
standard. A prototype implementation is described in [5].

3.2.2 Network layer

The data link layer implements a reliable (packet-based) link between processing elements connected to a common
link. The network layer implements the end-to-end delivery control in advanced network architectures with many
communication channels. In most current on-chip networks, all processing elements are connected to the same
channel, namely, the on-chip bus. Under these conditions, the network layer is empty. However, when processing
elements are connected through a collection of links, we must decide how to set up connection between successive
links, and how to route information from its source to the final destination, through a series of nodes in between.
These key tasks, called switching and routing, are specific to the network layer, and they have been extensively
studied both in the context of multiprocessor interconnects [25] and in the context of general communication
networks [56, 15].

Switching algorithms can be grouped in four classes: circuit switching, packet switching, cut-through switching
and wormhole switching. With circuit switching, a path from the source to the destination is reserved prior
to the transmission of data, and the network links on the paths are released only after the data transfer has
been completed. Circuit switching is advantageous when traffic is characterized by infrequent and long messages,
because communication latency and throughput on a fixed path are generally very predictable. With circuit
switching, network resources are kept busy for the duration of the communication, and the time for setting up a
path can produce a sizable initial latency penalty. Hence, circuit switching is not widespread in packet networks
where atomic messages are data packets of relatively small size: communication path setup and reset would cause
unacceptable overhead and degrade channel utilization.

Packet switching addresses the limitations of circuit switching for packetized traffic. The data stream at the source
is divided into packets, and the time interval between successive packets may change. A packet is completely
buffered at each intermediate switch (or router) before it is forwarded to the next. This approach is also called
store-and-forward, and it introduces non-deterministic delays due to message queueing at each intermediate
node. Packet switching leads to significantly higher utilization of communication resources with respect to circuit
switching, at the price of an increase in non-determinism. Furthermore, many packets belonging to a message
can be in the network simultaneously and out-of-order delivery to the destination is possible.

Packet switching is based on the assumption that an entire packet has to be completely received before it can
be routed to an output channel. This assumption implies that the switch, or the router, must provide significant
storage resources. Furthermore, each intermediate node adds latency to the message, because it needs to fully
receive a packet before forwarding it toward the next node. Cut-through switching strategies have been developed
to reduce buffering overhead and latency. In cut-through switching schemes, packets are routed to the output
channel and they can start leaving the switch before they are completely received in the input buffer. Improved
performance and memory usage are counterbalanced by increased message blocking probability under heavy traffic,
because a single packet may occupy input and output ports in several switches. As a result, non-determinism in
message delivery increases.

12



Wormhole switching was originally designed for parallel computer clusters [25] because it achieves small network
delay and requires little buffer usage. In wormhole switching, each packet is further segmented into flits (flow
control units1). The header flit reserves the routing channel of each switch, the body flits will then follow the
reserved channel, the tail flit will later release the channel reservation. One major advantage of wormhole routing
is that it does not require the complete packet to be stored in the switch while waiting for the header flit to
route to the next stages. Wormhole switching not only reduces the store-and-forward delay at each switch, but
it also requires much less buffer spaces. One packet may occupy several intermediate switches at the same time.
Because of its low latency and low storage requirement advantages, wormhole is an ideal switching technique
for on-chip multiprocessor interconnect networks. A number of recently proposed network-on-chip prototype
implementations are indeed based on wormhole packet switching [5, 21, 22, 29].

Different switching approaches trade off better average delivery time and channel utilization for increased variance,
and decreased predictability. The impact of switching on energy efficiency has not been explored in detail.
Depending on the application domain, non-determinism can be more or less tolerable. In many cases, hybrid
or adaptive switching approaches can achieve an optimal balance between average performance measures and
predictability and energy.

Switching is tightly coupled to routing. Routing algorithms establish the path followed by a message through the
network to its final destination. The classification, evaluation and comparison of on-chip routing schemes [25]
involves the analysis of several trade-offs, such as predictability versus average performance, router complexity
and speed versus achievable channel utilization, and robustness versus aggressiveness. A coarse distinction can be
made between deterministic and adaptive routing algorithms. Deterministic approaches always supply the same
path between a given source-destination pair, and they are the best choice for uniform or regular traffic patterns.
In contrast, adaptive approaches use information on network traffic and channel conditions to avoid congested
regions of the network. They are preferable in presence of irregular traffic or in networks with unreliable nodes
and links. Among other routing schemes, probabilistic broadcast algorithms [26] have been proposed for Networks
on Chip (NoCs).

Optimal routing for on-chip micro-networks is another open and important research theme. We predict that
future approaches will emphasize speed and decentralization of routing decisions. Robustness and fault tolerance
will also be highly desirable. These factors, and the observation that traffic patterns for special-purpose SoCs tend
to be irregular, seem to favor adaptive routing. However, when traffic predictability is high and non-determinism
is undesirable, deterministic routing may be the best choice.

