Chapter 1

LOGIC SYNTHESIS FOR LOW POWER

Luca Benini
DEIS - Universita di Bologna

Ibenini@deis.unibo.it

Giovanni De Micheli
CSL - Stanford University

nanni@galileo.stanford.edu

Abstract Energy-efficient design of integrated circuits requires specialized tools
and technologies. This chapter surveys some of the most important
contributions in logic synthesis for achieving low-power consumption, by
means of gate-level and register-transfer level restructuring. It presents
also specialized techniques that leverage specific low-power silicon tech-
nologies.

Keywords: power optimization, dynamic power, static power, leakage power, volt-
age scaling, clock gating

1. Introduction

The design of integrated circuits (ICs) is highly constrained by their
power dissipation for several reasons. First, many ICs are employed
in mobile battery-powered systems, where the lifetime of the battery
decreases as the power consumption of ICs and peripherals grows. Sec-
ond, low-power design is required to either satisfy technical feasibility
from a thermal profile standpoint, or to reduce the cost of the pack-
age and cooling means. Third, consuming electrical power costs and
depletes non-renewable resources. Thus, economic, ecological and ethi-
cal reasons mandate the development of energy-efficient integrated cir-
cuits [1, 2, 3, 4].

Power minimization may target average power and/or mazimum in-
stantaneous power (called also peak power). Battery lifetime [13] and
thermal energy dissipation [14] are impacted primarily by average power.
Peak power is critical for power grid and power supply circuits design.
Even though peak power is a serious issue, we will focus on average
power optimization. In many cases, power can be reduced at the price
of some performance degradation. For this reason, several metrics that
account for both power and performance have been introduced in the
past [15]. In many designs, the power-delay product (i.e., energy) is an
acceptable metric to minimize. Alternatively, low-power design can be
seen as a constrained optimization problem, where performance degra-
dation is acceptable up to a given limit.

It has been observed many times that the most significant power sav-
ings can be achieved at high levels of abstraction, during early phases of
the design process. However, an effective design flow should be power-
conscious in its entirety, and energy efficiency should be pursued at every
level of the design, from conception of functional models down to physical
design. As the level of abstraction lowers, the number of design elements
grows, and design automation is required to manage complexity. Hence,
power optimization at the logic level cannot rely on human ingenuity
alone, but it critically depends on computer-aided design (CAD) tools.

The main purpose of this chapter is to survey a few key concepts and
techniques that have been developed for reducing power consumption at
the logic level. We do not intend to cover in depth the vast literature
on logic synthesis for low power (the interested reader is referred to
previously published surveys [5, 7] and monographs [10]). Our objective
is to identify basic cornerstones and major accomplishment in past work,
and to identify areas of future challenges and opportunities for low-power
logic synthesis in nanometer technologies (180nm and below).

1.1. Why is it so hard?

In CMOS technology, overall power consumption can be partitioned
in three main components:

P:den""Psc"i‘Plk

Pyyn is the dynamic or switching power. It is due to charging and dis-
charging load capacitances. Ps., called short-circuit power, is caused by
the currents flowing from supply to ground when pairs of PMOS/NMOS
transistors are conducting simultaneously. Finally, P, called leakage
power, is static in nature and it originates mainly from subthreshold
MOS conduction. In most current CMOS IC technologies, Py, is pre-
dominant, but in deep submicron processes Py is significant. Moreover

Low-Power Synthesis 3

its contribution is deemed to grow in the years to come. P, is generally
dominated by the other two components, as long as the input and output
transitions of the logic gates have similar duration. Design for low-power
implies the ability of keeping all three components under control.

Switching power for CMOS circuits in a synchronous environment is
modeled by the well-known equation:

1
den = §CLAsde2dfclk

where C7, is the load of a circuit node, Vd2d is the supply voltage, fe is
the clock frequency and Ay, is the switching activity of the node, defined
as the expected number of logic transitions during one clock cycle. Py,
reduction targets the minimization of one or more factors in the equation
above.

Supply voltage scaling has been the most widely adopted approach
to power optimization, because of the quadratic dependence of Py, on
Vaa- This approach, known as power-driven voltage scaling [16], assumes
that voltage supply is a design variable subject to optimization. In this
chapter we consider logic synthesis techniques under the assumption
that supply voltage and frequency of operation are fixed, because they
are determined by external compatibility constraints. This allows us to
focus on logic restructuring techniques, that are orthogonal to voltage
and frequency scaling. The assumption will be relaxed in Section 4.

Logic-level power optimization in this constrained (and common) set-
ting targets the reduction of the switched capacitance Agy - Cr. Mini-
mizing the switched capacitance is a difficult task primarily because of
estimation uncertainty, as pointed out by Brand and Visweswariah [18].
Uncertainty on Ay, - C comes from imperfect knowledge of both Ay,
and Cf, during logic synthesis. Switching activity in internal nodes de-
pends on input patterns, as well as on the internal structure of the
logic networks. Both are generally not completely known during logic
synthesis. Similarly, switched capacitance is generally uncertain before
physical design, or, more so, when the netlist is not fully mapped to a
technology library. Hence, the impact of logic synthesis on power can
be compromised by estimation noise.

Another, often overlooked, factor limiting the impact of logic synthe-
sis for low power is its scope of applicability. Logic synthesis is typically
applied to the components of ICs implementing application specific logic
functions (e.g., control and interface units). On the contrary, logic syn-
thesis is seldom applied to data paths. Moreover, many ICs (e.g., pro-
cessors [17]) contain large blocks that are custom-designed as well as
memory arrays, where synthesis is not applicable. In these cases, logic

4

synthesis has little impact on overall power dissipation. Notice that
an analogous conclusion does not hold for worst-case metrics, such as
speed and signal integrity. Logic synthesis targeting worst-case metrics
is critical even when only a small fraction of the system is synthesizable.

1.2. Two basic ideas

In the following sections we will examine several techniques for syn-
thesizing energy-efficient circuits. We shall see that most approaches
focus primarily on one of the following objectives:

m Minimization of switching activity. The circuit is transformed by
adding logic that localizes computation in such a way that switch-
ing is substantially reduced. Area (i.e., capacitance) may increase
because of the added logic. These transformations generally target
coarse granularity blocks, to ensure that the cost of the added logic
is amortized by significant switching activity reduction on many
circuit nodes at the same time.

m Minimization of switched capacitance. In this case, transformations
directly optimize logic-level approximations of dynamic power con-
sumption. These techniques are generally local in scope, and over-
all power reduction is the compound effect of a large number of
local transformations.

The boundary between the two objectives is not sharp, and several ap-
proaches achieve both, to some measure. However, switching reduction
techniques have generally a non-negligible area overhead, as opposed to
functional power minimization techniques that tend to reduce area.
This chapter is organized as follows. We consider first synthesis tech-
niques at the gate level (Section 2). Most of such approaches target
the reduction of switched capacitance at a fine granularity level. Next
we address circuit optimization at the register-transfer level (RTL). (Sec-
tion 3). In contrast, most of these techniques focus on switching-activity
reduction. Last, we briefly mention the essential features of new tech-
nologies designed for low-power consumption, and we describe the spe-
cific synthesis and optimization methods that apply to them. (Section 4.)

