1154 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Application of Symbolic Computer Algebra in
High-Level Data-Flow Synthesis

Armita Peymandoust and Giovanni De Michélellow, IEEE

Abstract—The growing market of multimedia applications has libraries that contain, beyond the basic elements such as adders
required the development of complex application-specified inte- and multipliers, more complex cells such as multiply/accumu-

grated circuits with significant data-path portions. Unfortunately, late (MAC), sine, cosine, etc. An example of such a library is
most high-level synthesis tools and methods cannot automatically Synopsys I’DesighWare [’2] Iib-rary

synthesize data paths such that complex arithmetic library blocks | . . .
are intelligently used. Namely, most arithmetic-level optimizations ~ Two factors are key in automating the optimal mapping of
are not supported and they are left to the designer’s ingenuity. In data flow blocks. First, a functionality description formalism for
this paper, we show how symbolic algebra can be used to construct data flow and library components. Second, a method supporting
arithmetic-level decomposition algorithms. We introduce our tool, the decomposition of the data flow into a set of library elements.
SymSyn, that optimizes and maps data flow descriptions into data . . o .

paths using complex arithmetic components. SymSyn uses two neWThe funcuo_nahty descnpnon formahsm. needs to be compact
algorithms to find either minimal component mapping or minimal ~ @nd canonical. Polynomial representation has been proven as
critical path delay (CPD) mapping of the data flow. In this paper, an effective technique for representing both high-level specifi-
we give an overview of the proposed algorithms. We also show how cation and bit-level description of an implementation (library
symbolic manipulations such as tree-height-reduction, factoriza- component) [3]-[5]. It has also been used in methods matching
tion, expansion, and Horner transformation are incorporated in .

the preprocessing step. Such manipulations are used as guidelinesdata flow cluste_rs _to library cells [3]-[5]. L_Jnfortur_1ately, such

in initial library element selection to accelerate the proposed al- Methods were limited to test for a match in the library of ex-
gorithms. Furthermore, we demonstrate how substitution can be isting components. In case a match did not exist, there was no
used for multiexpression component sharing and CPD optimiza- automated way to search for possible interconnections of library
tion. blocks matching the data flow cluster.

Index Terms—Component mapping, data flow synthesis, design |n this paper, we present our tool SymSyn that leverages
reuse, DSP synthesis, Grébner basis, high-level synthesis, Symb()l'cresults from Grobner basis [9]-[12] applications and symbolic
algebra. polynomial manipulation techniques to automate mapping of

(a portion of) data flow into complex arithmetic library blocks.
|. INTRODUCTION SymSyn framework contains two decomposition algorithms

UTOMATING the design of data paths from high—levefhat assume the data flow and library elements are represented

specifications is necessary to meet aggressis polynomials. The first algorithm finds a minimal-component
time-to-market requirements. The optimal choice of th ecomposition of a polyr)(_)miql repre;enting a (porFion OT)
arithmetic units implementing complex data flows strongl ata flow. The decomposition is done in terms_ of arithmetic
affects the cost, performance, and power consumption of ary eIements_, also represented as polynomials. Due to the
silicon implementations. Unfortunately, current commercidi'Portance OT hlgh-performance design, we have develqped a
tools rely on synthesis directivepragmag from designers second algorithm in the SymSyn framework to automatically

in order to map data flow into complex arithmetic Iibrar>;nap the data flow to arithmetic library elements such that
elements the data flow has minimal critical path delay (CPD). The
On the other hand, existing high-level synthesis tools are &ffing-driven decomposing algorithm uses various polynomial

fective in capturing HDL models of the hardware and mappi anipulation techniques as guidelings 0 aqhigve optimal
them into control/data flow graphs (CDFGs), performing sche omponent mapping and resource sharlng for m!n|mal delay.
As a motivating example, we consider the antialias function

uling, resource sharing, retiming, and control synthesis [1]. Th : L
approach presented in this paper fits seamlessly into currgif’m MP3 decoder that calculates the following equation in one

high-level synthesis flow. We propose to analyze the data flo(\)/\]; its basic blocks:
segments of the CDFG models in light of the arithmetic units 1
available as library blocks, and to construct data paths that best W7

exploit the given library. We assume that design is done using)
under the assumption that + 3> > ¢ > 0.

Manuscript received July 23, 2002; revised October 25, 2002.ThisworkwasA iahtf d lizati fthi . Id di
supported in part by ARPA/MARCO Gigascale Research Center and in part straightforward realization of this equation would use a di-

by Synopsys Inc. This paper was recommended by Associate Editor R. Cafider and a square root operator, which are large and slow com-

posano. , N onents and may not be available in the component library. For
The authors are with Stanford University, Computer Systems Laborato ke of th | h

Stanford, CA 94305 USA (e-mail: armita@stanford.edu; nanni@stanford.edHj® Sake of the example, we assume there are no square root
Digital Object Identifier 10.1109/TCAD.2003.816213 and division operators available in our library. Alternatively, we

0278-0070/03$17.00 © 2003 IEEE

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1155

s 279 85 that are used to accelerate the proposed algorithms. Finally,
o 8% 55 % g O x oy 1 Section VII explains the implementation of SymSyn and shows
“32 16 32] | 64 a set of experimental results.
I I | ——
Il. SymBoLIC COMPUTERALGEBRA
I—| ¢ I——I Traditional mathematical computation with computers and
I MAC I calculators is based on arithmetic of fixed-length integers and
| fixed-precision floating-point numbers, otherwise known as nu-
meric computer algebra. In contrast, modern symbolic compu-
clk _MLJ tation systems support exact rational arithmetic, arbitrary pre-
cision floating-point arithmetic, and algebraic manipulation of
z expressions containing undetermined values (symbols), such as
Fig. 1. Implementation for | variablex in (x + 1)x(x — 1). Sever_al commercial symbolic
222 4y2 computer algebra systems are available on the market; Maple

[7] and Mathematica [8] are most widely used.
assume the existence of an adder, multiplier, and multiplier-ac-The algebraic object that we would like to manipulate
cumulator (MAC) in our library. Thus; = 22442 can be easily symbolically is a multivariate polynomial that represents a
computed. Next, using symbolic manipulations, we first subsfjportion of) data path of our design. We need to decompose this

tute z? + 42 by c and obtain polynomial into polynomials representing the building blocks
1 available in the target library. Such decomposition is called

z2=—. simplification modulo set of polynomials symbolic computer
2y/c algebra. Most symbolic polynomial manipulations that we find

We can approximate the given equation to a polynomial rejteresting in data-path synthesis are based on Grobner bases
resentation using the Taylor series expansion for a range dP]-[12]. Grobner bases and Buchberger’'s algorithm gener-

based on the given application alize the division and greatest common divisor algorithms of

1, 9. 15, 75, 219, 8 85 _uryvanate polynomials to. muIt|var|at_e ponnom|a!s. Ther.(.afore,

22 —c’ - —c’+ —c"— —c+—c" — —c+ —. it is the heart of symbolic polynomial factorization. Grébner
64 32 64 16 64 32

bases also solve variable elimination in a set of polynomials and

The explanation is valid for a given range©énd the error ideal membership problems, which is the core of simplification
can be computed using standard approximation methods [6]mbdulo set of polynomials. In the following subsection, we will
we perform a Horner-based transform on the polynomial ageview Grobner basis and its application to #implification

proximation ofz, we obtain algorithm. Commercial symbolic computer programs, such as
85 81 279 75 115 Maple [7], have a built-in routine that performsgmplification
22 —+(—=+ (—+ (= +(modulo set of polynomialdn Maple this method is called
64 32 64 16 64 . .
9 1 simplify.