Example 10 The SPIN micro-network adopts wormhole routing [5]. Routing decisions are set by the network
architecture, the fat-tree. Packets from a node (a tree leaf) are routed toward the tree root until they reach a switch
that is a common ancestor with the destination node. At that point, the packet is routed toward the destination
following the unique path between ancestor and destination node.

Reconfigurable networks, such as today’s FPGAs, or the heterogeneous interconnects of many reconfigurable com-
puting platforms, adopt a deterministic and static routing approach. Routing (i.e., switch programming) is per-
formed at reconfiguration time, and routing decisions are taken on a much coarser time scale than in packet-
switched networks. From a networking viewpoint, switch programming can be viewed as setting up a number
circuit-switched connections that last a very long time.

Routing signals in the RAW [2] machine is under software control. The compiler routes the signals along the
optimal pathways by precisely scheduling the signals to meet the demand of the applications. Thus routing is
adaptive, and connections in RAW are referred to as “soft wires”.

The routing scheme in the Aethereal micro-network has two modes of operation: it supports both best effort services
and guaranteed throughput. Thus links can be configured according to the type of application that is running and
its requirements between two end-nodes. Best-effort packets use wormhole source routing, while the guaranteed
throughput mode uses time-division multiplexed circuit switching [29].

Some other routing schemes have found direct applications in NoCs. Hot potato or deflection routing is based on
the idea of delivering a packet to an output channel of a switch at each cycle. It requires a switch with an equal

13



number of input and output channels. Therefore, input packets can always find at least one output exit and no
deadlock occurs. However, livelock is a potential problem in hot potato routing. Proper deflection rules need to
be defined to avoid livelock problems.

Example 11 A contention-aware hot-potato routing scheme was proposed by Nilsson. [47]. It is based on a two-
dimensional mesh NoCs and on the switch architecture described by Kumar [35]. Each switch node also serves
as network interface to a node processor (also called resource). Therefore, it has five inputs and five outputs.
Each input has a buffer that can contain one packet. One input and one output are used for connecting the node
processor. An internal FIFO is used to store the packets when output channels are all occupied. The routing
decision at every node is based on the “stress values”, which indicate the traffic loads of the neighbors. The stress
value can be calculated based on the number of packets coming into the neighboring nodes at a unit time, or based
on the running average of the number of packets coming to the neighbors over a period of time. The stress values
are propagated between neighboring nodes. This scheme is effective in avoiding “hot spots” in the network. The
routing decision steers the packets to less congested nodes.

Ye [63] perfected this scheme by using a wormhole-based contention-look-ahead routing algorithm that can “foresee”
the contention and delays in the coming stages using a direct connection from the neighboring nodes. It is also
based on a mesh network topology. The major difference from [47] is that information is handled in flits, and thus
large and/or variable size packets can be handled with limited input buffers. Therefore, this scheme combines the
advantages of wormhole switching and hot potato routing.

The choice of routing algorithms has an impact on the overall system energy efficiency [26, 63], and that there is a
trade off between energy efficiency and performance. Consider, for instance, packet flooding schemes, sometimes
adopted for adaptively routing information though the fastest route between two nodes. This approach can be
beneficial for performance, but it is very energy-inefficient.

3.2.3 Transport layer

On top of the network layer, the transport layer decomposes messages into packets at the source. It also rese-
quences and reassembles them at the destination. Packetization granularity is a critical design decision, because
the behavior of most network control algorithms is very sensitive to packet size. In most macroscopic networks,
packets are standardized to facilitate internetworking, extensibility and compatibility of networking hardware
produced by different manufacturers. Packet standardization constraints can be relaxed in SoC micro-networks,
which can be customized at design time.

Example 12 The size of the packets has a direct impact on both performance and energy consumption. Thus,
an interesting problem is the search for optimal packet size. To some extent, optimal packetization depends on
the network architecture and on the system function (including application software). Ye [62] performed a set
of experiments on mesh networks of computing nodes, each node including processing and local cache memory.
The experiments consisted of simulating the execution of benchmark programs using the RSIM simulator. The
qualitative meaning of these experiments can be summarized as follows.

Larger packets correlate to lower cache miss rates but to higher miss penalties, due to the increase of packetization,
memory access and contention delays. The cache miss rate decreases and then stabilizes with the increase of packet
size, while the miss penalty increases overlinearly. Therefore, there exists an optimal packet size to achieve best
performance.

The energy spent on the interconnect network increases as the packet size increases, because the packet energy per
hop increases as well as the number of hops. On the other hand, storage energy decreases as packets get larger,
because of several factors including lower cache miss rates. Overall, the energy consumption has a minimum value
for some packet length, such a minimum depending on the relative importance of storage and interconnect energy
consumption. Note that the optimal packet length for performance may differ from the optimal packet length from
an energy standpoint. (See Figure 5.)

