
Specification and Analysis of Power-Managed
Systems

ALESSANDRO BOGLIOLO, LUCA BENINI, EMANUELE LATTANZI, AND

GIOVANNI DE MICHELI, FELLOW, IEEE

Contributed Paper

Dynamic power management encompasses several techniques
for reducing energy dissipation in electronic systems by selective
slowdown or shutdown of components. We present a theoretical
framework for explaining and classifying different approaches to
power management. Within this framework, we model power-man-
ageable components, workloads, and controllers as discrete-event
systems (DESs). The structure of these DESs is specified in terms
of physical states (representing operation modes) and events
(triggering state transitions), while system behavior is specified
in terms of next-event and next-state functions. In particular,
nondeterministic next-event and next-state functions are modeled
by conditional probability distributions, according to generalized
semi-Markov processes (GSMPs).

The modeling framework provides a general denotational model
for system specification and a rigorous execution semantics that en-
ables event-driven simulation. We introduce a modeling framework,
built on top of MathWork’s Simulink, supporting the specification
and execution of our model. In particular, we present templates for
the Simulink simulator to execute GSMP models, and we describe
how to use such templates for specifying, analyzing, and optimizing
dynamic power-managed systems.

Finally, we demonstrate the expressive power and versatility of
the proposed approach by using the modeling framework and the
simulator for the analysis of representative real-life case studies,
including the Intel Xscale processor architecture, a multitasking
real-time system, and a sensor network.

Keywords—Low-energy design, power management, stochastic
control, system on a chip.

I. INTRODUCTION

The average citizen of an industrialized country interacts
with tens of electronic appliances every day, while working,

Manuscript received December 4, 2003; revised April 12, 2004. This
work was supported by the National Science Foundation under Grant
CCR-0305718.

A. Bogliolo and E. Lattanzi are with the Information Science and
Technology Institute, University of Urbino, Urbino 61029, Italy (e-mail:
bogliolo@sti.uniurb.it).

L. Benini is with the Department of Electronics and Computer Science,
University of Bologna, Bologna 40127, Italy.

G. De Micheli is with Stanford University, Stanford, CA 94305 USA.
Digital Object Identifier 10.1109/JPROC.2004.831207

traveling, and at home. Arguably, the diffusion of electronics
is one of the distinctive characteristics of human civiliza-
tion in the new millennium. All electronic systems consume
energy to perform their task and the impact of electronic
systems on the power budget of densely populated areas is
steadily growing. At the same time, portable, embedded elec-
tronics are becoming increasingly pervasive in today’s life:
cellular phones, electronic organizers, and digital cameras
are just a few examples of devices that are considered almost
indispensable for work and entertainment. Reducing power
consumption in these devices enables aggressive miniatur-
ization, longer time between battery recharges (or changes),
and, ultimately, deeper market penetration.

Energy efficiency is a primary design objective for in-
creasingly large classes of electronic systems. While in the
past energy efficiency was almost invariably associated with
battery-powered operation [20], [21] nowadays it has be-
come a concern also for electric-grid powered equipment,
like servers, network switches, routers, etc. [22]. The quest
for energy efficiency has two main facets. On one hand, new
systems should be designed with clearly specified energy
budgets, and energy consumption considerations should per-
colate through all phases of the design process, from system
conception to elementary devices and technology. On the
other hand, electronic systems should be managed efficiently
from the power viewpoint during their in-field operation. The
focus of this work is on power management of electronic sys-
tems.

The fundamental rationale for power management is quite
intuitive. Systems are generally designed to deliver specified
levels of performance under heavy load. During in-field op-
eration, a system is often underutilized and, therefore, it can
be operated in a reduced performance mode to save energy. If
the entire system, or some of its components, are completely
idle, they can be shut down while waiting for some service
request. In the past, power management has been more an af-
terthought than a fully developed design discipline. Unfortu-
nately, when a system has not been designed with energy ef-

0018-9219/04$20.00 © 2004 IEEE

1308 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

ficiency objectives, transitions from a fully operational state
to low-power, reduced functionality modes of operation are
slow and expensive, or, in some cases, simply not possible.
Hence, the power manager (PM), i.e., the system entity in
charge of controlling mode transitions, has limited degrees
of freedom. Furthermore, it should carefully weight the costs
of mode transitions (which are certain when a transition is
made) against the potential energy savings (which depend on
the uncertain duration of the idle condition).

Power management strategies (also called policies) in the
above outlined setting have been studied intensively in the
last few years [23]. Substantial energy savings have been
achieved when designers have started supporting power man-
agement. Recently, the electronic component market has wit-
nessed the announcement of numerous new components with
multiple, finely controllable modes of operation that trade
off performance with power consumption, e.g., variable-fre-
quency, variable-voltage operation [24], [25]. Components
with multiple active states based on dynamic frequency and
voltage scaling have created many new opportunities for dy-
namic power management (DPM). In such a rapidly evolving
setting, the modeling, analysis, and optimization techniques
developed in the past are not general and powerful enough,
and a richer theoretical framework is needed to sustain the
development of novel, advanced power management tech-
niques.

The main objective of this paper is to build such a frame-
work in a theoretically sound fashion, leveraging abstractions
and techniques from several correlated disciplines, such as
stochastic modeling, discrete-event systems (DESs), simula-
tion theory and sensitivity analysis, stochastic optimization,
and control. We aim at bridging the gap between electronic
system designers and researchers working in the above men-
tioned fields, in order to facilitate cross fertilization and mul-
tidisciplinary research in a strategic area for current and fu-
ture applications.

The paper is divided in four parts. First, a general overview
is given of technology and architectural trends. The main pur-
pose of this section is to demonstrate the increasing impor-
tance of DPM and to contextualize our work. The remaining
three sections are the technical core of the paper, focusing
on system modeling, simulation, and applications. We will
model power-manageable components, workloads, and con-
trollers as DESs [26]. The structure of a DES is specified in
terms of physical states (representing operation modes) and
events (triggering state transitions), while system behavior
is specified in terms of next-event and next-state functions.
The modeling framework we propose provides: 1) a general
denotational model for system specification (supporting, in
particular, composition and abstraction); 2) a rigorous execu-
tion semantics that enables event-driven simulation; and 3) a
formalism for specifying the probabilistic structure of gener-
alized semi-Markov processes (GSMPs) [27]. The modeling
framework provides us with a means of classifying different
DPM systems based on the properties of their models.

Next, we present a system modeling infrastructure, built
on top of MathWork’s Simulink [28], supporting the specifi-
cation and execution of DES/GSMP models. In particular,

we describe templates for the Simulink simulator to exe-
cute GSMP models, and we describe how to use such tem-
plates for specifying DPM systems of practical interest. Fi-
nally we show how to use the simulator to evaluate and opti-
mize system parameters and DPM policies.

In the last part of the paper, we demonstrate the expressive
power and versatility of the proposed approach by using the
modeling framework and the simulator for the analysis of
representative case studies.

II. POWER MANAGEMENT: WHY AND HOW

As outlined in the introduction, system designers are faced
by an unprecedented power crisis, and power management
is currently the most effective response to the challenge. To
fully motivate this assertion, we first review the trends of evo-
lution of current technologies and architectures, then we ana-
lyze the state of the art in power-manageable systems (PMSs)
and give a few representative examples.

A. Technology Trends

The trends in semiconductor technologies are character-
ized by decreasing feature sizes and increasing device densi-
ties. As a result, the energy dissipated per unit area is rising
and is posing an unprecedented challenge to designers. To
cope with this and other problems (e.g., hot carrier effects),
the supply voltage is also reduced. Nevertheless, the down-
scaling of supply voltages is not sufficient to contrast the in-
creasing power consumption trends in chips.

Indeed, there are three factors that contribute to increas-
ingly higher energy dissipation with downscaled technolo-
gies: the energy on global interconnect wires, the aggressive
increase of operating frequencies and the dominating con-
tribution of leakage currents. We analyze these three factors
next.

First, silicon technology is becoming increasingly inter-
connect dominated. Since global wire length does not scale
down, both delay and energy dissipation on global intercon-
nect dwarf those of computation and storage units. Indeed,
while the gate capacitance of minimum-size transistors is
decreasing, the interconnect capacitance per unit length is
not decreasing at the same speed (because of fringing ca-
pacitance contributions) and interconnect length is not de-
creasing for global wires. Hence, the factor in the well-
known switching power equation (where
represents switching activity) does not scale down as fast as
minimum feature size [29], [30].

Second, in order to reap performance benefits (in other
words, to satisfy quality of service requirements), chip clock
frequency is scaled faster than technology [31], i.e., the per-
centage increase in frequency in an upgraded technology is
higher than the percentage decrease of feature sizes. This re-
sult is achieved by clever architectural optimizations that re-
duce the number of logic stages to be traversed within the
clock cycle time. From a power viewpoint, this is clearly a
problem, because power is directly proportional to switching
frequency . Performance constraints (or objectives) are also
the main reason why supply voltage scaling is not as drastic

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1309

as one would desire for power minimization purposes. In
fact, transistor switching speed decreases as ,
with . This cannot be tolerated if performance is
tightly constrained.

Third, deep submicrometer transistors are increasingly
leaky in the OFF state. Source-to-drain current due to sub-
threshold conduction is the dominant cause of leakage,
but drain-to-gate currents due to electron tunneling across
the gate oxide is also becoming significant. Furthermore,
random variations of the number of dopant atoms in the
channel region cause poor threshold control, and many tran-
sistors have a threshold significantly lower than nominal.
Unfortunately, subthreshold conduction is exponentially
dependent on threshold voltage and transistors with lower
threshold leak exponentially more than nominal transistors.
As a result, chip standby power is becoming a significant
concern. Clearly, subthreshold leakage is also a heavy lim-
iter to threshold voltage reduction, with obvious negative
impact on supply voltage scaling [31].

In summary, power dissipation will grow significantly in
future technologies, unless innovative design techniques are
used. Because of the increasing importance of leakage cur-
rents, even standby power is expected to increase. Technol-
ogists are pointing at power as the one of the most likely
show-stoppers to technology scaling if adequate countermea-
sures are not taken.

B. Architectural Trends

Technology evolution is not going to solve the power con-
sumption problem. On the contrary, many technologists refer
to design innovation at the circuit, logic, architectural level as
a way out from the crisis. Unfortunately, trends in this area
are not favorable to energy efficiency at all. Even though a
significant research effort is being devoted to power mini-
mization, mainstream architectural design is moving toward
energy-hungry architectures.

Most electronic systems are nowadays designed with a
high degree of programmability. The majority contains one
or more core processors, and many instantiate several pro-
grammable coprocessors (e.g., very long instruction word
(VLIW) units for numerical computations, programmable IO
processors, etc.). A few recent designs even embed a signifi-
cant amount of bit-programmable logic (field-programmable
gate array (FPGA) fabrics) [32]. Programmability is a fun-
damental requirement when designing large-scale systems
on chips (SoCs) for three main reasons. First, it ensures
functional flexibility, which widens the spectrum of applica-
bility and the potential production volume. Second, it leaves
margins for postfabrication bug fixing and tuning, thereby
enhancing yield. High yield and volume of sales are required
to amortize ballooning mask development and fabrication
costs. Third, processor-based architectures reduce design
time because they emphasize reuse of hardware modules
(e.g., the cores themselves, the memories, etc.) as well as
software components (e.g., libraries, operating systems,
compilers).

Yet, flexibility and reuse come at a price. The power–per-
formance ratio (i.e., the energy) required by a processor to

carry out a given task (e.g., MPEG decoding) is several or-
ders of magnitude (three or more) higher than what could be
achieved with an application-specific architecture [21], [33].
Advanced processors, often required to attain performance
goals, are even more power-hungry than simple processors,
because they rely on various forms of speculative execution
to increase the average number of instructions executed in
a clock cycle. Well-known performance enhancement tech-
niques, such as speculating past branches, value prediction,
and prefetching, imply the execution of redundant operations
which increase power consumption.

Fine-grained programmable fabrics can be one or more
orders of magnitude more energy efficient than proces-
sors [33] for some classes of computations, but they still
incur a very significant overhead with respect to dedicated
logic. Recent data shows that computation performed by
an embedded FPGA fabric in a hybrid FPGA–applica-
tion-specific IC (ASIC) chip is more than two orders of
magnitude more power consuming and more than ten times
slower than the same computation in dedicated logic [32].
The overhead in this case is mainly due to communication
between fine-grain programmable logic elements, which is
performed on massively redundant programmable wiring
resembling a multistage network, as opposed to dedicated,
instance-specific wires. Additionally, programmable logic
blocks are often much more complex than the basic gates
they mimic when programmed.

C. Power-Manageable Hardware

As seen above, programmability is generally adverse
to power efficiency. However, there is a way to profitably
exploit programmability to reduce power consumption,
namely, via power management. Supporting power manage-
ment requires adding hardware resources that do not have
a computational task, but they dedicated to controlling the
power level of functional units, detecting and exploiting
idleness, and locally trading off performance with power.
Power-manageable architectures ultimately aim at reducing
idle power (i.e., the power consumed by a hardware com-
ponent when it is not in use) and active power, through the
dynamic control of transistor thresholds and supply voltage,
clock activity, and frequency.

To reduce leakage power in idle state, variable-threshold
circuits control the threshold voltage of transistors through
substrate biasing. When a variable-threshold circuit becomes
quiescent, the substrate of NMOS transistors is negatively
biased, and their threshold increases because of the well-
known body-bias effect. A similar approach can be taken for
PMOS transistors (which require positive body bias). Vari-
able-threshold circuits can in principle solve the quiescent
leakage problem, but they require standby control circuits
that modulate substrate voltage [34].

Idle power is not only caused by leakage, but it is also
due to unneeded switching activity. Clock switching within
idle functional units is the best-known example of this
problem. Clock gating [35] is used to eliminate unneeded
clock activity. Most low-power processors implement both

1310 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

hardware and software controlled clock gating through ded-
icated power-down instructions. A radical way to eliminate
idle power (both leakage and dynamic) is to disconnect a
unit from its power supply [20]. Unfortunately, in this case
state information is lost; therefore, relevant state bits must
be saved (for instance, in nonvolatile memories) before
shutdown and recovered upon restart. State saving and
restoring significantly increases the overhead associated
with shutdown transitions.

To minimize active power, circuits should be run as slow
as possible (within performance constraints) to eliminate
slack while at the same time minimizing supply voltage
[20]. This translates into cubic power savings (and quadratic
energy savings). Variable-voltage circuits [24], [36] offer
the possibility of modulating the power supply dynamically
during system operation. In practice, the implementation of
this technique requires considerable design ingenuity. First,
voltage changes require nonnegligible time, because of the
large time constants of power supply circuits. Second, the
clock speed must be varied consistently with the varying
speed of the core logic when supply voltage is changed.
Even though slowdown coupled with voltage reduction is
more effective than running the circuit at maximum speed
and then shutting it down as soon as it becomes idle [36], the
two approaches are not mutually exclusive. Clearly, slowing
down a circuit reduces its idleness, but in many cases it
cannot eliminate it.1

Power-manageable hardware can be abstracted as a state
machine where states represents various modes of operation
and transitions have a cost [23]. In the remainder of this sec-
tion, we give a few examples of complex, practical PMSs,
and we describe informally their state-based representations.
The same examples will be formally described and analyzed
in a quantitative fashion in Section V.

1) Multiple Power States: Modern power-manageable
processors support multiple shutdown modes, as well as
variable-voltage operation. The Intel Xscale processor is
an example of an architecture with advanced power man-
agement features, namely: 1) user controllable processor
speed and voltage supply; 2) multiple sleep states; and
3) performance monitoring hardware. The first prototype
Xscale processor [37] could run with core voltage ranging
from 0.70 to 1.65 V, the corresponding clock frequencies
being 50 and 800 MHz, respectively. At top speed, power
consumption is 900 mW and power efficiency is 850 million
instructions per second per watt (MIPS/W). At the lowest
speed, power consumption is 55 mW, with a corresponding
power efficiency of 4500 MIPS/W. Supply voltages could
be varied without stopping or resetting the processor, with a
maximum slew rate of 4 mV s. However, clock frequency
changes require 20 s to relock and stabilize the clock
generator. Three inactive states are supported, namely, idle,
drowsy, and sleep. In idle state, the clock distribution is
gated off, but the clock generator keeps running. Power is

1Consider, for instance, an MP3 player. When the device is active, it oper-
ates under tight performance constraints (namely, real-time playback), and
obviously it is not possible to stretch execution time beyond the duration of
a music track, even if after it has been played out, the player remains idle
for hours.

reduced to approximately 10 mW, and exit from the idle
state requires a single clock cycle. In drowsy, or standby
mode, the phase-locked loop (PLL) clock generator is turned
off, reducing power consumption to 100 . Exit from
the drowsy state requires approximately 20 s. Finally, in
sleep mode, the core is completely powered down, reducing
power virtually to zero (with the exception of pin power),
and internal state is lost. Resuming operation from sleep
requires a complete processor reset sequence and context
recovery (several thousand cycles).

The first commercial component derived from the Xs-
cale architecture, the Intel 80 200 core processor, is very
similar to the research prototype described above, with a
few exceptions. First, clock speed changes are quantized.
Clock speed is set by writing to a special control register.
Ten different speeds are supported and lock speed changes
require approximately 1000 clock cycles. Even though the
processor could in principle run at ten different supply
voltages, one for each available clock speed, a maximum of
four voltage levels is recommended. Hence, we have two
different speeds for each supply voltage. Furthermore, the
drowsy state is not supported (only idle and sleep are avail-
able). Exit from idle takes approximately ten cycles, and
resuming from sleep requires a few milliseconds, depending
of the amount of state information that must be saved and
restored. Probably the most important extra feature available
in the commercial component is a large number of hardware
monitoring registers that provide accurate counts of many
significant runtime parameters, such as cache misses, table
look-aside buffer (TLB) misses, exceptions, etc. These
counters can be very useful in determining actual processor
performance at runtime, thereby facilitating the implemen-
tation of “closed-loop” policies, where power management
decisions are based on runtime performance estimates [15].