+(—55 + = o)c)e)e)e)e. Next, we describe the underlying theory simplification
]])]) modulo set of polynomialShe reader solely interested in its
This formula can be implemented using a chain of six MACg s ication to data-path synthesis may proceed to Section I1-C.
or one MAC in six cycles. Fig. 1 demonstrates one possible

implementar:ion. I e alaeh A. Basic Commutative Algebra
Our synthesis tool, SymSyn, automates the algebraic ma-_ . ..) . . .
nipulations shown in this example. SymSyn converts the basicDef!{n't'O“n ,,2'1£. An_ Abelll"a? %r?IUp'.S a setG a:pd.a binary
blocks of a behavioral description, representing data flo(\?\Pe_ra lon " satisfying all the o.owmg properties
portions of the design, to their polynomial representations 1) Closure Foreverya,b € G;a+b € G.

and uses numerical methods for exact and inexact matching!l) Associativity For everya,b,c € G;a + (b +¢) =

with library elements. If a match is not found, the data flow is (a+b) + c.
decomposed into the library elements using symbolic computeriii) Commutativity For everya,b € Gia+b =b + a.
algebra. iv) ldentity. There is an identity elemefte G such that for

This paper is organized as follows. Section Il gives an a@la € Gia+0=a. _
overview on symbolic algebra and explains how Grébner basis V) Inverse If a € G, then there is an elemente G such
is used in polynomial decomposition algorithms. In Section lll, thata +a = 0.
we present how we can leverage results from symbolic algebrad€finition 2.2: A commutative ring with unitis a sef® and
to decompose a po|ynomia| representing a (portion of) ddo binary operations—ii” and “”, referred to as addition and
flow. In Section 111, we also explain our data flow synthesis toolnultiplication, as well as two distinguished elemetts. € R
SymSyn, with an example. Sections IV and V describe the tvi$ich that the following axioms hold:
new algorithms developed for automatic decomposition of data i) R is an Abelian group with respect to addition with ad-
flow into complex arithmetic library components. Section VI ditive identity element O;

shows a set of library independent symbolic transformations ii) Multiplication closure For everya,b € R; a-b € R.

1156 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

iif) Multiplication associativityFor everya,b,c € R;a-(b- denote the set of terms of the polynomial riRfe 1, z2, . . . , z,]
c¢)=(a-b)-c. by T, whereN is the set of nonnegative integers

iv) Multiplication commutativityFor everya,b € R;a-b =
b - a. Tx:{xila:?...a:f;|i17i2,...7inEN}.

v) Multiplication identity, There is a identity elememte R

such thatforalh € R;a-1 = a. In division of univariate polynomialsR[x], we start by

vi) Eifgibfu“v“ﬁl' Fli)revega,b,c € Ria-(b+e) =abtac \uiting the polynomials such that its terms are in decreasing
olds for afla, b,c € k. order of the degree of. To define reduction (division) for

Definition 2.3: A field K is a commutative ring with unity, multivariate polynomials, we need to have an ordering for
where every element K except 0 has a multiplicative inversemyitivariate term.

le,Va e K—{0},3acKsuchthat-a=1. . Definition 2.5: A term orderingon R[zy, za, . . ., z,,] is any
The set of all multivariate polynomials with variableselation> on 7z, satisfying the following.
z1,Z2,...,%,, coefficients from a field, and the two oper- "

i) > is atotal (or linear) orZZ,,.
i) If o, B, andy € Z2, anda > 3, thena + v > B+ 7.
i) > is well ordered onZZ,. This means that every
nonempty subset aZZ, has a smallest element under

ations addition and multiplication forms a commutative ring
with unity denoted byR[z1, zo, . .., z,].

Definition 2.4: Let R be a commutative ring, a honempty
subsefl C R is anideal when

>.
__') 0el; Theleading monomiabf polynomialp € Rz, 2, ..., z,]
i)y p+qelforalpqel with respect to a total ordering of the variables, such as the
iii) r-peTlforallpeTlandreR[12]. lexicographical ordering, is the monomial jnwhose term is
Lemma 2.1:Let P = {pi,p2,...,px} be a finite the maximal among those im we denote this monomial by
subset of the polynomial ringR[zi,z2,...,2,] and M(p). We also definerterm(p) to be the maximal term, and

(PYy=(p1,p2, -, k) = {2 hi-pi| hi €R[z1, T2, ..., 4]}, thehcoeff(p) to be the corresponding coefficient, therefore,
Then (P) is an ideal inR[z1, 2, ..., z,]. We will call (P)

the ideal generated by and the setP is called generator M(p) = heoeff (p) - hterm(p).

or basis of this ideal. For example, the set of polynomials
P = {p1,p2,p3} defined below generates a polynomial ideal

Example: Consider, T1, hat is written in lexico-
overR[z1, zo, z3] ample: Considerp € Rlz1,z2] that is writte exico

graphical order

P1 =aTE2a3 — 103, Pr = T1THLZ — T1T2T3, p =3aiwy + 522 + 23
ps =riz; — 7} M(p) =3z3z
(P) ={a1-p1+az-p2+as-ps|ay,az,a3 € Rlwy, 22, x3]}. hterm(p) =ziz-
heoeff (p) =3.

Unfortunately, whileP generates the infinite séP), the
polynomialsp; in P may not yield much insight into this L)
Definition 2.6. Reduction:For nonzero p,q €

ideal, since, for each ideal in a polynomial ring, there are man :
HEgerl,xg, .,z,] we say thatp reduces modulg; if there

possible sets of polynomials that generate the ideal. In ot o J O R
words, the ideal basis is not unique. However, Buchberger [&fiStS @ monomial irp which is divisible byhterm(q). Let
€ Rlz1,29,...,2,] — {0}, i.e., the ring of polynomials

has shown that an arbitrary ideal basis can be transformed iﬁ%)) I ,
a basis with special properties, which is called Gesbner alter removing the trivial 0 polynomial. Ip = «a - ¢ +
basis A minimal (or reduced) Grébner basis forms a canoniciineret € T, 7 € Rlzy, z2, e @], @ndu = t/hterm(q);
representation for a multivariate polynomial ideal. A canonic4l € Tx: then we writep —, p’ to signify thatp reduces tg
representation for ideals enables us to check whether two idd&oduloq) andy’ is equal to

are equal. Important applications of the Grobner basis include

polynomial decomposition and variable elimination in a set of p=p— -t =p— _*

multivariate polynomials. One may say that the Grébner basis () heoeff(q)
is the cornerstone of polynomial decomposition used in our .))
mapping algorithm. In the next section, we will give a brief EXample: Consider the following two polynomials:
description of Buchberger’s algorithm.

