
Physical Planning for On-Chip Multiprocessor Networks and

Switch Fabrics

Terry Tao Ye
Computer Systems Lab

Stanford University
taoye@stanford.edu

Giovanni De Micheli
Computer Systems Lab

Stanford University
nanni@stanford.edu

Abstract

On-chip implementation of multiprocessor systems requires the planarization of the interconnect
network onto the silicon floorplan. Manual floorplanning approaches will become increasingly more
difficult and ineffective as multiprocessor complexity increases. Compared with traditional ASIC
architectures, multiprocessors have homogeneous processing elements and regular network topologies.
Therefore, traditional ASIC floorplanning methodologies based on macro placement are not effective
in this domain. In this paper, we propose an automated physical planning tool, called REGULAY,
that can generate floorplans for different topologies under different design constraints. Compared
with traditional floorplanning approaches, REGULAY shows significant advantages in reducing the
total interconnect wire-length while preserving the regularity and hierarchy of the network topology.

1 Introduction

Multiprocessor Systems on Chips (MPSoCs) combine the advantages of parallel computing of mul-
tiprocessors with single chip integration of SoCs. MPSoCs are employed in embedded systems that
require high performance data processing capabilities. Examples include network processors (NPs),
parallel multimedia processors (PMPs) and other application specific array processors (ASAPs).

Advances in VLSI process technology allow designers to further increase system-level integration
onto a single chip. Future MPSoCs are likely to consist of hundreds, or even thousands, of processing
elements (PEs). These PEs will communicate with each other independently and concurrently
[1]. Traditional shared-medium communication architectures (e.g., buses) will no longer be able to
support the massive data traffic on this scale. Hence, future MPSoCs need to adopt a dedicated
on-chip interconnect network that can provide reliable and scalable communication [2].

Designing the on-chip network will become a major task for future MPSoCs. A large fraction of
the timing delay is spent on the signal propagation on the interconnect, and a significant amount of
energy is also dissipated charging and discharging the load capacitance on the wires [3]. Therefore,
an optimized interconnect network floorplan will be of great importance to MPSoC performance
and energy consumption.

With the ever-increasing complexity of MPSoC integration, manual floorplanning of the pro-
cessing elements and switches will become even more time consuming and inefficient. Automated
methods are needed for large-scale MPSoC designs. Unlike traditional floorplanning that deals with
the circuit macro block placement and wire routing [4], MPSoC floorplanning needs to solve the
problems from a different perspective, as illustrated in Fig. 1. Namely:

1. Folding and planarization – MPSoC network topologies are multi-dimensional. MPSoC planar
layout requires that PE blocks are tiled and abutted on the floorplan in a two-dimensional tile
array [1]. The planarization process is also constrained by the pre-defined aspect ratio and
row/column numbers of the tile array.

2. Regularity and hierarchy – MPSoC network topologies are often regular and hierarchical. The
planarization of the network is not only a simple packing process: it has to preserve the
regularity and hierarchy on the floorplan.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Figure 1. MPSoC Tiling is different from traditional floorplan

3. Critical path and total wire-length – Interconnect delays and power consumption are the two
critical issues in MPSoC network designs. On one hand, inter-node communication latencies
are dominated by the wire propagation delays. Therefore, the wire-length of the timing-critical
links needs to be minimized. On the other hand, interconnect wires are the main contributors
of the total system power consumption. Reducing the total wire-length helps reducing the
power dissipated on the interconnect.

Prior network graph planarization approaches either targeted only some specific topologies, or
they were not flexible enough to adapt to many of the floorplan constraints imposed by the silicon
implementation [5] [6]. Therefore, those approaches are not suitable for an automated design flow.

In this paper, we describe a floorplanning tool called REGULAY that can automatically place
regularly-configured MPSoC node processors as well as switch fabrics onto a user-defined tile floor-
plan. Given the MPSoC network topology and the physical dimension of the network nodes as in-
puts, along with the floorplan specification (locations of the I/O tiles, number of rows and columns
of the tiles), REGULAY can create a floorplan that best satisfies different design constraints.

The paper is organized as follows: Section 2 will first describe some of the popular topologies
used in MPSoC networks. Based on the characteristics of these networks, Section 3 generalizes and
formulates the MPSoC floorplanning problem. Our proposed floorplanning method consists of two
steps: regularity extraction (Section 4), and legalization (Section 5). A couple of different network
topologies are tested by REGULAY in Section 6. The resulting floorplans are much more compact
as compared with other general ASIC floorplanning tools.