14



Figure 5: Latency and energy trends as packet size varies

Other functions of the transport layer are to control the flow of data into the network, to allocate network
resources and to negotiate quality of service. Data flow can be controlled through admission control, commonly
used in circuit-switched networks, that negate access to the network when there is no available path from source to
destination. In packet-switched networks, access can be more finely tuned through congestion control that slows
down forwarding of data packets to prevent congestion downstream. Alternatively, traffic shaping regulates the
rate of entrance of data packets directly at the source. In packet-switched networks with predictable packet flow
(for instance, in virtual-circuit networks where all packets from a source to a destination follow the same route),
it is possible to negotiate guarantees on network performance (throughput, latency) upon connection setup.

In general, flow control and negotiation can be based on either deterministic or statistical procedures. Determinis-
tic approaches ensure that traffic meets specifications, and provide hard bounds on delays or message losses. The
main disadvantage of deterministic techniques is that they are based on worst cases, and they generally lead to
significant under-utilization of network resources. Statistical techniques are more efficient in terms of utilization,
but they cannot provide worst case guarantees. Similarly, from an energy viewpoint, we expect deterministic
schemes to be more expensive than statistical schemes.

Example 13 The SONICS Silicon Backplane Micro-network [57, 58] supports a time-division multiple access
(TDMA) protocol. When a node wants to communicate, it needs to issue a request to the arbiter during a time slot
and it may be granted access in the following time slot, if arbitration is favorable. Hence, arbitration introduces a
non-deterministic waiting time in transmission. To reduce non-determinism, the micro-network protocol provides
a form of slot reservation: nodes can reserve a fraction of the available time slots, and therefore they allocate bus
bandwidth in a deterministic fashion. Reserved slots are assigned on a periodic pattern (a timing wheel), hence a
master is guaranteed to have access to all its reserved slots within the revolution period of the timing wheel.

The main shortcoming of the deterministic scheme is that the revolution period of the timing wheel is a large
multiple of the bus clock period, hence long latencies can be experienced for bus access if the bus master requests
are misaligned in time w.r.t. its reserved slots. A randomized TDMA scheme, called ”Lotterybus” [36] has been
proposed to achieve lower average bus access latency, at the price of the loss of worst-case latency guarantees.

Summarizing the overview of network architectures and control issues we can conclude that the theoretical frame-
work developed for large-scale (local, wide area) and on-chip interconnection networks provides a convenient
environment for reasoning about on-chip micro-networks as well. It is important to notice that the design space
of micro-networks is currently very scarcely explored, and a significant amount of work is needed to predict the
tradeoff curves in this space. We also believe that there is significant room for innovation: on-chip micro-networks
architectures and protocols can be specialized for a specific system configurations and classes of applications.
Furthermore, as pointed out several times above, the impact of network design and control decisions on commu-
nication energy is an important research theme that will become critical as communication energy scales up in
SoC architectures.

15



4 Software layers

The hardware infrastructure described in the previous sections provides a basic communication service to the
network’s end nodes. Most of the end nodes in future on-chip networks will be programmable, ranging from
general-purpose microprocessors, to application-specific processors, to reconfigurable logic. Other nodes, such as
I/O blocks and memories will serve as slaves for the processor nodes, but they will also support some degree
of reconfigurability. At the application level, programmers need a programming model and software services to
effectively exploit the computational power and the flexibility of these highly parallel heterogeneous architectures.
This section focuses on the system software and programming environment providing the hardware abstraction
layer at the interface between the NoC architecture and the application programmer. First, we will discuss the
programming models, then we will overview middleware architecture, and finally we will describe the development
support infrastructure.

4.1 Programming Model

Programming models provide an abstract view of the hardware to application programmers. Abstraction is key
for two main reasons: (i) it hides hardware complexity, (ii) it enhances code longevity and portability. Complex
application programming on a large scale would be impossible without good programming models. On the other
hand, the abstract view of the hardware enforced by programming model implies an efficiency loss in exploiting
advanced hardware features. Hence, striking the best balance between abstraction and direct hardware control is
an extremely critical issue. In traditional parallel computing, the two most common and successful programming
models are shared memory and message passing [19, 6]. In the shared memory model communication is implicitly
performed when parallel tasks access shared locations in a shared address space. In the message passing models,
tasks have separate address spaces and inter-task communication is carried out via explicit messages (send and
receive primitives).

Writing parallel code, or parallelizing existing sequential programs in the shared memory model, is generally
easier than writing message passing code. However, shared memory requires significant hardware support to
achieve high performance (e.g., snoopy caches), and message passing code, albeit harder to write, can achieve
high performance even in architectures that implement very simple communication channels. From the scalability
viewpoint, the shared memory models becomes less viable when communication latency is high or highly non-
uniform (depending, for instance from the source and destination), thus, message passing is the best solution for
large-scale and highly distributed parallel computers [19, 6].