Xscale is only a single design point. Several vari-
able-voltage processors have been announced, and some
are available on the market [24]. Furthermore, with the
diffusion of multiprocessor SoCs (MPSoCs) for embedded
multimedia and signal processing applications, the number
of variable-frequency/variable-voltage cores integrated onto
a single chip is going to increase very rapidly. Thus, there
are ample and growing opportunities for DPM schemes
exploiting the additional degrees of freedom offered by
variable-voltage operation.

Variable-voltage processors are not the only electronic
components supporting multiple active and sleep states.
Wireless network interfaces are another important family of
devices with similar characteristics. For the sake of illustra-
tion, let us focus on IEEE802.11b (WIFI) cards [16], [17].
WIFI cards have multiple inactive states, whose precise
definition is implementation and vendor specific. In general,
most cards support an “off” state, where power dissipation is
negligible and association with the wireless network is lost.
A card in this state is not responsive and cannot be located
by the base station. A transition out of the off state is very
time-consuming (a few hundreds of milliseconds), mainly
because it involves not only hardware activation, but also
network reassociation. Other inactive states (“doze”) are

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1311

supported, where the card does not lose association with the
network, but it does not explicitly transmit or receive data.
This behavior is enabled by a feature of the IEEE802.11
protocol family, which provides for periodic synchroniza-
tion frames (beacons). When idle, the card is activated very
briefly only to deal with beacons. Doze states have small
reactivation time of a few milliseconds and do not imply
any packet loss (thanks to buffering at the base station).
Power consumption is a factor of five to ten lower than that
in receive state, but it is not negligible (in the order of tens
of milliwatts).

The most power consuming state for WIFI cards is the
transmit state. When transmitting, the output RF amplifier is
active, and significant power is radiated through the antenna,
in addition to the power consumed for baseband processing.
Power consumption in this state can exceed 1 W, a factor of
two higher than the receive power. Advanced cards support
output power control to allow fine tuning of transmit power
consumption to environment and network conditions. Output
power can usually be selected from a finite set of available
values; transitions among power levels are fast (a few mil-
liseconds).

Clearly, wireless network interface cards are very flex-
ible in terms of available power states. Optimal power man-
agement for these devices is a complex task, which is often
tackled with distributed policies, as discussed in the next sec-
tion.

2) Interacting Power-Manageable Devices: Complex
systems can contain multiple power-manageable devices. In
this case, power management requires fine-grain decision on
state transitions for multiple interacting devices. If devices
are closely coupled (e.g., on the same die or board), power
management can be performed either by a single central-
ized controller or by local interacting controllers [56]. As
coupling becomes weaker, centralized power management
becomes increasingly hard, mainly because is difficult and
expensive to collect information and issue commands to
many distributed, loosely coupled components.

Wireless networks are perhaps the most well-understood
example of distributed PMSs. A huge amount of research
has focused on power management for wireless networks,
especially for widespread technologies like IEEE802.11a/b
[5], [7], [12], [14]. Even though most of the seminal work in
this area was theoretical in nature, it has propelled the devel-
opment of advanced network cards (like the ones described
in the previous section) with a high level of power control-
lability. Thus, many approaches developed in the past are
likely to find practical application in the near future. We can
coarsely classify power management schemes in two broad
classes: those focusing on transmit power reduction [13], and
those aiming at minimizing the power spent in receive mode
[2], [11], by intelligent exploitation of low-power inactive
states (like the “doze” and “off” states described in the pre-
vious section). The first class of techniques is particularly
relevant in ad hoc configurations, where base stations are
very sparse or absent, and power-constrained clients have to
transmit significant amount of data because of node-to-node
forwarding. The second class of techniques has general ap-

plicability, since the percentage of idle time for wireless net-
work interfaces is significant for many application scenarios.

Power management policies have been developed at var-
ious levels of the network stack, starting from the medium
access control (MAC) layer [8], [9] up to the application
layer [1], [10]. In general, the proposed techniques imply
some form of coordination among multiple network cards
and/or the base station, which requires some extra commu-
nication. Recurring themes are: 1) minimization of the extra
traffic caused by power management (distributed and weakly
coordinated policies [4]) and 2) exploration of the computa-
tion and storage versus communication power tradeoff (e.g.,
data compression or caching to reduce the amount of data to
be communicated [6], buffering to enable network shutdown
[3]).

An extreme example of loosely coupled PMS is a wire-
less sensor network [19], [38]. Sensor networks have gained
importance in numerous civil and military applications. They
can be used to continuously monitor the environment for var-
ious types of events, and they operate in a reconfigurable and
adaptable fashion under extremely tight power constraints
[39]. The node of a sensor network consists of one or more
embedded sensors, analog-to-digital converters, a processor
with memory, and an RF section for communication with
other nodes. Each node is power manageable. Nodes are dis-
tributed in a target area often in an irregular fashion and they
are usually required to have reduced size (a few cubic cen-
timeters). They are battery operated or self-powered (with a
variety of energy-scavenging techniques).

The first practical sensor networks are emerging from
research laboratories. A large-scale sensor network with
800 tiny nodes (the size of a quarter), has been recently
demonstrated [40]. The node contain a 4 MHz low-power
microcontroller (ATMEGA 163) providing 16 KB of flash
instruction memory, 512 B of static RAM, analog–digital
converters (ADCs), and various simple peripheral inter-
faces. A 256-KB electrically erasable programmable ROM
serves as secondary storage. Sensors, actuators, and a radio
network serve as the I/O subsystem. The network utilizes
a low-power radio (RF Monolithics T1000) operating at
10 kb/s. The node contains four types of sensors: light,
temperature, battery level, and radio signal strength. It can
actuate two LEDs, control the signal strength of the radio,
and transmit and receive signals. By adjusting the signal
strength, the radio cell size can be varied from a couple
of feet to tens of meters, depending on the physical envi-
ronment. A second microcontroller is provided to allow
all cores to be reprogrammed over the network. The entire
system consumes about 5 mA when active. The radio and
the microcontroller consume as much power as a LED. In
passive (sensing) mode, they consume only a few microamps
while still checking for radio or sensor stimuli that can wake
them up.

Power management for networks, primarily targeting
sensor networks, is a rapidly developing research area,
which spans all layers of the communication protocol stack
[41], as well as operating systems and hardware abstraction
layers [40], [42]. Needless to say, there are ample opportu-

1312 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

nities for reducing power consumption in sensor networks,
which are characterized by high redundancy and extreme
levels of node idleness [18] (nodes are often idle for 99%
of the operation time). One of the critical challenges in this
area is to minimize idle receive power while at the same time
maintaining adequate levels of responsiveness. Another key
open issue is the definition of aggregate quality of service
and energy efficiency metrics for an entire network, which
can be quite different, and often in contrast with single-node
metrics.

3) Energy Sources: In many battery-operated mobile ap-
plications the ultimate objective of power minimization is en-
suring long battery lifetime. It has been shown in [23] that
average power reduction and battery lifetime extension may
be numerically far apart. This implies that optimizations for
minimum average power may not be equally effective in ex-
tending battery lifetime, and vice versa.

Charge storage in a battery can be modeled as a capac-
itor with capacitance CAP, where CAP is the
nominal capacity in ampere hours, which is usually pro-
vided in the battery’s data sheet. By setting the initial voltage
across the capacitor , we initialize the battery to its
fully charged state. Unfortunately, the simple linear capac-
itor model is not accurate enough to model complex phe-
nomena observed during battery discharge. In fact, the fol-
lowing three major effects must be taken into account.

• Battery voltage depends nonlinearly on its state of
charge: voltage decreases monotonically as the
battery is discharged, but the rate of decrease is not
constant.

• The actual usable capacity of a battery cell depends
on the discharge rate: at higher rates, the cell is less
efficient at converting its chemically stored energy into
available electrical energy.

• The “frequency” of the discharge current affects the
amount of charge the battery can deliver: the battery
does not react instantaneously to load changes, but it
shows considerable inertia, caused by the large time
constants typical of electrochemical phenomena.

• Batteries operated at high discharge rate for a short pe-
riod can recover available charge if the current load is
temporarily reduced.

Various approaches have been proposed [43] to model
nonideal batteries. An interesting state-based model has
been formulated by Chiasserini and Rao [44]. A battery
is modeled as a finite-state system, where states represent
various charge conditions of the battery, characterized by
different voltages. Transitions are caused by current load
(to model dependency of discharge rate from load current).
The recovery effect can be modeled as a nonzero transition
probability toward higher charge states when load current
drops to zero. The low-pass filtering effect can be modeled
taking the running average of current load.

D. A Fragmented Landscape

Concluding this section, observe that the examples we
described are representative of large classes of PMSs, and
they demonstrate the variety of embodiments of power

management problems in practice. Even though researchers
have devised effective techniques in many of these areas, the
whole field is characterized by significant fragmentation,
which often leads to pitfalls (such as unrealistic assumptions
and lack of experimental validation on real-life PMSs) and
multiple rediscoveries of the same concepts and techniques.

One of the most striking examples of fragmentation
is between shutdown-based and variable-voltage-based
power management [also called dynamic voltage scaling
(DVS)]. Two largely nonoverlapping groups of researchers
have worked on the two themes in the past (refer to [45],
[46] for an overview of DVS and to [23] for a survey on
shutdown-based DPM), and many have also claimed the su-
periority of one approach over the other. However, shutdown
and voltage scaling are two facets of the same problem: a
power-manageable device can have multiple sleep states
and multiple active states, characterized by different supply
voltage and clock frequency values. Devising an effective
power management policy for such a device requires de-
ciding not only transitions between multiple voltages but
also when to shut down the device and into which sleep
states. Decoupling the two problems can only lead to subop-
timal solutions.

Furthermore, many new power management problems are
emerging. For instance, several researchers have recently
focused on leakage power reduction, which has become a
serious concern for large memories in deep submicrometer
technologies [47]–[49]. Memory leakage power can be
reduced by transitioning unused memory banks to a sleep
state from which they can be reactivated with some extra
penalty (in terms of activation time and/or stored content
loss). This is a power state transition cost versus benefit,
which is the core issue in DPM policies and algorithms. It is
then possible (and desirable) to leverage the large body of
knowledge developed in the area of shutdown-based power
management to devise effective memory leakage reduction
techniques.

These two examples provide additional evidence of the
need for unification of the many flavors of DPM under a
common formal modeling framework. This is the main ob-
jective of the following sections.

III. MODELING

Abstract models are required to formally analyze the prop-
erties of physical systems. In the case of power-managed sys-
tems, the main challenge is to strike the balance between a
high level of detail, including functionality and focusing ex-
clusively on power consumption models. As seen in the pre-
vious section, real-life power-manageable components are
characterized by a number of different states of operation
(power states), trading off power for performance and/or re-
activation latency. Hence, a state-based model appears to be a
natural abstraction. Furthermore, power state transitions are
triggered in an enumerable set of time instants. Therefore, the
most natural formal framework for studying the evolution in
time of these systems is a DES model [50].

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1313

DESs have been extensively studied in the operation re-
search and control systems communities, where DES simu-
lation and simulation-based optimization are among the most
widely adopted analysis and optimization approaches [51].
One of the distinctive characteristics of DES models is the
presence of sources of nondeterminism (i.e., random events)
that represent both modeling uncertainty and the uncertainty
caused by the environment (e.g., the workload). For our spe-
cific application domain, we wanted to specialize the highly
generic DES model in an effort to emphasize the following
key characteristics.

• State-based component models, which naturally match
the characteristics of real-life power managed compo-
nents.

• Formally defined composition rules to allow hierar-
chical composition of complex power managed sys-
tems from simpler ones without losing the properties
of the model.

• Formally defined sources of nondeterminism, to clearly
decouple the parts of the system that are deterministi-
cally characterized from the sources of uncertainty.

Among many state-based stochastic DES formalisms, we
chose to model PMSs as GSMPs, applied to DESs by Glynn
in 1989 [27]. As detailed in the following sections, GSMPs
satisfy all the requirements listed above. On the other hand,
in contrast with less expressive state-based stochastic models
(e.g., Markov or semi-Markov processes), GSMPs are gen-
eral and powerful enough to model realistic power managed
systems. Moreover, GSMPs provide both a rigorous deno-
tational framework that drives system taxonomy and formal
analysis, and an executable semantics compatible with event-
driven simulation [52].

In the rest of this section, we first introduce a denotational
model, a compositional rule, and an execution semantic for
generic DESs, then we specialize our model for GSMPs. The
combination of DESs with GSMPs is the major contribution
of this section, and it provides a framework for analyzing a
power-managed system from a formal standpoint.

A. Denotational Model

We denote by the set of physical states (i.e., operation
modes) of a system and by the set of events that can trigger
state transitions. All events compete to trigger state transi-
tions: at each state, the event that comes first wins and is
called the triggering event. The arrival times of triggering
events are called decision epochs, since they are the time in-
stants at which next states are chosen. State transitions are
instantaneous.

We call annotated physical state a triple , where
is the physical state, the decision epoch at which was

entered, and the event that triggered the transition. The se-
quence of annotated physical states visited by the system up
to the th decision epoch is its physical trajectory at , de-
noted by . In general, we use subscript to denote the th
decision epoch and all quantities referred to that epoch.
The set of all possible -step trajectories is denoted by .

Fig. 1. State diagram and possible trajectory of a server with
queue of length 2.

Clearly, . At decision epoch , the only feasible
trajectory is empty: .

At decision epoch , the next state depends
on the trajectory at time , on current time and on
the triggering event . We call initial state the state
entered at decision epoch upon arrival of an implicit
initial event.

We call the next-state function a black-box function
taking as input a trajectory, a decision epoch, and a triggering
event and returning a target next state

According to our assumptions, if the input trajectory is
empty, the decision epoch is and the triggering event
is , then the next-state function returns the initial
state

In general, state transitions can be triggered by both in-
ternal and external events. We denoted by and the sets
of internal and external events, respectively .
While the system has no direct control on external events, it
directly generates internal events depending on its history,
represented by the trajectory at current decision epoch .
We call the next-event function a black-box function that
takes in input the current trajectory and returns a candi-
date triggering event together with its residual time

.

Function is reevaluated at each decision epoch. If no
external event arrives between and , then will
be the next triggering event at decision epoch

. Otherwise, the state transition will be
triggered by the external event at decision epoch

, and event will be canceled. If no internal events
are defined, or the system has entered a waiting state where it
has to stay until a given external event occurs, then returns

.
Example 1: Consider a server with a queue of length 2.

The system has three states, corresponding to the number of
enqueued processes. The first process in the queue represents

1314 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 2. (a) State transition graph of the two-state client of Example 2. (b) State transition graph of a
system composed of the client of Example 2 and the server of Example 1.

the process being served. Triggering events are incoming re-
quests req and end of services eos . Incoming requests are
external events, while ends of services are internal events.
(See the equation at the bottom of the page.)

The residual service time can be computed based on .
For instance, assuming that the service time is one for all
requests, the residual service time can be expressed as

, where the elapsed time is computed since
the last decision epoch at which either state 0 was exited or a
request was serviced (i.e., since the decision epoch at which
the server started servicing the current request). The state
diagram and a possible trajectory of the system are shown
in Fig. 1.

DESs require the number of events occurring in a lim-
ited time period to be finite. This property is assumed to be
verified by external (input) events, while it has to be guar-
anteed by next-event function for internal events. A
finite number of events are allowed to occur simultaneously.
Simultaneous events are treated as subsequent events with in-
finitesimal distance in time. This execution semantic is self-
consistent if and only if system evolution does not depend on
the order simultaneous events are processed.

B. Compositional Model

Consider two interacting DESs and for which a repre-
sentation is provided according to Section III-A. We model
interaction by making sensitive to (some of) the internal
events of and vice versa. We use superscripts and
to refer to the two systems. We say that and interact with

each other if either or
or both.

Example 2: Consider a nonblocking client generating re-
quests for the server of Example 1. The client has two states:
active (1) and inactive (0). State transitions are triggered by
an external event (tr). When active, the client issues service
requests (represented by an internal event req) with exponen-
tially distributed interarrival times, when inactive it does not.
We denote by an exponentially distributed random
variable with mean

req
tr

if tr;
if req;
if initial;
otherwise.

req if ;
none if .

The client interacts with the server by means of event req.
The state diagram of the client is shown in Fig. 2(a).

The representations of interacting systems can be merged
to obtain a global representation of the entire system, with

eos
req

if req ;
if eos ;
if initial;
otherwise.

eos residual service time if ;
none if .

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1315

Example 3: The system composed of the server of Ex-
ample 1 (subsystem) and the client of Example 2 (sub-
system) can be described as

eos req

tr

The corresponding state transition graph is shown in
Fig. 2(b).

Notice that the trajectories of two interacting systems at a
given time may be composed of a different number of steps,
since a system may not be sensitive to some of the triggering
events of the other one. We denote by the number of steps
in the trajectory of the global system, and by and the
number of steps in the trajectories of and , respectively.
In general, and . The current state of the
system is .

Suppose that event occurs at decision
epoch , causing a new step to be added to the
trajectory of the system: . If event

, it causes state transitions in both subsystems at
time , bringing their trajectories to

and . In this case, the relation be-
tween the annotated state of the system and those of the sub-
systems is the following:

Now consider the case of subsystem being insensitive
to event (i.e.,). In this case, event causes a state
transition in subsystem A, but it does not cause any transition
in . Hence, time is a decision epoch for (and for the
entire system) but it is not for . The relation between the
annotated state of the system and those of the subsystems
becomes

Example 4: A possible trajectory for our client–server
system is shown in Fig. 3, together with the corresponding
trajectories of the two subsystems. Notice that the decision
epochs of the system are the union of those of all subsystems.

Fig. 3. Trajectory showing the interaction between a two-state
client and a three-state server.

For instance, decision epoch in the system trajectory cor-
responds to decision epoch in the server trajectory, while
it does not appear in the trajectory of the client.

The next-state function of the system can be obtained
from those of the subsystems in the following way:

where

if ;

if .

if ;

if .

Composition of next-event functions is even simpler

first

where first{} selects the event that occurs first, and the next-
event function of each subsystem is assumed to be evaluated
at the last decision epoch for the subsystem.

Example 5: Next-state function of the client–server
system of Example 3 is represented by the state transition
graph of Fig. 2(b). Its next-event function is specified in
the equation at the bottom of the page.

first eos residual service time req if ;
eos residual service time if ;

req if ;
none if .

1316 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 4. Example of hierarchical interfaces.

