
1154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Application of Symbolic Computer Algebra in
High-Level Data-Flow Synthesis

Armita Peymandoust and Giovanni De Micheli, Fellow, IEEE

Abstract—The growing market of multimedia applications has
required the development of complex application-specified inte-
grated circuits with significant data-path portions. Unfortunately,
most high-level synthesis tools and methods cannot automatically
synthesize data paths such that complex arithmetic library blocks
are intelligently used. Namely, most arithmetic-level optimizations
are not supported and they are left to the designer’s ingenuity. In
this paper, we show how symbolic algebra can be used to construct
arithmetic-level decomposition algorithms. We introduce our tool,
SymSyn, that optimizes and maps data flow descriptions into data
paths using complex arithmetic components. SymSyn uses two new
algorithms to find either minimal component mapping or minimal
critical path delay (CPD) mapping of the data flow. In this paper,
we give an overview of the proposed algorithms. We also show how
symbolic manipulations such as tree-height-reduction, factoriza-
tion, expansion, and Horner transformation are incorporated in
the preprocessing step. Such manipulations are used as guidelines
in initial library element selection to accelerate the proposed al-
gorithms. Furthermore, we demonstrate how substitution can be
used for multiexpression component sharing and CPD optimiza-
tion.

Index Terms—Component mapping, data flow synthesis, design
reuse, DSP synthesis, Gröbner basis, high-level synthesis, symbolic
algebra.

I. INTRODUCTION

A UTOMATING the design of data paths from high-level
specifications is necessary to meet aggressive

time-to-market requirements. The optimal choice of the
arithmetic units implementing complex data flows strongly
affects the cost, performance, and power consumption of the
silicon implementations. Unfortunately, current commercial
tools rely on synthesis directives (pragmas) from designers
in order to map data flow into complex arithmetic library
elements.

On the other hand, existing high-level synthesis tools are ef-
fective in capturing HDL models of the hardware and mapping
them into control/data flow graphs (CDFGs), performing sched-
uling, resource sharing, retiming, and control synthesis [1]. The
approach presented in this paper fits seamlessly into current
high-level synthesis flow. We propose to analyze the data flow
segments of the CDFG models in light of the arithmetic units
available as library blocks, and to construct data paths that best
exploit the given library. We assume that design is done using

Manuscript received July 23, 2002; revised October 25, 2002. This work was
supported in part by ARPA/MARCO Gigascale Research Center and in part
by Synopsys Inc. This paper was recommended by Associate Editor R. Cam-
posano.

The authors are with Stanford University, Computer Systems Laboratory,
Stanford, CA 94305 USA (e-mail: armita@stanford.edu; nanni@stanford.edu).

Digital Object Identifier 10.1109/TCAD.2003.816213

libraries that contain, beyond the basic elements such as adders
and multipliers, more complex cells such as multiply/accumu-
late (MAC), sine, cosine, etc. An example of such a library is
Synopsys DesignWare [2] library.

Two factors are key in automating the optimal mapping of
data flow blocks. First, a functionality description formalism for
data flow and library components. Second, a method supporting
the decomposition of the data flow into a set of library elements.
The functionality description formalism needs to be compact
and canonical. Polynomial representation has been proven as
an effective technique for representing both high-level specifi-
cation and bit-level description of an implementation (library
component) [3]–[5]. It has also been used in methods matching
data flow clusters to library cells [3]–[5]. Unfortunately, such
methods were limited to test for a match in the library of ex-
isting components. In case a match did not exist, there was no
automated way to search for possible interconnections of library
blocks matching the data flow cluster.

In this paper, we present our tool SymSyn that leverages
results from Gröbner basis [9]–[12] applications and symbolic
polynomial manipulation techniques to automate mapping of
(a portion of) data flow into complex arithmetic library blocks.
SymSyn framework contains two decomposition algorithms
that assume the data flow and library elements are represented
as polynomials. The first algorithm finds a minimal-component
decomposition of a polynomial representing a (portion of)
data flow. The decomposition is done in terms of arithmetic
library elements, also represented as polynomials. Due to the
importance of high-performance design, we have developed a
second algorithm in the SymSyn framework to automatically
map the data flow to arithmetic library elements such that
the data flow has minimal critical path delay (CPD). The
timing-driven decomposing algorithm uses various polynomial
manipulation techniques as guidelines to achieve optimal
component mapping and resource sharing for minimal delay.

As a motivating example, we consider the antialias function
of an MP3 decoder that calculates the following equation in one
of its basic blocks:

under the assumption that

A straightforward realization of this equation would use a di-
vider and a square root operator, which are large and slow com-
ponents and may not be available in the component library. For
the sake of the example, we assume there are no square root
and division operators available in our library. Alternatively, we

0278-0070/03$17.00 © 2003 IEEE

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1155

Fig. 1. Implementation forp .

assume the existence of an adder, multiplier, and multiplier-ac-
cumulator (MAC) in our library. Thus, can be easily
computed. Next, using symbolic manipulations, we first substi-
tute by and obtain

We can approximate the given equation to a polynomial rep-
resentation using the Taylor series expansion for a range of
based on the given application

The explanation is valid for a given range ofand the error
can be computed using standard approximation methods [6]. If
we perform a Horner-based transform on the polynomial ap-
proximation of , we obtain

This formula can be implemented using a chain of six MACs,
or one MAC in six cycles. Fig. 1 demonstrates one possible
implementation.

