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paradigm shift towards component-based design techno logies 
that enable the integration of large computational cores, memory 
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1. INTRODUCTION 

A system is a collection of components whose combined operation 
provides a useful service. We consider specifically systems on chips (SoCs). 
Such systems consist of hardware components integrated on a single chip 
and various software layers. Har dware components are macro-cells that 
provide information processing, storage, and interfacing. Software 
components are programs that realize system and application functions. 

When analyzing current SoC designs, it is apparent that systems are 
described and realized as collections of components. Indeed, to date, there is 
limited use of behavioral synthesis at the system level. System 
implementation by component interconnection allows designers to realize 
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complex functions while leveraging existing units and /or design 
technologies, such as synthesis, on components whose size is much smaller 
than the system itself. 

Sometimes, system specifications are required to fit into specific 
interconnections of components called hardware platforms. Thus, a 
hardware platform, which is a restriction of the design space, may facilitate 
system realization because it reduces the number of design options and 
fosters the use and reuse of standard components. Expertise with designing 
systems on a known platform is also a decisive factor in reducing design 
time and in increasing designers' confidence in success. 

System design consists of realizing a desired functionality while 
satisfying some design constraints. Broadly speaking, constraints limit the 
design space and relate to the major design trade-off between quality of 
service (QoS) versus cost. QoS is closely related to performance, i.e., the 
number of tasks that can be computed in a time window (system 
throughput), as well as the time delay to complete a task (latency). QoS 
relates also to the system dependability, i.e., to a class of specific system 
figures (e.g., reliability, availability, safety) that measure the ability of the 
system to deliver a service correctly, within a given time window and at any 
time. Design cost relates to design and manufacturing costs (e.g., silicon 
area, testability) as well as to operation costs (e.g., power consumption, 
energy consumption per task). 

In recent years, the design trade-off of performance versus power 
consumption has received large attention because of: (i) the large number of 
mobile systems that need to provide services with the energy releasable by a 
battery of limited weight and size, (ii) the technical feasibility of high-
performance computation because of heat extraction, and (iii) concerns 
about operating costs caused by electric power consumption in large systems 
and the dependability of systems operating at high temperatures because of 
power dissipation. Dependability measures will be extremely relevant in the 
near future because of the use of SoCs in safety-critical applications (e.g., 
vehicular technologies) and in devices that connect humans with services 
(e.g., portable terminals used to manage finances and working activities). 

Recent design methodologies and tools have been addressing the problem 
of energy-efficient design, aiming at providing a high-performance 
realization while reducing its power dissipation. Most of these techniques, as 
described in the previous chapters, address system components design. The 
objective of this chapter is to describe current techniques that address 
system-level design.  
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2. SYSTEMS ON CHIPS AND THEIR DESIGN  

We attempt to characterize SOC designs based on trends and 
technologies. Electronic systems are best implemented on a single chip 
because input-output pins are a scarce resource, and because on-chip 
interconnect is faster and more reliable while overall cost is usually smaller. 
At present, it is possible to integrate opto-electronic units on chip (e.g., 
charge-coupled device cameras) and mechanical elements (e.g., 
accelerometers) even though systems with such components go beyond the 
scope of this chapter. In some domains, e.g., digital telephony, there is a 
definite trend to cluster all electronics of a product on a single die. 

Current near-future electronic technologies provide designers with an 
increasingly larger number of transistors per chip. Standard, CMOS silicon-
based technologies with feature size around 100nm are considered here. 
Such technologies support half a billion transistor chips of a few square 
centimeters in size, according to the international technology semiconductor 
roadmap (ITRS). As device sizes will further shrink to 50nm by the end of 
the decade, chips will accommodate up to four billion transistors. Whereas 
the increased amount of active devices will support increasingly more 
complex design, chip power dissipation will be capped around 175W 
because of packaging limitations and costs. Thus, the computing potential is 
limited by energy efficiency. 

At the same time, the design of large (i.e., billion transistor) chips will be 
limited by the ability of humans and computer-aided design (CAD) tools to 
tame their complexity. The million-transistor chip frontier was overcome by 
using semi-custom technologies and cell libraries in the 1990s. Billion-
transistor chips will be designed with methodologies that limit design 
options and leverage both libraries of very large scale components and 
generators of embedded memory arrays. 