2 MPSoC Network Topologies

Because of different performance requirements and cost metrics, many different multiprocessor
network topologies are designed for specific applications. MPSoC networks can be categorized as
direct networks and indirect networks [7]. In direct network MPSoCs, node processors are connected
directly with each other by the network. Each node performs dataflow routing as well as arbitration.
In indirect network MPSoCs, node processors are connected by one (or more) intermediate node
switches. The switching nodes perform the routing and arbitration functions. Therefore, indirect
networks are also often referred to as multistage interconnect networks (MIN). In this paper, to
avoid confusion, we call the intermediate switching nodes in indirect networks switch fabrics, and
simply refer to both node processors and node switches as “nodes”.

Direct networks and indirect networks can have different topologies [7]. It is not the objective
of this paper to discuss the functionalities and performance metrics of these different networks.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Rather, we are going to give only a brief description of some of the popular network topologies.
We will use these topologies as examples to formulate the MPSoC floorplanning problems in later
sections.

2.1 Direct Network Topologies

2.1.1 Orthogonal Topology

Nodes in orthogonal networks are connected in k-ary n-dimensional mesh (k-ary n-mesh) or k-
ary n-dimensional torus (k-ary n-cube) formations, as shown in Fig. 2. Because of the simple
connection and easy routing provided by adjacency, mesh and torus networks are widely used in
parallel computing platforms [8]. Orthogonal networks are highly regular. Therefore, the intercon-
nect length between nodes is expected to be uniform to ensure the performance uniformity of the
node processors.

Figure 2. Mesh and torus networks

2.1.2 Cube-Connected-Cycles Topology

The cube-connected-cycles (CCC) topology is proposed as an alternative to orthogonal topologies
to reduce the degree of each node [9], as shown in Fig. 3a. Each node has 3 degrees of connectivity
as compared to 2n degrees in mesh and torus networks. CCC networks have a hierarchical structure:
the three nodes at each corner of the cube form a local ring.

2.1.3 Octagon Topology

The Octagon network (Fig. 3b) was proposed by [10] as an on-chip communication architecture
for network processors. In this architecture, eight processors are connected by an octagonal ring
and three diameters. The delays between any two node processors are no more than two hops
(through one intermediate node) within the local ring. The Octagon network is scalable. If one
node processor is used as the bridge node, more Octagon networks can be cascaded together, as
shown in Fig. 3b.

Figure 3. Octagon networks and cube-connected-cycles networks

2.2 Indirect Network Topologies

2.2.1 Butterfly Topology

The Butterfly network (Fig. 4) is an indirect network architecture. Inside the butterfly fabrics,
each source-destination route uses a dedicated datapath. The delays between any two node proces-

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

sors are the same, and the delay is determined by the number of intermediate stages on the switch
fabrics.

Butterfly topology has many different isomorphic variations, such as Omega Network, Benes
Networks, etc. Because they have similar topologies, these networks can be tiled with similar
floorplans.

2.2.2 Fat-tree Topology

Unlike the Butterfly network, a fat-tree network provides multiple datapaths from source node to
destination node. As shown in Fig. 4, the fat-tree network can be regarded as an expanded n-ary
tree network with multiple root nodes. The network delays are dependent on the depth of the tree.
SPIN network [11] is one design example that uses 4-ary fat-tree topology for the MPSoC on-chip
communication.

2.3 MPSoC Network Floorplan

Although quite different in their topologies, the above network examples show some important
aspects in common: regularity and hierarchy. Regular and hierarchical topologies help to achieve
the computation parallelism and performance uniformity. Therefore, preserving the regularity and
hierarchy formations in the silicon floorplan is critical in MPSoC implementation.

Furthermore, as described in Section 1, on-chip interconnect delays and power consumption add
additional requirements in MPSoC floorplan designs. To reduce wiring delays, MPSoC floorplans
need to limit the wire-length of the critical links (links that are timing sensitive). To reduce the
interconnect energy dissipation, the total network wire-length needs to be minimized.