Our synthesis tool, SymSyn, automates the algebraic ma-
nipulations shown in this example. SymSyn converts the basic
blocks of a behavioral description, representing data flow
portions of the design, to their polynomial representations
and uses numerical methods for exact and inexact matching
with library elements. If a match is not found, the data flow is
decomposed into the library elements using symbolic computer
algebra.

This paper is organized as follows. Section II gives an
overview on symbolic algebra and explains how Gröbner basis
is used in polynomial decomposition algorithms. In Section III,
we present how we can leverage results from symbolic algebra
to decompose a polynomial representing a (portion of) data
flow. In Section III, we also explain our data flow synthesis tool,
SymSyn, with an example. Sections IV and V describe the two
new algorithms developed for automatic decomposition of data
flow into complex arithmetic library components. Section VI
shows a set of library independent symbolic transformations

that are used to accelerate the proposed algorithms. Finally,
Section VII explains the implementation of SymSyn and shows
a set of experimental results.

II. SYMBOLIC COMPUTERALGEBRA

Traditional mathematical computation with computers and
calculators is based on arithmetic of fixed-length integers and
fixed-precision floating-point numbers, otherwise known as nu-
meric computer algebra. In contrast, modern symbolic compu-
tation systems support exact rational arithmetic, arbitrary pre-
cision floating-point arithmetic, and algebraic manipulation of
expressions containing undetermined values (symbols), such as
variable in . Several commercial symbolic
computer algebra systems are available on the market; Maple
[7] and Mathematica [8] are most widely used.

The algebraic object that we would like to manipulate
symbolically is a multivariate polynomial that represents a
(portion of) data path of our design. We need to decompose this
polynomial into polynomials representing the building blocks
available in the target library. Such decomposition is called
simplification modulo set of polynomialsin symbolic computer
algebra. Most symbolic polynomial manipulations that we find
interesting in data-path synthesis are based on Gröbner bases
[9]–[12]. Gröbner bases and Buchberger’s algorithm gener-
alize the division and greatest common divisor algorithms of
univariate polynomials to multivariate polynomials. Therefore,
it is the heart of symbolic polynomial factorization. Gröbner
bases also solve variable elimination in a set of polynomials and
ideal membership problems, which is the core of simplification
modulo set of polynomials. In the following subsection, we will
review Gröbner basis and its application to thesimplification
algorithm. Commercial symbolic computer programs, such as
Maple [7], have a built-in routine that performssimplification
modulo set of polynomials. In Maple this method is called
simplify.

Next, we describe the underlying theory ofsimplification
modulo set of polynomials. The reader solely interested in its
application to data-path synthesis may proceed to Section II-C.

A. Basic Commutative Algebra

Definition 2.1: An Abelian groupis a set and a binary
operation “ ” satisfying all the following properties:

i) Closure. For every ; .
ii) Associativity. For every ;

.
iii) Commutativity. For every ; .
iv) Identity. There is an identity element such that for

all ; .
v) Inverse. If , then there is an element such

that .
Definition 2.2: A commutative ring with unityis a set and

two binary operations “ ” and “ ”, referred to as addition and
multiplication, as well as two distinguished elements
such that the following axioms hold:

i) is an Abelian group with respect to addition with ad-
ditive identity element 0;

ii) Multiplication closure. For every ; .

1156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

iii) Multiplication associativity. For every ;
.

iv) Multiplication commutativity. For every ;
.

v) Multiplication identity. There is a identity element
such that for all ; .

vi) Distributivity. For every ;
holds for all .

Definition 2.3: A field is a commutative ring with unity,
where every element in except 0 has a multiplicative inverse,
i.e, , such that .

The set of all multivariate polynomials with variables
, coefficients from a field , and the two oper-

ations addition and multiplication forms a commutative ring
with unity denoted by .

Definition 2.4: Let be a commutative ring, a nonempty
subset is anideal when

i) ;
ii) for all ;
iii) for all and [12].

Lemma 2.1:Let be a finite
subset of the polynomial ring and

.
Then is an ideal in . We will call
the ideal generated by and the set is called generator
or basis of this ideal. For example, the set of polynomials

defined below generates a polynomial ideal
over

Unfortunately, while generates the infinite set , the
polynomials in may not yield much insight into this
ideal, since, for each ideal in a polynomial ring, there are many
possible sets of polynomials that generate the ideal. In other
words, the ideal basis is not unique. However, Buchberger [9]
has shown that an arbitrary ideal basis can be transformed into
a basis with special properties, which is called theGröbner
basis. A minimal (or reduced) Gröbner basis forms a canonical
representation for a multivariate polynomial ideal. A canonical
representation for ideals enables us to check whether two ideals
are equal. Important applications of the Gröbner basis include
polynomial decomposition and variable elimination in a set of
multivariate polynomials. One may say that the Gröbner basis
is the cornerstone of polynomial decomposition used in our
mapping algorithm. In the next section, we will give a brief
description of Buchberger’s algorithm.

B. Gröbner Bases

Before introducing a formal definition of Gröbner bases, we
need to defineterm orderingand reduction(division) of mul-
tivariate polynomials. A monomial of the form ,
where are the variables of the polynomial and

are the exponents, is called aterm. We

denote the set of terms of the polynomial ring
by , where is the set of nonnegative integers

In division of univariate polynomials, , we start by
writing the polynomials such that its terms are in decreasing
order of the degree of . To define reduction (division) for
multivariate polynomials, we need to have an ordering for
multivariate term.

Definition 2.5: A term orderingon is any
relation on satisfying the following.

i) is a total (or linear) on .
ii) If , , and and , then .
iii) is well ordered on . This means that every

nonempty subset of has a smallest element under
.