In our view, message passing is the programming model of choice for NoC application software. Our position is
motivated by several reasons. First, software for application-specific systems on chip is developed starting from
specification languages that emphasize explicit communication between parallel executing tasks. For instance,
complex signal processing applications are often developed using data-flow models, where data flows from one
processing kernel to the other [40]. Second, embedded code development is traditionally focused on achieving
high performance on limited hardware resources, and message passing can achieve higher performance at the price
of increased development effort. Third, by making communication explicit, message passing pinpoints the main
sources of unpredictability in program execution, namely communication latency and throughput. Hence, message
passing programs are generally more predictable [43], a very desirable characteristic for embedded applications.
Finally, since the main motivation for moving to NoC architectures is to provide better architectural scalability
even in face of increasing communication latencies, it is natural to adopt a programming style that fully supports
large-scale parallelism and makes it easier to focus on communication latency starting from the top abstraction
layer in the design hierarchy.

The message passing model is supported by many formal frameworks (e.g., communicating sequential processes,
CSP), languages (e.g., Occam) and application programming interfaces (e.g., the message passing interface, MPI)
[6, 43]. Even though the theoretical importance of formal models and languages cannot be overemphasized, in the
design practice we believe that traditional languages (such as C, C++ or Java) will maintain dominance thanks
to the adoption of standardized and portable communication APIs. In the domain of multi-processor embedded
signal processing systems, MPI has been proposed as message passing support library [38]. A natural evolution

16



Applications

Application Libraries

Kernel Services

Device drivers

Hardware

Communication, domain specific libs. 

Task alloc+schedule, management

Hardware-specific firmware

Memory access Special instructions

System Calls

APIs

HAL Calls

Figure 6: Middleware architecture

of traditional MPI for embedded applications is real-time MPI [34], an enhanced MPI standard which emphasizes
run-time predictability. MPI appears to be an interesting candidate for NoC application level programming,
however significant challenges are still open. First, MPI provides a number of messaging primitives, and many
of them require quite complex system and software support, many MPI implementations are built on top of
lower-level hardware-assisted messaging primitives, hence their performance may not be sufficient for the NoC
environment. In our view, only a restricted subset of MPI functions are strictly required for NoC software
development. In some cases, when performance constraints are extremely tight, lower-level messaging interfaces,
such as active messages can be used [19]

4.2 Middleware Architecture

Programming models and their implementations (languages and APIs) are the front-end interface between ap-
plication programmers and the target hardware platform. However, they are only the top layer of the complex
software infrastructure that lies between hardware and applications. The main purpose of middleware is to provide
safe and balanced access to hardware resources. First, tasks should be allocated and scheduled to the available
NoC end nodes (processors). Similar allocation and scheduling decisions should be taken for transferring data
from external memory to on-chip embedded memory blocks (and vice versa). Multiprocessor scheduling is a well
developed discipline [27], but memory allocation and memory transfer scheduling for embedded memories is still
under very active investigation [48]. An ancillary function in task management is task creation and destruction
when task sets are dynamic.

Synchronization is another key middleware function. In single-processor systems, task synchronization is simpli-
fied because tasks are serialized on the processor, and therefore no true task parallelism is manifest in the system.
In multiprocessor systems, there is obviously true task parallelism. Synchronization becomes much harder, and
requires some form of hardware support (e.g. atomic transactions). Fortunately, this problem has been exten-
sively studied for traditional multiprocessors and parallel computers, and a number of synchronization primitives,
such as semaphores, critical sections, monitors have been proposed and thoroughly understood [6]. For NoC,
synchronization primitives should be as lightweight as possible both from the performance and from the code size
perspective.

Middleware is also in charge of managing (shared) peripherals, such as on-chip and off chip memories, I/O
controllers, slave coprocessors, etc. Guaranteeing mutual exclusive access to peripherals is another facet of the
synchronization function, but resource management also encompasses other tasks, such as power management

17



and reconfiguration management. We can expect that most peripherals in future NoCs will be reconfigurable
and/or power manageable. Furthermore, even the communication network can be expected to be re-configurable
at run time (for example through dynamic update of routing tables). Management is relatively straightforward in
a single-processor environment, but it becomes a challenging task when control is distributed. In many parallel
computing platform, peripheral management is performed by a centralized controller. Even though this choice
simplifies the implementation of management policies, it creates a bottleneck in the system for scalability and
robustness. For this reason distributed management policies are desirable, and they should be actively investigated
in the future, possibly leveraging results from large-scale distributed environment (e.g. wireless networks).

Finally, the NoC middleware includes low level hardware control functions that abstract as much as possible
platform-dependent details and build a hardware abstraction layer, with a small number of standard access
functions. This should be the only part that must be modified when porting the middleware to a new NoC
architecture. The middleware architecture and its layers are shown in Figure 6. Notice that the number of
interface functions between layers grows as we get closer to application code.

In principle, most modern operating systems (OSs), such as Linux or Unix, support all above mentioned functions.
Unfortunately, these OSs are too complex, time and memory consuming to be acceptable in an embedded software
environment. As a consequence, we should employ lightweight, customizable middleware services instead of a
full-blown OS. Several embedded OSs have have been designed in a modular fashion, and they can be tailored to
the needs of applications. Most commercial embedded OSs are single-processor even though some natively multi-
processor OSs are available both commercially and in the open source domain [52, 55]. However, the performance
of their communication primitives has not been validated yet for NoC platforms. In this area, an intersting
research topic is the customization of OS features and automatic or semi-automatic retargeting of middleware to
different platforms [28].