2. Gate-level techniques

Gate-level power optimization techniques follow the same flow as tra-
ditional logic synthesis, ad depicted in Figure 1.1. Optimization is car-
ried out in three steps, namely technology independent transformations,
library binding and re-mapping optimizations. The synthesis flow must

Low-Power Synthesis)

be supported by a tightly coupled estimation flow, that drives the opti-
mization process.

Patterns Boolean network

Level 1 Estimator > Technology independent

? * Load models
4

Level 2 Estimator - Library Binding

? f Library

Y

Level 3 Estimator -) Remapping Transform

? * Wire loads

Figure 1.1. Gate-level Power Optimization Flow.

2.1. Technology-independent synthesis

At the top level, several technology-independent techniques for power
minimization have been proposed in the last decade, and they are sur-
veyed in detail in [5, 10]. The basic algebraic techniques (see Chap-
ter ?? of this book) have been revisited, by modifying the cost met-
ric that drives the optimization engine. Algebraic transformations for
low power include common sub-expression extraction (targeting com-
mon cubes and/or kernels), node factorization, substitution via algebraic
division, selective collapse. In all cases, the search techniques are sim-
ilar to those developed for area reduction, but the literal count metric
Ny = >, 1; is replaced by:

P= Z li Asu,

where [; is the number of occurrences of literal + and Aj,, is the switch-
ing activity of the literal. This switched literal metric is correlated with
switched capacitance, and, by consequence it also correlates with dy-
namic power.

Example 1 Consider the logic function f = abc + ad + cd, and three
factorizations: f' = a(bc+d)+cd, f? = c(ab+d)+ad, f? = d(a+c)+abc.
Assume that Agy, = 0.5, Agp, = 0.2, Agy, = 0.1, Agy,, = 0.1. Then,

6

the power metric is minimal for fl. In fact, we have P! = Agy,, +
Agwy + 245w, + 245w, = 1.1, P2 =2A4,, + Agw, + Asw, + 2450, = 1.5,
P3 = 2A,,, + Ay, + 2445y, + Agw, = 1.5. Notice that literal count is
the same for aoll three factorizations.

In contrast with algebraic approaches, Boolean techniques for technology-
independent logic optimization exploit the flexibility provided by don’t
care conditions to manipulate a logic network. Don’t care-based opti-
mizations can change the local functionality of parts of the network, pro-
vided that the input-output behavior is unchanged (or compatible with
specified external don’t care conditions). In principle, Boolean optimiza-
tions are more general and powerful than algebraic transformations, but
they are very computationally intensive in the computation and propa-
gation of don’t cares. When the set of don’t care conditions have been
computed for a node in the logic network, its simplification is a local
problem, and it generally does not pose computational challenges. How-
ever, when targeting power optimization, the matter is more complex.
In fact, optimizing a node’s function f may change the switching activity
at the node’s output. This variation propagates to fanout nodes. Hence,
a locally advantageous move can be globally harmful.

Example 2 Consider the node function f = ab'c+ a'b with don’t care
fpc = . A compatible implementation of the function is g = ab’ + d'c.
The switched-literal metric for f is P(f) = 2Asy, +2Asw, +Asw,.- Forg,
we have P(g) = 2Agy, +2Asy,. We have P(f) > P(g), hence g is locally
a valid replacement for f. However, the switching activity on the node’s
output can increase. For instance, if Probs—1 = 0.5, Prob,—; = 0.5,
Prob.—1 = 0.1 and all inputs are mutually independent and uncorrelated
in time, we have Aswf = 0.377, Asw, = 0.5. If the node has a large
fanout, its increased switching activity may cause an increase in the
global switched-literal metric, despite the local decrease.

To address this problem, two approaches have been followed. The first
is to recompute switching in fanout cones of nodes that have been opti-
mized, and stop recomputation when the perturbation on fanout switch-
ing “dies out”. The second is to restrict the don’t care set available for
optimization to a safe subset called power relevant don’t cares [10]. Using
power relevant don’t cares guarantees that switching does not increase
in the fanout of the optimized node. Clearly, the second approach leads
to more conservative optimizations.

The main task of the Level 1 estimation engine (of Figure 1.1) coupled
with technology-independent optimization is to compute switching ac-
tivity for all literals in the network, and to update it when optimization

Low-Power Synthesis 7

modifies its structure. At this level of abstraction, a zero-delay approxi-
mation of A, is used, where it is assumed that all nodes compute their
output values instantaneously in response to input changes. Switching
computation can either be based on probabilistic (or static) or on statis-
tical (or dynamic) analysis [19]. Probabilistic techniques are generally
faster, but less accurate than statistical techniques, that involve simula-
tion of a pattern set. Hybrid estimators have also been proposed, where
probabilistic analysis is employed only in the inner optimization loop.

Even though technology-independent optimizations have been exten-
sively studied and prototype tools are publicly available [20], these tech-
niques are not mainstream in the industrial practice. Probably, the
main reason for this fact is that the improvements with respect to area-
optimized circuits in switched literals are small in average (10% to 15%).
Furthermore, the switched-literal metric is only a very rough approxi-
mation of actual dynamic power consumption, and small percentage
improvements are well below the noise level of the approximation [18].
Thus, a reasonable and low-effort approach is to apply traditional area-
oriented technology independent synthesis, and to introduce specialized
power-oriented transformations in later synthesis steps.

2.2. Library binding

Library binding (also called technology mapping) moves from a technology-
independent logic network and maps it onto gates taken from a target
technology library (refer to Chapter ?? for a review). The key differ-
ence between technology independent power optimization and low-power
technology mapping is that the latter can rely on more detailed and ac-
curate power estimation. A this stage, overall power dissipation is parti-
tioned in two contributions: internal or cell power and external or node
power. Internal power is mainly due to short-circuit currents and charg-
ing and discharging of parasitic capacitances within a gate. External
power is consumed for switching the capacitive load of a gate. Opti-
mal mapping requires careful balancing of the two components, while
satisfying side constraints (e.g., timing).

Level 2 estimation engines (of Figure 1.1) still rely on switching activ-
ity computation based on either static or dynamic propagation of input
switching, but they require power models for all gates in the technol-
ogy library. Internal power is modeled by lookup tables, indexed by
switching activities and other data extracted from the gate’s boundary
(e.g., output load). External power estimation exploits the knowledge of
gate input capacitances, which are known for all gates in the technology
library.

8

Example 3 The internal power model in Synopsys’ Power Compiler [39]
is based on a two-dimensional lookup table, indexed by output load ca-
pacitance (Coyr) and weighted average input transition time (w). The
second index is obtained by computing the weighted average of each input
transition time, weighted with the input’s switching activity. In symbols:
Piny = LUT (Coyy,w) - Asw,,, with w given by:

. Zielnputs tiAsw,
Eielnputs ASWi

where, t; is the transition time of input ¢, and Agyy, its switching activity.

Even though Level 2 estimators are much more accurate than Level 1
estimators, it is important to stress that they are still affected by signif-
icant inaccuracies, caused by the lack of information on wiring-related
effects (e.g., additional capacitive load, slope reduction, cross-coupling
effects).