The leading monomialof polynomial
with respect to a total ordering of the variables, such as the
lexicographical ordering, is the monomial inwhose term is
the maximal among those in; we denote this monomial by

. We also define to be the maximal term, and
the to be the corresponding coefficient, therefore,

Example: Consider that is written in lexico-
graphical order

Definition 2.6. Reduction:For nonzero
we say that reduces modulo if there

exists a monomial in which is divisible by . Let
, i.e., the ring of polynomials

after removing the trivial 0 polynomial. If ,
where , , and ,

, then we write to signify that reduces to
(modulo) and is equal to

Example: Consider the following two polynomials:

If reduces to modulo a polynomial in a set of polynomials
, we say that reduces modulo and

write (); otherwise, we say that

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1157

is irreducible modulo . We denote, if and only if
there is a sequence such that

If and is irreducible, we will write . It can
be shown that for a fixed set and a given term ordering, the se-
quence of reductions is finite [10]. Therefore, we can construct
Algorithm 2.1 which, given a polynomial and set , finds a
polynomial such that . In Algorithm 2.1, denotes
the set polynomials in such that is divisible by

. Note that any member of can be chosen in each
iteration, but this choice affects the efficiency of the algorithm.
For the sake of simplicity, we assume an efficient selection is
implemented inselectpoly.

As mentioned previously, any finite set of polynomials
generates an ideal and is called the basis of this ideal.
If a nonzero polynomial is reduced to zero modulo , we
can determine that is a member of the ideal generated by

. However, the converse is not true for
all basis of .

Algorithm 2.1 Full Reduction of Modulo .
procedure
Given a polynomial and a set of polynomials
from the ring , find a such that .
Start with the whole polynomial.

if no reducers exist, strip off the leading
monomial; otherwise, continue to reduce.
while do {

while do {
#select a

}
;

}

end

Definition 2.7: An ideal basis is
called aGröbner basis(with respect to a fixed term ordering
and the implied permutation of variables) when

.
We define the -polynomialof , de-

noted as , as

Example: For polynomials and
with degree ordering we have

Algorithm 2.2 Buchberger’s Algorithm for Gröbner Bases.
procedure
Given a set of polynomials , compute such that

and is a Gröbner basis.

Initialize to all possible pairs

while do {
select a pair from

mark that pair as selected

denotes theth element of the ordered set

if then {
;

end

In can be shown that [6], [9], is a Gröbner basis when:

1) the only irreducible polynomial in is ;
2) for all ;
3) if and , then .
Buchberger’s algorithm (Algorithm 2.2) uses the properties

above to convert a finite set into a
Gröbner basis [9].

In order to check whether a polynomialis a member of the
ideal , first Algorithm 2.2 is used to form a Gröbner basis
for . Procedure (Algorithm 2.1) must then
return zero.

C. Gröbner Bases and Data-Path Synthesis

We now describe the application of the theory described pre-
viously. Let be the set of polynomial representations of the
library elements. In order to synthesize a data path for a poly-
nomial representation using library , should be a member
of . In order to examine membership in , we need to cal-
culate the Gröbner basis of and use . If
reduces to zero, then . If is reduced to zero only using
polynomials in that are also in , then can be built from the
given library elements. As an example, consider

While performing , we determine that

III. SYMBOLIC ALGEBRA AND LIBRARY MATCHING

After extracting the CDFG of an algorithmic level DSP
model, we calculate the polynomial representations of its basic
blocks. The polynomial representation of a basic block can
be directly extracted from algorithmic-level code if the basic

1158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Fig. 2. Implementation ofx � y .

block calculates a polynomial function. If the basic block
performs a series of bit manipulations or Boolean functions,
interpolation-based algorithms [3] can be used to formulate the
equivalent polynomial representation. When the basic block
implements a transcendental function, we use an approxima-
tion, such as the Taylor or Chebyshev series expansion, as its
polynomial. The chosen polynomial approximation has to be
verified manually by simulation to ensure that constraints, such
as accuracy, are satisfied.

Symbolic computer algebra is subsequently used to intelli-
gently decompose data flow to library components and auto-
matically synthesize the data path. The symbolic algebra routine
used in this algorithm issimplification modulo set of polyno-
mialsthat has been described in Section II. Assume a basic block
(or part of it) is represented by polynomialand the library com-
ponents available are represented by a set of polynomials. As
a reminder, to simplify a polynomialmodulo the side relation
set , we build a Gröbner basis from, , and
use to obtain the simplified answer. The built-in
function that implementssimplification modulo set of polyno-
mials in Maple is calledsimplify [7]. In order to comply with
Maple terminology, we call the set of polynomials theside re-
lations.

Note that any polynomial representation can be implemented
using only adders and multipliers. Therefore, any polynomial
representation of a basic block is guaranteed an implementa-
tion if the library includes adder and multiplier. Our goal is to
find nontrivial solutions that are minimal in terms of compo-
nent count or CPD. As an example, consider a data flow imple-
menting and a library that includes add, multiply
subtract and square functions. Using Maple syntax we have the
following.