In our view, there are two main challenges in the development of the new generation of NoC middleware. First,
finding the sweet spot balancing hardware and software support for communication services. Second, provid-
ing a flexible mix of guaranteed and best-effort services. These two challenges are tightly interrelated, but not
completely overlapping. Latency and throughput requirements for NoCs are extremely tight (remember that
an advanced NoC must successfully compete against high-bandwidth on-chip busses), thus, high-performance
hardware-assisted schemes, minimizing slow software-based network transaction management, seem to be prefer-
able. On the other hand, most general hardware-assisted communication schemes require dedicated communica-
tion processors, which imply a non-negligible cost overhead [19]. Alternatively, user-level communication access
schemes can eliminate part of the overhead associated with middleware-assisted network transactions, at the price
of significant losses in software robustness and error containment capability. One possible compromise solution
is to design communication-oriented, lightweight kernels that provide limited services, but high performance on
critical communication functions. This approach has been taken in the Virtuoso real-time Kernel [59], which
represents the state of the art in NoC oriented operating systems. Virtuoso has been specifically designed for
performance-constrained multiprocessor signal-processing systems and it supports a fully distributed application
development style, where tasks live in separate address spaces and communicate via simple message-passing
(CSP-like) through explicitly instantiated channels. As opposed to traditional operating systems, communication
is handled with the same priority and reduced overhead used for handling interrupts.

Even though a communication-centric approach in middleware design can be effective in reducing the overhead
in supporting communication services, additional care should be taken in ensuring guaranteed-quality services,
where ”good-on-average” performance (i.e., best effort services) is not enough. Typical examples of applications
requiring performance guarantees are streaming audio and video processing, and many signal processing tasks.
Guaranteed quality of service (QoS) support requires careful consideration across all level of NoC design hierarchy,
including application and middleware. Assuming that the NoC hardware backbone can support some form of
QoS (e.g. upper bounds on message delivery times), the middleware framework is required to provide similar
guarantees. One interesting way to tackle this challenge is to support quality of service negotiation followed by
prioritized messaging starting from the application level [59]. In this paradigm a hard-real-time task initially
negotiates a QoS with the NoS interface, then it is assigned a level of priority for both CPU and network access.
Lower-priority packets waiting for network interface access can be preempted by high priority packets (coming
from a high-priority task), thereby preventing priority inversion on the NoC interface.

18



High-level software optimization

Executable Generation

Simulation, debug, tuning

Optimizing (cross) compiler, linker, assembler

Multiprocessor simulators, debugger, profiler

Parallelization, DTSE, S2S transformations

Graphical environments, CASE tools

T
ra

ce
s 

&
 S

ta
tis

tic
s

Source code

Source code

Binary code

Specification and development

Figure 7: Software development infrastructure

4.3 Software Development Tools

The tools employed by programmers to develop and tune application software and middleware are a critical part
of the NoC design infrastructure. Even though a detailed survey of this area is beyond the scope of the chapter,
we will briefly overview the main building blocks of the software development infrastructure, as depicted in Figure
7. Specification and development tools have the main purpose of facilitating code development and increasing the
programmer’s productivity. In this area, we can group interactive, graphical programming environments, code
versioning systems, code documentation systems and general computer-aided software engineering frameworks.
Existing CASE systems can be adapted to support NoC programming. An opportunity for innovation in this
area is the integration of software development and target architecture models to guide the mapping of software
to available computation and communication resources [39].

High-level software optimization tools take as input the source code generated by CASE systems and produce
optimized source code. In this area we can group numerous tools for embedded software optimization, such
as parallelizing compilers [45] and interactive code transformation methodologies, like, for instance, the data-
transfer and storage exploration (DTSE) proposed by IMEC [16]. In a NoC environment these tools should focus
on removing or reducing communication bottlenecks, either by eliminating redundant data transfers, or by hiding
latency and maximizing available bandwidth. Most of the transformations performed at this stage should be
weakly dependent on specific hardware targets.

Target-specific optimizations are confined to the third software development stage, namely, executable generation.
The back-end of the optimizing compiler should also link application object files with middleware libraries [37].
At this stage, inter-task communication and synchronization points cannot be removed or transformed, and
optimization opportunities are confined within the task code. Instruction-level parallelism can be discovered and
exploited at this stage. High level optimization and low-level optimizations during code generation could be
seen as two separate stages in a complex software optimizer with architecture neutral frontend and architecture
specific backend. Concerning NoC-specific optimizations, high-level communication optimization is performed in
the frontend, while fine tuning of communication primitives and function calls to architectural features can be
performed in the backend.