Technology mapping usually starts with a decomposition of the initial
Boolean network into a small set of elementary logic functions. De-
composition is followed by covering. During covering, fragments of the
decomposed network are matched with gates from the technology li-
brary. Matching tests for functional equivalence between portions of
the decomposed network and cells in the library. Among all matching
library elements, the mapping algorithm should select the one that min-
imizes the target cost metric. The critical issue in technology mapping
is that a sequence of optimal choices provides an optimum solution only
under stringent assumptions. Unfortunately, such assumptions do not
hold in general when the objective function is power consumption. Thus
heuristics have been used to guarantee good-quality (but not provably
optimum) results.

All heuristic low-power mapping solutions involve iterative exploration
over the large search space of alternative coverings and matchings. A
successful approach is based on dynamic programming, which is quite
effective in pruning the search space [10], by storing locally optimal so-
lutions and re-using them as covering proceeds. Furthermore, dynamic
programming can be adapted to deal with constrained optimization (e.g.
power with delay constraints), by storing sets of solutions representing
Pareto points of the speed vs. power design space.

With respect to technology independent optimization, low-power li-
brary binding produces more reliable results, because it accurately ac-
counts for gate input capacitances (and their effect on external power)
and for internal power. Several prototype mappers have been imple-
mented [10], and they have reported 10% to 15% power savings, on av-
erage, with respect to area-optimized circuits with the same speed. This

Low-Power Synthesis 9

is further evidence that power and area reductions are usually positively
correlated. Nevertheless, the corresponding optima may not coincide, as
demonstrated by the following example.

o
D &y }

Figure 1.2. Alternative Mappings for area and power

Example 4 Figure 1.2 shows a fragment of a decomposed netlist (AND-
INV decomposition style), with a large-fanout node. Assume that speed
constraints are loose in this part of the netlist. Mapping for area leads to
the mapped circuit at the top right corner, where a minimum-size nand_s
gate has been instantiated. In contrast, the minimum power implemen-
tation is shown at the bottom right corner. A larger-size nand_1 has been
instantiated. The mapping is different because of internal power in the
cells driven by the nand gate. The minimum area solution causes slow
input transitions on the fanout gates, thereby increasing their internal
power (remember that internal power includes short-circuit power, which
is adversely impacted by slow input transitions). The reduction of inter-
nal power in the fanout of nand_1 also amortizes the increased external
power due to its larger input capacitance.

Low-power technology mapping has been implemented in commercial
design tools [40]. A distinctive feature of the implementation described
in [40] is the adoption of the mapping graph data structure, originally
proposed by Lehman et.al. [41] to implicitly explore alternative logic
decompositions during library binding. This technique helps in finding
better matchings, at the price of increased computational effort for power
estimation.

2.3. Re-mapping transformations

As the name suggests, re-mapping transformations are applied to gate-
level netlists that are already mapped to a library, and they strive at
improving the mapped netlist. The netlist is optimized through a large

10

number of local moves, that incrementally modify the original netlist.
In principle, this approach should be less effective than technology in-
dependent optimizations and technology mapping because it is applied
at a lower abstraction level, where the degrees of freedom for optimiza-
tion are much reduced. In practice, this is not the case, and re-mapping
transformations are currently the most successful gate-level power op-
timizations in commercial synthesis tools. There are three reasons for
this fact. First, after mapping and after physical design, followed with
back-annotation of wiring capacitances, power estimation reaches sign-
off quality. Thus, power savings obtained during re-mapping are less
affected by estimation noise. Second, re-mapping transformations can
focus on hot spots (i.e., high-dissipation nodes and cells), which are pre-
cisely located by power analysis. Third, all top-down logic optimization
steps are heuristic and advanced incremental synthesis [42] still finds
significant room for improvement.

Basic re-mapping transformations include re-factoring, polarity as-
signment and pin swapping [39]. All these techniques are locally applied
on the mapped netlist, and they focus on a single cell or a small group
of cells.

b
= i O—
(a)
a |j‘> a
b b
c (b) c

o0 oTw
L OO

Figure 1.3. Local transformations: (a) re-factoring, (b) polarity assignment, (c) pin
swapping.

Low-Power Synthesis 11

Example 5 Figure 1.3 shows three examples of local transformations.
In Figure 1.8 (a) a re-factoring transformation is shown, where a high-
activity node (marked with X) is removed via a new mapping onto an
and-or gate. In Figure 1.8 (b), polarity assignment is exploited to elim-
inate one of the two high-activity nets marked with x. Pin swapping is
applied in Figure 1.3 (c) to connect a high-activity net with the input
pin of the 4-input nand with minimum input capacitance.

More general and powerful re-mapping transformations are based on
re-wiring [43, 44]. Re-wiring focuses on nets with high switching activ-
ity, and tries to eliminate them by finding alternative connections which
make the high-switching net redundant. Rewiring also enables more
aggressive cell re-mapping as a side effect. Most rewiring approaches
exploit algorithms developed in the testing field for automatic test pat-
tern generation [11]. Rewiring algorithms find degrees of freedom in a
gate-level netlist in a very computationally efficient way, and they have
been successfully applied to large netlists. A related approach, general-
ized mapping, targets the replacement of two or more cells at the same
time[45].

Example 6 The example of Figure 1.4, taken from [43], illustrates the
nature of rewiring transformations. The input signal probabilities are
Prob(a = 1) = Prob(b = 1) = Prob(c = 1) = 0.1. If we assume tem-
porally uncorrelated and spatially independent inputs, switching activity
for the nodes can be computed as 2(Prob)(1 — Prob). The circuit to the
left is rewired by replacing the connection between input a and the XOR
gate with a connection between e and the XOR gate. Obuviously, re-wiring
does not alter the input-output functionality, but it does decrease the
switching activity at the output of the XOR gate, which goes from 0.295
to 0.193.

Figure 1.4. Rewiring transformation for low power.

12

Even though prototype implementations of rewiring and generalized
matching have obtained promising results (15% to 20% in average, over
power optimized netlists) we are not aware of any implementation of
these techniques in commercial tools. Given the quality of results achieved,
we expect that these techniques will be applied in the industrial practice
in the near future, as more designs become tightly power constrained.

Another effective post-mapping technique is path equalization. Path
equalization ensures that signal propagation from inputs to outputs of a
logic network follows paths of similar length. When paths are equalized,
most gates have aligned transitions at their inputs, thereby minimizing
spurious switching activity (which is created by misaligned input tran-
sitions). This technique is very helpful in arithmetic circuits, such as
counters (e.g., carry-save adders) of multipliers.

Example 7 The multiply-accumulate (MAC) unit of the StrongARM
processor [51] is based on a Wallace-tree multiplier coupled with a carry-
lookahead adder. The Wallace-tree architecture was chosen because it is
very fast, but also because it has low dynamic power consumption in the
carry-save adder tree. The improvement comes from a sizable reduction
in spurious switching, due to path delay balancing in the Wallace-tree.
A 23% power reduction (as well as a 25% speedup) is achieved by the
Wallace-tree architecture with respect to the array multiplier.