This is equivalent to the implementation shown in Fig. 2.
Note that siderels is a subset of our library. Maple computes
the Gröbner basis of siderels and prints out the result of

. The result indicates that

If the side relation set is changed, other possible solutions for
the specification might be found.

results in the implementation shown in Fig. 3.
As shown, different side relation sets can result in different

implementation of the specification. Therefore, to find the best

Fig. 3. Another implementation ofx � y .

possible implementation, the side relation set should be set equal
to all subsets of the library with all possible permutations of the
input variables. Since this is exponentially expensive, a guided
architectural exploration is necessary. In the next two sections,
we will introduce two algorithms designed to reduce the com-
plexity of this search with two different final objectives. The first
algorithm finds the minimal component decomposition for the
given data flow. The second algorithm finds the minimal CPD
implementation of the data flow.

IV. M INIMAL COMPONENTDECOMPOSITIONALGORITHM

In this section, we introduce one of the algorithms imple-
mented in our tool, SymSyn. This algorithm automatically maps
a polynomial representation of a (portion of) data flow to a
set of complex arithmetic library components while using the
least number of library components. This algorithm, in conjunc-
tion with classical high-level synthesis algorithms, can be used
for efficient high-level DSP synthesis. The minimal component
decomposition algorithm described is empowered by Gröbner
basis fundamentals, described in Section II. The inputs to this
algorithm are polynomial representation of the data flow basic
block to be synthesized and a set of polynomials that represent
the set of complex arithmetic library components available to
the designer. As mentioned in the previous section, different side
relation sets result in different implementations of the data flow.
Therefore, our algorithm aims at intelligent side relation set se-
lection to accelerate the decomposition process for a given cri-
teria. The high-level view of the selection criteria for a minimal
number of components is illustrated in Algorithm 4.1.

Let be the polynomial representation of the basic block to
be decomposed into complex library elements. We start by sim-
plifying modulo each library element as the side relation. The
simplification results are stored in a tree data structure. If a sim-
plification result is identical (or within an acceptable tolerance)
to the polynomial representation of a library element, a possible
solution is found and the corresponding tree node is marked ac-
cordingly. If the simplification result stored in a tree node does
not correspond to a library element, we recursively apply the
same steps to the new tree node.

Algorithm 4.1 Decompose into elements of library
procedure
Given a polynomial representation of the specand a set of
polynomials as component library,
decompose into elements of library .
initialize tree

;

while do {
Explore is defined below

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1159

}
report best solution in tree

end
used in Decompose procedure
int function

for all do {
for all do {

;
makeresulta child of node

;
if

solution is found
; }}

if no solution is found yet.
return (bound)

end

To further reduce the search space a bounding function is
used. The bounding function is the number of library compo-
nents used to build the specification. In other words, if we find
a solution with two library components we will not explore so-
lutions requiring more than two components. But we will un-
cover all two-component solutions and choose the one with op-
timal cost (area or delay). The number of components used is
the same as the depth of the simplification tree; therefore, the
tree is bounded by the depth of the first solution found.

Such bounding function is chosen assuming that if a com-
ponent is custom designed to perform a combination of arith-
metic operations, it is more cost effective than connecting a se-
ries of components that perform the same arithmetic operations.
Clearly, the merit of the result is strongly dependent on the avail-
able library.

A. Minimal Component Example

To clarify the algorithm described above, we choose our li-
brary to be a subset of the Synopsys DesignWare library con-
sisting of six combinational elements: multiplier, adder, sub-
tracter, multiplier-accumulator, sine, and cosine. As an example,
consider synthesizing a phase shift keying (PSK) modulator
used in digital communication. A data flow basic block of PSK
has the following polynomial representation:

As the first step, SymSyn initializes a tree data structure and
stores polynomial in the root of the tree. For all library el-
ements, SymSyn makes a call to Maple and performssimplify
with side relation set equal to the library element. The results
reported by Maple are kept as new children of thetree node.

In the first iteration of our example, the side relation is set to
the first element in the library, the multiplier. Shown below are
the Maple commands. The first two lines are the requests sent by
SymSyn, and the third line is the simplification result reported
by Maple to SymSyn. SymSyn searches for a component in the

Fig. 4. MappingS to two components.

library that implements the result, but it is not successful to find
one for this instance.

In the second iteration, the same steps are performed with the
adder as the side relation. The simplification result now matches
an approximation to the cosine function. Therefore, SymSyn
marks this node as one possible solution. The following Maple
commands show the result of this iteration. Note that the result
is a Taylor series approximation of cosine. Since cosine is one
of our library elements, we have found one possible solution,
shown in Fig. 4.

Since there is a solution with depth equal toone in the tree,
a bound ofone is set on the tree growth. Note that the root is
denoted with depth equal tozero. Therefore, a solution at depth
one consists of two components. SymSyn performs the steps
described above for the rest of library elements and keeps the
results in root offsprings. After going through all library ele-
ments, SymSyn finds only one solution using two components.
The solution is demonstrated in Fig. 4. SymSyn will stop de-
composing the leaf nodes, since continuation would result in a
search for solutions with three or more components while the
objective is to find a solution using minimal number of compo-
nents.

V. TIMING-DRIVEN DECOMPOSITIONALGORITHM

In this section, we introduce the second algorithm imple-
mented in our tool SymSyn. In contrast to the algorithm de-
scribed in Section IV, here, we focus on minimizing the CPD of
the data flow implementation. Previously, we focused on min-
imizing the number of components used to implement the data
flow. Similar to Algorithm 4.1, this algorithm selects side rela-
tion sets intelligently to accelerate the decomposition process,
since selecting different side relation sets result in different im-
plementations of the data flow.