The last class of tools includes system simulation, profiling and code analysis/debugging. These tools are critical
for functional debugging, as well as performance tuning. Several challenges must be addressed at this level.
First, system simulation for NoCs is extremely challenging from the computational viewpoint. Hence, several
simulation engines should be available, spanning the accuracy versus speed tradeoff. Modern hardware-software

19



specification languages and simulators, such as SystemC [30], can support hardware descriptions at multiple
abstraction levels. NoC simulation platforms have recently been presented [8], and this area of research and
development is currently very active. Profilers play a strategic role in functional debugging, code tuning and
feedback directed code optimization, where profiling information is fed back as inputs to the optimization tools
[4].

5 Conclusions

This chapter considers the challenges of designing SoCs with tens or hundreds of processing elements in [100 −
25]nm silicon technologies. Challenges include dealing with design complexity and with providing reliable, high-
performance operation with small energy consumption.

We claim that modular, component-based design of both hardware and software is needed to design complex
SoCs. Starting from the observation that interconnect technology will be the limiting factor for achieving the
operational goals, we develop a communication-centric view of design. We postulate that efficient communication
on SoCs can be achieved by reconfigurable micro-networks, whose layered design can exploit methods and tools
used for general networks. At the same time, micro-networks can be specialized and optimized for the specific
SoC being designed.

We examined the different layers in micro-network design, and we outlined the corresponding research problems.
Despite the numerous challenges, we remain optimistic that such problems can find adequate solutions. At the
same time, we believe that a layered micro-network design methodology is likely to be the only path to master
the complexity of SoC designs in the years to come.

6 Acknowledgments

This chapter was written with support from the MARCO/ARPA GSRC.

7 Glossary

• CDMA Code division multiple access. Spread spectrum communication technique achieved by multiplying
data by a pseudo-random sequence before transmission on a channel and after reception.

• Data Link Abstraction of communication channel control. It provides a reliable link over an unreliable
physical channel.

• DPM Dynamic power management. Method to reduce energy consumption by on-line control of frequency
and/or supply voltage of components, including shut off.

• DVS Dynamic voltage scaling. Method to reduce energy consumption by on-line tuning the power supply
voltage.

• EMI Electromagnetic interference.

• FPGA Field programmable gate array. Circuit whose function can be programmed on the field, by con-
trolling transistor (or antifuse) switches with a bit map.

• GALS Globally asynchronous locally synchronous circuits.

• LFSR Linear feedback shift register. Shift register with feedback through EXOR gates that produces a
pseudorandom sequence of vector. Used for built-in self-test.

20



• MAC Medium access control. Abstraction of communication channel control that deals with the interfaces
to physical channel. Part of data link layer.

• MTTF Mean time to failure. Expected failure time for a given reliability distribution.

• Network Routing Establishes the path followed by messages. delivery control.

• Network Switching Abstraction of communication channel control. Implements the end-to-end delivery
control.

• Protocol Stack Abstraction of communication control in seven layers.

• QoS Quality of service.

• Reliability Probability that a system (or component) fails as function of time.

References

[1] B. Ackland et al., “A Single Chip, 1.6-Billion, 16-b MAC/s Multiprocessor DSP,” IEEE Journal of Solid-State
Circuits, vol. 35, no. 3, March 2000.

[2] A. Agrawal, “Raw Computation,” Scientific American, August 1999.

[3] P. Aldworth, “System-on-a-Chip Bus Architecture for Embedded Applications,” IEEE International Con-
ference on Computer Design, pp. 297-298, 1999.

[4] E. Altman, K. Ebcioglu, M. Gachwind, S. Sathaye, ”Advances and Future Challenges in Binary Translation
and Optimization,” Proceedings of the IEEE, vol. 89, no. 11, pp. 1710-1722, Nov. 2001.

[5] A.Adriahantenana and A Greiner, “Micro-network for SoC: Implementation of a 32-bit SPIN Network,”
Design Automation and Test in Europe Conference, pp. 1129-1129, 2003.

[6] G. Andrews, Foundations of Multithreaded, Parallel and Distributed Programming, Addison-Wesley, 2000.

[7] H. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley, 1990.

[8] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M. Poncino, ”SystemC Co-Simulation of Multi-
Processor Systems-on-Chip,” IEEE International Conference on Computer Design, pp. 494-499, 2002.

[9] L. Benini, A. Bogliolo, G. De Micheli, “A Survey of Design Techniques for System-Level Dynamic Power
Management,” IEEE Transactions on Very Large-Scale Integration Systems, vol. 8, no. 3, pp. 299-316,
June 2000.

[10] L. Benini, G. De Micheli, E. Macii, M. Poncino, S. Quer, “Power Optimization of Core-based Systems by
Address Bus Encoding,” IEEE Transactions on Very Large-Scale Integration Systems, vol. 6, no. 4, pp. 578-58
Dec. 1998.

[11] L. Benini, G. De Micheli, “System-Level Power Optimization: Techniques and Tools,” ACM Transactions
on Design Automation of Electronic Systems, vol. 5, no. 2, pp. 115-192, April 2000.

[12] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE Computers, January 2002,
pp. 70-78.

[13] L. Benini and G. De Micheli, “Powering Networks on Chips: Energy-efficient and Reliable Interconnect Design
for SoCs,” ISSS, Proceedings of the International Symposium on System Synthesis, Montreal, October 2001,
pp. 33-38.