Such library components are typically processors, controllers, and 
complex functional units (e.g., MPEG macro-cells). System designers will 
accept such components as basic building blocks as they are used to 
accepting NAND and NOR gates without questioning their layout. At the 
same time, successful component providers are expected to design reliable 
and flexible units that can interact with others under varying operating 
conditions and modes. Post-design, possibly in situ software (or 
programmable hardware) configuration of these components, will play a 
major role in achieving versatile components. 

When observing any SoC layout, it is simple to recognize large memory 
arrays. The ability to realize various types of embedded memories on chip 
and the interspersion of storage and computing units are key to achieving 
high-performance. The layout of embedded memory arrays is automatically 
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generated by physical synthesis tools and can be tailored in size, aspect ratio, 
and speed. 

The distinguishing features of the upcoming SoCs relate directly to the 
features and opportunities offered by semiconductor technology. Namely, 
SoCs will display many processing elements (i.e., cores) and memory arrays. 
Multi-processing will be the underlying characteristic of such chips. Thus 
SoC technology will provide for both the implementation of multi-
processing computing systems and application-specific functions. The latter 
class of systems is likely to be large and will be the driving force for SoC 
technology. Indeed, embedded systems will be realized by SoCs realizing a 
specific function, e.g., vehicular control, processing for wireless 
communication, etc. Application specific SoCs will be characterized by the 
presence of processing units running embedded software (and thus emulating 
hardware functions) and by asymmetric structures, due to the diversity of 
functions realized by the processing elements and their different storage 
requirements. 

The presence of several, possibly application-specific, on-chip storage 
arrays presents both an opportunity and a design challenge. Indeed, the us e 
of hierarchical storage that exploits spatial and temporal locality by 
interspersing processing elements and storage arrays is key to achieving high 
throughput with low latency [57, 70, 75]. The sizing and synthesis of 
embedded storage arrays poses new challenges, because the effectiveness of 
multi-processing is often limited by the ability to transfer and store 
information. SoCs will generate large data traffic on chip; the energy spent 
to process data is likely to be dwarfed by the energy spent to move and store 
data. Thus, the design of the on-chip communication and storage systems 
will be key in determining the energy/performance trade-off points of an 
implementation.  

The use of processing cores will force system designers to treat them as 
black boxes and renounce the detailed tuning of their performance/energy 
parameters. Nevertheless, many processing elements are designed to operate 
at different service levels and energy consumption, e.g., by controlling their 
operation frequency and voltage. Thus system designers will be concerned 
with run-time power management issues, rather than with processing 
element design. 

As a result, the challenging issues in system-level design relate to 
designing the storage components and the interconnect network of SoCs. At 
the same time, designers must conceive run-time environments that manage 
processing elements, memory, and on-chip network to provide for the 
workload-dependent operating conditions, which yield the desired quality of 
service with minimal energy consumption. In other words, SoCs will require 
dedicated operating systems that provide for power management. 
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The overall design of system and application software is crucial for 
achieving the overall performance and energy objectives. Indeed, while 
software does not consume power per se, the software execution causes 
energy consumption by processing elements, storage arrays, and 
interconnect network. It is well known that software design for a SoC is at 
least as demanding as hardware design. For this reason, software design 
issues will be covered in this chapter. 
 

The remaining of this chapter is organized as follows. First a set of recent 
SoC examples is considered to motivate this survey. Next the storage array 
and interconnect network design on chip is address. The chapter concludes 
with a survey of software design techniques, for both system and application 
software. 

3. SOC CASE STUDIES  

This section analyzes three SoC designs from an energy-centric 
perspective. It is organized in order of tightening power and cost constraints, 
starting from a 3D graphics engine for game consoles, moving to a MPEG4 
encoder-decoder for 3G wireless terminals, and concluding with an audio 
recorder for low-end consumer applications. Clearly, this survey gives a very 
partial view of an extremely variegated landscape, but its purpose is to focus 
on the key design challenges in power-constrained integrated system design 
and to enucleate system design guidelines that have lead to successful 
industrial implementations. 