After extracting the CDFG of an algorithmic-level DSP
model, the polynomial representations of its data flow basic
blocks are passed as inputs to the timing-driven decomposi-
tion algorithm. Algorithm 5.1 shows the pseudocode of the
timing-driven decomposition algorithm. This algorithm takes
the same inputs as Algorithm 4.1; the polynomial representa-
tion of the basic block to be implemented and the polynomial
representations of the complex library elements. Algorithm
5.1, uses the branch-and-bound method to reduce the side-rela-
tion-set selection space while searching for the implementation

1160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

with the least CPD. We define the bounding function as the
best CPD of implementations seen so far. The lower bound
computed at each decision branch is the CPD of components in
the side relation set in view of data dependencies. If this lower
bound is greater than the best CPD of implementations seen so
far, the corresponding decision branch is pruned.

Algorithm 5.1 Decompose into elements of library
function GuidedDecomposition(exp_tree, max_CPD, L) {
initialize a solution tree

;

for all do {
if then

choose all that preserve theexp_treestructure
else for all do {
if then {

;
makeresulta child of node

;
add cost ofsr to cost ofresult;
if then {

solution is found
; }

if no more

}}
return the best solution insolution_tree

end
int function CalcMaxCPD(expression_tree) {
CPD= the critical path delay ofexpression_treeassuming the
expression is mapped to adders and multipliers only.
return (CPD)

end
procedure
Given a polynomial representation of the specand a set of
polynomials as component library,

decompose into elements of library such that the CPD of
is minimized.

perform expression manipulation techniques

for to NumberOfManipulationsdo {
;

}
report the best solution in

end

Let be the polynomial representation of the data flow. Our
goal is to decompose into the elements of the library such

that the CPD of is minimized. Decomposing is synony-
mous to simplifying modulo elements of the library as side
relations. In order to decide which library elements should be
used as the side relations, we use a decision tree (solution_tree)
to implement the branch-and-bound algorithm. The bounding
variable is initialized to the CPD of mapping the polynomial
solely to adders and multipliers, also known as the lexicograph-
ical mapping.

Thesimplify results are also saved in the tree data structure.
If a simplification result is identical (or within an acceptable
tolerance) to the polynomial representation of a library element,
a possible solution is found and the corresponding tree node is
marked accordingly. If the CPD of the solution is smaller than
previously encountered solutions, we set the bounding variable
to the current delay. In case the simplification result stored in
a tree node does not correspond to any library elements, we
recursively apply the same steps to the new tree node.

In general, the branch-and-bound algorithm is practically
applicable to most problems. However, introducing heuristics
that lead quickly to promising solutions can improve the execu-
tion time without hampering the quality of the solution. As for
all branch-and-bound algorithms, the worst case complexity
remains exponential.

We use the expression manipulation techniques presented
subsequently in Section VI as heuristic guidelines for choosing
the side relation set. Initially, we apply tree-height reduction
(THR), factorization, expansion, and Horner-based transform
on . As a result, we have several polynomials (exp_tree)
representing the same data flow. Each of these representa-
tions can result in the desirable implementation based on the
available library elements. Starting with the primary inputs,
we try covering the expression tree with the library elements.
We choose all library elements that cover the primary inputs
and a portion of the expression tree as a side relation. If the
result of simplify modulo side relation is not a library element,
we decompose the result without further guidance from the
expression tree. Algorithm 5.1 in conjunction with substitution
and THR can be generalized to several polynomials in a basic
block or across basic blocks.

A. Timing-Driven Example

As an example, consider a data flow segment of a Gabor filter
with the following polynomial representation:

Assume we would like to map to a library consisting of
functions implementing add, multiply, MAC, square, exp. After
factorization, will be converted to:

The factored form of guides us to use as an
initial side relation and sets an initial bound by mapping the fac-

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1161

Fig. 5. MappingS to four components.

Fig. 6. Possible implementation fore .

tored form lexicographically to adders and multiplier. SymSyn
makes a call to Maple and requests result of the following sim-
plifying operation.

The last line is the result reported to SymSyn by Maple. As
it can be seen, the result is a Taylor series expansion of .
Therefore, the data flow can be implemented using two square
components, an adder, and one exp component, as shown in
Fig. 5. The bounding function is now changed to the CPD of
the potential implementation. By exploring the other branches
of the decision tree (solution_tree), we realize that all other
branches are pruned by the new bound. Therefore, Fig. 5 is im-
plementation with the least CPD.

Now, assume that there is no exp block in our library. In order
to show the power of other polynomial transformations, we per-
form Horner transform (see Section VI-C) on the polynomial
result

The formula given above can be implemented using a chain of
four MACs or one MAC in four cycles. Fig. 6 demonstrates one
possible implementation.

VI. EXPRESSIONMANIPULATION TECHNIQUES

In Section V, an algorithm was introduced that maps a
polynomial representation of a (portion of) data flow to
complex arithmetic library elements such that the CPD is
minimized. This algorithm was implemented in the Symbolic
Synthesis tool, SymSyn. To accelerate the speed of minimal
CPD decomposition in SymSyn, a guideline is necessary
for side-relation selection. Such guideline should facilitate

Fig. 7. Performing THR on (a) produces (b).

mapping for maximum parallelism. We have chosen different
symbolic polynomial manipulation techniques as such guide-
lines. These transformations are the counterparts of the library
independent transformations used in logic synthesis [1]. These
heuristics can also be used as an enhancement to the minimal
component decomposition algorithm. The intent of this section
is to describe the manipulation techniques through simple
examples.