In the following we use the symbol to denote the com-
position of DESs. A system composed of subsystems and

will be denoted by . Composition is an associa-
tive and commutative operation: the resulting system does
not depend on the order in which subsystems are composed.
From a denotational point of view, however, the representa-
tion of the physical state of the system as an ordered n-tuple
of the physical states of its subsystems depends on the order
in which Cartesian products are performed.

The dynamics of a system consisting of interacting sub-
systems is the result of the composition of the dynamics of
its components, each of which evolves based only on its own
trajectory, that can be viewed as the projection of the system
trajectory on the state and event sets of the subsystem. Sub-
systems have no visibility of the internal states of other sub-
systems, so that their evolution is a local (rather than global)
phenomenon. Subsystems interact with each other only by
means of some shared events.

On the other hand, the evolution of a generic DES may be
based on its entire trajectory. If this is the case, the system
cannot be obtained by means of composition. A system that
can be expressed as the composition of interacting subsys-
tems is called a decomposable system. DESs are not always
decomposable.

1) Abstraction: In the previous section we said that two
DESs and interact if there is at least an internal event
(say,) of a system (say,) that is an external event for the
other one (). In symbols, .

Even if intersection of event sets is the key mechanism
for interaction, it is impractical, since it imposes consistent
naming conventions to be used when defining the event sets
of each system: and communicate through event if and
only if it appears with the same name in and . If
different names were used when defining the event sets of
and , no interaction would be allowed. On the contrary, if
the same name was carelessly assigned to different events in

and , their interaction is enforced. In practice, in order to
use intersection for modeling the interaction between DESs,
consistent names should be assigned with all the event sets
of the components of a complex system, thus avoiding the
reuse of a component specification within different systems.

To overcome the above-mentioned drawbacks, we need
to make composition independent of the names used within
the specification of each subsystem. To this purpose, we
associate an interface with each DES that maps local event
names onto input and output ports to be used for composi-
tional purposes. The specification of a system, together with
its interface, is treated as a macro that can be repeatedly
instantiated as a system component. When designing a

system, each component has to be assigned with a unique
name. Component ports are uniquely identified within a
system by using the name of the instance as a prefix for the
name of the port. Interaction between two components is
explicitly specified by connecting their input–output ports.

Example 6: Interfaces are used in Fig. 4 to represent the
client–server interaction of our example system. Interfaces
are represented as dashed boxes. The name of the macro is
reported on the top-left corner, together with the list of local
events. The name of the instance is reported on the top-right
corner. Input and output ports are denoted by incoming and
outgoing arrows. External and internal labels associated with
each port represent the mapping between port names and
local event names. Internal event req generated by the client

is made available at output port . External event req is
taken by the server from input port req. Client–server inter-
action is represented by the connection between output port

and input port req

req

Interfaces provide a mechanism for abstraction, in that
they hide system specification focusing only on composi-
tional properties. Moreover, interfaces hide all internal events
that are not mapped to output ports.

Example 7: In Fig. 4, an interface is also associated with
the entire system, viewed as a macro called System. Local
events for the entire system are the events of its components
that are mapped onto output ports and unconnected input
ports, namely, tr, , eos. The system interface maps

tr onto primary input port control and eos onto primary
output port eos, while it hides internal event .

To provide additional flexibility to the compositional
model, advanced port mappings can be introduced that
combine and duplicate events. Event combination maps a
set of events onto a single event that occurs
whenever one of the events in the set occurs. In practice,
event combination provides a mechanism for simplifying
the representation of equivalent events: a system that reacts
to event reacts to any of the events mapped to .

Event duplication maps a single event into multiple
events that occur whenever event occurs.
Duplication represents fan-out points: an event needs to be
duplicated to drive different components. Examples of event
combination and duplication are provided in the following
example.

Example 8: Fig. 5 shows the hierarchical representation
of a system composed of three independent clients issuing
service requests for the same server. Leaf components are an
instance (S) of the server in Fig. 5, two instances (C2.A and

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1317

Fig. 5. Example of abstraction.

Fig. 6. Procedure for the event-driven execution of a generic DES model.

C1) of the client in Fig. 5, and an instance (C2.B) of a dif-
ferent client with initial state 1 (rather than 0). Components
C2.A and C2.B are wrapped together to form a new macro
(called DoubleClient) acting in its turn as a client whose in-
terface exhibits a single input port sw and a single output
port req . The interface duplicates input event to con-
trol both subsystems, and combine their requests to generate
output events on req. Since C2.A and C2.B start from op-
posite initial states and have simultaneous state transitions
(triggered by the same external event), they are alternatively
active. Hence, DoubleClient represents a bimodal workload
controlled by an external event. As for the server, it has two
input ports, r1 and r2, driven by C1 and C2. However, the two
ports are combined by the interface in the same input event,
making requests from the two clients indistinguishable for
the server.

A global interface is provided for the system, hiding in-
ternal events C2.req and C1.req.

C. Executable Model

An executable model for a DES is a model that pro-
vides executable specifications for next-state function
and next-event function . Without loss of generality, we
assume that the executable description is to be executed
by an event-driven simulator developed in a procedural
programming language. System specification is provided
by implementing the processEvent function that is

called by the scheduler whenever a triggering event has to
be processed. We also assume that the scheduler supports
schedule and cancel functionalities to allow the system
to add to the event queue the internal triggering events it
generates and to remove from the queue triggering events
overcome by external events. The pseudocode of a general
processEvent procedure is shown in Fig. 6. Events are
treated as structures containing both the event type and the
occurrence time. The pseudocode refers to global variables
of the system: the trajectory , initialized to NULL, the
candidate next triggering event , initialized to NULL,
and the counter of decision epochs , initialized to zero.

The triggering event is passed to processEvent as
input parameter . Next-state function is called to
chose the target for the current transition and
the corresponding step is added to system trajectory (using
function). If is an external event, then the
internal candidate event scheduled at last iteration (stored in
variable) needs to be removed from the event queue.
This is done by invoking the cancel procedure. A new
candidate event is then generated by next-event function ,
stored in variable , and scheduled by calling function
schedule. Finally, the counter of decision epochs is
incremented and execution control returned to the scheduler.

The system description is specialized by defining func-
tions and that implement next-state and next-event func-
tions, respectively.

1318 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 7. Implementation of the next-state function of a GSMP.

Fig. 8. Implementation of the next-event function of a GSMP.

D. GSMPs

GSMPs are DESs with nondeterministic next-state and
next-event functions based on conditional next-state proba-
bilities and residual-time distributions, respectively.

Conditional next-state probability
represents the probability of entering state at decision
epoch . In general, such probability may depend on
the entire history of the system, represented by its current
trajectory , by current decision epoch , and by the
event that triggered the current state transition. We
introduce a random variable , defined on the physical state
set , and we define a next-state distribution

Prob

Distributions are more general than probability functions,
in that they can be defined for both finite and infinite state
spaces. As long as a family of next-state distributions is avail-
able, the evaluation of the next-state function reduces to the
selection of the distribution associated with the current his-
tory and to the generation of a random next-state from such a
distribution. This is done by the first row of the pseudocode
of Fig. 7, where returns a pseudorandom
value from a distribution possibly dependent on the system
trajectory , on the triggering event , and on the cur-
rent time .

Residual-time distributions are associated with each
internal event. Whenever a physical state is (re)entered,
residual times are generated for all internal events according

to their distributions. The internal event with the smallest
residual time is then chosen as candidate triggering event.
Residual-time distributions may be conditioned to the
history of the system, that is entirely represented by its
trajectory up to the decision epoch at which current state has
been entered. We denote by the residual time of event
and by its distribution

(1)

The general pseudocode of a next-event function based on
residual-time distributions is shown in Fig. 8. Residual times
are generated for all active events by calling the
function. The event with the lowest residual time is then gen-
erated and returned to be scheduled as .

Any system obtained by composition of GSMPs is a
GSMP.

1) Clock Structure: Equation (1) provides the flexi-
bility required to specify arbitrary GSMPs, since it allows
residual-time distributions to depend on the trajectory of
the system, that represents its entire history. However,
expressing residual times as stochastic functions of is
often unnatural. In most cases, simpler data structures,
carrying only partial information about the past, provide a
more natural support for the specification of residual-time
distributions. Such a natural support is provided by clocks,
introduced by Glynn as part of the GSMP formalism [27].

A clock can be associated with event to measure the
amount of time elapsed since a past decision epoch chosen as

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1319

a (temporary) reference for that event. At any decision epoch,
the clock is either restarted (thus updating the time reference
for the event) or incremented of a quantity proportional to
the last state-holding time. In practice, the value of (called
clock reading and denoted by the same symbol used for the
corresponding clock,) provides a partial view of the his-
tory of the system tailored on event .

Clocks are associated with all internal events. For each
state , a set of internal active events is
defined. Active events for state are those internal events
that may trigger transitions from . A clock speed is
associated with each pair , with and .
Clock speed is used to scale the time spent in state
when updating . Clock is restarted either when event
becomes active (i.e., when a state is entered from state ,
with and) or when event occurs (i.e.,
when event is the triggering event). Hence, represents the
time elapsed from the last occurrence/activation of event .
When event is inactive, clock reading is undefined.

Figs. 7 and 8 show the pseudocode of next-state and
next-event functions of general GSMPs. Clock readings and
speeds are treated as fields of the data structures used to rep-
resent events. When the event is inactive, the corresponding
clock is set to conventional value 1. Since clock readings
are updated whenever a state is exited, this is done by ,
which implements the next-state function. Notice that clock
readings do not appear explicitly in function of Fig. 8,
since they are passed to the function as fields
of data structure .

It is worth noting that clocks are not necessary. All clock
readings at decision epoch could be computed from
trajectory and clock speeds . In practice, clocks
are nothing but event-specific partial views of the history
of the system that can be used to simplify the specification
of residual-time distributions. In most cases of practical
interest, in particular, current clock readings and present
state retain all the information about the past that may
affect the dynamic of the system, thus completely replacing
trajectory . In this case (1) can be rewritten as

(2)

and the pseudoalgorithms of Figs. 7 and 8 can be simplified
accordingly.

In the following, we implicitly refer to GSMPs whose
memory of the past is completely represented by clock
readings and current state. We will show in the application
section that this assumption does not limit the modeling
power of GSMPs, allowing us to model with no approxima-
tion real-world systems with arbitrary event distributions.

2) Dealing With Infinite States and Infinite Events: The
implementation of next-state and next-event functions de-
scribed so far implicitly assume that both the event set and
the state set are finite. If this not the case, infinite conditional
distribution functions should be specified in order to fully
describe the GSMP, and next-state and next-event functions
would never exit their inner loops.

On the other hand, many real-world systems do have infi-
nite states and infinite events. Consider, for instance, a digital
system whose clock frequency can be dynamically controlled
by an external command in a continuous interval from
to . In this case, infinite input events are required to rep-
resent external commands, and infinite states are required to
represent the operation state of the system. However, all ex-
ternal events representing dynamic control of the clock fre-
quency differ only for a parameter that is the target clock fre-
quency. Similarly, all active states of the system differ only
for their operation frequency. This suggests that the entire
set of events (states) could be represented as a single event
(state) associated with a continuous parameter.

In general, we are interested in GSMPs with a finite set
of (possibly parameterized) states, a finite set of (possibly
parameterized) external events, and a finite set of (possibly
parameterized) internal events. Parameterization provides an
implicit finite representation of both finite and infinite (con-
tinuous or discrete) state/event sets, depending on the nature
of the parameters.

We call state class (event class) any subset of states
(events) represented by a unique parameterized state (event).

The actual state of the system is represented by its current
state class and by the current configuration of all parameters
associated with it. Similarly, any triggering event is repre-
sented by the event class it belongs to and by a unique con-
figuration of the parameters associated with it. We also as-
sume a unique clock to be associated to an entire event class,
meaning that all events belonging to the same class share the
same clock readings and that the clock is reset upon the oc-
currence of any event of the class.

The pseudocodes of next-state and next-event functions re-
ported in Figs. 7 and 8 can be simply extended to handle pa-
rameterized states and events by representing parameters as
fields of states and events structures. In particular, function

that appears in Fig. 7 will return a random
value according to a distribution depending not only on the
current state and triggering event, but also on their param-
eters. In other words, the next-state distribution may be pa-
rameterized as well. Moreover, the returned value will be not
only a value, but a data structure representing the destination
state class together with the configuration of all parameters
possibly associated with it.

As for the next event, function returns for
each event class a residual time from a distribution that may
depend on the configuration of the parameters associated
with the current state. However, the residual-time distribu-
tion is unique for all events of class . This means that the
residual time returned by the function represents the first oc-
currence of any event of the class. The actual triggering event
(i.e., the configuration of the parameters associated with the
event class with the minimum residual time) will be selected
by function , according to a given event distribu-
tion that is a property of the event class and that may depend
on the residual time.

This implementation is consistent to the GSMP semantics,
since both the residual-time distribution and the event distri-

1320 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

bution for a given event class could in principle be obtained
from the residual-time distributions of each event in the class

(3)

(4)

However, when dealing with infinite state sets, it is more
practical and intuitive to directly specify and for the en-
tire class.

We remark that in many cases, parametric states/events
may be useful not only to provide a finite representation of
infinite sets, but also to provide a compact representation of
finite sets. This is the case, for instance, of a finite queue of
length , whose states could be represented by a unique
state class with an integer parameter ranging from zero to .

E. System Taxonomy

The GSMP formalism introduced in the previous section
allows us to describe very general systems. Since our goal is
to model realistic DPM systems, we can make several sim-
plifying assumptions to restrict the modeling space. Some of
these assumptions were already mentioned and discussed in
the previous sections, but we list them here for the sake of
completeness. Namely, we assume GSMP models with:

1) a finite set of state classes;
2) a finite set of internal event classes;
3) a finite set of external event classes;
4) next-state distributions depending only on the current

state and on the triggering event;
5) clocks associated with each event class;
6) residual-time distributions defined for each event class,

depending only on the current clock readings and on
the current state;

7) event distributions defined for each event class as func-
tions of the current state and of the triggering time.

In the following, we provide a classification of DESs di-
rectly induced by the proposed modeling framework. With
respect to the state structure, a system is said to be:

• continuous state if there is at least a continuous param-
eter associated with one of its state classes;

• discrete state if there are no continuous parameters as-
sociated with state classes;

• finite state if none of the parameters associated with
state classes may take an infinite set of values.

A similar classification is induced by the event set. A
system is:

• continuous event if there is at least a continuous param-
eter associated with one of its event classes;

• discrete event if there are no continuous parameters as-
sociated with event classes;

• finite event, if none of the parameters associated with
event classes may take an infinite set of values.

Depending on the number of internal events made observ-
able from the external interface, a system/component may
be unobservable, partially observable, or totally observable.

Also, the system can be either controllable or autonomous
depending on its sensitivity to external events.

A system composed of multiple interacting GSMPs is said
to be decomposable, while it is monolithic otherwise. Notice
that subsystems communicate only by means of events: the
current state of a subsystem is not visible to other subsystems
unless specific events are used to notify state changes. Hence,
observability and controllability are key properties for in-
tercomponent communication. The interactions between the
subsystems of a decomposable GSMP can be represented by
means of a dependency graph with nodes associated with
GSMPs and directional arcs associated with event-passing
communication. The dependency graph has an arc from com-
ponent A to component B if an only if A is observable from
B and B is controlled by A. Autonomous and unobservable
components are represented as source and sink nodes in the
dependency graph.

In general, GSMPs may be either stationary or nonsta-
tionary depending on whether conditional distributions de-
pend on time or not. We are mainly interested in modeling
stationary systems. As for the timing model, discrete events
may occur at any point in time, provided that a finite number
of events occur in a limited period. Hence, in general, events
may be associated with continuous residual-time distribu-
tions. Nevertheless, slotted-time systems can be modeled by
means of discrete residual-time distributions. A system has
a slotted-time model if and only if all external and internal
events are associated with discrete residual-time distributions
with a common discretization step.

GSMP systems are inherently nondeterministic, since both
next-event and next-state functions are specified by means
of conditional probability distributions. However, determin-
istic decisions can be taken according to deterministic distri-
butions, returning always the same value. A system is said
to be deterministic if its model has only deterministic next-
state and residual-time distributions; it is said to be nonde-
terministic if its model has at least a nondeterministic dis-
tribution. A deterministic GSMP may have nondeterministic
input events, but it cannot generate nondeterministic internal
events.

A nondeterministic GSMP model is a Markov model if
and only if all residual times have exponential distributions
depending only on the present state.

Example 9: A variable-frequency digital system has a
continuous state space if the clock frequency can take any
value in a given range, while it has a finite state space if it
can work at a finite number of clock frequencies. In both
cases, the system is controllable if frequency adjustments are
triggered by external events. The input events are either con-
tinuous or finite, according to the state space of the system.
An unlimited first-in, first-out (FIFO) queue has an infinite
discrete state set and a finite event set. A nonblocking client
can be modeled as an autonomous system (since it is not sen-
sitive to any external event). The simple server of Example
1 is completely observable, since it has a unique internal
event (eos) that is made observable through an output port.
A server with constant service time is deterministic, while a
server with exponential service time is a Markov process.

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1321

F. DPM

DPM entails the interaction between (at least) a PMS and
a PM. According to our taxonomy, any PMS has a control-
lable model, since it reacts to external events representing
DPM commands issued by the PM. On the other hand, the
PMS is usually (at least partially) observable from the PM,
so that their interaction can be represented by a cyclic de-
pendency graph. In most cases, the system is also controlled
by a workload that can be modeled as an additional compo-
nent. The model of the workload can be either autonomous
or controlled in its turn by the system. For instance, a non-
blocking client can be modeled as an autonomous GSMP,
while a blocking client is controlled by the end-of-service
events issued by the system. The workload may or may not
be observable from the PM.

1) Design Metrics: The PM implements a control policy
aimed at optimizing a system metric (e.g., average power
consumption, energy per task, etc.) while meeting the con-
straints possibly imposed to other metrics (e.g., performance,
quality of service, etc.). We call metric any function of the
system trajectory that does not affect the evolution of the
system. Hence, metrics are not conceived to be visible to
system components. Rather, they can be used by the designer
to evaluate/optimize the control policy implemented by the
PM. According to an event-driven execution paradigm, met-
rics are evaluated (i.e., updated) only at decision epochs.