- q.

p =6z + 132% — 62 + 1

B. Grobner Bases g =322 +5x—1
Before introducing a formal definition of Grobner bases, we P —q?’ P =p— 22 - q = 32> + 2% — 6z + 1.
need to defingerm orderingand reduction(division) of mul-
tivariate polynomials. A monomial of the form' z%? ... zir, If p reduces tp’ modulo a polynomial in a set of polynomials
wherezy, zo, ..., xz, are the variables of the polynomial and) = {qi,¢2,...,¢»}, We say thap reduces moduld@) and

(i1,42,...,1n) € Z%, are the exponents, is calledem. We write p —¢ p’ (p" = Reduce(p, Q)); otherwise, we say that

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1157

p is irreducible modulay. We denotep—*p’ if and only if ~ Algorithm 2.2 Buchberger’s Algorithm for Grobner Bases.

there is a sequence such that procedure Gbasis(Q)
B o # Given a set of polynomial@, compute such tha{G) =
P=Po—=QP17Q QP =P (Q) and@ is a Grobner basis.

If p—*q andg is irreducible, we will writep —¢, ¢. Itcan G — Q;k — length(G)
be shown that for a fixed s€t and a given term ordering, the se- # Initialize B to all possible pairs
quence of reductions is finite [10]. Therefore, we can construcB « {[i,j] : 1 <i < j < k}
Algorithm 2.1 which, given a polynomial and setQ, finds a While B # § do {
polynomialg such thap—*gq. In Algorithm 2.1,R,, o denotes [i, j] < select a pair fromB
the set polynomials i) — {0} such thahterm(p) is divisible by ~ # mark that pair as selected
hterm(q). Note that any member dt,, , can be chosenineach B « B — {[i, j]}
iteration, but this choice affects the efficiency of the algorithm. # G; denotes théth element of the ordered sét
For the sake of simplicity, we assume an efficient selection ish < Reduce(Spoly(G;, G;), G)
implemented irselectpoly if h # 0then{

As mentioned previously, any finite set of polynomia)s G—GUihhk—Fk+1
generates an idedl)) andQ is called the basis of this ideal. B «— BU{(i,k): 1 <4 < k}}}
If a nonzero polynomiap is reduced to zero modul®, we return(G)
can determine thap is a member of the ideal generated bgnd
Q: p—*g0 = p € (Q). However, the converse is not true for

all basis of(Q). In can be shown that [6], [9]7 is a Grébner basis when:
1) the only irreducible polynomial ifG) isp = 0;
Algorithm 2.1 Full Reduction ofp Modulo Q. 2) Spoly(p,q) —¢& 0 forallp,q € G;
procedure Reduce(p, Q) 3) if p —¢ gandp —F, r,theng = r.
Given a polynomiap and a set of polynomialQ Buchberger’s algorithm (Algorithm 2.2) uses the properties
from the ringR[z 1, x3, .. .,], find ag such thap—"q. above to convert a finite s&) C Rlzy, s, ..., 2,] iNto a
Start with the whole polynomial. Grobner basis [9].
r—pq<—20 In order to check whether a polynomjals a member of the
if no reducers exist, strip off the leading ideal (Q), first Algorithm 2.2 is used to fornt a Grobner basis
monomial; otherwise, continue to reduce. for (Q). ProcedureReduce(p, @) (Algorithm 2.1) must then
while r # 0 do { return zero.
R « RT_’Q
while R #) do { C. Grobner Bases and Data-Path Synthesis

#select gpolynomial € R

i We now describe the application of the theory described pre-
| < selectpoly(R)

viously. Let L. be the set of polynomial representations of the

R —=R-{f} library elements. In order to synthesize a data path for a poly-
ro—r = (M(r)/M(f))f nomial representatioi using libraryL, S should be a member
} _ of (L). In order to examine membership(f), we need to cal-
q —q+M(r);r —r—Mr) culateG the Grébner basis dfZ) and useReduce(S, G). If S
} reduces to zero, thefi e (L). If S'is reduced to zero only using
return(q) polynomials inG that are also irL, thenS can be built from the
end given library elements. As an example, consider
— 2 3 2
Definition 2.7: An ideal basisG C Rlz1,s,...,2,] is S =x+x"+x" +y+xy+xy
called aGrobner basigwith respect to a fixed term ordering L={1+x+x* x+y}
and the implied permutation of variables) when*;0 < p € G =Gbasis(L) = {x+y, y> —y+ 1}
(G). Reduce(S, @) returns zero, therefore, S € (L
We define theS-polynomialof p, ¢ € R[z1, 2, ..., z,], de- educe($, &) returns zero, therefore, (L)
noted asSpoly(p, ¢q), as While performingReduce(S, G), we determine that
P q S=x+y)(1+x+x?)
Spol(p,0) = LOM(MO) M) - | s - 1]
() M(p) M(q) therefore, S can be decomposed into elements of (L).
Example: For polynomialsp = 3z%2y — 3> — 6 and
_ 3 |4 H H
¢ = Gzy” + 5z — 1 with degree ordering we have Il. SYMBOLIC ALGEBRA AND LIBRARY MATCHING

LCM(M(p),M(q)) = LCM(32%y, 6zy*) = 62°y* , o
302 56 buud i s) After extracting the CDFG of_ an algonthm_lc Ievel_ DSP_
Spoly(p, q) =62y - { vy =y =6 bay” +ox - } model, we calculate the polynomial representations of its basic
3x?y 6zy? blocks. The polynomial representation of a basic block can
=—2y°—12y?—5x’+x. be directly extracted from algorithmic-level code if the basic

1158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Fig. 2. Implementation of? — y2. Fig. 3. Another implementation of? — y2.

block calculates a polynomial function. If the basic blocRossibleimplementation, the side relation set should be set equal
performs a series of bit manipu|ations or Boolean functiong), all subsets of the Iibrary with all possible permutations of the
interpolation-based algorithms [3] can be used to formulate tigut variables. Since this is exponentially expensive, a guided
equivalent polynomial representation. When the basic blogkchitectural exploration is necessary. In the next two sections,
implements a transcendental function, we use an approxinfég Will introduce two algorithms designed to reduce the com-
tion, such as the Tay|or or Chebyshev series expansion’ aé)i'@(lty of this search with two different final objectives. The first
po]ynomia]_ The chosen po]ynomia] approximation has to @gorlthm finds the minimal component decomposition for the
verified manually by simulation to ensure that constraints, suéfven data flow. The second algorithm finds the minimal CPD
as accuracy, are satisfied. implementation of the data flow.