A. THR

THR was introduced long ago [13], [14] as an optimization
method for parallel software compilers. It is a technique to
reduce the height of an arithmetic expression tree, where the
height of the tree is the number of steps required to compute
the expression. In the best case, it achieves the tree height
of for an expression with operations. THR uses
commutativity, associativity, and distributivity properties of
addition, subtraction, and multiplication. In the classical case,
THR is achieved at the expense of adding more resources to
obtain maximum parallelism in the expression. In previous
work for hardware synthesis, THR has been proven useful in
high-level synthesis of data-intensive circuits such as DSP and
multimedia applications [15]–[17].

In our work, we use THR as an expression tree manipula-
tion technique. THR will achieve the best execution time when
using an unlimited number of two input adders, subtracters, and
multipliers. Since we are focusing on libraries that have more
complex blocks, THR may or may not result in the optimal exe-
cution time. The result is dependent on the library components
available. Fig. 7 shows an example of how THR can reduce the
CPD. Fig. 7(b) is obtained after applying THR on Fig. 7(a).

B. Factor and Expand

As mentioned previously, traditional THR [13], [14]
only uses associativity, commutativity, and distributivity to
transform expressions. Since we have access to a symbolic
manipulation tool in SymSyn, we can benefit from other
transformations as well. One such transformation is common
subexpression factorization. Factorization can reduce the
number of components used as well as the tree height of a
given expression. An example is shown in Fig. 8. Factorization
transforms the expression shown in Fig. 8(a) to the expression
show in Fig. 8(b). Fig. 8(b) has three less multiplications, one
less addition, and shorter tree height compared to Fig. 8(a).

Another useful symbolic manipulation technique is expan-
sion. This manipulation technique changes the polynomial into
its sum of products format. Meanwhile, it is capable of straight-
forward simplification techniques that can save both delay and
area. A small example of such simplification is transforming

to .

1162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Fig. 8. Factor may reduce the number of components and CPD.

C. Horner Form

The Horner form of a polynomial is a nested normal form
with a minimal number of multiplications and additions. Any
polynomial can be rewritten in Horner, or nested, form. The
general univariate case is defined as follows [8]:

Assume that can be calculated using only mul-
tiplications for integer . For a polynomial of degree, the
Horner form requires multiplications and additions. The ex-
panded form, however, requires

multiplications, which is more than twice as expensive for a
polynomial of degree 10. Thus, one advantage of the Horner
form is that the work involved in exponentiation is distributed
across addition and multiplication, resulting in savings of some
basic arithmetic operations. Another advantage is that Horner
form is more stable to evaluate numerically when compared
with the expanded form. This is because each sum or product in-
volves quantities which vary on a more evenly distributed scale
[8]. For hardware implementation, the Horner form has a dis-
tinct advantage. It effectively maps a univariate polynomial to
cost effective multiplier-accumulators (MAC).

Horner form is generalized for multivariate polynomials by
specifying an ordered list of variables. As a simple example,
consider the following polynomial in which the number of mul-
tiplications is reduced from 32 to 13:

D. Substitution and Elimination

Substitution is defined as replacing a subexpression by a
previously computed variable [1]. It reduces complexity of a
function by using an additional variable that was not previously
in its support set. This transformation creates a new dependency
between expressions, but may also eliminate previous depen-
dencies. Substitution has been previously used in multilevel
combinational logic optimization [18], [19]. Elimination theory
[12] based on the Gröbner basis formalizes substitution and

Fig. 9. Substitution with THR can maximize parallelism.

TABLE I
NORMALIZED DELAY AND AREA OF LIBRARY ELEMENTS

variable elimination for multivariate polynomials. We refer the
interested reader to [12] for the detailed mathematical proof.
Note that for arithmetic polynomials, use of a more general
decomposition model is necessary as compared to the algebraic
division modeled in combinational logic synthesis. This is due
to the fact that the Boolean impotence property does not hold
in arithmetic polynomials and arithmetic polynomials can have
exponents. Therefore, there is no restriction on the support
set of the divisor and quotient of an expression. For example,

is a legitimate division.
Substitution can be combined with THR in order to select a

subexpression that maximizes parallelism. As a simple example,
let us consider a basic block which consists of two arithmetic
expressions

It can be seen that is dependent on, therefore, is calcu-
lated after the value of is known as shown in Fig. 9(a). How-
ever, if we eliminate in , , can be
evaluated in parallel with. Fig. 9(b) shows the results of THR
on both and expressions. In order to achieve maximum par-
allelism between and , we now substitute only subexpression

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1163

TABLE II
SYMSYN RESULTS FORSOME EXAMPLES

in with a new variable . The result is
shown in Fig. 9(c).

VII. I MPLEMENTATION AND EXPERIMENTAL RESULTS

SymSyn is an environment that, used in conjunction with
classical high-level synthesis algorithms, can automate efficient
synthesis of data flow intensive circuits. It takes as input a data
path of the circuit under design and automatically maps that data
path to complex library elements, without need of any directives
from the designer. The program inputs are polynomial represen-
tations of data flow and a set of polynomials representing the
library elements. Output is a report of components used to im-
plement the data flow and the way they are connected, such that
the CPD or number of components used, is minimized. SymSyn
contains implementations of the algorithms described in Sec-
tions IV and V and the heuristics described in Section VI as
accelerators. The implementation is mainly in C programming
language, with calls to Maple V [7] for the symbolic manipula-
tions.