Any function of system metrics is also a system metric.
Our definition of metrics is very general. Hence, we can
use our framework to deal with system objectives and
constraints of different types, including, but not limited
to, average values, worst case values, variances, etc. The
expressive power and flexibility of our approach stems from
two specific factors. First, the simulation-based approach
can incorporate arbitrary functions (for instance, we are not
constrained to linearity as in the case of linear-programming
optimization of Markov decision processes [53]). Second,
the evaluation of the metrics does not affect system trajec-
tory, so that metrics are not subject to constraints possibly
imposed by the modeling framework.

2) Optimum Control: The degrees of freedom ex-
ploitable for DPM are represented by the external events
the PMS is sensitive to. Similarly, all information available
for taking DPM decisions are provided by the observable
internal events of all system components, possibly including
the workload.

We call ideal controller a PM that fully exploits the DPM
potential of the system by: 1) taking trace of all observ-
able events; 2) controlling all controllable events; 3) imple-
menting arbitrarily complex DPM policies; and 4) using un-
limited computational and memory resources. We call oracle
an ideal controller that has complete knowledge of past and
future observable events.

For our purposes, both ideal controllers and oracles
represent unrealistic components to be used only for de-
termining bounds on achievable metrics. However, while
ideal controllers may be modeled and simulated within
the DES/GSMP framework, oracles cannot, since they are

noncausal systems. Nevertheless, in many practical situa-
tions, it is possible to evaluate the effect of an oracle PM by
analyzing offline full traces of events.

Any real controller is a causal PM that has reduced ca-
pabilities as compared to the ideal one because of resource
limitations that may impose partial observation of the ob-
servable events, partial control of the controllable events,
approximated representation of past history, simple proba-
bilistic structures, and limited decision epochs.

The nature of a PM is fully determined by its state
structure and event set, while its behavior is determined by
next-state and next-event functions, to be specified in terms
of next-state and residual-time distributions. In particular,
the behavior of the controller has to be optimized in order
to minimize/maximize a given function of system metrics
(called objective function) while meeting constraints im-
posed on some other metrics.

The results of optimization are next-state and residual-
time distributions that specify the policy implemented by the
controller. Policy optimization is said to be parametric if the
probability distributions have a fixed form and tunable pa-
rameters. For instance, a Markovian PM has only exponen-
tial residual-time distributions, so that the expected values of
the residual times are the only degrees of freedom available
for optimization. Optimization is called nonparametric if the
distributions do not have a fixed form.

Policy optimization is a complex task that in most practical
cases need to be addressed by means of heuristic algorithms
leading to suboptimal solutions.

Given a PMS and a workload, assume that optimum poli-
cies have been found for an ideal controller, for an oracle and
a for a real controller, according to a given constrained op-
timization problem aiming at minimizing an objective func-
tion . We denote by , , and the values of
the objective function achieved when using as PM the ideal
controller, the oracle and the real controller, respectively, im-
plementing their optimum policies. The following relation
holds:

Notice that both and can be viewed as
inherent properties of the PMS and of the workload. In
particular, represents the lower bound of the objective
function achievable by any real PM, while represents
the value of the objective function that could be achieved
by making always correct predictions about future events.
The difference between and is a measure of the
effect of nondeterminism, while the difference between
and is a measure of the nonideality of the real PM.

In some cases, the implementation of the best policy of
an ideal controller may require finite memory and computa-
tional resources. In this case, a real PM can act as an ideal
controller, leading to . This is the case, for in-
stance, of a Markovian PMS with a Markovian workload, for
which the policy optimization problem can be exactly formu-
lated and solved by means of linear programming [53] and

1322 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 9. Template of the state of a GSM component. (a) State structure. (b) Flowchart of the
state_entry action. (c) Flowchart of the state_exit action.

the optimum policy can be implemented by a real PM. In this
case, the measure of nonideality is .

Furthermore, when both the model of the PMS and the
model of the workload are deterministic, future events are
always predictable, so that . In fact, for a
deterministic system the measured effect of nondeterminism
is null: .

IV. GSMP SIMULATION

Several tools have been developed in the last decade for
the specification, analysis, and simulation of GSMP models,
mainly focusing on formal verification, performance eval-
uation, and dependability analysis [52], [54]. In particular,
a tool for compositional GSMP modeling and simulation
called GMSim was proposed by Nilsen [52].

In this section we present a GSMP infrastructure built
on top of MathWorks’ Simulink [28] for the specification
and simulation of DPM systems described as interacting
DES/GSMPs. Simulink supports interactive modeling,
simulation, and analysis of multidomain dynamic systems
specified by instantiating and interconnecting standard
and custom library blocks. Simulink modules may interact
seamlessly with any Matlab toolkit, providing immediate
access to a large set of analysis and design tools.

By using Simulink as a simulation platform we trade
off some performance (with respect to dedicated C/C++
implementations) for usability and flexibility. In particular,
we leverage the graphical user interface (GUI) of Simulink,
its module libraries and its interface to Matlab. The GSMP
models implemented in Simulink can interact with other
Simulink components, including continuous-time dynamic
systems. This provides the flexibility for modeling real-word
DPM systems at different levels of abstraction, while re-
taining the key properties of GSMPs.

In the following, we describe the implementation of the
state and timing structure of a GSMP and the interaction be-
tween multiple GSMPs.

A. Template of a Basic GSMP Component

The Stateflow toolkit [55] provides the ideal support for
the specification of the state structure of a GSMP component.
A stateflow component is specified in terms of states, state
transitions, and triggering events. In addition, attributes (i.e.,
data structures) can be associated with the stateflow and with
each state, and actions can be associated with events and state
transitions.

The global attributes of the stateflow model of any GSMP
component include the number of events , the number of
states , an array of E clock readings , a matrix of
SxE clock speeds , a random variable , a
state-entry time , a current state variable , an ex-
pected event index , and a residual time .
Each state has additional local attributes, such as the state
identifier , the power consumption level ,
and any user-defined state-dependent metrics.

The evolution of a GSMP is fully determined by the cur-
rent state, by the clock readings of active events, and by the
triggering event. Whenever a new state is entered, the active
event set is updated, residual times are generated for all ac-
tive events based on their clock readings and speeds, and the
event with the lower residual time is chosen and scheduled
as the next triggering event. When a state is exited, the clock
readings of all active events are updated based on their speeds
and on the time spent in that state. The support for the imple-
mentation of both tasks is provided by the entry and exit ac-
tions that can be associated with each state. The template of a
state of a GSMP is shown in Fig. 9(a). It consists of three el-
ements: the name of the state (State), the state-entry action

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1323

Fig. 10. Simulink representation of a two-state server. (a) Stateflow view. (b) Overall component
with interface ports.

(specified under keyword entry:), and the state-exit action
(specified under keyword exit:).

The state-entry action consists of three steps: the assign-
ment of the value of the local variable (that is a unique
state identifier) to the global variable (that represents
the current state), the invocation of the entry_action
function (described below), and the generation of a random
variable uniformly distributed between zero and one (pos-
sibly used to make a nondeterministic choice among out-
going edges triggered by the same conditions). The flow-
chart of the entry_action function is shown in Fig. 9(b).
Edge conditions are written in square brackets, while actions
are written in curly brackets. The entry_action function
consists of two loops that scan the entire event set: the first
loop resets the clock readings of the last event (i.e., the event
that triggered the transition to the current state) and of the
events that are inactive in the current state; the second loop
generates residual times for all active events (according to
their state-dependent distributions) and selects the next trig-
gering event by assigning its index to variable and its
residual time to variable . Finally, the state-entry
time is assigned to variable . Residual times are generated
by function that takes as input the current state ,
the event index , the reading of the clock associated with
event , and its speed while in . The residual-time distribu-
tion to be used for each (state,event) pair is specified within
the function by invoking specific Matlab m-func-
tions belonging to a predefined library of distributions.

The state-exit action is specified by means of two func-
tions: the function that updates global metrics
according to the values associated with the current state and
to the time spent it that state, and the exit_action func-
tion [shown in Fig. 9(c)] that updates the clock readings of all
active events according to their local speeds and to the time
spent in the current state .

Fig. 10 shows the stateflow of the two-state server of
Example 3. States S0 and S1 are derived from the template
of Fig. 9 and assigned to unique names, unique identifiers,
and different costs representing power levels (e.g., cost 0.5
to state S0, representing a waiting condition; cost 1 to state

S1, representing a busy condition). Transitions from S0 to
S1 are triggered by input event , which represents an
incoming service request, while transitions from S1 to S0
are triggered by an internal event that represents the end of
service. Since the end of service is the only internal event
in this simple example, its index is zero. The triggering
condition corresponding to the occurrence of internal event
0, reported on the edge from S1 to S0, is .
In fact, since there is a single internal event scheduled at
each time, all internal events are implemented by a unique
simulation event , and a global variable (updated
whenever a new event is scheduled) is used to recognize
the incoming event.

Notice that although event is used to represent internal
events, it is not generated within the stateflow model. Rather,
it is generated by an external dynamic component that im-
plements the actual clock structure and taken in input by
the stateflow. This is shown in Fig. 10(b), which provides a
schematic representation of the template of a generic GSMP
model. The State_structure component is a stateflow
module that takes as input one or more triggering events and
generates a timeout value corresponding to the residual time
of the last scheduled internal event. The Clock_struc-
ture is implemented as a timeout: it takes the
value provided by the stateflow and generates event when
the timeout has elapsed. Fig. 10(b) also shows the input and
output ports belonging to the interface of the GSMP com-
ponent: input port provides the input event , output
port makes the internal event available for interac-
tion with other components, output port provides run-
time information about a generic cost metric (e.g., power
consumption).

Notice that input events are provided to the stateflow com-
ponent through a unique triggering port. A multiplexer is
used to this purpose, as shown in Fig. 10(b).

Internal events are made observable from outside the
component by means of additional output events, specified
within the stateflow module. To associate an output event
with the corresponding internal event, the output event has
to be issued by the stateflow model whenever the internal

1324 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 11. Implementation of the local clock structure of a GSMP component. The key elements are
shaded in the schematic. A timeout value is taken in input and compared to the output of an integrator
that generates a linear ramp representing the elapsed time. As the elapsed time passes the timeout
values, an output event is generated.

Fig. 12. Schematic representation of a client–server system. An additional output port (State)
has been added to each component to monitor the internal state for verification and debugging. A
standard Simulink component (Scope) is used to capture and display all signal waveforms.

event occurs. In particular, the stateflow generates a given
event whenever a given state transition is traversed, if the
name of the event is appended (after a slash) to the label
of the state transition. For instance, the state diagram of
Fig. 10(a) specifies that output event has to be issued
whenever there is a transition from S1 to S0, i.e., whenever
internal event 0 occurs. The output event is connected to
the output port of the GSMP component through a Hit
Crossing module (provided with the Simulink library)
that has the only purpose of making the representation of the
output event compatible with the representation of the input
events. This is shown in Fig. 10(b).

The inner implementation of the timeout component im-
plementing the clock structure of the GSMP is shown in
Fig. 11. It consists of an integrator that generates a linear
ramp representing the time elapsed from last reset. The ramp
is compared with the input timeout and an event is generated
whenever the elapsed time exceeds the timeout. The con-
trol circuitry resets the integrator whenever either the output
event is triggered or an input reset signal is received.

The interaction among multiple GSMP components is
simply obtained by connecting their input/output event ports
as shown in Fig. 12 for a client–server example. Additional
output signals can be used to observe the system behavior

and to evaluate cost/performance metrics. All signals can
be monitored by means of standard Simulink components,
such as the Scope used in the example of Fig. 12.

B. Nondeterministic Destination States

In some cases, the same event may trigger several mutually
exclusive transitions from a given state. Each transition may
lead to a different destination. Whenever the triggering event
occurs, the actual outgoing transition from the current state
is randomly chosen among those enabled by the same event,
according to a given distribution.

In our implementation, a random number , uniformly dis-
tributed between zero and one, is generated and stored as a
global variable whenever a state is (re)entered. The random
number can then be used to chose among alternative transi-
tions triggered by the same event. This is done by specifying
disjoint conditions (based on) on each edge.

Example 10: A simple example of a GSMP component
with nondeterministic state transitions is shown in Fig. 13.
It represents a bursty client that generates bursts of requests
with two different distributions when in states Burst1 and
Burst2. Transitions from Idle to Burst1 and Burst2
are triggered by the same event and randomly chosen ac-
cording to complementary conditions (specified in square

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1325

Fig. 13. State structure of a bursty client specified using
nondeterministic state transitions.

brackets) based on the observation of random variable :
if (10% probability) state Burst1 is entered, if

(90% probability) state Burst2 is entered. Notice
that transitions from Idle are not conditioned on the value
of (which represents the triggering event), since there
is only one event active in state Idle. On the contrary, the
outgoing edges from states Burst1 and Burst2 are condi-
tioned to the value of , since there are two active events
(0 and 1) that trigger different transitions.

C. Parameterized States and Events

The parameterized state classes introduced in Sec-
tion IV-C may be implemented in Simulink as stateflow
states with additional parameters whose configuration is
used to distinguish among the states belonging to the same
class. For instance, a FIFO queue of length has
states that can be modeled as a unique state class with
an integer parameter that represents the
current number of elements in the queue. Arrivals and
departures are external events (put and get) that trigger
transitions among the states of the class. Such transitions are
simply implemented as self-loops causing parameter to be
incremented or decremented.

Notice that when , the queue is empty
(full) and cannot be further decremented (incremented).
These boundary conditions can be implicitly modeled by
conditioning the incrementing/decrementing self-loops to
the current value of parameter , as illustrated in Fig. 14(a).
An external eventack can be generated whenever a self-loop
is traversed, in order to notify to the user the execution of
put and get commands.

Similarly, stateflow states can be associated with floating-
point parameters in order to represent infinite state classes.

The implementation of a parameterized event is not
straightforward, since in our stateflow model events do not
carry data values. Hence, a parameter associated with an

event is an additional property (i.e., data structure) to be
added to any stateflow component that handles the event.
Consider, for instance, a producer that puts in the queue
either one or two elements at the time. We could use two
different events (e.g., put1 and put2) to represent the
production of single and double elements, or we could use a
single event (put) with an integer parameter . In
this latter case, parameter is a variable whose value has
first to be set before issuing event put, and then taken into
account when processing the event.

For instance, if the parameterized command controls the
FIFO queue of Fig. 14, the value of parameter is observed
whenever event put is received and it affects both the trig-
gering conditions and the update of the internal state of the
queue. This is shown in Fig. 14(b).

Representing different events by means of a single param-
eterized event enhances model simplicity and scalability. For
instance, the model of Fig. 14(b) does not require any modi-
fication to be extended to handle arbitrary numbers of simul-
taneous incoming elements.

It is worth noting that whenever a parameterized event
goes across the interface of a stateflow component, separate
ports are required for the event and for its parameters.

D. Specification

The specification of a DES/GSMP executable model in
Simulink entails the instantiation and specialization of a tem-
plate module. If the system is decomposable, a Simulink
model has to be provided for each component.

The template of a GSMP component is shown in Fig. 15(a)
and 15(b). It includes the clock structure that generates in-
ternal events and a state structure with a unique reset state

, derived from the template of Fig. 9, with an incoming
edge representing the default initial transition. The stateflow
model also includes the specification of functions ini-
tialize, entry_action, and exit_action, and the
data structures needed to represent internal events, clock
readings, and speeds. By default, a unique internal event is
defined (event 0) and its speed is initialized to 1. A basic
library of residual-time distributions is also provided. In
practice, the template is a working executable model of a
single-state GSMP with no input, no output, and a single
internal event that is never active.

The procedure to create a new GSMP model starting from
the template is outlined below step by step.

1) Creation. Copy the template component and assign it
a new name.

2) Allocation of data structures. Set the number of in-
ternal events and states and change the size of the
data structure used to represent clock readings and
speeds accordingly.

3) Definition of external events. Add external (input)
events by using the command of the
Explore tool provided within the Stateflow toolkit
[55].

4) Definition of observable events. Add observable
(output) events as in the previous step.

1326 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 14. Queue of size N represented by means of a unique parameterized GSMP state. (a)
Input event put represents single incoming requests. (b) Input event put is parameterized as well to
represent an arbitrary number (m) of simultaneous incoming requests.

Fig. 15. Template of GSMP state. (a) State structure. (b) Clock structure and I/O interface.
(c) Extended I/O interface.

5) Definition of parameters. Add data structures to
represent metrics and parameters associated with
state and event classes. Specify the scope of each
parameter: local (if associated with states or unob-
servable internal events), input (if associated with
input events), or output (if associated with observ-
able events or metrics).

6) Specification of the interface. Add and connect
input–output ports as illustrated in Fig. 15(c), where

is a generic input event, is a generic input
parameter, is a generic output event, is
a generic output parameter, and is a generic
metric.

7) Creation of state classes. Create the states by
copying and renaming reset state . Assign unique
names and identifiers to each state.

8) Creation of state structure. Add state transitions.
For each transition specify the triggering event, the
triggering conditions, the actions possibly associated
with the edge traversal, and the output event possibly
generated during edge traversal.

9) Assignment of clock speeds. Edit the initialize
function and assign positive speeds to the clocks
associated with active events. If event is active
in state , a positive speed has to be assigned to

.
10) Assignment of residual-time distributions. Edit

the entry_action function and assign a
residual-time distribution to each active event. This
is done by selecting probability distributions from a
Matlab library. The library can be easily extended to
include arbitrary distributions.

Once GSMP models have been created for all system com-
ponents, a top-level system description can be created by in-
stantiating the components and creating connections among
them. Also, standard Simulink components can be added at
this level for monitoring system metrics and collecting exe-
cution traces.

No specific GUI has been developed for assisting the
designer through the above-mentioned steps, since they can
be easily performed using the built-in interface of Math-
Works’ Simulink and Stateflow toolkits. On the other hand,

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1327

Fig. 16. Client–server system with timeout-based DPM. Independent parameters and dependent
design metrics can be made controllable and observable either by means of Constant and Scope
components (a), or by means of input and output ports (b).

a specific GUI could be used to enforce consistency with the
DES/GSMP model.