3.1 Emotion Engine 

The Emotion Engine [78, 41] was designed by Sony and Toshiba to 
support 3-D graphics for the PlayStation 2 game console. From a functional 
viewpoint, the design objective was to enable real-time synthesis of realistic 
animated scenes in three dimensions. To achieve the desired degree of 
realism, physical modeling of objects and their interactions, as well as 3-D 
geometry, transformation are required. Power budget constraints are 
essentially set by cost considerations: the shelf price of a game console 
should be lower than 500$, thus ruling out expensive packaging and cooling. 
Furthermore, game consoles should be characterized by the low cost of 
ownership, robustness with respect to a wide variety of operating conditions, 
and minimal maintenance. All of these requirements conflict with high 
power dissipation. These challenges were met by following two fundamental 
design guidelines: (i) integration of most of the critical communication, 
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storage, and computation on a single SoC, and (ii) architectural 
specialization for a specific class of applications.  

The architecture of the Emotion Engine is depicted in Figure 1. The 
system integrates three independent processing cores and a few smaller I/O 
controllers and specialized coprocessors.  The main CPU, the master 
controller, is a superscalar RISC processor with a floating-point 
coprocessor. The other two cores are floating-point vector processing units. 
The first vector unit, VPU0, performs physical modeling computations, 
while the second, VPU1, is dedicated to 3-D geometry computation. These 
two functions are allocated to two different vector units because their 
schedules are conflicting. Physical modeling is performed under the control 
of the main CPU, and it is scheduled quite irregularly and unpredictably. In 
contrast, geometry computations are performed in response to requests from 
the rendering engine, which are spaced in equal time increments.  

 

Figure 1: Architecture of the Emotion Engine 
 

 
The main CPU is a two-way superscalar RISC core implementing the 

MIPS III instruction set, plus 107 new SIMD multimedia instructions. The 
core has 32 128-bit registers and two 64-bit integer units. Instruction and 
data caches are two-way set associative, 16-KB and 8-KB, with one-cycle 
access. Local data storage is also supported by a 16-KB scratch-pad RAM 
(one-cycle access). The vector units VPU0 and VPU1 have similar micro-
architectures. However, VPU0 works as a coprocessor of the main CPU, 
while VPU1 operates independently. The vector units have a four-way 
SIMD organization. Instruction memory is 64-bits wide and its size is 16-KB 
(for VPU1, 4-KB for VPU0).  To provide single-cycle data feed to the 
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floating-point units, four pipelined buffers are instantiated within the VPUs. 
The quad-buffer appears as a 16-KB (for  VPU1, 4-KB for VPU0), 4-ported 
memory. 

Communication is critical for system performance. VPU1 works 
independently from the processor and produces a very large amount of data 
for the external rendering engine. Therefore, there is a dedicated connec tion 
and I/O port between VPU1 and the rendering engine. In contrast, VPU0 
receives data from the CPU (as a coprocessor). For this reason data transfer 
from/to the unit is stored in the CPU's scratch-pad memory and transferred to 
VPU0 via DMA on a shared, 128-bit interconnection bus. The bus supports 
transfers among the three main processors, the coprocessors, and I/O blocks 
(e.g., for interfacing with high-bandwidth RDRAM).  

The Emotion Engine was fabricated in 0.25 ? m technology with 0.18 ?m 
drawn gate length for improved switching speed. The CPU and the VPUs are 
clocked at 250MHz. External interfaces are clocked at 125 MHz. Die size is 
17 ?  14.1 mm2. The chip contains 10.5 million transistors. The chip can 
sustain 5 GFLOPs. With power supply VDD = 1.8 V, the power consumption 
is 15 W. Clearly, such a power consumption is not adequate for portable, 
battery-operated equipment; however it is much lower than that of a general-
purpose microprocessor with similar FP performance (in the same 
technology). 

The energy efficiency of the Emotion Engine stems form several factors. 
First it contains many fast SRAM memories, providing adequate bandwidth 
for localized data transfers but not at the high energy cost implied by cache 
memories. On the contrary, instruction and data caches have been kept 
small, and it is up to the programmer to develop tight inner loops that 
minimize misses. Second, the architecture provides an extremely aggressive 
degree of parallelism without pushing the envelope for maximum clock 
speed. Privileging parallelism with respect to sheer speed is a well-known 
low-power design technique [10]. Third, parallelism is explicit in hardware 
and software (the various CPUs have well-defined tasks), and it is not 
compromised by centralized hardware structures that impose unacceptable 
global communication overhead. The only global communication channel 
(the on-chip system bus) is bypassed by dedicated ports for high-bandwidth 
point-to-point communication (e.g., between VPU1 and the rendering 
hardware). Finally, the SoC contains many specialized coprocessors for 
common functions (e.g., MPEG2 video decoding), which unloads the 
processors and achieves very high energy efficiency and locality. 
Specialization is also fruitfully exploited in the micro-architecture of the 
programmable processors, which natively support a large number of 
application-specific instructions. 