We have tested the efficiency of SymSyn with a number of
data-path examples. In our tests, the area and CPD reported are
normalized by the area and CPD of a full adder. For example,
the CPD of an adder is 1 and CPD of a multiplier is 1.35. This
number is calculated from the CPD reported by Synopsys De-
sign Compiler (DC) for a 16-bit multiplier divided by the CPD
reported by Synopsys DC for a 16-bit adder. The normalized
CPD calculation is done for all library components available
in the Synopsys DesignWare arithmetic component library [2].
Normalized area and CPD of several library elements are shown
in Table I.

Experimental results are shown in Table II. The first four data
flows in Table II are simple benchmark polynomials. The fifth
data flow polynomial is a basic block of a one-dimensional in-
verse discrete cosine transform (IDCT). The next data flow ex-
ample is the antialias block described in the introduction. IDCT
and antialias are widely used in audio and video compression

Fig. 10. Component distribution in SymSyn output.

standards such as JPEG, MPEG, and MP3. The geometric trans-
formation is used in graphics for image rotation. The next three
examples come from the field of digital communication. One is
a bandpass filter in frequency domain. The other performs phase
shift keying (PSK) modulation and the third performs turbo de-
coding. The last example is a data flow segment of the Gabor
transform used in neural systems.

In the first set of results of Table II (lexicographical mapping),
we assume that the polynomial representation is mapped only to
multipliers and adders. This is the same as the lexicographical
component inference that is typical in commercial behavioral
synthesis tools. The number of components column shows the
numbers of adds and multiplies in the data-path polynomial. The
area reported is the area of an adder multiplied by the number
of adds, plus the area of a multiplier multiplied by the number
of multiplies in the data-path polynomial. The CPD reported is
the cumulative delay of components on the critical path.

Next, we map and synthesize the example data flows using
SymSyn. The second set of results shown in Table II (minimal
component mapping), are the results obtained from SymSyn
by applying Algorithm 4.1. The mapping reported is the min-
imal component mapping. We have shown the number of li-
brary components Algorithm 4.1 has used in mapping each data

1164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

TABLE III
AREA AND DELAY REPORTED BYSYNOPSYSTOOLS USING TSMC.35 LIBRARY

flow polynomial to the extended Synopsys DesignWare library
(DesignWare library [2] plus , , and op-
erations). Area is the sum of areas of the components used by
SymSyn in each data-path implementation.

Finally, the last set of results in Table II (minimal CPD map-
ping), are derived by SymSyn using Algorithm 5.1. The em-
phasis is to decompose each data flow into the given library such
that the CPD of the implementation is minimized. We have re-
ported the number of components and the area and CPD of the
implementation suggested by Algorithm 5.1. Note that Algo-
rithm 5.1 maps for maximal parallelism and resource sharing
is not used. The CPD reported is sum of the delays of compo-
nents used in the data-path implementation in view of their data
dependencies. Both mapping results shown are using the same
component library.

In order to qualify the examples used in Table II, we have
shown the distribution of components used in SymSyn output
in Fig. 10. Note that the components used most are the MAC
operator and the square operator; this result is typical in data-
intensive circuits.

In order to obtain a more precise measurement of the CPD
and area of our set of examples, we used Synopsys Behavioral
Compiler and Synopsys Design Compiler to produce the set of
results shown in Table III. The examples in Table III are the
subset of examples shown in Table II that did not need ,

, and operations. These operations are not avail-
able in the DesignWare library [2]. Thelexicographicalcolumns
correspond to results reported by Synopsys Behavioral Com-
piler and Design Compiler without any mapping directives in
the behavioral HDL code. TheSymSyn mappingcolumns are
the results reported for the same set of examples when mapping
directives suggested by SymSyn are incorporated in the behav-
ioral HDL code. It can be observed that actual performance and
area improvements for these examples are inline and better than
estimated by SymSyn in Table II.

In summary, the results show that we can achieve an average
performance improvement of 25% and an average area improve-
ment of 60% over commercial behavioral synthesis flow. These
improvements are the results of intelligent mapping algorithms
implemented in SymSyn as opposed to the lexicographical map-
ping currently available in the commercial tools.

VIII. SUMMARY

This paper has introduced two new decomposition algorithms
to map data flow to a set of complex arithmetic library com-
ponents. These algorithms fit seamlessly in the high-level syn-
thesis flow and enhance the quality of result of data intensive
circuit synthesis. Our method takes advantage of two previously
developed concepts; one is the polynomial representation of li-
brary blocks and the second is symbolic computer algebra. Poly-
nomial representation is used to represent the functionality of
library components and the data flow segment of the chip under
design. Symbolic computer algebra is used to decompose the
data flow to a set of library components. From a practical stand-
point, the contribution of this paper is to make arithmetic li-
brary binding an automated process, and eliminate the need for
user-specified synthesis directives.

Symbolic computer algebra is a powerful set of algorithms
not previously used in the field of synthesis. We believe these al-
gorithms open a new set of opportunities in high-level synthesis
research. Even though algebraic manipulations are best suited
for combinational arithmetic designs, classical scheduling, re-
source sharing, and retiming algorithms can be applied to the
data-path output to achieve optimized/pipelined designs.

The research presented here is especially promising in the
fields of graphics, multimedia, and digital signal processing
where there is a tolerance for computational error as long as
the degradation in audio or video is limited [20]–[22]. This
tolerance can be used to approximate nonpolynomials data
flows to polynomial representations, which are well-suited
inputs for our tool SymSyn. This paper does not explain the
approximation tools and truncation errors since there is a wide
body of mathematical literature available on these topics [6].

ACKNOWLEDGMENT

The authors would like to thank ARPA/MARCO Gigascale
Research Center and Synopsys Inc. for their support.