Synthesized logic has much more irregular structure than arithmetic
units, and its gate-level implementation is characterized by a wide dis-
tribution of path delays. These circuits can be optimized for power
by automated resizing. Resizing focuses on fast combinational paths.
Gates on fast paths are down-sized, thereby decreasing their input ca-
pacitance, while at the same time slowing down signal propagation. By
slowing down fast paths, propagation delays are equalized, and power is
reduced by joint spurious switching and capacitance reduction. Resizing
does not always imply down-sizing. Power can be reduced also by en-
larging (or buffering) heavily loaded gates, to increase their output slew
rate. Fast transitions minimize short-circuit power of the gates in the
fanout of the gate which has been sized up, but its input capacitance is
increased.

Resizing is a complex optimization problem involving a tradeoff be-
tween output switching power and internal short-circuit power on several
gates at the same time. Several resizing algorithms have been proposed
in the literature (the reader is referred to [46, 47, 50] for more details),
but it is unclear if they would produce large power savings when ap-
plied to aggressively power optimized netlists, where mapping (and re-

Low-Power Synthesis 13

mapping) may have already found optimal gate sizes for large sections
of the circuit.

The Level 3 estimators (of Figure 1.1) supporting post-mapping op-
timization can in principle rely on detailed timing models and load ca-
pacitance information. However, timing-accurate, full delay simulation
is generally too slow to be used within an iterative optimization loop.
Zero-delay simulation is therefore employed during optimization, with
unavoidable accuracy loss. Full-delay simulation is run only to validate
results, at the end of the optimization process.

2.4. Library design

Cell library design has a strong influence on power dissipation [52].
From this viewpoint, probably the most critical cells in a digital library
are sequential primitives, namely, latches and registers. First, flip-flops
are extremely numerous in today’s deeply pipelined circuits, second, they
are connected with the most active network in the chip, the clock. Clock
drivers are almost invariantly one of the largest contributors to the power
budget of a chip, primarily because of the huge capacitive load of the
clock distribution network. Flip-flop (and latch) design for low power
focuses on minimizing clock load and reducing internal power dissipation
when the clock signal is toggled. Significant power reductions have been
achieved by carefully designing and sizing flip-flops [1].

INH| Py

1 | |Vdd
|
T Y u oUT L
L5
Vss B
L ey
L4 Lo OUT H
lél b
. :],,dd
IN L I
CLK T

Figure 1.5. Low-Power Flip-Flop Used in the StrongARM Design.

Example 8 The edge-triggered flip-flop shown in Figure 1.5 was used
in the StrongARM processor [51] to reduce clock load. The flip-flop (FF)

14

features a differential structure, similar to o sense amplifier. The inter-
nal structure of the FF is quite complex in comparison with a simple
flow-through latch, such that used in the Alpha chip (the design from
which the first StrongARM version was derived). However, the FF has
small clock load (only three transistors). This key advantage gave a 1.3%
overall power reduction over the latch-based design.

Transistor sizing is also exploited to minimize power consumption in
combinational logic cells. Rich libraries with many available transistor
sizes are very useful in low-power design, because they help synthesis
tools in achieving optimum sizing for a wide range of gate loads. Power
savings can be obtained by adopting non-conventional logic implemen-
tation styles such as pass-transistor logic [23], which can reduce the
number of transistors (and, consequently the capacitive load), for imple-
menting logic functions which are common in arithmetic circuits (e.g.,
exclusive-or, multiplexers).

2.5. Summary of gate-level techniques

Gate-level power minimization is relatively well studied and under-
stood. Unfortunately, due to the local nature of most optimizations,
a large number of transformations has to be applied to achieve sizable
power savings. This is a time consuming and uncertain process, where
uncertainty is caused by the limited accuracy of power estimation. In
many cases the saving produced by a local move are below the “noise
floor” of the power estimation engine. As a consequence, logic-level opti-
mization does not result in massive power reductions. Savings are in the
10% to 20% range, on average. Based on published results, we specu-
late that an additional 10% savings could be obtained though aggressive
post-mapping optimizations which have not been implemented yet in
commercial tools.

3. Register-transfer level techniques

Most digital circuits today are designed starting from specifications
written in high-level hardware description languages (HDLs). Current
synthesis tools impose restrictions on the generality of language con-
structs that can be used in a HDL specification, by defining a synthesiz-
able subset of the language. We use the term register transfer level (RTL)
to refer to synthesizable design specifications. Most synthesis tools parse
the HDL description into a structural netlist of technology-independent
logic primitives, which are then optimized and mapped to library gates
during logic synthesis. Register-transfer level transformations are ap-
plied on the technology-independent netlist before logic synthesis.

Low-Power Synthesis 15

At this level of abstraction, the tool has a global view of the archi-
tecture and of its various computational units. In a complex circuit,
not every unit performs useful computation at every clock cycle. Local
idleness can be exploited to save power by disabling the clock of idle
units. This approach is known by clock gating and it is widely used by
digital designers when power is a concern. Clock gating saves power at a
coarse granularity, by reducing useless switching activity in idle units at
the cost of some additional hardware for detecting idleness and stopping
the clock. Needless to say, clock gating has deep implications on design
testability [28], and it may impact performance (the gating logic may be
on the critical path, and clock gating may increase clock skew). These
effects must be taken in account very carefully when implementing a
clock gating strategy.

Example 9 The TMS320C5x DSP processor [30] heavily exploits clock
gating to save power. It implements a two-level power reduction stategy
(global and local). The clock signal feeding latches at the inputs of func-
tional units is enabled only when useful data are available at the units’
inputs. The gating signals are automatically generated by local control
logic using information coming from the instruction decoder. Global
clock gating is also available. It is software-controlled through dedicated
power-down instructions, IDLE1, IDLE2 and IDLE3, which enable power
management with increasing strength and aggressiveness. Instruction
IDLEL only stops the CPU clock, while it leaves peripherals and system
clock active. Instruction IDLE2 also deactivates all the on-chip periph-
erals. Finally, instruction IDLE3 powers down the whole processor.

Automated clock-gating insertion is a RTL transformation, because
it leverages information on design architecture (e.g., identification of
unit boundaries) that is generally lost when synthesis is carried out to
completion. Gated-clock synthesis has been studied extensively in the
literature. Consider the block diagram of a sequential circuit, shown on
the left of Figure 1.6. The circuit consists of a combinational logic block
and a set of flip-flops (a register) which store the inputs and some of
the outputs of the combinational block (the nezt-state outputs). The
corresponding gated-clock architecture is shown on the right.

For the sake of illustration, we assume a single-clock strategy with
edge-triggered flip-flops. The combinational block Fj is controlled by
the primary inputs and the present-state inputs and it implements the
idleness-detection logic, also called activation function (in negative logic:
when it has value 1 the clock is stopped). Its purpose is to stop the
clock when the computation performed by the unit is either unneeded
or redundant. Block L is a latch, transparent when the global clock

16

STATE STATE

L |
L |

IN Combinationaloyt IN Combinationalour
Logic — | Logic —

Fa Ll Dess
CLK 7 |_ CLK

Figure 1.6. Example of Gated Clock Architecture.

signal CLK is inactive. Its presence is essential for a correct operation
of the system, since it filters glitches that may occur at the output of
block F,.