21



[14] D. Bertozzi, L. Benini and G. De Micheli, “Low-Power Error-Resilient Encoding for On-chip Data Busses,”
DATE, International Conference on Design and Test Europe Paris, 2002, pp. 102-109.

[15] D. Bertsekas, R. Gallager, Data Networks. Prentice Hall, 1991.

[16] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, A. Vandecappelle, Custom Memory
Management Methodology: Exploration of Memory Organization for Embedded Multimedia System Design,
Kluwer, 1998.

[17] N. Cohen, T. Sriram, N. Leland, D. Moyer, S. Butler and R. Flatley, “Soft Error Considerations for Deep-
Submicron CMOS Circuit Applications,” IEDM, Proceedings of IEEE International Electron Device Meeting,
pp. 315-318, 1999.

[18] B. Cordan, “An Efficient Bus Architecture for System-on-chip Design,” IEEE Custom Integrated Circuits
Conference, pp. 623-626, 1999.

[19] D. Culler, J. Pal Singh, A. Gupta, Parallel Computer Architecture: a Hardware/Software Approach. Morgan-
Kaufman, 1999.

[20] W. Dally and J. Poulton, Digital Systems Engineering, Cambridge University Press, 1998.

[21] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, L. Benini, ”Xpipes: a Latency Insensitive Parameterized
Network-on-Chip Architecture for Multi-Processor SoCs”, International Conference on Computer Design
pp.536-539, 2003.

[22] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Networks” DAC, Proceedings
of the 38th Design Automation Conference pp.684-689.

[23] A. Deutsch, “Electrical Characteristics of Interconnections for High-Performance Systems,” Proceedings of
the IEEE, vol. 86, no. 2, pp. 315-355, February 1998.

[24] D. Ditzel, “Transmeta’s Crusoe: Cool Chips for Mobile Computing”, Hot Chips Symposium, Stanford, 2000.

[25] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: an Engineering Approach. Morgan Kaufmann,
2003.

[26] T. Dumitra, S. Kerner and R. Marculescu, “Towards On-chip Fault-Tolerant Communication,” ASPDAC -
Proceedings of the Asian-South Pacific Design Automation Conference, pp. 225-232, 2003.

[27] H. El-Rewini, H. Ali, T. Lewis, Task Scheduling in Parallel and Distributed Systems Prentice-Hall, 1994.

[28] L. Gauthier, S. Yoo, A. Jerraya, ”Automatic Generation and Targeting of Application-specific Operating Sys-
tems and Embedded Systems Software,” IEEE Computer-Aided Design of Integrated Circuits and Systems,
vol. 20, no. 11, pp. 1293-1301, Nov. 2001.

[29] K. Goossens, J. van Meerbergen, A. Peeters and P. Wielage, “Networks on Silicon: Combining Best Efforts
and Guranteed Services,” Design Automation and Test in Europe Conference, pp. 423-427, 2002.

[30] T. Groetker, S. Liao, G. Martin, S. Swan, System Design with SystemC, Kluwer, 2002.

[31] P. Guerrier, A. Grenier, “A Generic Architecture for On-chip Packet-switched Interconnections,” Design
Automation and Test in Europe Conference, pp. 250-256, 2000.

[32] R. Hegde, N. Shanbhag, “Toward Achieving Energy Efficiency in Presence of Deep Submicron Noise,” IEEE
Transactions on VLSI Systems, pp. 379-391, vol. 8, no. 4, August 2000.

[33] R. Ho, K. Mai, M. Horowitz, “The Future of Wires,” Proceedings of the IEEE, January 2001.

[34] A. Kanevsky, A. Skjellum, A. Rounbehler, ”MPI/RT - an Emerging Standard for High-performance Real-
time Systems,” IEEE International Conference on System Sciences, vol. 3, pp. 157-166, 1998.

22



[35] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrj and A. Hemani, “A network
on chip architecture and design methodology”, Proceedings of IEEE Computer Society Annual Symposium
on VLSI, April 2002, pp. 105-112.

[36] K.Lahiri, A.Raghunathan, G.Lakshminarayana, ”LOTTERYBUS: A New High-Performance Communication
Architecture for System-on-Chip Designs”, Design Automation Conference, pp.15-20, 2001.

[37] R. Janka, R. Judd, J. Lebak, M. Richards, D. Campbell, ”VSIPL: an Object-based Open Standard API
for Vector, Signal and Image Processing,” IEEE Conference on Acoustic, Speech and Signal Processing,
pp. 949-952, vol. 2, 2001.

[38] R. Janka, L. Willis, L. Baumstark, ”Virtual Benchmarking and Model Continuity in Prototyping Embedded
Multiprocessor Signal Processing Systems,” IEEE Transaction onf Software Engineering, vol. 28, no. 9,
pp. 836-846, Sept. 2002.