Symbolic computer algebra is subsequently used to intelli-
gently decompose data flow to library components and auto-1V. MINIMAL COMPONENT DECOMPOSITIONALGORITHM

matically synthesize the data path. The symbolic algebra routingp this section, we introduce one of the algorithms imple-
used in this algorithm isimplification modulo set of polyno- mented in our tool, SymSyn. This algorithm automatically maps
mialsthat has been described in Section Il. Assume a basic b'%'?)olynomial representation of a (portion of) data flow to a
(or partofit) is represented by polynomjaand the library com- get of complex arithmetic library components while using the
ponents available are represented by a set of polynothias |east number of library components. This algorithm, in conjunc-
a reminder, to simplify a polynomial modulo the side relation tjon with classical high-level synthesis algorithms, can be used
setL, we build a Grébner basis froth, G — Gbasis(L), and for efficient high-level DSP synthesis. The minimal component
useReduce(p, G) to obtain the simplified answer. The built-ingecomposition algorithm described is empowered by Grobner
function that implementsimplification modulo set of polyno- psis fundamentals, described in Section Il. The inputs to this
mialsin Maple is calledsimplify [7]. In order to comply with gigorithm are polynomial representation of the data flow basic
Maple terminology, we call the set of polynomials #iee re- pjock to be synthesized and a set of polynomials that represent
lations the set of complex arithmetic library components available to
Note that any polynomial representation can be implementgg gesigner. As mentioned in the previous section, different side
using only adders and multipliers. Therefore, any polynomigd|ation sets result in different implementations of the data flow.
representation of a basic block is guaranteed an implementggrefore, our algorithm aims at intelligent side relation set se-
tion if the library includes adder and multiplier. Our goal is tection to accelerate the decomposition process for a given cri-
find nontrivial solutions that are minimal in terms of compoteria. The high-level view of the selection criteria for a minimal
nent count or CPD. As an example, consider a data flow implgamper of components is illustrated in Algorithm 4.1.
mentingx"2 — y”2 and a library that includes add, multiply | et be the polynomial representation of the basic block to
subtract and square functions. Using Maple syntax we have f)¢decomposed into complex library elements. We start by sim-
following. plifying S modulo each library element as the side relation. The
simplification results are stored in a tree data structure. If a sim-
plification result is identical (or within an acceptable tolerance)
to the polynomial representation of a library element, a possible
bxc solution is found and the corresponding tree node is marked ac-
sordingly. If the simplification result stored in a tree node does

This is equivalent to the implementation shown in Fig. 2 i)
Note that siderels is a subset of our library. Maple comput8St correspond to a library element, we recursively apply the

the Grobner basi€ of siderels and prints out the result oS2Me Steps to the new tree node.
Reduce(a, siderels). The result indicates that

>a:= XAQ—yAQ :siderels:={b=x—y, c=x+7y}
> simplify(a,siderels,[x,y,b,c]);

Algorithm 4.1 Decomposes into elements of libranL
a:=x"2—y"2:=bxc:= (x —y)*(x +y). procedure Decompose(S, L)

dt Given a polynomial representation of the speend a set of
polynomialsL as component library,

decomposé into elements of library..

If the side relation set is changed, other possible solutions f
the specification might be found.

>a:=x"2—y"2:siderels ;= {b=x"2, c =y"2}; # initialize tree
> simplify(a,siderels,[x,y,b,c]); treeroot(S);
b_c depth — 0
bound «— —1
results in the implementation shown in Fig. 3. while depth # bound do {

As shown, different side relation sets can result in different bound «— Explore(S, L, depth) # Explore is defined below
implementation of the specification. Therefore, to find the best depth < depth + 1

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1159

) o Y

report best solution in tree x1
end _ Fig. 4. MappingS to two components.
used in Decompose procedure
int function Explore(S, L, d) library that implements the result, but it is not successful to find
bound — —1 one for this instance.
for all n € in tree with depth d do {
forall sr € L do{ > siderel := {y = x0xx1};
result = simplify(n, sr); > simplify(S, siderel, [z0, 21, y]);
makeresulta child of noden 041 66720" 44166 668%20" 25y — 520" 2-+.041 66T+214

ddchild(n, result):
addehild(n, result) 166 668%21" 24y — 5x2172 + 250 00252 — Lxy + 1

if result € L
solution is found In the second iteration, the same steps are performed with the
bound = treedepth(result); }} adder as the side relation. The simplification result now matches
#returns — 1 if no solution is found yet. an approximation to the cosine function. Therefore, SymSyn
return (bound marks this node as one possible solution. The following Maple
end commands show the result of this iteration. Note that the result

is a Taylor series approximation of cosine. Since cosine is one
To further reduce the search space a bounding functionOfsOur I?bra_ry elements, we have found one possible solution,
used. The bounding function is the number of library comp(§- own in Fig. 4.
nents used to build the specification. In other words, if we find > siderel := {y = x0 + x1};
a s_,olution w_it_h two library components we will not explor_e so- > simplify(S, siderel, [0, z1,y]);
lutions requiring more than two components. But we will un- '

cover all two-component solutions and choose the one with op- L.+ .041667+y"4 — 5xy"2

timal cost (area or delay). The number of components used issince there is a solution with depth equabitein the tree,

the same as the depth of the simplification tree; therefore, th&ound ofoneis set on the tree growth. Note that the root is

tree is bounded by the depth of the first solution found. denoted with depth equal #®ra Therefore, a solution at depth
Such bounding function is chosen assuming that if a cone consists of two components. SymSyn performs the steps

ponent is custom designed to perform a combination of arithescribed above for the rest of library elements and keeps the

metic operations, it is more cost effective than connecting a s@sults in root offsprings. After going through all library ele-

ries of components that perform the same arithmetic operatiofifents, SymSyn finds only one solution using two components.

Clearly, the merit of the resultis strongly dependent on the avaithe solution is demonstrated in Fig. 4. SymSyn will stop de-

able library. composing the leaf nodes, since continuation would result in a
o search for solutions with three or more components while the
A. Minimal Component Example objective is to find a solution using minimal number of compo-

To clarify the algorithm described above, we choose our Ients.
brary to be a subset of the Synopsys DesignWare library con-
sisting of six combinational elements: multiplier, adder, sub- V. TIMING-DRIVEN DECOMPOSITIONALGORITHM
tracter, multiplier-accumulator, sine, and cosine. As an exampley, thjs section, we introduce the second algorithm imple-

consider synthesizing a phase shift keying (PSK) modulat@fanted in our tool SymSyn. In contrast to the algorithm de-

used in digital communication. A data flow basic block of PSKcriped in Section IV, here, we focus on minimizing the CPD of

has the following polynomial representation: the data flow implementation. Previously, we focused on min-

imizing the number of components used to implement the data

flow. Similar to Algorithm 4.1, this algorithm selects side rela-
+ .166 668+x0” 3xx1 4 .250 002+x0" 2+x1"2 tion sets intelligently to accelerate the decomposition process,
+ .166 668%xx0%x1”'3 + .041 667*x1"4; since selecting different side relation sets result in different im-

plementations of the data flow.