3 Problem Formulation

In an MPSoC floorplan, each node processor or node switch is placed as a dedicated hard block
tile. For example, in direct networks, as in the case of the Octagon network design, the node
processors can be tiled in a two-dimensional array, e.g., a 6×6 array in Fig. 5. In indirect networks,
as in the case of the Butterfly network, the tiling of the switch fabrics will be constrained by the
locations of the node processors, as shown in Fig. 5.

Formally, we are given a source network S connecting a set of modules M , M = {mi, i =
1, 2, 3,, p}, and a target two-dimensional tile array T with col × row tiles. Since modules cannot
overlap, we assume p ≤ col× row. Each net in N connects two (or more) modules in M , and has a
weighting factor. For example, net nij,...,k ∈ N connects modules in mi, mj , ..., mk and has weight
wij,...,k.

Different network topologies and application requirements set different constraints on MPSoC
floorplanning problems. To be more specific, we summarize the constraints that are relevant for
MPSoC floorplanning:

1) Regularity constraints – As shown in Section 2, MPSoC placement should preserve the regu-
larity of the original network topology.

2) Hierarchy constraints – MPSoC networks may have hierarchical topologies (clusters), e.g., a
cascaded Octagon network consists of multiple local rings. The placement should also preserve this
hierarchical clusters.

Figure 4. Butterfly and Fat-tree network switch fabrics

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Figure 5. Constraints of floorplan tiling

3) I/O constraints – An MPSoC is implemented on a single chip. Some node processors (or node
switches, in the case of switch fabrics) serve as I/O nodes; therefore, they need to be placed at
the peripherals of the floorplan. An MPSoC floorplan needs to accommodate those nodes at their
proper locations.

4) Aspect-ratio constraints – Chip die size is limited by the silicon area and aspect ratio. Therefore,
node processor blocks and node switch blocks need to be packed into a two-dimensional array with
predefined numbers of rows and columns.

5) Critical-path constraints – The links between some node processors may be the critical paths,
e.g. the center ring in the cascaded Octagon network. Therefore, the nodes connected by the critical
paths need to be placed closer to each other.

6) Total net-length constraints – Reducing the total net length will achieve shorter interconnect
delays with lower power consumption.

The floorplanning problem is to determine a mapping from S to T , such that the constraints are
met and the overall wiring length is minimal. Such a problem is computationally intractable, and
has been the object of extensive investigation in the ASIC domain. We propose a two-step heuristic
approach that takes into account the special properties of MPSoC topologies.

The proposed approach consists of two steps: 1) regularity extraction and determination of
tentative locations, and 2) legalization. The first step generates the relative locations of the modules
based on the regularity and hierarchical information extracted from the network topology. This is
achieved by forming the quadratic matrix and using specific weights on the nets. If some modules
have pre-fixed locations in T , these locations are used as placement constraints. The total weighted
net length is used as objective function. The second step will pack the modules onto the floorplan
constrained by the I/O locations and aspect ratio.

4 Regularity Extraction

We solve the regularity extraction and initial location problems by forming the positions of the
modules into a quadratic objective function. The summation of the quadratic wire-length between
all the nodes can be calculated through matrix operations that preserve the topological regularity
information, i.e., if the nodes in the original topology are symmetrical, the corresponding elements
in the matrix should be symmetrical as well. Furthermore, all subsequent matrix operations (e.g.,
transposition, vector multiplication, etc.) will preserve the regularity formation. Therefore, through
optimizing this objective function, the total quadratic wire length is minimized, and the regularity
information will be preserved in the optimization process.

4.1 Forming the Objective Function

Giving a set of modules M , M = {mi, i = 1, 2, 3,, p},with locations on (x1, y1), (x2, y2), ..., (xp, yp),
the total weighted square wire length objective function can be expressed as

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Φ(x, y) =
p∑

i,j=1

wij((xi − xj)2 + (yi − yj)2) = xTQx + yTQy (1)

where x and y are the location vectors for the modules on X and Y dimensions. Q is the quadratic
matrix for the weight factor wij . Q is generated in the following ways: 1) wij is 0 if there is no
connection between modules mi and mj . 2) When modules mi and mj are connected, the value
of wij should be the weighting factor of the net between mi and mj . 3) The diagonal elements
w11, w22, wnn, etc. of the quadratic matrix are the negative sums of all the elements on the same
row.

wij =

0 i �= j and no interconnect
between mi and mj

weighting factor(i,j) i �= j and mi, mj are connected

−∑p
k=1,k �=i wik i = j (The sum of wik

in the row i)

As mentioned in Section 3, MPSoC floorplanning is sometimes constrained by pre-defined I/O
locations. To address these two different scenarios (with and without I/O constraints), we develop
two approaches, as described in the following sections.