REFERENCES

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw–Hill, 1994.

[2] DesignWare Library (1994). [Online]. Available: http://www.syn-
opsys.com/

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1165

[3] J. Smith and G. De Micheli, “Polynomial methods for component
matching and verification,” inProc. Int. Conf. Computer-Aided Design,
1998.

[4] , “Polynomial methods for allocating complex components,” in
Proc. Design, Automation, Test Eur. Conf., 1999.

[5] , “Polynomial circuit models for component matching in high-level
synthesis,”IEEE Trans. VLSI, vol. 9, pp. 783–800, Dec. 2001.

[6] J. F. Hartet al., Computer Approximations. New York: Wiley, 1968.
[7] Maple (1988). [Online]. Available: http://www.maplesoft.com
[8] Mathematica (1987). [Online]. Available: http://www.wri.com
[9] B. Buchberger, “Some properties of Gröbner bases for polynomial

ideals,”ACM SIG-SAM Bullet., 1976.
[10] K. Geddes, S. Czapor, and G. Labahn,Algorithms for Computer Al-

gebra. Norwell, MA: Kluwer, 1992.
[11] T. Becker and V. Weispfenning,Gröbner Bases. New York: Springer-

Verlag, 1993.
[12] D. Cox, J. Little, and D. O’Shea,Ideals, Varieties, and Algo-

rithms. New York: Springer-Verlag, 1997.
[13] D. J. Kuck,The Structure of Computers and Computations. New York:

Wiley, 1978, vol. I.
[14] D. J. Kuck, Y. Muraoka, and S. C. Chen, “On the number of operations

simultaneously executable in Fortran-like programs and their resulting
speedup,”IEEE Trans. Comput., vol. C-21, Dec. 1972.

[15] A. Nicolau and R. Potasman, “Incremental tree height reduction for high
level synthesis,” inProc. Design Automation Conf., 1991, pp. 770–774.

[16] D. Kolson, A. Nicolau, and N. Dutt, “Integrating program transforma-
tions in the memory-based synthesis of image and video algorithms,” in
Proc. Int. Conf. Computer-Aided Design, Nov. 1994.

[17] H. Wang, A. Nicolau, and K. Siu, “The strict time lower bound and
optimal schedules for parallel prefix with resource constraints,”IEEE
Trans. Comput., Nov. 1996.

[18] R. Brayton and C. McMullen, “The decomposition and factorization of
logic synthesis,” inProc. IEEE Int. Symp. Circuits Syst., May 1982.

[19] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang,
“MIS: A multiple-level logic optimization and the rectangular covering
problem,” inProc. Int. Conf. Computer-Aided Design, 1987.

[20] M. Willems, H. Keding, T. Grötket, and H. Meyr, “Fridge: An interac-
tive fixed-point code generation environment for HW/SW CoDesign,”
in Proc. Int. Conf. Acoustics, Speech, Signal Process., 1997.

[21] G. Constantinides, P. Cheung, and W. Luk, “Heuristic datapath alloca-
tion for multiple wordlength systems,” inProc. Design, Automation Test
Eur., 2001.

[22] D. Menard, D. Chillet, F. Charot, and O. Sentieys, “Automatic floating-
point to fixed-point conversion for DSP code generation,” inProc. Int.
Conf. Compilers, Architecture, Synthesis Embedded Syst., 2002.

Armita Peymandoust received the B.S. degree in
electrical and computer engineering from University
of Tehran, Tehran, Iran, the M.S. degree in electrical
and computer engineering from Northeastern Univer-
sity, Boston, MA, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
2003.

Previously, she was a Design Engineer on the
IA-64 product line with the Intel Corporation, Santa
Clara, CA. She is currently a Senior Research and
Development Engineer with Synopsys, Inc., Moun-

tain View, CA. Her research interests include embedded systems, system-level
design and synthesis, hardware/software codesign, and computer architecture.

Giovanni De Micheli (S’79–M’79–SM’80–F’94)
received the nuclear engineer degree from Politec-
nico di Milano, Milan, Italy, in 1979 and the M.S.
and Ph.D. degrees in electrical engineering and
computer science from the University of California,
Berkeley, in 1980 and 1983, respectively.

He is a Professor of electrical engineering and, by
courtesy, of computer science at Stanford University,
Stanford, CA. His research interests include several
aspects of design technologies for integrated circuits
and systems, with particular emphasis on synthesis,

system-level design, hardware/software co-design and low-power design. He
is author ofSynthesis and Optimization of Digital Circuits(New York: Mc-
Graw–Hill, 1994) and co-author and/or co-editor of five other books and of over
250 technical articles.

Dr. De Micheli is a Fellow of ACM. He received the 2003 IEEE Emanuel
Priore Award for contributions to computer-aided synthesis of digital systems.
He received the Golden Jubilee Medal for outstanding contributions to the
IEEE CAS Society in 2000. He received the 1987 IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN/ICAS Best Paper Award and two Best Paper Awards
at the Design Automation Conference, in 1983 and 1993. He is President of
the IEEE CAS Society. He was Editor in Chief of the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN/ICAS from 1987 to 2001. He was the Program
and General Chair of the Design Automation Conference (DAC) from 1996
to 1997 and 2000, respectively. He was the Program and General Chair of
the International Conference on Computer Design (ICCD) in 1988 and 1989,
respectively. He was a founding member of the ALaRI institute at Universita’
della Svizzera Italiana (USI), in Lugano, Switzerland, where he is currently
scientific counselor.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