8 Chapter #16
 
3.2 MPEG4 Core  

In contrast with the Emotion Engine, the MPEG4 video codec SoC 
described by Takahashi et al. [80] has been developed specifically for the 
highly power-constrained mobile communications market. Baseband 
processing for a multimedia-enabled 3G wireless terminal encompasses 
several complex tasks that can, in principle, be implemented by multiple ICs. 
However, it is hard to combine many chips within the small body of a 
mobile terminal, and, more importantly, the high-bandwidth I/O interfaces 
among the various ICs would lead to excessive power consumption. For this 
reason, Takahashi et al. opted for an SoC solution that integrates most of the 
digital baseband functionality. The SoC implements a video codec, a speech 
codec or an audio decoder, and multiplexing and de-multiplexing between 
multiple video and speech/audio streams.  

Video processing is characterized by large data streams from/to memory, 
and memory space requirements are significant.  For this reason, the MPEG4 
video codec has been implemented in an embedded-DRAM process. The 
abstracted block diagram on the SoC is shown in Figure 2. The chip contains 
16-Mb embedded DRAM and three signal processing cores: a video core, a 
speech/audio core, and a stream -multiplexing core. Several peripheral 
interfaces (camera, display, audio, and an external CPU host for 
configuration) are also implemented on-chip.  

 
Figure 2: Architect ure of the  Decoder. 
 

Each of the major signal processing cores contains a 16-bit RISC 
processor and dedicated hardware accelerators. The system is a three-way 



#16. Energy-efficient system-level design 9
 
asymmetric on-chip multiprocessor. Data transfers among the three 
processors are performed via the DRAM. A virtual FIFO is configured on 
the DRAM for each processor pair. The size of the FIFOs can be changed by 
the firmware of each core. The communication network is organized as a set 
of point-to-point channels between processors and DRAM. An arbitration 
unit regulates access to the DRAM, based on DMA. Most of the traffic on 
the channels is caused by cache and local memory refills issued by the three 
processing cores. Communication among processors is sporadic. 

The video processing core of the SoC contains a multimedia-enhanced 
RISC processor with a 4-Kb direct mapped instruction cache and a 8-Kb 
data cache.  The video processor also includes several custom coprocessors: 
2 DCT coprocessors, a motion compensation block, two motion estimation 
blocks, and a filter block. All hardware accelerators have local SRAM 
buffers for limiting the number of accesses to the shared DRAM. The total 
SRAM memory size is 5.3 Kb. The video processing core supports 
concurrent execution in real time of one encoding thread and up to four 
decoding threads. The audio core has a similar organization. It also contains 
an RISC processor with caches, but it includes different coprocessors. The 
multiplexing core contains a RISC processor and a network interface block, 
and it handles tasks without the need for hardware accelerators.  

The MPEG4 core targets battery-powered portable terminals, hence, it 
has been optimized for low power consumption at the architectural, circuit, 
and technology level. Idle power reduction was a primary conc ern. 
Therefore, clock gating is adopted throughout the chip; the local clock is 
automatically stopped whenever processors or hardware accelerators are 
idle. Shutdown is also supported at a coarser granularity: all RISC 
processors support sleep instructions  for explicit, software-controlled 
shutdown, with interrupt-based wake-up. Active power minimization is 
tackled primarily through the introduction of embedded DRAM, which 
drastically reduces IO, bus, and memory access energy. Memory tailoring 
reduces power by 20% with respect to a commodity-DRAM solution. Page 
and word size have been chosen to minimize redundant data fetch and 
transfer, and specialized access modes have been defined to improve latency 
and throughput.  