4.2 Without I/O Constraints

Eq. 1 shows that the x and y location vectors are independent of each other; therefore, we can
optimize the positions on the X and Y coordinates separately.

4.2.1 X-dimension Optimization

Since there is no I/O or boundary condition, we need to further normalize the objective function
on the X-dimension by using the inner product of the x vector xTx. We adopt the quadratic
optimization theorem [12] with a different formulation:

Theorem 1 A quadratic p× p matrix Q has p different non-negative eigenvalues, λ1 < λ2 <, <
λp. The corresponding ortho-normal eigenvectors are e1, e2, ...ep, where e1 is the eigenvector of
eigenvalue λ1, and e2 is the eigenvector of eigenvalue λ2, etc.

For any vector x, we have the following relationship:

Φ(x) =
xTQx
xTx

≥ ET
1 QE1

ET
1 E1

= λ1 (2)

where E1 = ce1 and c is a constant.

Therefore, we need to use only the eigenvector e1, which corresponds to the smallest eigenvalue
λ1, as the location vector for the X coordinate to achieve the minimum value of the X-dimension
objective function.

4.2.2 Y-Dimension Optimization

The Y-dimension location vector has to be orthogonal to the location vector on the X-dimension,
otherwise, the modules will be placed in a diagonal line on the floorplan. We have already used e1

as the X-dimension location vector, so for the Y-dimension vector, we have yT e1 = 0.
Again, we will adopt the theorem presented in [12]. The theorem is re-written as follows:

Theorem 2 If yT e1 = 0, the normalized objective function on the Y-dimension has the following
relationship:

Φ(y) =
yTQy
yTy

≥ ET
2 QE2

ET
2 E2

= λ2 (3)

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Using the two theorems, we can see that when there are no I/O constraints, we will use the eigen-
vector e1 and e2, which correspond to the first two smallest eigenvalues of the quadratic function Q
as the location vectors on the X and Y dimensions (the X and Y location vectors can be exchanged).

Fig. 6 shows the screen-shot of the initial node locations of the five-ring Octagon network without
I/O constraints. The locations on the X-Y plane are obtained directly from the first two eigenvectors
of Q. From the locations of the nodes, we can see that not only is the regularity formation of the
nodes preserved, the hierarchical clustering of the cascaded Octagon rings is shown as well.

Figure 6. Initial eigenvector locations of 5-ring Octagon network without I/O constraints

Fig. 7 shows the initial locations of the cube-connect-cycles obtained from the eigenvectors of
the quadratic matrix. Again, the formation of the nodes preserves the regularity as well as the
hierarchy of the original topology.

Figure 7. Initial eigenvector locations of cube-connected-cycles without I/O constraints

4.3 With I/O Constraints

If the positions of some modules are pre-fixed by the I/O constraints, we denote these modules
as Mf ⊂ M, and their corresponding location vector is denoted as xf ⊂ x. Similarly, the locations
of all the movable modules are denoted as vector xc ⊂ x. The objective function can then be
re-written as:

Φ(x) = (xc xf)
(

Qcc Qcf

Qfc Qff

)
(xc xf)T (4)

Solving the zeros of the derivative of the objective function, we have

Qccxc = −Qcfxf (5)

The vector solved from the equation xc is used as the location vector on the X-dimension. Because
the X-dimension and the Y-dimension are independent, we can perform the same operation on the
Y-dimension with the corresponding constraints.

Fig. 8 shows the initial locations of the five-ring cascaded Octagon network with I/O constraints.
The four bridge I/O nodes in the center Octagon ring are used as I/O nodes and placed at the
four corners of the floorplan. The four I/O nodes are used as the fixed locations in the quadratic
equation Eq. 4. Under the I/O constraints, the Octagon network shows a different formation than
that without I/Os (Fig. 6). Nevertheless, the regularity as well as the hierarchical formation of the
network is still preserved.