E. Design Exploration and Optimization

Any DES/GSMP model specified in Simulink can be
either directly simulated or inserted in a library for future
instantiation. If the system is not autonomous, additional
components have to be added to the system to generate input
signals and events. A simulation run may provide (partial)
traces of the system trajectory, timing behaviors of (some)
design metrics, cumulative counts, and statistics. To this
purpose, standard Simulink components can be connected
to the output ports of the system to plot timing waveforms,
compute event counts, and perform arbitrary runtime pro-
cessing of design metrics.

The parameters of a DES/GSMP model represent system
features (e.g., the power consumption of a given operating
mode), design choices (e.g., the timeout to be used to shut
down the system), and workload conditions (e.g., the average
interarrival time of service requests generated by an expo-
nential source). The Simulink model of a given system is an
implementation of the (nondeterministic) functional relation
between the configuration of independent parameters (repre-
senting the degrees of freedom of the design space and the
workload conditions) and the configuration of design met-
rics. If we denote by the configuration of independent pa-
rameters, by the configuration of design metrics, and by

the functional relation among them, each simulation run
provides a point estimate of that is an estimate
of the design metrics for fixed values of design parameters
and workload conditions.

In case of nondeterminism, each point estimate may re-
quire multiple simulation runs performed under the same
conditions, or a long simulation run with runtime evaluation
of convergence criteria for the parameters of interest.

Point estimates can be repeatedly performed (for different
configurations of design parameters) to perform design
exploration and iterative optimization. Using the notation in-
troduced above, design space exploration can be performed

by sampling . In many cases, exploration reduces
to a sweep on a single dimension obtained by changing a
single parameter while keeping all other parameters un-
changed. Constrained optimization consists of changing
the independent variables (within given ranges) in order
to minimize/maximize the objective function (i.e., one of
the design metrics) while satisfying constraints imposed to
other metrics.

The inner loop of both design exploration and optimiza-
tion involves: 1) tuning model parameters; 2) launching sim-
ulation; and 3) collecting and evaluating simulation results.
Simulink provides three different ways for controlling simu-
lation and collecting results: 1) using the GUI of Simulink;
2) using a Simulink module placed at a higher level of ab-
straction; and 3) using a programming language interface.

Using the GUI of Simulink is straightforward. Some of
the parameters of the Simulink modules can be made directly
accessible from the top-level schematic by means of Con-
stant blocks and provided to the corresponding modules
through specific input ports. Similarly, the timing behavior
of the design metrics can be monitored by using one or more
Scopes.

Example 11: The system of Fig. 16(a) is made of three
components: a power-manageable server with deterministic
service time and a single sleep state (PM_server), an infi-
nite FIFO queue (Inf_queue), a nondeterministic source
of service requests (Client), and a timeout-based PM
(DPM). Assume that for given values of all model parameters
(interarrival time of service requests, service time, wake-up
time, etc.) we want to evaluate the effect of the timeout
value to the power–performance tradeoff. This can be done
from the top-level view of the system by setting the value of

, launching the simulation and monitoring the
values of and plotted on the Scope.

Although the GUI is user-friendly and effective, it does
not enable automation of parametric exploration and itera-
tive optimization. To support automatic design-space explo-
ration/optimization, input and output ports have to be added
to the top-level schematic in order to make independent pa-
rameters and design metrics accessible through an external
interface. This is shown in Fig. 16(b) for the system of Ex-
ample 11. Once the external interface has been created, it

1328 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 17. Comparison of four different residual-time distributions with the same average value.
(a) Probability density functions. (b) Probability distributions.

can be used to automatically invoke the evaluation of func-
tion from the inner loop of an exploration/op-
timization procedure, hereafter called exploration procedure
for brevity.

The exploration procedure can be implemented ei-
ther as an extra Simulink component (called Explo-
ration_Controller), or as a Matlab function. The
Exploration_Controller communicates with
the system under exploration at run time, by means of
input/output ports that complement those of the system:
an output port for setting each independent parameter, an
input port for capturing each metric of interest. The Matlab
function, on the contrary, assigns values to the independent
parameters, invokes a simulation run by means of the
command, and gets back from the simulator time-stamped
traces of design metrics.

The key difference between exploration procedures imple-
mented by Simulink modules and by Matlab functions is that
Simulink modules may perform online tuning, while Matlab
functions may only invoke batch simulation runs.

V. APPLICATIONS

We present now the application of the theoretical analysis
and of the simulator to practical real cases of power managed
systems. We begin with a simple example, involving the com-
putation of an optimum timeout, to exemplify the application
of the exploration and optimization techniques. We continue
with three other complex examples to stress the significance
and novelty of the proposed technique.

A. System Shutdown

We consider in this section the client–server system of
Fig. 16. The server has four internal states: , ,

, and . The power consumption is one in all
states but , where it is negligible. Transitions to the

state are triggered by an external event issued by
the DPM when the system is . While shutdown tran-
sitions are instantaneous, wake-up transitions take three time

units. The service time of the server, when active, is always
0.5.

The infinite FIFO queue between the client and the server
has the main purpose of monitoring the waiting time of
the incoming requests. The metric provided by the
Inf_queue component is nothing but the average waiting
time.

Service requests are issued by a nonblocking client with
a given distribution of interarrival times. In particular, we
consider four different distributions with the same average
interarrival time of two time units: exponential, bimodal,
ramp1 (whose probability density grows linearly between
zero and three time units and is null for larger times) and
ramp2 (whose probability density grows linearly between 1
and 2.5 time units and is null outside that range). The four
probability density and distribution functions are shown in
Fig. 17.

We compare the power–performance tradeoff achieved by
two DPMs:

• a timeout-based DPM that issues commands as soon
as the system has been waiting for a given amount of
time;

• a randomized DPM that issues nondeterministic
commands whenever the system enters the
state.

We study the effectiveness of both DPM strategies
by performing parametric sweeps on the timeout value

and on the probability of issuing a com-
mand .

Simulation results for the exponential source are plotted
in Fig. 18(a). If the system is always active (i.e., for

or), the average service time
is 0.5 and the average power consumption is one. For larger
values of the shutdown probability (or for lower timeout
values), the average power reduces at the cost of an increased
waiting time. Interestingly, the Pareto curves provided by
the two DPMs are almost coincident, meaning that the same
tradeoffs can be achieved by both techniques.

Simulation results obtained for the bimodal input distri-
bution, plotted in Fig. 18(b), are more interesting. Since the

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1329

Fig. 18. Power performance tradeoff obtained for the system discussed in Section V-A by means
of dynamic PMs based either on a timeout or on a randomized decision. The four plots refer to
the residual-time distributions of service requests shown in Fig. 17. (a) Exponential. (b) Bimodal.
(c) ramp1. (d) ramp2.

longest interarrival time between service requests is three,
and the service time is 0.5, the longest idleness period is
2.5. If the timeout is greater than 2.5, the system never goes
to . For timeout values lower than 2.5 and greater
than 0.5, the system goes to sleep only when the interarrival
time is three. Finally, for timeout values lower than 0.5, the
system goes to sleep after each service. The power–perfor-
mance tradeoffs achieved by changing the timeout value
are represented in Fig. 18(b) by means of three disjoint
curves: a horizontal segment for , a
diagonal segment for , a point for

.
All timeout values between 0 and 0.5 give rise to the same

average waiting time, since the number of time-consuming
wake-up transitions is always the same. On the other hand,
the actual timeout value affects power consumption, since the
longer the timeout, the larger the amount of energy wasted
while waiting for the timeout to elapse.

Similar considerations hold for timeout values ranging
from 0.5 to 2.5, but in this range the actual timeout has also
a weak effect on performance. This is due to the cumulative
service time of multiple enqueued requests that need to be
serviced when the system wakes up. Whenever the cumula-
tive service time is longer than 0.5 time units, the residual
idle period corresponding to a interarrival time of three time
units is shorter than 2.5. If the timeout value is longer than
the actual idle period, the system does not go to ,
with a negative impact on power consumption and a positive
impact on performance.

We remark that the left-most point of the segment ob-
tained for represents a better

solution (both in terms of power and in terms of waiting
time) than any point in the horizontal segment obtained for

. Hence, the horizontal segment is not
on the Pareto curve. In particular, it is worth noting that the
greedy policy corresponding to a null timeout does not pro-
vide an optimum tradeoff.

The tradeoff curve achieved by varying the shutdown
probability of a randomized DPM is also plotted in
Fig. 18(b). Notice that it is a continuous curve and that it
intersects the Pareto curve of the timeout-based shutdown.
This means that the choice of the best DPM strategy depends
on design constraints and on workload statistics.

Finally, the tradeoff points achieved with ramp-shaped
probability density functions are reported in Fig. 18(c) and
18(d). We remark that they are substantially different from
those obtained with exponential and bimodal distributions,
and that timeout-based and nondeterministic DPM policies
do not provide the same trade off. In particular, both for
ramp1 and for ramp2, nondeterministic shutdown performs
better than deterministic timeout.

The four clients with different interarrival time distri-
butions were implemented starting from the template of a
single-state GSMP, changing only the residual-time distribu-
tion. The sizable impact of the residual-time distributions on
the power–performance tradeoffs shown in Fig. 18 motivates
the need for the flexibility offered by GSMPs.

B. Multitasking Real-Time System

The simple server model of Section V-A hides all imple-
mentation details to retain only the service time. In most
cases, the service is provided by a stack of software layers

1330 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 19. Schematic representation of the multitasking computing system described in Section V-B,
running two decoding processes.

running on top of a microprocessor platform. If the service
time is modeled as a unique parameter, the model does not
allow us to distinguish between single contributions to the
global performance. Similarly, representing the workload of
a system as a simple client that issues service requests with
a given distribution is not always the best way for modeling
a realistic workload.

In this section, we propose an advanced model of a
multitasking computer system running concurrent real-time
processes, namely, JPEG decoding tasks. The decoder is
a software application executing on a computer system.
The hardware platform and the operating system running
on top of it are modeled as a unique low-level server that
provides computational resources to the software processes,
modeled as independent clients. Each process has its own
input stream, generated by a producer, and output stream,
used by a consumer. In practice, producer and consumer
are clients of the software decoder, which in its turn has
to request CPU time to the low-level (shared) server to
accomplish its task. The service time depends on the in-
teraction between the software application that implements
the decoding task and the low-level platform that provides
computational power. The application sets the amount of
computation required to accomplish the task; the server sets
the computation rate (i.e., the amount of computation per
time unit) granted to the application. In particular, the com-
putation rate viewed by each application varies over time
depending on the number of concurrent tasks in the system.
Assuming that the low-level server models a uniprocessor
system working in multitasking, the computation rate pro-

vided to a single task is one, while the computation rate per
task reduces to if there are concurrent tasks
in the system. Coefficient 0.9 accounts for a 10% overhead
due to scheduling and context switch.

The distribution of the requests issued by producer and
consumer imposes real-time constraints to each task. Input
and output buffers are inserted between producer, decoder,
and consumer to decouple real-time constraints from service
time.

Fig. 19 shows the overall computing system with two de-
coding processes. Each process has its own producer and
consumer and its own input and output buffers. Processes
take input frames from their input buffers, request CPU time
to the computation engine, perform a decoding task, release
the CPU, and put the decoded frame into the output buffer.
Local (i.e., distributed) and global (i.e., centralized) dynamic
PMs (DPM) are also represented in Fig. 19. Local DPMs look
at the state of the input/output buffers of a given process and
possibly suspend its execution. The unique global DPM ob-
serves the state of the server and the number of frames in the
output buffers of all active processes to decide when to shut
down the server. For the sake of simplicity, only a few signals
are represented in Fig. 19 while the details are outlined and
discussed in the rest of this section.

The state structure of the low-level server is shown in
Fig. 20(a). When active, the system may be or

. Transitions from to are triggered by a
CPU request input event issued by a software process.
Transitions from to are triggered by any CPU
release input event received when there is a unique

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1331

(a)

(b)

Fig. 20. State structures of: (a) a server representing a multiprogrammed computing system and (b)
a software process acting as a client for the computing system it runs on.

task in the system. Since the server may serve multiple con-
current processes at the cost of decreasing the performance
perceived by each process, the GSMP model of the server
has a discrete set of busy states. We model the entire set as a
unique state parameterized by the number of tasks in
the system , which is the runtime difference between the
number of and events received.

The server supports dynamic shutdown to a sleep state
with negligible power consumption. Transitions to the sleep
state take negligible time (i.e., they are modeled as instan-
taneous direct transitions) while wake-up transitions take fi-
nite amounts of time and energy, modeled by a
state. Shutdown and wake-up are triggered by input events
SD and WU, issued by an external PM. There is a single in-
ternal event, active only in state , that triggers the
actual wake-up of the server. Notice that in our model the
server can be shut down even if it is busy. In this case, the ex-
ecution of all current tasks is suspended until next wake-up

by setting performance to zero. Moreover, the system does
not wake up until a WU event is received from the DPM.
This means that several CPU requests may be received while
in or states. In order to keep track of the
number of tasks to be serviced, and states
need to be parameterized using the same parameter used
for the state.

The state is the only state providing a nonnull per-
formance. As for power consumption, we assigned power 0
to state , 1 to states and , and 0.5 to
state .

The model of each software process [shown in Fig. 20(b)]
has an inactive state and three functional states:
waiting for inputs , waiting for outputs

, and decoding . The process is
allowed to start decoding a new frame if and only if the input
buffer is not empty and the output buffer is not full. Other-
wise, it has to wait for these conditions to be satisfied. The

1332 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 21. Loss rate (i.e., probability of violating real-time constraints) for the example discussed in
Section V-B as a function of buffer length. (a) Service time 0.5. (b) Service time 1.

CPU is requested/released whenever the process enters/exits
the decoding state.

While a decoding task is initiated by external events (no-
tifications of state changes of input/output buffers) its ter-
mination is triggered by an internal event representing the
end of a service. However, the service time distribution de-
pends on the runtime performance provided by the low-level
server. Modeling this dependence requires the decoding state
to be parameterized and a parametric event to be sent from
the server to all clients to notify performance changes. It is
also worth noting that the parameter is not discretized, since
the decoding process does not know in advance the set of pos-
sible performance levels provided by the server. Hence, the
decoder has a continuous-state model and the state
represents a continuous state set.

Finally, the decoder model has a state possibly
managed by an external PM by means of and

commands (events). When in , the decoder
releases the CPU.

We used our simulation environment to explore the effects
of design choices, workload conditions, and DPM policies on
the power–performance tradeoff.

1) Real-Time Constraints: We performed a first set of
simulations to evaluate the minimum buffer size needed to
meet input–output real-time constraints under uncertainty.
We used a single decoding process with a periodic consumer,
taking decoded frames from the output buffer every time
unit, and a nondeterministic producer, with arrival times uni-
formly distributed between and . In practice,
represents the degree of nondeterminism. The situation of a
periodic consumer with a nondeterministic producer is typ-
ical of streaming media applications.

Fig. 21 plots the loss rate (i.e., the probability
of loosing a frame because of real-time violations) as a
function of buffer length for different degrees of nondeter-
minism. The same buffer length is used in input and output,
so that frame loss may be caused either by a new frame

produced when the input buffer is full, or by a decoded
frame requested when the output buffer is empty. The
plots in Fig. 21(a) and 21(b) refer to two different values
of the performance of the decoder, providing service time
0.5 and 1, respectively. As expected, the loss probability
decreases for larger buffers and increases with higher
degrees of nondeterminism. Interestingly, reducing the
performance of the decoder has a beneficial effect in terms
of quality of service: for the same buffer length and input
uncertainty, the loss probability is lower. This is because
the longer service time contributes in decoupling output
real-time constraints from input arrival times, increasing
the effective buffer size. In fact, since the frame under
process does not occupy any buffer, the longer its decoding
time, the larger the average space left on the input and
output buffers.

As a final remark, notice that loss rate is null regardless of
the size of the buffer if the producer is deterministic.

2) Using Buffers for DPM: While the beneficial effects
of buffers on real-time constraints are well known and in-
tuitive, their impact on the power–performance tradeoff is
worth a deeper discussion. In fact, large buffers offer degrees
of freedom that can be fruitfully exploited for DPM purposes.

We first compute the baseline energy consumption of the
system without DPM under the simple workload condition
introduced in previous section: a single process decoding a
frame in 0.5 time units, with a consumer requesting a de-
coded frame every time unit and a deterministic producer
providing encoded frames at the same rate (i.e., with).
Since half of each time unit is spent to decode a frame and the
other half to wait for the next one, the energy per time unit
(i.e., per frame) is

. The effectiveness of any DPM strategy has to be eval-
uated with respect to this baseline.

Before introducing buffer-based DPM policies, we show
for comparison the effect of a timeout-based shutdown.
In our model the decoding task is never paused, while the

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1333

Fig. 22. Energy consumption (i.e., cost) as a function of the
timeout used to shut down the CPU in the example in Section V-B.
The dark line refers to a periodic workload; the light one refers to a
nondeterministic workload with the same average arrival time.

DPM of the low-level server implements the timeout policy
that issues an SD command whenever the server has been
waiting for a given amount of time and a WU command
whenever a new request is received. The bold line in Fig. 22
shows the energy consumption obtained for different timeout
values by simulating the system for 1000 time units with a
wake-up time of three time units. When the timeout exceeds
the waiting time (0.5) the system never goes to sleep and
its energy consumption is . When the
timeout is lower than 0.5, the server is periodically shut
down. However, the idle time is shorter than the break-even
time required to compensate wake-up cost, so that DPM
is counterproductive. Moreover, the longer the timeout,
the larger the wasted idle time and the higher the energy
consumption. As for quality of service, buffers of length 2
are needed to avoid frame loss during wake-up.

Results obtained with nondeterministic arrival times uni-
formly distributed in [0.9, 1.1] are also shown in Fig. 22. In
practice, nondeterminism has a smoothing effect on the en-
ergy versus timeout curve.

Since transitions to the sleep state are the only mechanism
provided by the server to save power, Fig. 22 tells us that our
workload conditions do not allow DPM, unless new degrees
of freedom are introduced and exploited. Such additional de-
grees of freedom can be obtained by using input and output
buffers exceeding the minimum size required to reach a given
quality of service under real-time constraints (in particular,
no buffers are required to meet real-time constraints in case
of deterministic workload, as discussed in the last section).