As the first step, SymSyn initializes a tree data structure andAfter extracting the CDFG of an algorithmic-level DSP
stores polynomiab in the root of the tree. For all library el- model, the polynomial representations of its data flow basic
ements, SymSyn makes a call to Maple and perfasimplify blocks are passed as inputs to the timing-driven decomposi-
with side relation set equal to the library element. The resulisn algorithm. Algorithm 5.1 shows the pseudocode of the
reported by Maple are kept as new children of $hteee node. timing-driven decomposition algorithm. This algorithm takes

In the first iteration of our example, the side relation is set tilne same inputs as Algorithm 4.1; the polynomial representa-
the first element in the library, the multiplier. Shown below aréon of the basic block to be implemented and the polynomial
the Maple commands. The first two lines are the requests senrbgresentations of the complex library elements. Algorithm
SymSyn, and the third line is the simplification result reportesl. 1, uses the branch-and-bound method to reduce the side-rela-
by Maple to SymSyn. SymSyn searches for a component in ti@n-set selection space while searching for the implementation

> S:=1— .5xx0"2 — x0%x1 — .5+x1"2 + .041 667%x0"4

1160 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

with the least CPD. We define the bounding function as thibat the CPD ofS is minimized. Decomposing is synony-
best CPD of implementations seen so far. The lower bountbus to simplifyingS modulo elements of the libraty as side
computed at each decision branch is the CPD of componentseétations. In order to decide which library elements should be
the side relation set in view of data dependencies. If this lowesed as the side relations, we use a decision saat{on_treg¢
bound is greater than the best CPD of implementations seert@@mplement the branch-and-bound algorithm. The bounding

far, the corresponding decision branch is pruned. variable is initialized to the CPD of mapping the polynomial
solely to adders and multipliers, also known as the lexicograph-
Algorithm 5.1 Decomposes into elements of library. ical mapping.
function GuidedDecompositioe&p_tree, max_CPD)i Thesimplify results are also saved in the tree data structure.
initialize a solution tree If a simplification result is identical (or within an acceptable
solution_tree «— tree(exp_tree); tolerance) to the polynomial representation of a library element,
depth «— 0 a possible solution is found and the corresponding tree node is
bound «— max_CPD marked accordingly. If the CPD of the solution is smaller than
for all n € in solution_tree with depth == depth do { previously encountered solutions, we set the bounding variable
if depth == 0 then to the current delay. In case the simplification result stored in
choose alkr € L that preserve thexp_treestructure a tree node does not correspond to any library elements, we
else for all sr € L do{ recursively apply the same steps to the new tree node.
if cost of sr + cost of node n < bound then { In general, the branch-and-bound algorithm is practically
result = simplify(n, sr); applicable to most problems. However, introducing heuristics
makeresulta child of noden that lead quickly to promising solutions can improve the execu-
addchild(n, result); tion time without hampering the quality of the solution. As for
add cost ofr to cost ofresult all branch-and-bound algorithms, the worst case complexity
if result € L then { remains exponential.
solution is found We use the expression manipulation techniques presented
bound = cost of node result; } subsequently in Section VI as heuristic guidelines for choosing
if no moren € in solution_tree with depth == depth the side relation set. Initially, we apply tree-height reduction
depth «— depth + 1 (THR), factorization, expansion, and Horner-based transform
B on S. As a result, we have several polynomiabxg_treg
return the best solution isolution_tree representing the same data flow. Each of these representa-
end tions can result in the desirable implementation based on the
int function CalcMaxCPDéxpression_treg available library elements. Starting with the primary inputs,
CPD = the critical path delay aéxpression_treassuming the we try covering the expression tree with the library elements.
expression is mapped to adders and multipliers only. We choose all library elements that cover the primary inputs
return (CPD) and a portion of the expression tree as a side relation. If the
end result of simplify modulo side relation is not a library element,
procedure main(S, L) we decompose the result without further guidance from the
Given a polynomial representation of the sgeand a set of expression tree. Algorithm 5.1 in conjunction with substitution
polynomialsL as component library, and THR can be generalized to several polynomials in a basic

decomposé into elements of library. such that the CPD of block or across basic blocks.
S is minimized. o .
perform expression manipulation techniques A. Timing-Driven Example
As an example, consider a data flow segment of a Gabor filter

cxp_tree[l..NumberOfManipulations] with the following polynomial representation:

= AllManipulations(S); S 1—a?— b 4o+ la4 n lb4 B laﬁ B la4b2 B la2b4

. . . 2 2 6 2 2
for + = 1 to NumberOfManipulationslo { 1y 1 g L1go 1,, 1,6 14
maxC PD[i] = CalcMaxCPD (exp_tree[i]); —gb to% t5° b + 1% b* + i b” + ﬂb .

Assume we would like to mafs to a library consisting of
functions implementing add, multiply, MAC, square, exp. After
= GuidedDecomposition(cxp_tree[i], maxCPDIi]); factorization,S will be converted to:

solution]i]

} 1 2 2 6 4 472 2
report the best solution iBolutionsi] § = 5p(a” +67)(a” — 4a” + 3a7b" + 12a
end —8a%b® + 3a%b* + 12b% + 24 — 4b* + b5) + 1.

Let S be the polynomial representation of the data flow. Our The factored form of guides us to use = a”*2+ b2 as an
goal is to decomposg into the elements of the librarf such initial side relation and sets an initial bound by mapping the fac-

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1161

:

€X] s
b ’ (@) (b)
Fig. 5. MappingS to four components. a+ b *c¢c +d a +d+b * ¢
a b | Fig. 7. Performing THR on (a) produces (b).
L S —
6 2 24
|] | | c=a*+b [[mapping for maximum parallelism. We have chosen different
symbolic polynomial manipulation techniques as such guide-
¢ lines. These transformations are the counterparts of the library
‘_P_E[MA? independent transformations used in logic synthesis [1]. These
heuristics can also be used as an enhancement to the minimal
component decomposition algorithm. The intent of this section
cl DEF is to describe the manipulation techniques through simple
examples.
result
A. THR

Fig. 6. Possible implementation fef.
THR was introduced long ago [13], [14] as an optimization

tored form lexicographically to adders and multiplier. Symsyfi€thod for parallel software compilers. It is a technique to

makes a call to Maple and requests result of the following sirfﬁ(_juce the height_of an arithmetic expression_tree, where the
plifying operation. height of the tree is the number of steps required to compute

the expression. In the best case, it achieves the tree height
of O(log n) for an expression witn operations. THR uses
commutativity, associativity, and distributivity properties of
> result := simplify(S, siderel,[a, b, c]); addition, subtraction, and multiplication. In the classical case,
THR is achieved at the expense of adding more resources to
obtain maximum parallelism in the expression. In previous
o work for hardware synthesis, THR has been proven useful in
The last line is the result reported to SymSyn by Maple. A§gn-level synthesis of data-intensive circuits such as DSP and
it can be seen, the result is a Taylor series expansierigic). multimedia applications [15]-[17].
Therefore, the data flow can be implemented using two squargy, oyr work, we use THR as an expression tree manipula-
components, an adder, and one exp component, as SNOWRdR technique. THR will achieve the best execution time when
Fig. 5. The bounding function is now changed to the CPD @fing an unlimited number of two input adders, subtracters, and
the potential implementation. By exploring the other branchggtipliers. Since we are focusing on libraries that have more
of the decision treesplution_treg, we realize that aII_ othgr complex blocks, THR may or may not result in the optimal exe-
branches are pruned by the new bound. Therefore, Fig. 5 is iftion time. The result is dependent on the library components
plementation with the least CPD. available. Fig. 7 shows an example of how THR can reduce the