The activation function is synthesized from the Boolean function rep-
resenting the idle conditions of the circuit. This is a challenging synthesis
problem. In fact, stopping the clock for every idle condition may lead to
an implementation of F, that is too large, slow and power-consuming.
Thus, we may be forced to synthesize only a simplified activation func-
tion, which dissipates minimal power, but stops the clock with maximum
efficiency [27, 29].

Clock-gating well applies to the control portions of integrated circuits.
Some specific techniques have also been devised for data-path switching
reduction. Data paths have long and wide busses, with significant ca-
pacitive loading. Thus, reducing switching activity on data-path busses
is a very useful power reduction strategy.

An effective approach for reducing switching activity is based on ob-
servability analysis [48]. Namely, bus switching is inhibited when the
values they carry are not observed at the data-path boundary. Since
data paths perform a wide range of operations, it is often the case that
internal information is irrelevant during some cycles of the data-path
operation. Switching reduction is achieved by controlling registers, mul-
tiplexers and tri-state drivers, which do not update the information on
selected unobservable lines, thus avoiding the switching.

Synthesizing data paths with this low power feature entails construct-
ing appropriate control circuitry for the corresponding registers, multi-
plexers and drivers. This, in turn, requires an observability analysis.
Whereas a full observability analysis may be hard and lead to com-
plex local controllers, a safe and simplified observability analysis can
be achieved by assuming that arithmetic blocks (e.g., adders) are fully
transparent. Thus signal observability can be derived by analyzing prop-
agation through steering elements only [48].

Low-Power Synthesis 17

y Y En'+S1’
] En'+S1’
—Le e [
+ sol |s1 gp
1 [| B5|
B2 ! ;]
— En Mux—gg T
EN L B4 0 En
] [B3]
- En’ + SO’
En’ + SO’
& 1

Figure 1.7. Example of data-path power management.

Example 10 The data-path of Figure 1.7 has two steering levels. Three-
state driver Tri has level 2. Multiplexer Mux has level 1. The in-
put registers have level 0. We assume that the output bus is observ-
able. The observability don’t cares (ODCs) for all internal busses B1,
B2, ..., B6, are shown in the figure (in boldface). For instance, con-
sider bus B2. It has two fanouts to two computational units. The
ODC of the input of a computational unit is the ODC of the output,
because we consider them as transparent. Hence, the ODC of B2 is
the intersection of the ODCs of the outputs of the computational units:
ODCpy = (En' + S7)(En' + S}) = En' + 8|S, = En’, because S1 and
So cannot be zero at the same time for correct multiplexing.

In order to prevent useless switching activity on bus B6 the flip-flops
of the control inputs of the multiplezer are disabled by En'. Switching is
reduced on B1, B2, ..., Bb by disabling the registers on level (. From the
schematic, it is evident that the insertion of power management circuitry
has minimal area impact (only three inverters and two AND gates are

added).

Closely related to datapath gating, operand isolation inserts transpar-
ent latches on the input of (some) resources, and creates control circuitry
so that such latches are opaque when the corresponding resource’s result
is not observed. This approach isolates the operand from the resource,

18

thus avoiding useless power dissipation. Operand isolation has often
been used in industrial practice [17].

Clock gating and operand isolation are not the only options for RTL
power reduction. Other approaches like precomputation [32, 33] and de-
composition [34, 35, 49] aggressively modify the circuit to enhance the
impact of clock gating. The basic rationale of these techniques is to
create a small (and power-efficient) circuit that can bypass the compu-
tation of a much larger functional unit for a possibly small, but highly
probable, subset of input patterns. Even though these techniques have
shown promising results, they have not been thoroughly assessed in the
industrial practice.

3.1. Summary of RTL techniques

Register-transfer level techniques aim at reducing switching activity
by monitoring the idleness of its components and/or the observability
of some components’ outputs. Clock gating, and its enhancements, has
been widely used in low-power digital design, and it has been very suc-
cessful thanks to its conceptual simplicity and wide applicability, even
though its implications on testability and circuit performance must be
taken into account very carefully. Commercial tools for clock-gating in-
sertion or just clock-gating support are available [36]. Moreover, clock-
gating and data-path gating techniques are synergistic, and their com-
bined application can provide significant energy savings.

4. The evolution of low-power synthesis

Integrated circuit scaling is probably one of the most astonishing
achievements of modern technology. Elementary devices have been shrunk
by factor k = 0.7 per technology generation for the last thirty years.
Geometric scaling has profound implications on the electrical character-
istics of active devices, and care must be take to preserve satisfactory
transistor operation. Constant-field scaling [37], imposes the downscal-
ing of silicon doping levels to maintain constant field across the gate
oxide of the scaled MOS transistor. In this regime, power dissipation
scales down with k2. Power density (i.e., power dissipated per unit area)
remains constant and speed scales up as 1/k.

Figure 1.8 shows the average power consumption and power density
evolution for mainstream Intel Microprocessors, versus technology gen-
eration [37, 38]. In contrast with constant field scaling, both average
power and power density increase as minimum feature size shrinks. This
trend is due to two factors. First, die size has been increasing over
time; second, voltage supply has not been downscaled in accordance to

Low-Power Synthesis 19

35 1 T 250

30 A
> w P 0
= 25 /
5 20 / 7 150 5
= 15 (o]
s // 100 &
° 10
o 1

. e N

0 - i f 1 f f 0

1.5 1 0.8 06 035 025 0.18
Technology Generation

Figure 1.8. Power (diamonds) and Power Density (squares) vs. Technology Gener-
ation.

constant-field scaling. Supply scaling lags device scaling because supply
voltage levels have been standardized (5 V, then 3.3 V), and also because
transistors switch faster when we rise the electric field (“overdriving” the
transistor).

4.1. Low-Power technologies

In scaled transistors (below 0.8un) overdriving gives marginal speed
gains and it is highly energy-inefficient, because electrons reach a limit
speed when traveling across the channel (a phenomenon known as ve-
locity saturation). For this reason, the most direct way to reduce power
consumption, known as power-driven voltage scaling [3, 53], is to scale
down the voltage supply. Depending on the relative importance of per-
formance versus power, different voltage levels can be adopted. In more
detail, since transistor speed does not depend on supply voltage Vpp
alone, but on the gate overdrive (Vpp — V), several researchers have
studied the joint minimization Vpp and Vp for minimum energy, or
minimum energy-delay product [3, 1].

The first-order quadratic model of CMOS ON-current Ipg o« (Vs —
Vr)? leads to overly optimistic switching speed estimates for submicro-
metric transistors. In short-channel transistors, velocity saturation dic-
tates a different current equation Ips o« (Vgg — V)™, with 1 <m < 2
(e.g., m = 1.3). Another important characteristic of CMOS transistors is
sub-threshold conduction. When Vzg < Vr the current is not zero, but
it follows an exponential law Ips o« e"7/Ve V, being the technology-

20

dependent subthreshold slope. While velocity saturation pushes toward
aggressive voltage scaling, sub-threshold conduction limits it, because
of increased static current leaking through nominally OFF transistors.
Intuitively, threshold and supply voltage optimization for minimum en-
ergy requires balancing ON-current and OFF-current, while at the same
time maintaining acceptable performance.