Denoted by (the length of the buffers) and by
(the number of frames in a buffer), we define two thresholds
(namely, and with) to be
used for DPM: the server is shut down whenever there are
at least decoded frames in the output buffer and
empty slots in the input buffer, while it is awakened whenever
there are either less than decoded frames in the output
buffer of less than empty slots in the input buffer.

Notice that in our system, this policy can be implemented
either by a global DPM that controls the server or by a local
DPM that controls the process. The results provided in this
section refer to a server-level (global) implementation. The
DPM issues SD and WU commands for the server based
on the observation of the I/O buffers of the process. When
in sleep state, the server provides no performance, so that
the process suspends execution without changing its state.
Process-level (local) DPM policies will be discussed in the
next section.

Consider, for instance, input and output buffers of size
with thresholds and . If

the consumer starts using the first frame as soon as it is de-
coded, the number of decoded frames in the output buffer
never reaches the threshold that would trigger a server
shutdown. In fact, under our assumptions, each frame is de-
coded and consumed before the next one is produced. In the
case of a deterministic producer and consumer working at the
same rate, the effectiveness of buffer-based DPM depends
on the latency of the consumer, i.e., on the relative delay be-
tween production and consumption. For our example, this is
shown in Fig. 23(a). If the latency is lower than , the
DPM never issues SD commands because of the insufficient
number of frames in the output buffer. As the latency of the
consumer exceeds time units, more than frames
are produced, decoded, and stored in the output buffer be-
fore starting consuming them. Hence, at some point there
are frames in the output buffer and no frames in the
input buffer, thus causing the DPM to issue an SD com-
mand. While the server is sleeping, the decoder does not
work and encoded frames accumulate in the input buffer until
the number of empty slots falls below . At this point, a
WU command is issued or otherwise incoming frames will
be lost. Input buffer saturation imposes an upper bound to
the consumer latency required to enable DPM:

.
When the latency is in the range compatible with DPM, the

system enters a cyclic behavior whose periodicity depends on
the distance between and . The larger the differ-
ence , the larger the number of frames in the
output buffer ready to be used by the consumer and the slots
in the input buffer available to store the frames provided by
the producer while the server is sleeping. Since energy sav-
ings are proportional to the sleep time of the server, the larger

, the lower the energy.
The effect of the distance between SD and WU triggering

conditions is shown in Fig. 23(b). Total energy is shown as a
function of for two different values of (namely,
25 and 28). The effectiveness of DPM decreases as gets
closer to . In particular, for and

, the energy consumption exceeds the baseline value of
750. This is because the sleep time is lower than the break-
even time of the server.

3) DPM With Multiple Processes: So far, we have con-
sidered a system running a single decoding process. In
this section, we deal with multitasking. Although we could
specify and simulate a large number of concurrent processes
with nondeterministic workloads, for the sake of simplicity

1334 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 23. Energy consumption (i.e., cost) of the system discussed in Section V-B with centralized
buffer-based DMP and a single periodic workload. (a) Dependency on the latency of the consumer.
(b) Effect of the upper and lower buffer thresholds used by DPM.

we discuss only a simple example consisting of two identical
processes with deterministic workloads working at the same
frame rate. Moreover, we assume that encoded frames can
be directly taken from memory, so that the producer does
not need to be modeled.

We implemented and simulated two DPM strategies.

1) Centralized buffer-based DPM: the DPM of the server
looks at the output buffers of the two tasks. A SD com-
mand is issued if and only if there are more than
decoded frames in each output buffer. A WU command
is issued whenever the number of decoded frames in
either of the output buffers falls below . Local
DPMs are not used.

2) Distributed buffer-based DPM with centralized
timeout: the centralized DPM implements a timeout
that issues SD commands for the server when it has
been waiting for a given amount of time, and WU com-
mands when a new request is received from a process.
Local DPMs implement a buffer-based policy looking
only at the output buffer: each process is paused when
the number of decoded frames in its output buffer
exceeds , while execution is resumed when there
are no more than decoded frames left. Since
each process releases the CPU when in , the
low-level DPM may take advantage of process-level
DPM.

Typical execution traces are shown in Fig. 24 for the two
DPM policies (simply called distributed and centralized)
working under the same operating conditions: frame rate 1,
service time 0.5, , . The timeout of
the server is zero, while the latencies of the consumers of
the two processes are 80 and 95 time units. In the following,
we will use the term latency skew to denote the difference
between the starting time of the consumers of different
processes. Although the two DPM policies are very similar,
they give rise to fairly different traces.

Let us first look at the trace obtained with distributed
DPM. At the beginning, both processes start decoding while
their consumers are inactive. Since the two processes work
concurrently, the performance perceived by each of them
is . Decoded frames accumulate in the output
buffers until is reached. At this point, both processes
are suspended by their local DPM, the server is released,
and the low-level DPM issues an SD command that puts the
server to . Then nothing happens until the first con-
sumer starts taking decoded frames from the output buffer,
causing the number of frames in it (bold curve in the bottom
graph) to reduce to . At this point, the local DPM
resumes computation, the process sends a CPU request, the
low-level DPM issues a WU command and the server goes
to the state, where it stays for three time units.
While waking up, the server provides no performance, so
that all frames in the output buffer are consumed before
starting decoding new frames. When the server goes active,
its performance is one, since there is a single task in the
system. The peak performance of the server is exploited
to decode frames at a rate much higher than that of the
consumer, causing the output buffer to reach in only
18 time units.

The second process has a similar behavior, but the latency
skew of 15 cycles completely decouples their activities, so
that they never compete for computational resources. This
can be seen on the top graph, which shows that the effective
performance provided by the server while active is always
one, meaning that there is a single process at the time in the
system.

The effect of centralized DPM is completely different,
since it tends to realign the two processes. In this case, in
fact, the two processes are never paused, so that they never
release computational resources. When the server goes to
sleep the software processes suspend their execution just
because the effective performance provided by the server

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1335

Fig. 24. Execution traces obtained by simulating the multitasking system in Section V-B3
with distributed and centralized buffer-based DPM strategies. For each case, three plots are
reported: instantaneous performance provided by the server to each active task, state of the server
(0 = Waiting, 1 = Busy, 2 = Sleep, 3 = WakingUp), and state of the output buffers of the two
decoding processes.

is null. However, when the server is awakened because of
the threshold reached by the first process, both pro-
cesses are still in the system and resume computation (with
performance 0.45) until both output buffers reach the
threshold. There are two main differences with respect to the
previous case: 1) the two processes work together regardless
of the initial skew, so that the effective computation rate is
always 0.45 and 2) the number of frames in the output buffer
of the second process may be much higher than (even
if the overshoots tend to disappear because of the wake-up
time of the server, that makes the falling edges longer than
the rising ones).

The energy savings provided by the two DPM strategies
are discussed referring to Fig. 25, which reports the energy
consumption per frame (and the frame loss probability) as a
function of the latency skew between the consumers of the
two processes. The skew is zero when the two processes are
synchronized. In order to show on the same graph results
obtained with different frame rates, latency skew values are
normalized to the periodicity of the corresponding execution
traces. Results are reported for centralized DPM, and for dis-
tributed DPM associated with low-level timeout of zero and
ten time units.

First of all, we remark that the energy efficiency of cen-
tralized DPM does not depend significantly on the latency
skew, nor on the frame rate. The independence from latency
skew is due to the nature of centralized DPM, which tends
to realign the two processes (as observed in Fig. 24), while
the low dependence on frame rate demonstrates the effec-
tiveness of centralized DPM. Without DPM, the energy per

frame would be 0.725, 0.9125, and 2.9125 at 0.8, 0.5, and
0.1 frames per time unit, respectively. Notice that all simu-
lations were performed assuming a service time of 0.5 time
units and a power consumption of one when busy. Hence,
the energy per frame cannot be lower than 0.5. The reason
why the energy per frame obtained with centralized DPM is
always above 0.55 is twofold: 1) waking up the server has a
nonnegligible cost and 2) with centralized DPM, the two pro-
cesses work simultaneously at a cost of a 10% performance
penalty (due to context switch) that results in a 10% energy
overhead. We also remark that the energy per frame for at a
rate of 0.8 frames per time unit is 0.725, that is lower than
the baseline of 0.75 computed in Section V-B2. This is due
to multitasking, which reduces the energy overhead paid by
the server while waiting for a new task.

As for quality of service, the loss probability is always null
for frame rates of 0.1, while it is up to 0.016 for higher frame
rates. In general, the loss probability depends on the differ-
ence between the time required to wake up the server and the
time required to consume the frames available on the
output buffer. The shorter the wake-up time and the higher

, the lower the loss probability. For centralized DPM,
the rising and falling ramps observed for frame rates 0.5 and
0.8, are due to transient effects that occur only before the la-
tency skew has been completely compensated by the DPM.

When the consumers of the two processes are aligned
(latency skew 0), the centralized DPM is equivalent to the
distributed DPM with timeout 0. In fact, the curves on the
second graph of Fig. 25 start from the same values observed
on the first graph. The energy efficiency changes, however,

1336 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 25. Energy efficiency and loss probability plotted as functions of the latency skew between the
consumers of two concurrent decoding processes. Plots have been obtained by simulating the effects
of the DPM strategies described in Section V-B3: a centralized DPM, a distributed DPM without
timeout, and a distributed DPM with a centralized timeout.

for latency skews greater than zero. This is because of the
twofold effect of misalignment that can be seen in Fig. 24:
when the two processes have disjoint computational needs,
the performance provided to each task increases from 0.45 to
1, and the number of shutdown/wake-up transitions doubles.
While the performance increase improves energy efficiency
by reducing the effective CPU time per frame, the larger
number of state transitions impairs energy efficiency because
of the wake-up energy. In our case study, the beneficial effect
of increased performance dominates, so that the energy per
frame provided by the distributed DPM with zero timeout is
lower than that provided by centralized DPM.

Finally, the third graph shows the effect of a low-level
timeout greater than zero used together with distributed
DPM. In all our cases, the timeout impairs energy efficiency
by wasting idle time. However, the effect strongly depends
on the rate of the consumer: the lower the frame rate, the
higher the cost of each frame. This counterintuitive result
can be explained by thinking that the best energy efficiency
(i.e., 0.5) would be obtained by a system keeping the CPU
always busy. If the consumer works at high frame rates,
a large number of frames are consumed during decoding,
making it hard for the output buffer to reach the
level that triggers a server shut down. Hence, the number
of frames decoded before going to sleep is higher at higher
frame rates. Since each shutdown/wake-up cycle has a cost
in terms of both wasted idle time (i.e., timeout) and wake-up
energy, if this cost is distributed over a larger number of
frames, the energy overhead per frame is lower.

For both distributed DPM policies, the loss probability is
nonnull only at the highest frame rate and it has a noisy de-
pendence on the latency skew.

From the above discussion, the best results seem to be pro-
vided by distributed DPM without low-level timeout. We re-
mark, however, that the validity of this conclusion depends
on system parameters. Systems with larger I/O buffers would
have no quality loss, while systems with larger scheduling
overheads or lower wake-up costs would take greater advan-
tage of the decoupling provided by distributed DPM.

C. Sensor Networks

Sensor networks have been introduced in Section II-C2
as examples of systems composed of a large number of in-
teracting power-manageable components. In general, each
sensing node is a reactive component that reacts to a sensed
event by performing some local processing and/or by noti-
fying the event to a base station. Hence, it has at least two
operating modes: passive (i.e., sensing) and active (i.e., pro-
cessing/storing/transmitting).

Although complex power-manageable sensors may be
conceived, in this section we consider a network composed
of simple sensing elements that may only decide whether
or not to react to an event based on the current state of their
batteries. Moreover, we consider that the power consump-
tion in passive mode is negligible, while event processing
and notification have a fixed cost in terms of energy. We
present and discuss simulation results showing how the
energy efficiency of the network depends on local runtime
decisions and on the global organization.

We consider a network of sensors distributed on a grid over
a region of size . For the sake of simplicity, we assume
that each sensor covers a square zone of size and we
denote by the linear distance between contiguous sensing
nodes and by the number of sensing nodes (i.e., the size

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1337

of the network). If the sensing zones of the sensors
do not overlap and the network has the minimum number of
nodes needed to guarantee complete coverage of the target
region: . If , the sensing zones do overlap
and events occurring in overlapping regions may be sensed
by more than one sensing node. If , on the contrary,
sensing zones are not contiguous and the target region is only
partially covered by the sensor network. The ratio between
the sum of the areas of the sensing zones of all sensing el-
ements and the area of the target region provides a measure
of the average coverage provided by the network, defined as
the average number of sensors that cover each target point

AreaCoverage

If we take into account the energy budget of each
sensing element and the energy spent for each detection

, under the assumption of negligible power consumption
in sensing mode, we obtain the detection capacity of each
sensor, that is, the number of events it can sense before
running out of power

The product between area coverage and detection capacity
provides a measure of the maximum number of events occur-
ring on the same point that can be properly detected

LocalEventCoverage (5)

Notice, however, that the detection of an event occurring at
a given point impairs the detection capacity on all points cov-
ered by the same sensors. In particular, the average number
of detectable events per area unit is given by:

AverageEventCoverage (6)

According to (6), the average event coverage may be im-
proved in three equivalent ways: 1) by reducing the space be-
tween sensors ; 2) by increasing the energy budget of each
element ; and 3) by improving energy efficiency (i.e., by
reducing). The size of the field of view of each sensor

does not affect the average event coverage, but it does
affect the maximum local event coverage.

The actual exploitation of the detection potential ex-
pressed by (5) and (6) depends both on the network
organization and on the event distribution. In the following,
we analyze the energy efficiency of four different imple-
mentations with the same global energy budget.

1) Static priority (, ,): a sensor
network with , , and fixed
lexicographic priorities used to decide which sensor
has to take care of events occurring in points covered
more than once [Fig. 26(b)].

2) Dynamic priority (, ,): a sensor
network with , , and dy-
namic priorities based on residual energy: among the
sensing elements that may sense a given event, the one
that actually takes care of detection is the one with
the higher level of residual energy. Fixed priorities are
used only to decide among sensors with the same en-
ergy left [Fig. 26(b)].

3) Nonoverlapping (, ,): a sensor
network with and [Fig. 26(c)].

4) Nonoverlapping (, ,): a sensor
network with and [Fig. 26(e)].

The local event coverage provided by each network is rep-
resented in Fig. 26. White regions have a local event coverage
of 10, light shaded regions of 20, dark shaded regions of 40.

Priorities among overlapping sensors are handled by
means of a simple mechanism based on timeouts and local
notifications: each sensor reacts to a sensed event by setting
a timeout that is inversely proportional to its priority. If a
service notification arrives while waiting for the timeout,
the sensor resets its timeout and goes back to the sensing
mode waiting for other events. If the timeout elapses without
incoming notifications from other sensors, it sends a service
notification to its neighbors and starts processing the event.

Static priorities are implemented by assigning static time-
outs to each sensor, growing from the upper left to the bottom
right corner of the grid. Dynamic, energy-aware priorities are
implemented by means of an additional delay proportional
to the number of events already processed by the sensor. In-
stances of the sensor model are specialized by means of input
parameters specifying its position , the size of its field
of view , the energy budget , and the static delay .

The workload of the network is modeled by a GSMP
component that generates intrusion events with a given
spatial and temporal distribution. Generation of an intrusion
event consists of: 1) generating a pair to be assigned to
two output signals and 2) issuing an output triggering event
(intrusion). Spatial coordinates and triggering events
are provided to all sensors. When the triggering event is
received, each sensor samples the input signals repre-
senting the point of intrusion and it evaluates whether it falls
within its field of view. If this is not the case, it does nothing;
otherwise, it enters the timeout state possibly leading to
event processing. In practice, intrusions are modeled as
parametric events distributed to all sensing elements, while
locality checks are demanded to each element.

We modeled the four sensor networks described above and
we performed a first set of simulations using random intru-
sion events with constant rate and uniform spatial distribu-
tion. Then we compared the event coverage provided by the
networks in terms of three quality metrics computed on a ref-
erence region.

1338 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 26. Event coverage provided by different sensor networks with the same energy budget.
(a) Event coverage of a generic network with partially overlapping fields of view. (b) Event coverage
of sensor networks 1 and 2 of Section V-C. (c) and (d) Event coverage of the sensor networks 3 and
4 of Section V-C with nonoverlapping fields of view. (e) Symbolic representation of a sequence
of intrusions and detections.

Table 1
Sample Average and Standard Deviation of the Quality Metrics
Defined in Section V-C, Evaluated for Four Different Sensor
Networks With the Same Energy Budget

• First missed intrusion , that is, the first intru-
sion that cannot be detected, since none of the sensors
covering the intrusion point have sufficient residual en-
ergy.

• Last detected intrusion , that is, the last intru-
sion occurring in the reference region before all sensors
covering that region finish their energy budget.

• Total number of detected intrusions , that is, the
total number of intrusions detected in the reference
zone before all sensors covering that zone finish their
energy budget.

Fig. 26(a) shows a symbolic representation of a sequence
of enumerated intrusions and detections. Intrusions are rep-
resented by vertical arrows, while detections are represented
by capital D. The quality metrics computed on the trace of
Fig. 26(a) are , , and .
On small regions covered by a single sensor, and
always take the same value, while is always equal to

. On larger regions covered by multiple (possibly
overlapping) sensors, all quality metrics are significant. For
our experiments we used a reference region of size 4, shown
in Fig. 26(b), (c), and (d) by means of a dashed box, repre-
sentative of the coverage guaranteed by the inner elements of
the network.

Each simulation was repeated 100 times in order to
compute sample average and standard deviation of the three
quality metrics. Results are reported in Table 1. Networks 2
(i.e., dynamic priority with , ,) and
4 (i.e., nonoverlapping with and energy budget

) are more reliable, since they detect the higher
number of intrusions before the first miss.

The performance of the four sensor networks was also
tested against deterministic intrusion patterns, representative
of possible malicious attacks occurring on the reference 2

2 region. The intrusion patterns are schematically repre-
sented in Fig. 27(a).

• Pattern A: a sequence of intrusions occurring in the
same point.

• Pattern B: a sequence of interleaved intrusions itera-
tively occurring on the four quadrants.

• Pattern C: four series of intrusions occurring on each
quadrant in sequence.

• Pattern D: a series of intrusions alternatively occurring
on the first and fourth quadrants.

• Pattern E: a series of intrusions alternatively occurring
on the second and fourth quadrants.