[39] L. Lavagno, S. Dey, R. Gupta, ”Specification, Modeling and Design Tools for System-on-chip,” Asia-Pacific
Design Automation Conference, pp. 21-23, Jan. 2002.

[40] E. Lee, A. Sangiovanni-Vincentelli, ”A Framework for Comparing Models of Computation,” IEEE Transac-
tions on Computer-Aided Design of Circuits and Systems, vol. 17, no. 12, pp. 1217-1229, Dec. 1998.

[41] S.-Y. Lee, S.-J. Song, K. Lee, J.-H. Woo, S.-E. Kim, B.-G. Nam, H.-J. Yoo, ”An 800MHz star-connected
on-chip network for application to systems on a chip,” IEEE Solid-State Circuits Conference, pp. 468-469,
2003.

[42] C. Leiserson, “Fat-trees: Universal Networks for Hardware-efficient Supercomputing,” IEEE Transactions
on Computers, vol. 34, no. 10, pp. 892-901, October 1985.

[43] C. Leopold, Parallel and Distributed Computing: a Survey of Models, Paradigms and Approaches, Wiley-
Interscience, 2001.

[44] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 11, pp. 1703-1714, Nov. 1996.

[45] S. Muchnick, Advanced Compiler Design and Implementation. Morgan & Kaufman, 1997.

[46] M. Nicolaidis, “Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer Technologies,” Proceed-
ings VTS, 1999.

[47] E. Nilsson; M. Millberg, J. Oberg, A. Jantsch, “Load Distribution with the Proximity Congestion Awareness
in a Networks on Chip”, Proceedings of Design Automation and Test in Europe, March 2003, pp. 1126-1127.

[48] R. Panda, N. Dutt, A. Nicolau, F. Catthoor, A. Vandercappelle, E. Brockmeyer, C. Kulkarni, E. De Greef,
”Data Memory Organization and Optimization in Application-specific Systems,” IEEE Design & Test of
Computers, vol. 18, no. 3, pp. 56-58, May-June 2002.

[49] C. Patel, S. Chai, S. Yalamanchili, D. Shimmel, “Power Constrained Design of Multiprocessor Interconnection
Networks,” IEEE International Conference on Computer Design, pp. 408-416, 1997.

[50] B. Prince Report on Cosmic Radiation Induced SER in SRAMs and DRAMs in Electronic Systems, May
2000.

[51] W. Remaklus, “On-chip Bus Structure for Custom Core Logic Design,” IEEE Wescon, pp. 7-14, 1998.

[52] RTEMS Embedded Real-Time Open-source Operating System. http://www.rtems.com.

[53] D.Sylvester and K.Keutzer, “A Global Wiring Paradigm for Deep Submicron Design,” IEEE Transactions
on CAD/ICAS, Vol.19, No. 2, pp. 242-252, February 2000.

23



[54] T. Theis, “The future of Interconnection Technology,” IBM Journal of Research and Development, Vol. 44,
No. 3, May 2000, pp. 379-390.

[55] VSPWorks. Small Footprint Kernel Optimized for DSP. http://www.windriver.com.

[56] J. Walrand, P. Varaiya, High-Performance Communication Networks. Morgan Kaufman, 2000.

[57] W. Weber, “CPU Performance Comparison: Standard Computer Bus Versus SiliconBacplane,”
www.sonics.com, 2000.

[58] D. Wingard, ”MicroNetwork-based integration for SOCs,” Design Automation Conference, pp. 673-677, 2001.

[59] E. Verhulst, ”The Rationale for Distributed Semantics as a Topology Independent System Design Method-
ology and its Implementation in the Virtuoso RTOS,” Design Automation for Embedded Systems, vol. 6,
pp. 277-294, 2002.

[60] S. Winegarden, “A Bus Architecture Centric Configurable Processor System,” IEEE Custom Integrated
Circuits Conference, pp. 627-630, 1999.

[61] F. Worm, P. Ienne, P. Thiran, and G. De Micheli, “An Adaptive Low-power Transmission Scheme for On-chip
Networks,” ISSS, Proceedings of IEEE Integrated System Synthesis Symposium, 2002.

[62] T. Ye, L. Benini and G. De Micheli, “ Packetized On-Chip Interconnect Communication Analysis,” DATE,
International Conference on Design and Test Europe, 2003, pp. 344-349.

[63] T. Ye, L. Benini and G. De Micheli, “ Packetization and Routing Analysis of On-chip Multiprocessor Net-
works,” Journal of System Architecture, 2004.

[64] R. Yoshimura, T. Koat, S. Hatanaka, T. Matsuoka, K. Taniguchi, “DS-CDMA Wired Bus with Simple Inter-
connection Topology for Parallel Processing System LSIs,” IEEE Solid-State Circuits Conference, pp. 371-
371, Jan. 2000.

[65] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J. Rabaey, “A 1-V Heterogeneous Recon-
figurable DSP IC for Wireless Baseband Digital Signal Processing,” IEEE Journal of Solid-State Circuits,
vol. 35, no. 11, pp. 1697-1704, Nov. 2000.

24