Now, assume that there is no exp block in our library. In ordgipp Fig. 7(b) is obtained after applying THR on Fig. 7(a).
to show the power of other polynomial transformations, we per-

form Horner transform (see Section VI-C) on the polynomiad, Factor and Expand
result

> siderel := ¢ = a"24b"2;

1 1 1
1t=1—c+—-*c"2—=c"3+—xc"4
resu ct e g *e 22 ¢

As mentioned previously, traditional THR [13], [14]
1 1 1 only uses associativity, commutativity, and distributivity to

result =14 <—1 + (5 + <_6 + 2 > -C> -C) " C. transform expressions. Since we have access to a symbolic
manipulation tool in SymSyn, we can benefit from other

. . . . transformations as well. One such transformation is common
The formula given above can be implemented using a chain ot . - N
%ubexpressmn factorization. Factorization can reduce the

four MACs or one MAC in four cycles. Fig. 6 demonstrates Onnumber of components used as well as the tree height of a

possible implementation. given expression. An example is shown in Fig. 8. Factorization
transforms the expression shown in Fig. 8(a) to the expression
show in Fig. 8(b). Fig. 8(b) has three less multiplications, one
In Section V, an algorithm was introduced that maps lass addition, and shorter tree height compared to Fig. 8(a).

polynomial representation of a (portion of) data flow to Another useful symbolic manipulation technique is expan-
complex arithmetic library elements such that the CPD son. This manipulation technique changes the polynomial into
minimized. This algorithm was implemented in the Symboliits sum of products format. Meanwhile, it is capable of straight-
Synthesis tool, SymSyn. To accelerate the speed of mininfefward simplification techniques that can save both delay and
CPD decomposition in SymSyn, a guideline is necessaayea. A small example of such simplification is transforming
for side-relation selection. Such guideline should facilitate + a + a to 3xa.

VI. EXPRESSIONMANIPULATION TECHNIQUES

1162 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

"% % e

c+a * d+b *c+b * d (@ + b)*(c + d)

Fig. 8. Factor may reduce the number of components and CPD.

C. Horner Form X Y
The Horner form of a polynomial is a nested normal form (b) (%) ©
with a minimal number of multiplications and additions. Any)
polynomial can be rewritten in Horner, or nested, form. The
general univariate case is defined as follows [8]: a*b*c + d a*b*c+td+te* f

p(z) =ao- 2" + -+ an1-T+ an
:(...((a0.$+a1).$+a2).$+...an_1).x+an'

Assume that:™ can be calculated using onlyg,(n) mul-
tiplications for integem. For a polynomial of degree, the a*b*c + d d+e * f
Horner form requires multiplications and» additions. The ex-

panded form. however requires Fig. 9. Substitution with THR can maximize parallelism.

Z 10g2 (Z) — 10g2(n!) NORMALIZED DELAY):l—\lAI\DB/I&iEL OF LIBRARY ELEMENTS

Library Element | Delay Normalized Delay| Area Normalized Area
multiplications, which is more than twice as expensive for 7agq 7.54 1| 15090 1
polynomial of degree 10. Thus, one advantage of the Hormsguare 7.89 1.05| 89814 5.95
form is that the work involved in exponentiation is distribute(ym 10.17 135| 133401 3.84
across addition and multiplication, resulting in savings of sonyac 17.28 229 142554 9.45
basic arithmetic operations. Another advantage is that Horrgipe 4521 6.00| 625218 4143
form is more stable to evaluate numerically when comparecosine 4537 6.02| 622849 41.28
with the expanded form. This is because each sum or product sQrT 21.42 2.84] 36031 2.39

volves quantities which vary on a more evenly distributed scaie

[8]. For hardware implementation, the Horner form has a dis-

tinct advantage_ It eﬁective'y maps a univariate po'ynomia' f@riable elimination for multivariate pOlynomials. We refel’ the

cost effective multiplier-accumulators (MAC). interested reader to [12] for the detailed mathematical proof.
Horner form is generalized for multivariate polynomials byNote that for arithmetic polynomials, use of a more general

specifying an ordered list of variables. As a simple exampldecomposition model is necessary as compared to the algebraic

consider the fo”owing p0|yn0mia| in which the number of mu|diViSi0n modeled in combinational |0giC SyntheSiS. This is due
tiplications is reduced from 32 to 13: to the fact that the Boolean impotence property does not hold

in arithmetic polynomials and arithmetic polynomials can have
> 8 =x"3+3%x" 2%y +x" 2+ 3xkxry” 2+ 2kxy+25x" 2¢z+ €xponents. Therefore, there is no restriction on the support
set of the divisor and quotient of an expression. For example,
(2% — y?)/(z — y) = = + y is a legitimate division.
Substitution can be combined with THR in order to select a

3 4 y 2 4 25y 2%z 4 2xyxz + 2" 2xx + 2"\ 2%y 4 2/2;

> convert(S,' horner’, [x,7,2]);

224 ((2+z)xz + (2xz + 1 + y)*y)xy + ((2 + z)*z subexpression that maximizes parallelism. As a simple example,
+ (24 4%z + 3xy)*y + (252 + 1 + 3%y + x)*x)*x let us consider a basic block which consists of two arithmetic
expressions
D. Substitution and Elimination X :=axb*c +d
Substitution is defined as replacing a subexpression by a Y :=X + exf.

previously computed variable [1]. It reduces complexity of a

function by using an additional variable that was not previously It can be seen thatis dependent o, thereforey is calcu-

in its support set. This transformation creates a new dependetated after the value df is known as shown in Fig. 9(a). How-
between expressions, but may also eliminate previous depewer, if we eliminat& inY,Y:=axbxc+d+ex£f,Y canbe
dencies. Substitution has been previously used in multilevalaluated in parallel with. Fig. 9(b) shows the results of THR
combinational logic optimization [18], [19]. Elimination theoryon bothX andY expressions. In order to achieve maximum par-
[12] based on the Grobner basis formalizes substitution aaltelism betweeX andy, we now substitute only subexpression