• Pattern F: a series of intrusions distributed along a di-
agonal line entering the square region from the upper
left corner.

• Pattern G: a series of intrusions distributed along a di-
agonal line entering the square region from lower right
corner.

• Pattern H: a series of intrusions distributed along a ver-
tical (or horizontal) line across the square region.

Intrusion patterns F, G, and H are larger than the reference
region, since the effective event coverage on the region of
interest may be affected by the detection of intrusions occur-
ring outside of it. In particular, this is the case whenever the
fields of view of some sensors cross the boundaries of the
reference region, as in networks 1 and 2.

All combinations of sensor networks and intrusion pat-
terns were simulated to evaluate two metrics: the number
of intrusions in the reference region detected without errors
(i.e.,) and the area of the reference region left un-
covered after the first intrusions. Comparative re-
sults are reported in the bar graphs of Fig. 27(b) and 27(c).
The superior quality of network 2, with overlapping fields of
view and energy-driven priorities, is apparent: it always pro-
vides the largest event coverage, while leaving a small area
uncovered at the end of the experiment. Notice that for pat-
terns B, D, and E, network 1 leaves an uncovered area smaller
than network 2. However, this is due to the lower number
of intrusions detected by network 1. In fact, each simulation

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1339

Fig. 27. (a) Deterministic patterns of intrusions and their effects on the four sensor networks of
Section V-C, represented in terms of: (b) number of intrusions detected without errors N � 1 and
(c) area of the region left uncovered after the first N � 1 detections.

was stopped after the first missed intrusion and the uncov-
ered area evaluated at that point.

D. The Intel Xscale Processor

Both the supply voltage and the speed of the Intel Xs-
cale processor core can be dynamically adjusted within
given implementation-specific ranges. Hence, when active,
the processor may operate at different power–performance
levels, associated with a continuous set of states in the GSMP
model. The supply voltage provided to the core determines
the upper bound for the corresponding clock frequency.
The best power–performance tradeoff is achieved when the
processor operates at the lowest supply voltage compatible
with the target performance. However, voltage scaling and
clock adjustment take a finite amount of time and cannot be
performed simultaneously. This makes DPM decisions non-
trivial and motivates the existence of suboptimal operating
states, characterized by a supply voltage higher than the
minimum value required to sustain the operating frequency.

We refer to a prototype implementation of the Xscale
processor [25] with supply voltage ranging from 0.70 to
1.65 V, and clock frequency ranging from 50 to 800 MHz.
The maximum power consumption is 900 mW. Frequency
adjustment takes a fixed amount of time (around 30 s) to
relock the clock and requires the processor to suspend exe-
cution. Voltage scaling, on the contrary, can be performed
during execution and takes a variable amount of time, de-
termined by the maximum slew rate of the supply voltage
(around 4 mV s).

We denote by the maximum frequency sustained
by supply voltage , and by the minimum supply
voltage required to sustain clock frequency . During clock
adjustment, the supply voltage has to be high enough to
sustain the higher clock frequency. Suppose, for instance,
that the microprocessor core has to switch from ,

to , . If the target frequency
is lower than the original one , then frequency ad-

justment has to be performed before voltage scaling. On the
contrary, if the target frequency is greater than the orig-
inal frequency , then voltage scaling has to be performed

first to sustain frequency adjustment. In both cases, no per-
formance is provided during frequency adjustment, while
during voltage scaling the processor core operates at

.
1) GSMP Model: We model the active states of the

Xscale processor by means of four parameterized states
(, , , and), as depicted in
Fig. 28. Transitions between and states are
triggered by incoming CPU requests and releases (corre-
sponding to external events and). Transitions to the
two tuning states are triggered by a unique parameterized
external event tune representing DPM commands. Pa-
rameters associated with the DPM command are the target
supply voltage and clock frequency , that
are sampled by the Xscale model when the tune event is
received. Since the effect of the DPM command depends
on the current values of and , they are used to
condition state transitions and tuning times (computed by
the function before entering the tuning state

). Finally, transitions from the tuning states to
and are triggered by the internal event ,

whose residual time depends on the actual tuning time.
All the states depicted in Fig. 28 are parameterized

in terms of supply voltage (defined in the range
[0.7, 1.65]) and clock frequency (defined in the range

MHz). In addition, parameter is used
to represent the number of tasks simultaneously processed
by the CPU. For systems with a single blocking client,
parameter is never greater than one.

The performance provided by the CPU is determined
based on the current state, on the clock frequency, and on
the number of tasks in the CPU. In particular, the effective
clock frequency perceived by each task is recomputed upon
state changes by the function as Perf
for , and Perf for . The power con-
sumption is scaled by and , assuming a maximum
power consumption of 0.9 W.

In this example, we decided not to use the inactive states
of the Xscale processor, in order to focus only on voltage
scaling and frequency adjustment. Accordingly, inactive
states are not shown in Fig. 28 for the sake simplicity.

1340 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 28. State structure of the GSMP model of the active mode of the Xscale processor.

Fig. 29. Top-level schematic of a HW/SW system based on the Xscale processor.

2) Workload: The Xscale processor is used as the core
of a simple HW/SW system that executes tasks requested
by a single blocking client. Referring to Fig. 29, the client
(Job_source) issues service requests for the softwareAp-
plication that runs on top of the Xscale processor. The
application serves a request at the time, by requesting and re-
leasing CPU resources by means of and events.

Service requests are associated with two parameters: the
computational required to serve the request, and the

imposed to the service time. Service requests are
generated by the Job_source module in three steps. First,
the is generated as a random variable uniformly
distributed in . Second, a reference clock

frequency is randomly selected from the set of possible
frequencies of the processor core. The reference frequency
is used to obtain a feasible computational effort by mul-
tiplying the reference frequency by the given deadline:

. Finally, the Request event is
generated according to a given residual-time distribution.
The Job_source is a blocking client: no new requests are
generated until the previous request has been served or its
deadline has expired. To this purpose, service completion
needs to be notified by the Application to the client.

The service time is determined by the Application
module based on the computational effort required by the
task and on the performance provided by the CPU. In par-

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1341

ticular, the Eos event is generated by the Application
according to a constant residual-time distribution that uses
the as a task-dependent timeout value and the actual
performance provided by the CPU as a time-varying
clock speed. In this way, the event is automatically gen-
erated by the GSMP model as soon as the cumulative CPU
performance reaches the target .

Notice that both theApplication and theDPMmodules
depend on the current state of the processor. Hence, external
events are needed to notify CPU state changes to the other
modules. This is done by event Change, associated with
parameters and , that represent the current operating
conditions.

3) DPM Policy: The operating state of the Xscale pro-
cessor core is controlled by the DPM module, which imple-
ments an application-driven DPM policy based on the knowl-
edge of the and parameters associated
with the incoming service request.

The DPM decision for the th task is taken according to
the following algorithm, where indexes and are used
to distinguish quantities referring to current and previous
tasks.

1) Compute the time required to serve request at clock
speed

2) If Deadline, increase performance.

a) Determine the minimum values of and
compatible with the required and

, taking into account the time required
by the processor core to switch from
and .

b) If the real-time constraints cannot be satisfied by
any (,) pair, the task is aborted and
the CPU is kept in the state without
changing its power–performance state.

c) Else, set and
and issue event Tune.

3) Else, if Deadline s, decrease
performance.

a) Determine the minimum values of compat-
ible with the required and ,
taking into account the time required by the pro-
cessor core to switch from .

b) Determine the minimum voltage level
compatible with and with the .

c) Set and
and issue event Tune.

4) Else, keep performance unchanged.

a) Keep .
b) Determine the minimum voltage level

compatible with and with the .
c) If set

and and issue event
Tune.

First, the service time at the current speed (denoted by
) is computed and compared with the deadline imposed

by the real-time constraints. If the service time is longer
than the deadline, the operating speed need to be increased
and the supply voltage adjusted accordingly. In this case,
the DPM computes the minimum values of and
compatible with the constraints and issues a Tune event to
change the power–performance state of the CPU core. If the
deadline cannot be satisfied because of state transition time,
the execution of the current task is aborted and the CPU is
released.

If the service time is shorter than the deadline, the clock
frequency can be reduced in order to save power. In this case,
however, the clock adjustment overhead of 30 s has to be
taken into account. A further parameter is used in
the algorithm to decide when to slow down the processor.
The meaning of the will be clarified at the end of
this section. Notice that when slowing down the processor,
the target clock frequency is determined first, based only on
the and parameters, independently of the
reachable supply voltage. In general, the minimum supply
voltage achievable within the deadline may be higher than
the minimum supply voltage required to sustain the target
clock frequency because of the limited slope of the supply
voltage.

Finally, if neither condition 2 nor condition 3 is satisfied,
the clock frequency is kept unchanged, while possibly ad-
justing the supply voltage if it was above the minimum value
required to sustain the current speed.

In practice, the algorithm implements a deterministic
greedy policy that takes locally optimum decisions to exe-
cute the current task with the minimum power consumption,
while satisfying real-time constraints whenever possible.
However, the policy does not guarantee to reach a global
optimum, since DPM decisions taken for task may impair
the optimality of the execution of task . In particular,
the real-time constraints associated with the tasks of our
workload are satisfiable by construction, so that all dead-
lines could be met by operating the Xscale processor at
its maximum speed. However, once the clock frequency has
been reduced to take advantage of a loose constraint, the
time required to adjust clock frequency and supply voltage
may lead to the violation of subsequent tighter deadlines.

The parameter used in the DPM policy provides
a way for controlling the tradeoff between the power con-
sumption and the probability of deadline violations. When

, local DPM decisions aim at achieving the min-
imum power consumption for the current task, taking ad-
vantage of any opportunity for slowing down the processor
regardless of the consequences for subsequent tasks. When

, the processor speed is reduced only if there is
a sizable advantage in terms of power that compensates the
possible quality loss. For , slowdown condi-
tions are never satisfied, so that the processor works always
at maximum speed, meeting all real-time constraints at the
cost of a maximum power consumption.

4) Simulation Results: We performed two sets of simu-
lations for investigating the effects of workload and DPM

1342 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

Fig. 30. Simulation results obtained for the Xscale processor under different workload conditions,
obtained by changing the Max deadline parameter. (a) Average power, deadline miss probability
and idleness, as functions of the maximum deadline of the incoming tasks. (b) Power versus miss rate
tradeoff. Results are plotted for two different values of the slowdown margin used by the DPM policy.

parameters on the tradeoff between power consumption and
quality of service. Results are reported in terms of average
power consumption (expressed in watts), miss rate (that is
the probability of violating a real-time constraint), and per-
centage idle time (that is the percentage of time spent by the
processor core in the state). For each point estimate
we used a workload of 10 000 tasks, randomly generated as
discussed in Section V-D2.

Fig. 30(a) shows the results obtained by performing a
parametric sweep on the maximum deadline for two dif-
ferent values of the DPM . When the
is lower than 30 s, which is the time required to adjust the
clock frequency, the operating state of the processor can
never be changed. As a consequence, the power consump-
tion is maximum (900 mW), the miss rate is null and the
idleness is around 50%. The minimum power consumption
is reached for around 10 ms, where the
miss rate is maximum. In particular, for , the
minimum power consumption is 200 mW, and the maximum
miss rate is almost 50%.

Surprisingly enough, larger deadlines lead to higher power
values. This can be explained by looking at the miss rate,
which reduces to zero when is above 100 s.
Since the power state of the processor is kept unchanged in
case of constraint violations, each deadline miss contributes
to power savings.

The same results are plotted in Fig. 30(b) as tradeoff points
on a power-versus-miss-rate plane. Notice that depending on
the nature of the workload, the best tradeoff is provided either
by or by .

The effects of the used by the DPM are shown in
Fig. 31(a) for different types of workloads. In summary, the
higher the the lower the power savings and miss rate
and the higher the idleness. The effect of the DPM is
stronger for workloads with higher values of ,
because of the greater DPM opportunities.

The Pareto curves obtained by changing the DPM
are plotted in Fig. 31(b).

VI. CONCLUSION

In this paper, we tried to characterize and classify several
techniques that fall under the name of DPM for electronic
systems. The importance of DPM is well recognized, as it
has been shown to be the most effective means for curbing
energy dissipation. Nevertheless, the lack of general theory
of DPM has hampered the evaluation and comparison of dif-
ferent DPM strategies and policies for their potential effec-
tiveness.

This paper attempts to cover this void by providing a gen-
eral model for power management that is widely applicable.
This model is based on the use of DESs for representing
system components, workloads, and controllers. In partic-
ular, the structure of these DESs is specified in terms of phys-
ical states (representing operation modes) and events (trig-
gering state transitions), while system behavior is specified in
terms of next-event and next-state functions. In this work, we
use properties of GSMPs to cope with the nondeterminism of
these functions.

We have shown how to build a modeling framework, with a
general denotational model, supporting composition, and ab-
straction. The model has a rigorous execution semantics that
enables event-driven simulation. The objective of the frame-
work is to create a simulator, which is general enough to ana-
lyze different classes of DPM methods, yet based on a single
and sound mathematical model. The simulator is built on
top of MathWork’s Simulink by using templates to execute
GSMP models. These templates can be specialized to cap-
ture dynamic power-managed systems of practical interest.

We have used the simulator to evaluate and optimize
system parameters and power management policies. We
have analyzed in details several cases studies, including
the Intel Xscale processor architecture, a multitasking

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1343

Fig. 31. Simulation results obtained for the Xscale processor with different DPM policies, obtained
by changing the Margin parameter. (a) Average power, deadline miss probability and idleness,
as functions of the slowdown margin. (b) Power versus miss rate tradeoff. Results are plotted for
different values of the Max deadline parameter, ranging from 3 �s to 10 s.

real-time system and a sensor network. We have been able
to show how the simulator can capture the essential features
of power-managed systems and be used for their effective
design.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for comments and suggestions.

REFERENCES

[1] R. Krashinsky and H. Balakrishnan, “Minimizing energy for wire-
less web access with bounded slowdown,” in Proc. Annu. Int. Conf.
Mobile Computing and Networking, 2002, pp. 119–130.

[2] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivastava,
“E WFQ: an energy efficient fair scheduling policy for wireless
systems,” in Proc. Int. Symp. Low Power Electronics and Design,
2002, pp. 12–14.

[3] D. Bertozzi, L. Benini, and B. Riccò, “Power aware network inter-
face management for streaming multimedia,” in Proc. IEEE Wireless
Communications and Networking Conf., vol. 2, 2002, pp. 926–930.

[4] W. Cynara and D. Bertsekas, “Distributed power control algorithms
for wireless networks,” IEEE Trans. Veh. Technol., vol. 50, pp.
504–514, Mar. 2001.

[5] A. Goldsmith and S. Wicker, “Design challenges for energy-con-
strained ad hoc wireless networks,” IEEE Wireless Commun., vol. 9,
pp. 8–27, Aug. 2002.

[6] N. Persone and V. Grassi, “Performance analysis of caching and
prefetching strategies for palmtop-based navigational tools,” IEEE
Trans. Intell. Transport. Syst., vol. 4, pp. 23–34, Mar. 2003.

[7] P. Kumar, “New technological vistas for systems and control: the
example of wireless networks,” IEEE Control Syst. Mag., vol. 21,
pp. 24–37, Feb. 2001.

[8] R. Bruno, M. Conti, and E. Gregori, “Optimization of efficiency and
energy consumption in p-persistent CSMA-based wireless LANs,”
IEEE Trans. Mobile Comput., vol. 1, pp. 10–31, Jan.–Mar. 2002.

[9] R. Badra and B. Daneshrad, “Adaptive link layer strategies for asym-
metric high-speed wireless communications,” IEEE Trans. Wireless
Commun., vol. 1, pp. 429–438, July 2002.

[10] I. Kim and H. Kim, “An optimum power management scheme for
wireless video service in CDMA systems,” IEEE Trans. Wireless
Commun., vol. 2, pp. 81–91, Jan. 2003.

[11] C. Chiasserini and R. Rao, “Improving energy saving in wireless sys-
tems by using dynamic power management,” IEEE Trans. Wireless
Commun., vol. 2, pp. 1090–1100, Sept. 2003.

[12] N. Bambos, “Toward power-sensitive network architectures in wire-
less communications: Concepts, issues, and design aspects,” IEEE
Pers. Commun., vol. 5, pp. 50–59, June 1998.

[13] T. ElBatt and A. Ephremides, “Joint scheduling and power control
for wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol.
3, pp. 74–85, Jan. 2004.

[14] A. Ephremides, “Energy concerns in wireless networks,” IEEE Wire-
less Commun., vol. 9, pp. 48–59, Aug. 2002.

[15] K. Choi, K. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance trade-off
based on the ratio of off-chip access to on-chip computation times,”
in Proc. Design Automation and Test in Eur. Conf., 2004, pp. 4–9.

[16] L. Feeney and M. Nilsson, “Investigating the energy consumption
of a wireless network interface in an ad-hoc networking environ-
ment,” in Proc. Conf. IEEE Communications Soc., vol. 3, 2001, pp.
1548–1557.

[17] A. Acquaviva, E. Lattanzi, and A. Bogliolo, “Power-aware network
swapping for wireless palmtop PCs,” in Proc. Design Automation
and Test in Eur. Conf., 2004, pp. 858–863.

[18] M. Miller and N. Vaidya, “Minimizing energy consumption in sensor
networks using a wakeup radio,” in Proc. Wireless Communications
and Networking Conf., 2004, pp. 120–125.

[19] C. Chong and S. Kumar, “Sensor networks: evolution, opportunities,
and challenges,” Proc. IEEE, vol. 91, pp. 1247–1256, Aug. 2003.

[20] A. Chandrakasan and R. Brodersen, Low-Power CMOS De-
sign. Piscataway, NJ: IEEE, 1998.

[21] M. Pedram and Y. Rabaey, Power Aware Design Methodolo-
gies. Dordrecht, The Netherlands: Kluwer, 2002.

[22] R. Viswhanath, V. Wakharkar, A. Watwe, and V. Lebonheur.
(2000) Thermal performance challenges from silicon to systems.
Intel Technol. J. [Online]. Available: http://www.intel.com/tech-
nology/itj/q32000/articles/art_4.htm

[23] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
VLSI Syst., vol. 8, pp. 299–316, June 2000.