The Vpp and Vp that minimize the energy-delay product are indeed
very low: Vpp should be only slightly larger than 2Vp, with Vr a few
hundreds millivolts. Circuits operating in this regime are called wltra-
low-power (ULP) CMOS [22]. Pushing toward ULP is extremely chal-
lenging, for three key reasons. First, in real-life processes, transistor
thresholds cannot be perfectly controlled, and Vr can be slighly lower
than nominal. As a result, many transistors may have sub-threshold cur-
rents that are orders of magnitude larger than expected (remember that
sub-threshold current is exponential in Vg — V7). Second, sub-threshold
current is exponentially dependent on temperature. Thus, ULP CMOS
must be tightly thermally controlled, with adverse cost implications.
Third, noise margins are greatly reduced in ULP CMOS because signal
swings are extremely small. Many noise sources (such as cross-coupling,
and both ionizing and non-ionizing radiation) can be seen as injecting
spurious charges. Since capacitances and voltages scale down with tech-
nology, the relative frequency by which injected charges upset stored
charges increases.

Example 11 The StrongARM processor was initially designed in a three-
metal, 0.35um CMOS process, developed for high-performance processors
(the DEC Alpha family). Supply voltage from 3.45 V to 1.5 V, with
threshold wvoltage Vry = |Vrp| = 0.35 V, obtaining a 5.3X power re-
duction. The performance loss caused by voltage scaling was acceptable,
because StrongARM has looser performance requirements than Alpha.
As a second example, the research prototype of the TMS320C5xz DSP
family adopted a supply voltage Vpp =1 Vin a 0.35um technology. The
aggressive Vpp value was chosen by optimizing the energy-delay product.

In recent technology generations (see Figure 1.9) supply voltage has
started to decrease with shrinking device size even for high-performance
transistors [38]. This trend is dictated by several reasons, such as gate
oxide reliability, which are outside the scope this chapter [38]. From
the point of view of power reduction, this trend has two important con-
sequences. First, aggressively-scaled transistors with minimum channel
length are becoming increasingly leaky in the OFF state and leakage
power is rapidly gaining importance. Second, power-driven voltage scal-

Low-Power Synthesis 21

ing cannot be a panacea any longer, because supply voltage is getting
close to noise-induced limits.

6,

51
4 N

Vr N

1.5 1 0.8 0.6 035 025 0.18

Technology generation

Voltage
o =~ N W

Figure 1.9. Threshold voltage (squares) and supply voltage (diamonds) vs. technol-
ogy generation.

Leakage power containment is already a concern in current technolo-
gies, because it impacts battery lifetime when the circuit is quiescent.
CMOS technology has traditionally been extremely power-efficient when
transistors are not switching, and system designers expect low leakage
from CMOS chips. To reduce leakage power in low-voltage technolo-
gies, multiple threshold and wvariable threshold circuits have been pro-
posed [3]. Multiple-threshold CMOS require a fabrication process that
creates transistors with two different thresholds. Low-threshold tran-
sistors are fast but leaky. These devices are employed on long, criti-
cal paths. High-threshold transistors are slower but they have minimal
sub-threshold leakage. These devices can be employed in non-critical
units/paths of the chip.

Power reduction based on multiple-threshold technologies is ineffective
when most transistors are timing-critical. To overcome this limitation,
it is possible to dynamically control threshold voltage through transistor
substrate biasing. When a variable-threshold circuit is idle, the substrate
of NMOS transistors is negatively biased, and their threshold increases
because of the well known body-bias effect (PMOS transistors require
positive body bias). On the negative side, variable-threshold approaches
require additional body-bias control circuits.

Example 12 The TMS320C5z DSP prototype [30] adopted a dual-threshold
process to enhanced performance at the aggressively down-scaled Vpp =

22

1 V. The nominal threshold voltages were 0.4 V and 0.2 V for slow and
fast transistors, respectively. Leakage current for the high-V transistors
is below 1 nA/um. For the low-V transistors, leakage current is below
1 pA/um. The current of low-Vp transistors is typically twice that of
the high-Vr devices.

An MPEG/ Video Codec prototype [31] adopted the variable-threshold
voltage scheme to improve energy efficiency. Substrate biasing is ez-
ploited to dynamically adjust the threshold: Vp is controlled to 0.2 V in
active mode and to 0.55 V when the chip is in standby.

Supply voltage can be controlled as well to reduce power. Multiple-
voltage and variable voltage techniques have proposed in the past [3]. In
multiple-voltage circuits two or more power supply voltages are available
on chip. Similarly to multiple-threshold circuits, timing-critical transis-
tors are powered at high voltage, while most transistors are connected
to the low voltage supply. Multiple voltages are also frequently used
to provide standard voltage levels (e.g., 3.3 V) to input-output circuits,
while powering internal logic at a reduced voltage to save power.

4.2. Synthesis for low-power technologies

From the above overview, we can conclude that future low-power tech-
nologies will likely have multiple voltage supplies and device thresholds
and they will be characterized by significant leakage. New logic synthe-
sis algorithms and tools are needed for facing these challenges, and some
recent research efforts have showed promising results.

When considering multiple-threshold circuits, only two (or, at best,
three) different threshold voltages are likely to be available on a sin-
gle chip, because of technology constraints. In this setting, the design
problem is to select either low-threshold or high-threshold transistors for
implementing logic gates in a complex network. Hence, for each gate in
a technology library, a LowT and a HighT version are available.

Several algorithms (based on back-tracing and iterative improvement)
have been proposed to automate the choice of LowT and HighT gates [55,
56]. The rationale behind these techniques is to start from a slow, all-
HighT implementation and to replace gates on critical paths with fast
but leaky LowT gates. Alternatively, it is possible to start from a fast
all-LowT implementation and to replace non-critical LowT gates with
their HighT counterparts. If only a small fraction of HighT gates is
needed to meet performance constraints, leakage power remains small.
More advanced approaches [57, 58] perform simultaneous threshold se-
lection and gate sizing. Dual-threshold optimization techniques achieve
promising results on industrial designs: Sirichotiyakul et.al. [57] report

Low-Power Synthesis 23

that leakage power is reduced by a factor between 3 and 6 with speed
penalty below 20%.

A problem related with dual threshold design is that of finding the in-
put pattern minimizing leakage power in a combinational logic network.
The sensitivity of leakage power to input values is caused by the body ef-
fect in MOS transistors, which raises the threshold when the transistor’s
source-bulk voltage is non-null. For logic gates with transistor stacks
longer than one (in the pull-up or in the pull-down network), leakage is
much reduced when two or more stacked transistors are off. In a multi-
level network, the dependency of total leakage power from primary input
values is not easily predictable, and several algorithms have been devel-
oped for finding the input pattern that minimizes it [24, 25, 26]. These
algorithms have reported contrasting results for different circuits. On
average, a careful choice of input pattern reduces leakage power by 15%
to 20%.

ol Al

A % ABC [1(nA)

000 | 0.095
001 | 0.195
B% 010 | 0.195

011 | 1.874

100 | 0.185
101 | 1.220
c% 110 | 1.140

111 | 9.410

Figure 1.10. 3-Input NAND gate and Leakage Current vs. Input Values

Example 13 Figure 1.10 shows a 3-input NAND gate and o table with
input values vs. leakage current, obtained through SPICE simulation [57].
The difference between minimum leakage and mazimum leakage is more
than three orders of magnitude. Observe also that leakage current de-
creases with increasing number of stacked transistors in the OFF state.