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1163

TABLE 1
SYMSYN RESULTS FORSOME EXAMPLES
Lexicographical Mapping Minimal Component Mapping Minimal CPD Mapping
Data-flow Examples cNo‘:rl:;o(::ents Area CPD z)‘x;olfents Area CPD cN()l:xl:;o(Ilfents Area CPD
a’-b? 3| 18.68| 235 3 10.84 | 235 3| 1290| 2.05
b*+ba’c 6| 4520 3.70 4 30.19 4.69 6| 3942| 3.70
1-x0%/2+x0%/24-+x0+x 1x2 11| 65.88 5.70 3 51.72 7.02 6| 41.24| 5.58
cos(sin(x0)) 24 | 180.81 7.40 2 82.71 12.01 9] 64.88| 643
IDCT 9| 63.88 4.70 2 15.40 3.34 2| 1540 | 3.34
anti-alias 27| 191.65 9.09 8 60.14 14.55 12 92.61 7.04
Geometric-transform 12 8256 | 10.09 2 50.27 8.29 5| 43.13| 7.92
1/2tanh(a-1)+ 1/2tanh(a+1) 16 | 94.40 9.74 3 24.85 5.63 4] 30.80| 4.38
PSK 33| 229.01 7.40 2 42.28 7.02 2 42.28 7.02
Turbo decoder 104 | 817.47 16.14 4 125.30 12.99 4| 12530 | 12.99
Gabor-transform 79| 565.10 | 12.44 6 96.61 9.41 6| 96.61| 941
a*b* c in Y with a new variablez := a * b x c. The result is Component Distribution
shown in Fig. 9(c).
30
25 A

VII. | MPLEMENTATION AND EXPERIMENTAL RESULTS 20 -

SymSyn is an environment that, used in conjunction wil15s |
classical high-level synthesis algorithms, can automate efficie
synthesis of data flow intensive circuits. It takes as input a de "~ |
path of the circuit under design and automatically maps that di 5 -
path to complex library elements, without need of any directivt ; | ‘
from the designer. The program inputs are polynomial represe¢ Add Square Mult MAC Sin Cos e(x) In(x) tanh(x)
tations of data flow and a set of polynomials representing the
library elements. Output is a report of components used to iffig. 10. Component distribution in SymSyn output.
plement the data flow and the way they are connected, such that
the CPD or number of components used, is minimized. SymSstandards such as JPEG, MPEG, and MP3. The geometric trans-
contains implementations of the algorithms described in Sgermation is used in graphics for image rotation. The next three
tions IV and V and the heuristics described in Section VI asamples come from the field of digital communication. One is
accelerators. The implementation is mainly in C programmirgbandpass filter in frequency domain. The other performs phase
language, with calls to Maple V [7] for the symbolic manipulashift keying (PSK) modulation and the third performs turbo de-
tions. coding. The last example is a data flow segment of the Gabor

We have tested the efficiency of SymSyn with a number afansform used in neural systems.
data-path examples. In our tests, the area and CPD reported ata the first set of results of Table Il (lexicographical mapping),
normalized by the area and CPD of a full adder. For examplge assume that the polynomial representation is mapped only to
the CPD of an adder is 1 and CPD of a multiplier is 1.35. Thiswultipliers and adders. This is the same as the lexicographical
number is calculated from the CPD reported by Synopsys Deemponent inference that is typical in commercial behavioral
sign Compiler (DC) for a 16-bit multiplier divided by the CPDsynthesis tools. The number of components column shows the
reported by Synopsys DC for a 16-bit adder. The normalize@imbers of adds and multiplies in the data-path polynomial. The
CPD calculation is done for all library components availablerea reported is the area of an adder multiplied by the number
in the Synopsys DesignWare arithmetic component library [4f adds, plus the area of a multiplier multiplied by the number
Normalized area and CPD of several library elements are shogfmultiplies in the data-path polynomial. The CPD reported is
in Table I. the cumulative delay of components on the critical path.

Experimental results are shown in Table Il. The first four data Next, we map and synthesize the example data flows using
flows in Table Il are simple benchmark polynomials. The fifttBymSyn. The second set of results shown in Tablenih{mal
data flow polynomial is a basic block of a one-dimensional ircomponent mappingare the results obtained from SymSyn
verse discrete cosine transform (IDCT). The next data flow elty applying Algorithm 4.1. The mapping reported is the min-
ample is the antialias block described in the introduction. IDCifhal component mapping. We have shown the number of li-
and antialias are widely used in audio and video compressiorary components Algorithm 4.1 has used in mapping each data

1164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

TABLE 1lI
AREA AND DELAY REPORTED BY SYNOPSYSTOOLS USING TSMC.35 LIBRARY
Synopsys BC results Synopsys DC results
Lexicographical SymSyn Mapping Lexicographical SymSyn Mapping
Data-flow Examples |Area Eitl;n;ated |Area lf)itl?;ated |Area Delay |Area Delay
ALY 120295 11 83087 11 66760 11.21 54815 9.42
B’+ba’c 469030 24 | 862816 24 | 285926 29.09 166303 25.44
1-x0%2+x0%/24+x0+x1x2| 395252 23 137139 16 146526 19.68 93538 14.39
cos(sin(x0)) 790784 39 163349 35| 314776 38.17 140256 3247
IDCT 456704 24 178177 18 | 323185 29.29 130753 20.52
anti-alias 3387672 63 | 288373 48 | 1761169 69.43 102357 59.89
Geometric-transform 3051440 39 | 273340 30 | 1178868 54.07 190937 25.63
PSK 1812833 36 82705 24 | 1099991 33.33 80670 21.69
flow polynomial to the extended Synopsys DesignWare library VIIl. SUMMARY

(DesignWare library [2] plusanh(z), In(z), andexp(z) op-
erations). Area is the sum of areas of the components usedtg

SymSyn in each data-path |mpl'ementat|on.' ponents. These algorithms fit seamlessly in the high-level syn-
_Finally, the last set of results in Table tinimal CPD map- esis flow and enhance the quality of result of data intensive
ping), are derived by SymSyn using Algorithm 5.1. The eMgjycyit synthesis. Our method takes advantage of two previously
phasisis to decompose each data flow into the given library syghye|oped concepts; one is the polynomial representation of -
that the CPD of the implementation is minimized. We have rggary plocks and the second is symbolic computer algebra. Poly-
ported the number of components and the area and CPD of ffagnia| representation is used to represent the functionality of
implementation suggested by Algorithm 5.1. Note that Algqiyrary components and the data flow segment of the chip under
r|thm 5.1 maps for maximal parallellsm and resource sharlr&sign Symbolic computer algebra is used to decompose the
is not used. The CPD reported is sum of the delays of COMRQsi4 flow to a set of library components. From a practical stand-

nents used in the data-path implementation in view of their d§gint the contribution of this paper is to make arithmetic Ii-
dependencies. Both mapping results shown are using the s§igy pinding an automated process, and eliminate the need for
component library. user-specified synthesis directives.