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Figure 8. Initial locations of 5-ring Octagon network with I/Os on the corners

Fig. 9 shows the initial locations of the 2-ary 3-fly Butterfly switch fabrics. There are 8 node
processors and 32 node switches in the network. The node processors are numbered from 0 to 7, as
shown in Fig. 9. One node processor connects to two node switches, serving as input switch and
output switch respectively. On the floorplan, we place the node processors 0, 1, 2, 3 on left side
of the floorplan, while the node processors 4, 5, 6, 7 on the right side. This arrangement of node
processors imposes I/O constraints on the Butterfly switch fabrics, because the switching nodes
that serve as input and output have to be placed next to the corresponding node processors. The
regularity formation of the switch fabrics is still preserved under these I/O constraints, as shown in
the figure.

Figure 9. Initial locations of Butterfly network with I/O constraints

5 Legalization

The node positions solved from the quadratic objective function optimization are real-valued
numbers. They cannot be used directly in the tiling placement, where the locations on rows and
columns are quantized. Instead, we will use these values as relative locations and further legalize
(quantize) the node positions.

The legalization procedure also consists of two steps: 1) sorting, where the nodes are ordered by
the X and Y coordinates, and 2) packing, where the node blocks are assigned to the corresponding
tiles (row and column positions).

In the sorting step, as shown in Fig. 10, the nodes are first sorted according to their X coordinates
and evenly partitioned into several bins. The number of bins is equal to the number of columns.
Then the nodes in each bin are further sorted according to their Y coordinates. After this step, the
nodes are ordered in both the X and Y coordinates. The packing step will assign the nodes into the
corresponding tiles in the col × row tile floorplan. The legalization procedure involves two linear
sorting operations, which can be implemented with any existing sorting algorithms.

Fig. 11 shows the legalization results. Fig. 11a is the legalized floorplan from Fig. 6 and Fig.
11b is legalized from Fig. 8. Both floorplans preserve the regularity and hierarchy formations of the
original topologies. Furthermore, the proposed floorplan also achieves a minimal total interconnect

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

Figure 10. Legalization of the node locations by sorting and packing

wire-length compared with traditional floorplanning approaches. We will show this comparison in
details through several experiments.

Figure 11. Legalized floorplan of Octagon networks with and without I/O constraints

6 Experiments

We have built a tool called REGULAY that implements the proposed floorplanning method.
REGULAY is written in C++ with GUI written in Tcl/Tk. To the best of the authors’ knowledge,
there were no prior tools that target specifically on the MPSoC network floorplanning applications.
Therefore, we compare the resulting floorplan and the total interconnect wire-length with the results
obtained from ASIC floorplanning approaches. We choose UCLA MCM floorplanner [13] for this
comparison. MCM is an open-source non-commercial tool that was originally designed to solve
general ASIC floorplanning problems. Nevertheless, we perform this comparison to show that our
method is particularly advantageous for MPSoC floorplans.

Fig. 12 shows the floorplan result of the cube-connected-cycles by REGULAY. There are total
24 nodes and 36 nets in the topology. For a better visualization of the regularity and hierarchy of
the resulting floorplan, we assign different colors to different groups of nodes. There are no I/O
constraints for the floorplan. From the floorplan formation, we can see that regularity information
of the topology is well preserved by REGULAY.

Figure 12. Floorplan of Cube-Connected-Cycles network

The 4-ary 3-mesh network floorplan result is shown in Fig. 13. There are 64 nodes and 144
interconnects in this network, and the floorplan is an 8×8 tile array. Both the original 4-ary 3-mesh

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

topology and the resulting floorplan are shown in the figure. Again, different groups of nodes are
assigned different colors for a better visualization. As shown from the figure, REGULAY creates a
satisfying results for this topology. All the nodes are placed into a regular and clustered formation
on the floorplan. The locations of yellow nodes and blue nodes are symmetrical to each other, and
the green nodes and white nodes are symmetrical too. This is because that yellow and blue nodes
are “sandwiched” between green and white nodes in the original topology.

Figure 13. Floorplan of 4-ary 3-mesh network

Fig. 14 shows the floorplan of 4-ary 3-cube torus network. There are total 64 node processors
and 192 nets in this network, and they are also mapped into the same 8 × 8 tile floorplan. For a
clearer view of the original network topology, we do not show all the 192 nets in the figure. No I/O
locations are constrained. Compared with the 4-ary 3-mesh network, the torus floorplan shows a
different formation of regularity and clustering. As shown in this figure, the green and yellow nodes
locations are symmetrical to each other, while the blue and white nodes are symmetrical too. This
difference is caused by the “wrap around” nets added in the torus topology.