[24] D. Ditzel, “Transmeta’s Crusoe: cool chips for mobile computing,”
in Proc. Hot Chips Symp., 2000.

[25] L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Liao, S. Strazdus, and
M. Morrow, “An embedded 32-b microprocessor core for low-power
and high-performance applications,” IEEE J. Solid-State Circuits,
vol. 36, pp. 1599–1608, Nov. 2001.

[26] B. P. Zeigler, “DEVS representation of dynamical systems: event-
based intelligent control,” Proc. IEEE, vol. 77, pp. 72–80, Jan. 1989.

[27] P. W. Glynn, “A GSMP formalism for discrete event systems,” Proc.
IEEE, vol. 77, pp. 14–23, Jan. 1989.

[28] Simulink, M. Inc.. (2003). [Online]. Available: http://www.math-
works.com/products/simulink

1344 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

[29] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc. IEEE,
vol. 89, pp. 490–504, Apr. 2001.

[30] T. Theis, “The future of interconnection technology,” IBM J. Res.
Develop., vol. 44, pp. 42–53, 2000.

[31] T. Karnik, S. Borkar, and V. De, “Sub-90 nm technologies—Chal-
lenges and opportunities for CAD,” in Proc. IEEE Int. Conf. Com-
puter-Aided Design, 2002, pp. 203–206.

[32] P. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Cremen, and B.
Troxel, “A hybrid ASIC and FPGA architecture,” in Proc. IEEE Int.
Conf. Computer-Aided Design, 2002, pp. 187–194.

[33] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and
J. Rabaey, “A 1-V heterogeneous reconfigurable DSP IC for wire-
less baseband digital signal processing,” IEEE J. Solid-State Cir-
cuits, vol. 35, pp. 1697–1704, Nov. 2000.

[34] T. Martin and D. Sewiorek, “Nonideal battery and main memory ef-
fects on CPU speed-setting for low power,” IEEE Trans. VLSI Syst.,
vol. 9, pp. 29–34, Feb. 2001.

[35] L. Benini and G. De Micheli, “Networks on chip: a new SoC para-
digm,” IEEE Computer, vol. 35, pp. 70–78, Jan. 2002.

[36] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic
voltage scaled microprocessor system,” IEEE J. Solid-State Circuits,
vol. 35, pp. 1571–1580, Nov. 2000.

[37] L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Luyun, S. Strazdus, M.
Morrow, K. Velarde, and M. A. Yarch, “An embedded 32-b micro-
processor core for low-power and high-performance applications,”
IEEE J. Solid-State Circuits, vol. 36, pp. 1599–1608, Nov. 2001.

[38] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, “En-
ergy-aware wireless microsensor networks,” IEEE Signal Pro-
cessing Mag., vol. 19, pp. 40–50, Mar. 2002.

[39] R. Sinha, V. Liang, C. Paredis, and P. Khosla, “Modeling and simula-
tion methods for design of engineering systems,” J. Comput. Inform.
Sci. Eng., vol. 1, pp. 84–91, 2001.

[40] D. Estrin, D. Cuyller, K. Pister, and G. Sukhatme, “Connecting the
physical world with pervasive networks,” IEEE Pervasive Comput.,
vol. 1, pp. 59–69, Jan.–Mar. 2002.

[41] R. Min et al., “Energy-centric enabling technologies for wireless
sensor networks,” IEEE Wireless Comput., vol. 9, pp. 28–39, Aug.
2002.

[42] J. Rabaey, “Wireless beyond the third generation. Facing the energy
challenge,” in Proc. ACM Int. Symp. Low Power Electronics and De-
sign, 2001, pp. 1–3.

[43] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi,
“Discrete-time battery models for system-level low-power design,”
IEEE Trans. VLSI Syst., vol. 9, pp. 630–640, Oct. 2001.

[44] C. Chiasserini and R. Rao, “Energy efficient battery management,”
IEEE J. Select. Areas Commun., vol. 19, pp. 1235–1245, July 2001.

[45] W. Kim, D. Shin, H. Yun, J. Kim, and S.-L. Min, “Performance com-
parison of dynamic voltage scaling algorithms for hard real-time sys-
tems,” in Proc. IEEE Real-Time and Embedded Technology and Ap-
plications Symp., 2002, pp. 219–225.

[46] F. Gruian, “Energy-centric scheduling for real-time systems,” Ph.D.
dissertation, Lund Univ., Lund, Sweden, 2002.

[47] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploiting
generational behavior to reduce cache leakage power,” in Proc.
ACM/IEEE Int. Symp. Computer Architecture, 2001, pp. 240–251.

[48] W. Zhang, J. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and
M. Irwin, “Compiler-directed instruction cache leakage optimiza-
tion,” in Proc. Annu. IEEE/ACM Int. Symp. Microarchitecture, 2002,
pp. 215–224.

[49] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. Irwin, “Hardware and software techniques for control-
ling DRAM power modes,” IEEE Trans. Comput., vol. 50, pp.
1154–1173, Nov. 2001.

[50] A. Law and W. Kelton, Simulation Modeling and Analysis—Third
Edition. New York: McGraw-Hill, 1999.

[51] Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice, J. Banks, Ed., Wiley-Interscience, New
York, 1998.

[52] F. Nilsen, “GMSim: a tool for compositional GSMP modeling,” in
Proc. Winter Simulation Conf., 1998, pp. 555–562.

[53] L. Benini, A. Bogliolo, G. Paleologo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans. Com-
puter-Aided Design, vol. 18, pp. 813–833, June 1999.

[54] V. Nicola, P. Shahabuddin, and M. Nakayama, “Techniques for fast
simulation of models of highly dependable systems,” IEEE Trans.
Rel., vol. 50, pp. 246–264, Sept. 2001.

[55] Stateflow, M. Inc.. (2003). [Online]. Available: http://www.math-
works.com/products/stateflow

[56] T. Šimunić, S. Boyd, and P. Glynn, “Managing power consumption
in networks on chips,” IEEE Trans. VLSI Syst., vol. 12, pp. 96–107,
Jan. 2004.

Alessandro Bogliolo received the Laurea degree
in electrical engineering and the Ph.D. degree in
electrical engineering and computer science from
the University of Bologna in 1992 and 1998, re-
spectively.

From 1992 to 1999, he was with the De-
partment of Electronics, Computer Science and
Systems (DEIS), University of Bologna. In
1995 and 1996, he was visiting the Computer
Systems Laboratory (CSL), Stanford University,
Stanford, CA. From 1999 to 2002, he was

Assistant Professor with the Department of Engineering of the University
of Ferrara. In 2002, he joined the University of Urbino, Urbino, Italy, as
Associate Professor. He is currently Director of the Information Science and
Technology Institute (ISTI), University of Urbino. His research interests
include embedded low-power systems, dynamic power management, signal
integrity, and bioinformatics.

Luca Benini received the B.S. degree (summa
cum laude) in electrical engineering from the
University of Bologna in 1991 and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, in 1994 and
1997, respectively.

He is an Associate Professor in the Department
of Electronics and Computer Science, University
of Bologna, Bologna, Italy. He also holds Visiting
Researcher positions at Stanford University and
at the Hewlett-Packard Laboratories, Palo Alto,

CA. He published more than 150 papers in international conferences and
journals. He is coauthor of the book Dynamic Power Management, Design
Techniques and CAD Tools (Boston, MA: Kluwer, 1998). His research in-
terests are in all aspects of computer-aided design of digital circuits, with
special emphasis on low-power applications, and in the design of portable
systems.

Dr. Benini is a Member of the technical program committee for several
technical conferences, including the Design Automation Conference, the In-
ternational Symposium on Low Power Design, and the International Sym-
posium on Hardware–Software Codesign. He is the Program Chair for the
IEEE Design Automation and Testing in Europe Conference in 2005.

Emanuele Lattanzi received the Laurea degree
from the University of Urbino in 2001. He is
currently working toward the Ph.D. degree at the
Information Science and Technology Institute
(ISTI), University of Urbino.

In 2003, he was with the Department of Com-
puter Science and Engineering, Pennsylvania
State University, University Park, working as a
Visiting Scholar with Prof. V. Narayanan. His
research interests are in the area of wireless
embedded systems, with emphasis on power and

performance analysis and optimization.

BOGLIOLO et al.: SPECIFICATION AND ANALYSIS OF POWER-MANAGED SYSTEMS 1345

Giovanni De Micheli (Fellow, IEEE) graduated
in nuclear engineering from the Polytechnic
of Milan in 1979 and received the M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from the University of California,
Berkeley, in 1980 and 1983, respectively.

He is currently Professor of Electrical Engi-
neering and, by courtesy, of Computer Science at
Stanford University, Stanford, CA. He is, or has
been, Member of the technical advisory boards of
several companies, including Magma Design Au-

tomation, Coware, Aplus Design Technologies, Ambit Design Systems and
STMicroelectronics. He is the author of Synthesis and Optimization of Dig-
ital Circuits (New York: McGraw-Hill, 1994) and coauthor and/or coeditor
of five other books and over 270 technical articles. His research interests
include several aspects of design technologies for integrated circuits and
systems, with particular emphasis on synthesis, system-level design, hard-
ware/software codesign and low-power design.

Dr. De Micheli is a Fellow of the Association for Computing Machinery.
He is the recipient of the 2003 IEEE Emanuel Piore Award for contributions
to computer-aided synthesis of digital systems. He received the Golden Ju-
bilee Medal for outstanding contributions to the IEEE Circuits and Systems
(CAS) Society in 2000. He received the 1987 D. Pederson Award for the
best paper on the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN and
two Best Paper Awards at the Design Automation Conference in 1983 and in
1993. He is Past President of the IEEE CAS Society. He was Editor-in-Chief
of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN from 1987 to
2001. He was the Program Chair and General Chair of the Design Automa-
tion Conference (DAC) in 1996–1997 and 2000, respectively.

1346 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004

	toc
	Specification and Analysis of Power-Managed Systems
	ALESSANDRO BOGLIOLO, LUCA BENINI, EMANUELE LATTANZI, and GIOVANN
	I. I NTRODUCTION
	II. P OWER M ANAGEMENT: W HY AND H OW
	A. Technology Trends
	B. Architectural Trends
	C. Power-Manageable Hardware
	1) Multiple Power States: Modern power-manageable processors sup
	2) Interacting Power-Manageable Devices: Complex systems can con
	3) Energy Sources: In many battery-operated mobile applications

	D. A Fragmented Landscape

	III. M ODELING
	A. Denotational Model

	Fig.€1. State diagram and possible trajectory of a server with q
	Example 1: Consider a server with a queue of length 2. The syste

	Fig.€2. (a) State transition graph of the two-state client of Ex
	B. Compositional Model
	Example 2: Consider a nonblocking client generating requests for
	Example 3: The system composed of the server of Example 1 (subsy
	Example 4: A possible trajectory for our client server system is
	Fig.€3. Trajectory showing the interaction between a two-state c

	Example 5: Next-state function F of the client server system o

	Fig.€4. Example of hierarchical interfaces.
	1) Abstraction: In the previous section we said that two DESs $A
	Example 6: Interfaces are used in Fig.€4 to represent the client
	Example 7: In Fig.€4, an interface is also associated with the e
	Example 8: Fig.€5 shows the hierarchical representation of a sys

	Fig.€5. Example of abstraction.
	Fig.€6. Procedure for the event-driven execution of a generic DE
	C. Executable Model

	Fig.€7. Implementation of the next-state function of a GSMP.
	Fig.€8. Implementation of the next-event function of a GSMP.
	D. GSMPs
	1) Clock Structure: Equation (1) provides the flexibility requir
	2) Dealing With Infinite States and Infinite Events: The impleme

	E. System Taxonomy
	Example 9: A variable-frequency digital system has a continuous

	F. DPM
	1) Design Metrics: The PM implements a control policy aimed at o
	2) Optimum Control: The degrees of freedom exploitable for DPM a

	Fig.€9. Template of the state of a GSM component. (a) State stru
	IV. GSMP S IMULATION
	A. Template of a Basic GSMP Component

	Fig.€10. Simulink representation of a two-state server. (a) Stat
	Fig.€11. Implementation of the local clock structure of a GSMP c
	Fig.€12. Schematic representation of a client server system. An
	B. Nondeterministic Destination States
	Example 10: A simple example of a GSMP component with nondetermi

	Fig.€13. State structure of a bursty client specified using nond
	C. Parameterized States and Events
	D. Specification

	Fig.€14. Queue of size N represented by means of a unique para
	Fig.€15. Template of GSMP state. (a) State structure. (b) Clock
	Fig.€16. Client server system with timeout-based DPM. Independen
	E. Design Exploration and Optimization
	Example 11: The system of Fig.€16(a) is made of three components

	Fig.€17. Comparison of four different residual-time distribution
	V. A PPLICATIONS
	A. System Shutdown

	Fig.€18. Power performance tradeoff obtained for the system disc
	B. Multitasking Real-Time System

	Fig.€19. Schematic representation of the multitasking computing
	Fig.€20. State structures of: (a) a server representing a multip
	Fig.€21. Loss rate (i.e., probability of violating real-time con
	1) Real-Time Constraints: We performed a first set of simulation
	2) Using Buffers for DPM: While the beneficial effects of buffer

	Fig.€22. Energy consumption (i.e., cost) as a function of the ti
	3) DPM With Multiple Processes: So far, we have considered a sys

	Fig.€23. Energy consumption (i.e., cost) of the system discussed
	Fig.€24. Execution traces obtained by simulating the multitaskin
	Fig.€25. Energy efficiency and loss probability plotted as funct
	C. Sensor Networks

	Fig.€26. Event coverage provided by different sensor networks wi
	Table€1 Sample Average and Standard Deviation of the Quality M
	Fig.€27. (a) Deterministic patterns of intrusions and their effe
	D. The Intel Xscale Processor
	1) GSMP Model: We model the active states of the Xscale processo

	Fig.€28. State structure of the GSMP model of the active mode of
	Fig.€29. Top-level schematic of a HW/SW system based on the Xsca
	2) Workload: The Xscale processor is used as the core of a simpl
	3) DPM Policy: The operating state of the Xscale processor core
	4) Simulation Results: We performed two sets of simulations for

	Fig.€30. Simulation results obtained for the Xscale processor un
	VI. C ONCLUSION

	Fig.€31. Simulation results obtained for the Xscale processor wi
	R. Krashinsky and H. Balakrishnan, Minimizing energy for wireles
	V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. Srivastava, $
	D. Bertozzi, L. Benini, and B. Riccò, Power aware network interf
	W. Cynara and D. Bertsekas, Distributed power control algorithms
	A. Goldsmith and S. Wicker, Design challenges for energy-constra
	N. Persone and V. Grassi, Performance analysis of caching and pr
	P. Kumar, New technological vistas for systems and control: the
	R. Bruno, M. Conti, and E. Gregori, Optimization of efficiency a
	R. Badra and B. Daneshrad, Adaptive link layer strategies for as
	I. Kim and H. Kim, An optimum power management scheme for wirele
	C. Chiasserini and R. Rao, Improving energy saving in wireless s
	N. Bambos, Toward power-sensitive network architectures in wirel
	T. ElBatt and A. Ephremides, Joint scheduling and power control
	A. Ephremides, Energy concerns in wireless networks, IEEE Wirele
	K. Choi, K. Soma, and M. Pedram, Fine-grained dynamic voltage an
	L. Feeney and M. Nilsson, Investigating the energy consumption o
	A. Acquaviva, E. Lattanzi, and A. Bogliolo, Power-aware network
	M. Miller and N. Vaidya, Minimizing energy consumption in sensor
	C. Chong and S. Kumar, Sensor networks: evolution, opportunities
	A. Chandrakasan and R. Brodersen, Low-Power CMOS Design . Piscat
	M. Pedram and Y. Rabaey, Power Aware Design Methodologies . Dord
	R. Viswhanath, V. Wakharkar, A. Watwe, and V. Lebonheur . (2000)
	L. Benini, A. Bogliolo, and G. De Micheli, A survey of design te
	D. Ditzel, Transmeta's Crusoe: cool chips for mobile computing,
	L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Liao, S. Strazdus
	B. P. Zeigler, DEVS representation of dynamical systems: event-b
	P. W. Glynn, A GSMP formalism for discrete event systems, Proc.
	Simulink, M. Inc. . (2003). [Online] . Available: http://www.mat
	R. Ho, K. Mai, and M. Horowitz, The future of wires, Proc. IEEE,
	T. Theis, The future of interconnection technology, IBM J. Res.
	T. Karnik, S. Borkar, and V. De, Sub-90 nm technologies Challeng
	P. Zuchowski, C. Reynolds, R. Grupp, S. Davis, B. Cremen, and B.
	H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and
	T. Martin and D. Sewiorek, Nonideal battery and main memory effe
	L. Benini and G. De Micheli, Networks on chip: a new SoC paradig
	T. Burd, T. Pering, A. Stratakos, and R. Brodersen, A dynamic vo
	L. Clark, E. Hoffman, J. Miller, M. Biyani, L. Luyun, S. Strazdu
	V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, Energy
	R. Sinha, V. Liang, C. Paredis, and P. Khosla, Modeling and simu
	D. Estrin, D. Cuyller, K. Pister, and G. Sukhatme, Connecting th
	R. Min et al., Energy-centric enabling technologies for wireless
	J. Rabaey, Wireless beyond the third generation. Facing the ener
	L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. S
	C. Chiasserini and R. Rao, Energy efficient battery management,
	W. Kim, D. Shin, H. Yun, J. Kim, and S.-L. Min, Performance comp
	F. Gruian, Energy-centric scheduling for real-time systems, Ph.D
	S. Kaxiras, Z. Hu, and M. Martonosi, Cache decay: exploiting gen
	W. Zhang, J. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, an
	V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, a
	A. Law and W. Kelton, Simulation Modeling and Analysis Third Edi

	Handbook of Simulation: Principles, Methodology, Advances, Appli
	F. Nilsen, GMSim: a tool for compositional GSMP modeling, in Pro
	L. Benini, A. Bogliolo, G. Paleologo, and G. De Micheli, Policy
	V. Nicola, P. Shahabuddin, and M. Nakayama, Techniques for fast
	Stateflow, M. Inc. . (2003). [Online] . Available: http://www.ma
	T. imuni, S. Boyd, and P. Glynn, Managing power consumption in n