In order to qualify the examples used in Table Il, we have symbolic computer algebra is a powerful set of algorithms
shown the distribution of components used in SymSyn outpiét previously used in the field of synthesis. We believe these al-
in Fig. 10. Note that the components used most are the MAfgrithms open a new set of opportunities in high-level synthesis
operator and the square operator; this result is typical in daj@search. Even though algebraic manipulations are best suited
Intensive circuits. for combinational arithmetic designs, classical scheduling, re-

In order to obtain a more precise measurement of the CRRBurce sharing, and retiming algorithms can be applied to the
and area of our set of examples, we used Synopsys Behavierata-path output to achieve optimized/pipelined designs.
Compiler and Synopsys Design Compiler to produce the set ofThe research presented here is especially promising in the
results shown in Table Ill. The examples in Table Il are thieelds of graphics, multimedia, and digital signal processing
subset of examples shown in Table Il that did not need(x), where there is a tolerance for computational error as long as
In(z), andexp(z) operations. These operations are not availhe degradation in audio or video is limited [20]-[22]. This
able inthe DesignWare library [2]. Thexicographicatolumns tolerance can be used to approximate nonpolynomials data
correspond to results reported by Synopsys Behavioral Coflows to polynomial representations, which are well-suited
piler and Design Compiler without any mapping directives ithputs for our tool SymSyn. This paper does not explain the
the behavioral HDL code. Th8ymSyn mappingolumns are approximation tools and truncation errors since there is a wide
the results reported for the same set of examples when mappiogly of mathematical literature available on these topics [6].
directives suggested by SymSyn are incorporated in the behav-
ioral HDL code. It can be observed that actual performance and ACKNOWLEDGMENT

area improvements for these examples are inline and bettertha.?he authors would like to thank ARPAIMARCO Gigascale

estimated by SymSyn in Table II. h Cent ds Inc. for thei ;
In summary, the results show that we can achieve an aver%eeSearc enterand synopsys Inc. for their support.

performance improvement of 25% and an average areaimprove-
ment of 60% over commercial behavioral synthesis flow. These

York: McGraw-Hill, 1994.

implemented in SymSyn as opposedto t_he lexicographical map[Z] DesignWare Library (1994). [Online]. Available: http://www.syn-
ping currently available in the commercial tools. opsys.com/

This paper has introduced two new decomposition algorithms
Xnap data flow to a set of complex arithmetic library com-

REFERENCES

PEYMANDOUST AND DE MICHELI: APPLICATION OF SYMBOLIC COMPUTER ALGEBRA 1165

(3]

[4]
(3]
(6]
(7]
(8]
[9]
[10]
(11]
(12]
[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

J. Smith and G. De Micheli, “Polynomial methods for componen
matching and verification,” ifProc. Int. Conf. Computer-Aided Design
1998.

——, “Polynomial methods for allocating complex components,” ir
Proc. Design, Automation, Test Eur. Cqrif999.

—, “Polynomial circuit models for component matching in high-leve
synthesis,IEEE Trans. VLSIvol. 9, pp. 783-800, Dec. 2001.

J. F. Hartet al, Computer Approximations New York: Wiley, 1968.
Maple (1988). [Online]. Available: http://www.maplesoft.com
Mathematica (1987). [Online]. Available: http://www.wri.com Clara, CA. She is currently a Senior Research and
B. Buchberger, “Some properties of Grobner bases for polynomial Development Engineer with Synopsys, Inc., Moun-
ideals,”ACM SIG-SAM Bullet.1976. tain View, CA. Her research interests include embedded systems, system-level
K. Geddes, S. Czapor, and G. Labalgorithms for Computer Al- design and synthesis, hardware/software codesign, and computer architecture.
gebra Norwell, MA: Kluwer, 1992.

T. Becker and V. Weispfenningzrébner Bases New York: Springer-
Verlag, 1993.

D. Cox, J. Little, and D. O’Shealdeals, Varieties, and Algo-
rithms New York: Springer-Verlag, 1997.

D. J. Kuck,The Structure of Computers and Computationklew York:
Wiley, 1978, vol. I.

D. J. Kuck, Y. Muraoka, and S. C. Chen, “On the number of operatior
simultaneously executable in Fortran-like programs and their resultil
speedup,|EEE Trans. Computvol. C-21, Dec. 1972.

A. Nicolau and R. Potasman, “Incremental tree height reduction for hi¢ ‘
level synthesis,” irProc. Design Automation Confl991, pp. 770-774. :

D. Kolson, A. Nicolau, and N. Dutt, “Integrating program transforma:)'%\\ : aspects of design technologies for integrated circuits
tions in the memory-based synthesis of image and video algorithms,” In ~ and systems, with particular emphasis on synthesis,
Proc. Int. Conf. Computer-Aided DesigRov. 1994. system-level design, hardware/software co-design and low-power design. He
H. Wang, A. Nicolau, and K. Siu, “The strict time lower bound ands author ofSynthesis and Optimization of Digital Circui(slew York: Mc-
optimal schedules for parallel prefix with resource constraifiSEE ~ Graw—Hill, 1994) and co-author and/or co-editor of five other books and of over

Armita Peymandoust received the B.S. degree in
electrical and computer engineering from University
of Tehran, Tehran, Iran, the M.S. degree in electrical
and computer engineering from Northeastern Univer-
sity, Boston, MA, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA,
2003.

Previously, she was a Design Engineer on the
1A-64 product line with the Intel Corporation, Santa

Giovanni De Micheli (S'79-M’79-SM'80-F'94)
received the nuclear engineer degree from Politec-
nico di Milano, Milan, Italy, in 1979 and the M.S.
and Ph.D. degrees in electrical engineering and
computer science from the University of California,
Berkeley, in 1980 and 1983, respectively.

He is a Professor of electrical engineering and, by
courtesy, of computer science at Stanford University,
Stanford, CA. His research interests include several

Trans. Comput.Nov. 1996. 250 technical articles.
R. Brayton and C. McMullen, “The decomposition and factorization of Dr. De Micheli is a Fellow of ACM. He received the 2003 IEEE Emanuel
logic synthesis,” irProc. IEEE Int. Symp. Circuits Syskay 1982. Priore Award for contributions to computer-aided synthesis of digital systems.

R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. WangHe received the Golden Jubilee Medal for outstanding contributions to the
“MIS: A multiple-level logic optimization and the rectangular coveringlEEE CAS Society in 2000. He received the 1987 IEERANSACTIONS ON
problem,” inProc. Int. Conf. Computer-Aided Desigt087. CoMPUTERAIDED DESIGNICAS Best Paper Award and two Best Paper Awards
M. Willems, H. Keding, T. Grotket, and H. Meyr, “Fridge: An interac- at the Design Automation Conference, in 1983 and 1993. He is President of
tive fixed-point code generation environment for HW/SW CoDesign,the IEEE CAS Society. He was Editor in Chief of the IEERANSACTIONS

in Proc. Int. Conf. Acoustics, Speech, Signal Proce97. ON COMPUTERAIDED DESIGNICAS from 1987 to 2001. He was the Program
G. Constantinides, P. Cheung, and W. Luk, “Heuristic datapath allocand General Chair of the Design Automation Conference (DAC) from 1996
tion for multiple wordlength systems,” ifroc. Design, Automation Test to 1997 and 2000, respectively. He was the Program and General Chair of
Eur, 2001. the International Conference on Computer Design (ICCD) in 1988 and 1989,
D. Menard, D. Chillet, F. Charot, and O. Sentieys, “Automatic floatingrespectively. He was a founding member of the ALaRlI institute at Universita’
point to fixed-point conversion for DSP code generation,Pioc. Int. della Svizzera ltaliana (USI), in Lugano, Switzerland, where he is currently
Conf. Compilers, Architecture, Synthesis Embedded, 2. scientific counselor.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