Figure 14. Floorplan of 4-ary 3-cube torus network

A 2-ary 3-fly Butterfly switch fabrics is tested as an example for indirect network. We use the
same I/O constraints as described in Section 4.3, and the floorplan is legalized from the initial
locations shown in Fig. 9. As illustrated in Fig. 15, under these I/O constraints, REGULAY
creates a very dense arrangement of the switch fabrics, the regularity of the topology, as well as the
locality of the I/O switches are well preserved.

Figure 15. Floorplan comparison of constrained Butterfly network

Furthermore, we compare the total network wire-length and average net wire-length between
REGULAY and UCLA MCM. Each PE in the network is 100µm× 100µm in size. The wire-length

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

is the Manhattan distance between two connected PEs. The results are compared in Table 1. We
further calculate the wire-length reduction (both total and average) achieved by REGULAY over
UCLA MCM. As shown in the table, the wire-length created by Regular is 1.8× to 6.5× smaller in
all the benchmarks. Particularly, REGULAY shows even greater advantages in those more complex
networks: the 4-ary 3-mesh and torus network and the Octagon network achieve much higher wire-
length reduction than those simpler networks.

Table 1. Wire-length comparison between REGULAY and UCLA MCM

REGULAY UCLA MCM
total wirelengthaverage wirelengthtotal wirelengthaverage wirelengthimprovement

5ring Oct 12400 206 54000 900 4.4
CCC 6000 166 10800 300 1.8

4ary 3mesh 28800 200 115200 800 4.0
4ary 3torus 60800 422 393600 2733 6.5
2ary 3fly 9600 200 19200 400 2.0

7 Conclusion

In this paper, we proposed a physical floorplanning method for MPSoC on-chip network and
switch fabrics, and introduced REGULAY, a network floorplanning tool that implements the pro-
posed methodology. Experiments show that REGULAY can automatically create an optimal floor-
plan that preserves the regularity and hierarchy formation of the network topology, while achieving
significantly reduced total wire-length compared to traditional floorplanning tools.

References
[1] Dally, William; Toles, Brian “Route Packets, Not Wires: On-Chip Interconnection Networks”

38th Design Automation Conference, 2001. Proceedings
[2] Benini, Luca; De Micheli, Giovanni “Networks on Chips: A New SoC Paradigm” IEEE Com-

puters, January 2002
[3] R. Ho, K. Mai, M. Horowitz, “The Future of wires,” Proceedings of the IEEE, April 2001.
[4] Bryan Preas and Michael Lorenzetti “Physical Design Automation of VLSI Systems” The

Benjamin Cummings Publishing Company, 1988
[5] Dehon, A; “Compact, Multilayer Layout for Butterfly Fat-Tree” ACM Symposium on Parallel

Algorithms and Architectures, 2000
[6] Greenberg, R.I.; Leiserson, C.E.; “A Compact Layout for the Three-Dimensional Tree of

Meshes” Applied Math Letters, P171-176, 1988
[7] Duato, J.; Yalamanchili, S.; Ni, L. “Interconnection Networks, an Engineering Approach” IEEE

Computer Society Press, 1997
[8] Dally, W.J; “Performance Analysis of a k-ary n-cube Interconnect Networks” IEEE Transac-

tions on Computers, June, 1990
[9] Preparata, F.P; Vuillemin, J. “The Cube-Connected Cycles: A Versatile Network for Parallel

Computation” Comm. of the ACM, May 1981
[10] Karim, F.; Nguyen, A.; Dey, S. “On-chip Communication Architecture for OC-768 Network

Processors” 38th Design Automation Conference, 2001. Proceedings
[11] Gherrier, P.; Greiner, A “A Generic Architecture for On-Chip Packet-Switched Interconections”

DATE Conference, 2000. Proceedings
[12] Lengauer, T; “Combinatorial Algorithms for Integrated Circuit Layout” Wiley, John & Sons,

Sep. 1990
[13] Cong, J., et al.; ”Relaxed Simulated Tempering for VLSI Floorplan Designs” Proc. of ASP

Design Automation Conference, 1999

Proceedings of the Application-Specific Systems, Architectures, and Processors (ASAP’03)
ISBN0-7695-1992-X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