Multiple supply-voltage circuit design poses several distinctive chal-
lenges [54]. In these circuits, power savings come from the replacement
of non-critical gates powered by a high voltage supply with slower gates
powered at low voltage. However, it is unwise to directly connect low-
Vbp gates to the inputs of high-Vpp gates, because the supply mismatch

24

would prevent complete switch-off of the pull-up transistors in the high-
Vpbp gates. Hence, zero-static power level converters are required at the
interface. Additionally, physical design is complicated by the necessity
of distributing two supply voltages. For these reasons, it is generally not
possible to arbitrarily assign low-Vpp gates one by one, but high-supply
and low-supply gates should be clustered. Algorithms for automating the
design of clustered dual-voltage circuits are presented in [54]. This tech-
nique, that has been used for designing large industrial prototypes [31],
reduces power by as much as 50% with no performance penalty.

VDDH
-
L
\bpL IN(L) OUT(H)

Fo<d-

v

Figure 1.11. Low-to-high Level Shifter for Dual-Voltage Circuits

Example 14 The level shifter of Figure 1.11 is proposed in [54] to in-
terface low-Vpp gates with high-Vpp, with no static power consumption.
Even though the circuit is relatively small, it does have a dynamic power
and delay overhead, hence its usage should be minimized.

4.3. Summary of recent approaches

New silicon technologies for low-power circuits support multiple sup-
ply and/or threshold voltages. Such voltages may be optimally cho-
sen at design time, or varied during circuit operation. To leverage the
advantages of these new degrees of freedom, a new set of algorithms,
methodologies and cell libraries are being developed.

5. Conclusions

Even though it has been claimed that power issues are best addressed
at high levels of abstraction, we believe logic synthesis for low-power
dissipation is still crucial. In this chapter, we have reviewed the main
accomplishments in logic synthesis for low power. First, we surveyed
approaches targeting the reduction of switched capacitance in gate-level

REFERENCES 25

netlists. We described technology independent optimization, library
binding, and post-binding transformations. Many of these techniques
have been implemented in commercial tools, and are routinely employed
in the industrial practice. Second, we surveyed synthesis techniques tar-
geting switching activity reduction, which automate the common design
practice of gating the clock signal. Finally, we outlined the path of evo-
lution for advanced low-power technologies and we examined a few novel
challenges for future low-power synthesis tools. Low-power synthesis is
still an important field for research and development. It will maintain
its key role in current and future low-power design.

Acknowledgements

This work was supported in part by NSF, under grant CCR-9901190,
and in part by the MARCO Gigascale Research Center.

References

[1] J. Rabaey, M. Pedram, Low Power Design Methodologies, Kluwer,
1996.

[2] J. Mermet, W. Nebel, Low Power Design in Deep Submicron Elec-
tronics, Kluwer, 1997.

[3] A. Chandrakasan, R. Brodersen, Low-Power CMOS Design, IEEE
Press, 1998.

[4] L. Benini, G. De Micheli, Dynamic Power Mangement: Design Tech-
niques and CAD Tools, Kluwer, 1998.

[5] M. Pedram, “Power Estimation and Optimization at the Logic
Level,” Intl. Journal of High-Speed Electronics and Systems, vol. 5,
no. 2, pp. 179-202, 1994.

[6] D. Singh, J. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Seghal,
T. Mozdzen, “Power conscious CAD tools and methodologies: a
perspective,” Proceedings of the IEEE, vol. 83, no. 4, pp. 570-594,
April 1995.

[7] M. Pedram, “Power minimization in IC design: principles and ap-
plications,” ACM Transactions on Design Automation of Electronic
Systems, vol. 1, no. 1, pp. 3-56, January 1995.

[8] E. Macii, M. Pedram, F. Somenzi, “High-Level Power Modeling, Esti-
mation, and Optimization,” IEEE Transactions on Computer-Aided
Design, Vol. 17, No. 11, pp. 1061-1079, November 1998.

[9] L. Benini, G. De Micheli, “System-Level Power Optimization: Tech-
niques and Tools,” ACM Transactions on Design Automation of
Electronic Systems, vol. 5, no. 2, pp. 115-192, April 2000.

26

[10] S. Iman, M. Pedram, Logic Synthesis for Low Power VLSI Designs,
Kluwer 1998.

[11] W. Kunz, D. Stoffel, Reasoning in Boolean Networks: Logic Synthe-
sis and Verification using Testing Techniques, Kluwer, 1997.

[12] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, 1994.

[13] T. Martin, D. Siewiorek, “The Impact of Battery Capacity and
Memory Bandwidth on CPU Speed-Setting: A Case Study,” Inter-
national Symposium on Low Power Electronics and Design, pp. 200-
205, 1999.

[14] R. Viswhanath, V. Wakharkar, A. Watwe, V. Lebonheur, “Thermal
Performance Challenges from Silicon to Systems,” Intel Technology
Journal, Q3, 2000.

[15] T. Burd, R. Brodersen, “Processor Design for Portable Systems,
Journal of VLSI Signal Processing Systems, vol. 13, no. 2-3, pp. 203—
221, August 1996.

[16] A. P. Chandrakasan, S. Sheng, R. W. Brodersen, “Low-Power
CMOS Digital Design,” IEEE Journal of Solid-State Circuits, Vol.
27, No. 4, pp. 473-484, April 1992.

[17] V. Tiwari, D. Singh, S. Rajgopal, G. Metha, R. Patel, F. Baez, “Re-
ducing Power in High-Performance Microprocessors,” ACM/IEEE
Design Automation Conference, pp. 732-737, 1998.

[18] D. Brand, C. Visweswariah, “Inaccuracies in power estimation
during logic synthesis,” ACM/IEEE International Conference on
Computer-Aided Design, pp. 388-394, 1996.

[19] F. Najm, “A Survey of Power Estimation Techniques in VLSI Cir-
cuits,” IEEE Transactions on VLSI Systems, Vol. 2, No. 4, pp. 446-
455, December 1994.

[20] S. Iman, M. Pedram, “POSE: power optimization and synthesis
environment,” ACM/IEEE Design Automation Conference, pp. 21—
26, 1996.

[21] P. Landman, “High-Level Power Estimation,” ISLPED-96:
ACM/IEEE International Symposium on Low Power Electronics and
Design, pp. 29-35, Monterey, CA, August 1996.

[22] Z. Chen, J. Shott, J. Plummer, “CMOS Technology Scaling for Low
Voltage Low Power Applications,” International Symposium on Low
Power Electronics, pp. 56-57, Oct. 1994.

[23] K. Taki, “A survey for pass-transistor logic technologies,” Asia-
Pacific Design Automation Conference, pp. 223—225, Jan 1998.

7

REFERENCES 27

[24] J. Halter, F. Najm, “A gate-level power reduction method for ultra-
low-power CMOS circuits,” IEEE Custom Integrated Circuits Con-
ference, pp. 475-478, 1997.

[25] Y. Ye, S. Borkar, V. De, “A New Technique for Standby Leakage Re-
duction in High-Performance Circuits,” IEEE Symposium on VLSI
Clircuits, pp. 40-41, 1998.

[26] M. Johnson, D. Somasekar, K. Roy, “Models and algorithms
for bounds on leakage in CMOS circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 18,
no. 6, June 1999.

[27] L. Benini, G. De Micheli, “Automatic synthesis of low-power gated-
clock Finite-State Machines,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 6,
pp. 630-643, June 1996.

[28] L. Benini, M. Favalli, G. De Micheli, “Design for testability of gated-
clock FSMs,” IEEE European Design and Test Conference, pp. 589—
596, March 1996.

[29] L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi, “Sym-
bolic Synthesis of Clock-Gating Logic for Power Optimization of Syn-
chronous Controllers”, ACM Transactions on Design Automation of
Electronic Systems, Vol. 4, No. 4, pp. 351-375, October 1999.

[30] V. Lee et al., “A 1-V Programmable DSP for Wireless Commu-
nications,” IEEE Journal of Solid-State Circuits, vol. 32, no. 11,
pp- 1766-1776, Nov. 1997.

[31] M. Takahashi et al., “A 60-mW MPEG4 Video Coded Using Clus-
tered Voltage Scaling with Variable Supply-Voltage Scheme,” IEEE
Journal of Solid-State Circuits, vol. 33, no. 11, pp. 1772-1780,
Nov. 1998.

[32] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low
Power,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 2, No. 4, pp. 426-436, December 1994.

[33] J. Monteiro, S. Devadas, A. Ghosh, “Sequential Logic Optimiza-
tion for Low Power Using Input-Disabling Precomputation Architec-
tures,” IEEFE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 17, No. 3, pp. 279-284, March 1998.

[34] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, M. Pon-
cino, “Computational Kernels and their Application to Sequential
Power Optimization,” ACM/IEEE 1998 Design Automation Con-
ference, pp. 764-769, San Francisco, California, June 1998.

28

[35] L. Benini, G. De Micheli, E. Macii, G. Odasso, M. Poncino, “Kernel-
Based Power Optimization of RTL Components: Exact and Approxi-
mate Extraction Algorithms,” ACM/IEEE Design Automation Con-
ference, pp. 247-252, New Orleans, Louisiana, June 1999.

[36] M. Munch, B. Wurth, R. Mehra, J. Sproch, N. Wehn, “Automatic
RT-level operand isolation to minimize power consumption on data-
paths,” IEEFE Design Automation and Test in Europe, pp. 624—631,
2000.

[37] S. Borkar, “Design Challenges of Technology Scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23-29, July-Aug. 1999.

[38] S. Thompson, P. Packan, M. Bohr, “MOS Scaling: Transistor Chal-
lenges for the 21st Century,” Intel Technology Journal, Q3, 1998.

[39] B. Chen, I. Nedelchev, “Power Compiler: A Gate Level Power Opti-
mization and Synthesis System,” IEFE International Conference on
Computer Design, pp. 74-79, 1997.

[40] O. Coudert. R. Haddad, “Integrated resynthesis for low power,”
IEEE International Symposium on Low Power Electronics and De-

sign, pp. 169-174, 1996.

[41] E. Lehman, Y. Watanabe, J. Grodstein, H. Harkness, “Logic de-
composition during technology mapping,” IEEE International Con-
ference on Computer-Aided Design, pp. 264-271, 1995.

[42] O. Coudert, J. Cong, S. Malik, M. Sarrafzadeh, “Incremental CAD,”
IEEE/ACM International Conference on Computer-Aided Design,
pp. 236-242, 2000.

[43] B. Rohfleisch, A. Kolbl, B. Wurth, “Reducing power dissipation af-
ter technology mapping by structural transformations,” IEEE/ACM
Design Automation Conference, pp. 789-794, 1996.

[44] 1. Bahar, D. Lampe, E. Macii, “Power Optimization of Technology
Dependent Circuits Based in Symbolic Computation of Logic Im-
plications,” ACM Transactions on Design Automation of Electronic
Systems vol. 5, no. 3, pp. 267-293, July 2000.

[45] L. Benini, P. Vuillod, G. De Micheli, “Iterative re-mapping for logic
circuits,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems. vol. 17, no. 10, pp. 948-964, Oct. 1998.

[46] R. Bahar, H. Cho, G. Hachtel, G. Hachtel, E. Macii, F. Somenzi,
“Symbolic timing analysis and resynthesis for low power of com-
binational circuits containing false paths,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 16,
no. 10, pp. 1105-1115, Oct. 1997.

REFERENCES 29

[47] O. Coudert, “Gate sizing for constrained Delay/Power/Area op-
timization,” IEEE Transactions on VLSI Systems, vol. 5, no. 4,
pp. 465-472, Dec. 1997.

[48] H. Kapadia, L. Benini and G. De Micheli, “Reducing Switching Ac-
tivity on Datapath Buses with Control-Signal Gating,” IEEFE Journal
of Solid State Circuits, vol. 34, no. 3, pp. 405-414, March 1999.

[49] G. Lakshminarayana, A. Raghunathan, K. S. Khouri, N. K. Jha, S.
Dey, “Common-Case Computation: A High-Level Tecnique for Power
and Performance Optimization,” ACM/IEEE Design Automation
Conference, pp. 56-61, New Orleans, LA, June 1999.

[50] H. R. Lim, T. T. Hwang, “On determining sensitization criterion in
an iterative gate sizing process,” IEEE Transactions on Computer-
Aided Design of Integrated Clircuits and Systems, vol. 18, no. 2,
pp. 231-238, Feb. 1999/

[51] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Mi-
croprocessor,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11,
pp- 1703-1714, Nov. 1996.

[52] C. Piguet, “Design of low-power libraries,” IEEE International Con-
ference on Electronics, Circuits and Systems, pp. 175-180, 1998.

[53] L. Wei, K. Roy, V. De, “Low Voltage Low Power CMOS Design
Techniques for Deep Submicron 1Cs,” IEEE International Confer-
ence on VLSI, pp. 101-107, 2000.

[54] K. Usami et al., “Automated low power technique exploiting multi-
ple supply voltages applied to a media processor,” IEEE Journal of
Solid-State Circuits, vol. 33, no. 3, pp. 463-472, March 1998.

[55] L. Wei, Z. Chen, K. Roy, M. Johnson, Y. Ye, V. De, “Design and
Optimization of Dual-Threshold Circuits for Low-Voltage Low-Power
Applications,” IEEE Transactions on VLSI Systems, vol. 7, no. 1,
pp- 16-24, March 1999.

[56] V. Sundararajan, K. Parhi, “Low power synthesis of dual threshold
voltage CMOS VLSI circuits,” IEEE International Symposium on
Low-Power Electronics and Design, pp. 139-144, 1999.

[57] S. Sirichotiyakul et al., “Stand-by power minimization through
simultaneous threshold voltage selection and circuit sizing,”
IEEE/ACM Design Automation Conference, pp. 436-441, 1999.

[58] L. Wei, K. Roy, C. Koh, “Power minimization by simultaneous dual-

Vin assignment and gate-sizing,” IEEE Custom Integrated Circuits
Conference, pp. 413-416, 2000.