To further reduce power, the SoC was designed in a 0.25 ? m variable-
threshold CMOS technology with VDD=2.5 V. In active mode, the threshold 
voltage of transistors is 0.55 V. In standby mode it is raised through body-
bias to 0.65 V to reduce leakage. The chip contains 20.5 million transistors, 
chip area is 10.84 ?  10.84 mm2. The 16-Mb embedded DRAM occupies 
roughly 40% of the chip. The chip consumes 260 mW at 60 MHz. Compared 
to a previous design, with external commodity DRAM and separate video 
and audio processing chips, power is reduced by roughly a factor of four. 
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Comparing the MPEG4 core with the Emotion Engine from a power 
viewpoint, one notices that the second SoC consumes roughly 60 times less 
power than the first one at a comparable integration level. The differences in 
speed and voltage supply account for a difference in power consumption of, 
roughly, a factor of 2, which becomes a factor of 4 if one discounts area (i.e., 
focuses on power density). The residual 15 ?  difference is due to the 
different transistor usage (the MPEG4 core is dom inated by embedded 
DRAM, which has low power density), and to architecture, circuit, and 
technology optimizations.  This straightforward comparison convincingly 
demonstrates the impact of power -aware system design techniques and the 
impressive flexibility of CMOS technology. 

3.3 Single -chip Voice Recorder 

Digital audio is a large market where system cost constraints are 
extremely tight. For this reason, several companies are actively pursuing 
single-chip solutions based on embedded memory for the on-chip storage of 
sound samples [84, 43]. The main challenges are the cost per unit area of 
semiconductor memory, and the power dissipation of the chip, which should 
be as low as possible to reduce the cost of batteries (e.g., primary Lithium 
vs. rechargeable Li-Ion). 

 

Figure 3: Architecture of the voice recorder. 
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The single-chip voice recorder and player developed by Borgatti and 
coauthors [14] stores recorded audio samples on embedded FLASH 
memory.  The chip was originally implemented in 0.5 ?m technology with 
3.0 V supply, and it is a typical example of an SoC designed for a single 
application.  The main building blocks (Figure 3) are: a microcontroller unit 
(MCU), a speech coder and decoder, and an embedded FLASH memory.  A 
distinguishing feature of the system is the use of a multi-level storage 
scheme to increase the speech recording capacity of the FLASH. Speech 
samples are first digitized then compressed with a simple waveform coding 
technique (adaptive-differential pulse-code modulation) and finally stored in 
FLASH memory, 4-bits per cell.  

A 4-bits per cell density requires 16 different thresholds for the FLASH 
cells. Accurate threshold programming and readout requires mixed-signal 
circuitry in the memory write and read paths.  The embedded FLASH macro 
contains 8 Mcells. It is divided into 128 sectors that can be independently 
erased. Each sector contains 64-K cells, which can store 32 Kbytes in 
multilevel mode. Memory read is performed though an 8-bit, two-step 
analog-to-digital converter.  

Besides the multilevel FLASH memory, the other main components of 
the SoC are the 8-bit MCU, the ADCPM speech codec, and the 16-bit on-
chip bus. The core interfaces to two 32kB embedded RAM blocks (one for 
storing data and the other for executable  code and data). The two blocks are 
split into 16 selectively accessed RAM modules to reduce power 
consumption. The executable code is downloaded to program RAM from 
dedicated sectors of the FLASH macro though 16-bit DMA transfers on the 
on-chip bus. A few code blocks (startup code, download control code, and 
other low-level functions) are stored in a small ROM module (4-kB).  

The speech codec is a custom datapath block implementing ITU-T G.726 
compression  (ADPCM). Its input/output ports are in PCM format for 
directly interfacing to a microphone and a loudspeaker. At a clock speed of 
128 kHz, a telephone-quality speech signal can be compressed at one of four 
selectable bit rates (16-40 kB/s). The compressed audio stream is packed in 
blocks of 1 kB using two on-chip RAM buffers (in a two-phase fashion).  
This organization guarantees that samples can be transferred to FLASH in 
blocks, at a much higher burst rate than the sample rate. 

The on-chip bus is synchronous and 16-bits wide, and it supports 
multiple masters and interrupts. A bus arbiter manages mutual exclusion and 
resolves access conflicts. A static priority order is assigned to all bus masters 
at initialization time, but it can be modified through a set of dedicated 
signals. The on-chip bus can be clocked at different speeds (configured 
through a software accessible register). Each block is clocked at a different 
speed by a dedicated clock. All clocks are obtained by dividing an externally 
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provided 16-32 MHz clock. Clock gating was used extensively to reduce the 
power consumption of idle sub-circuits. 

The chip is fabricated in a 3 V 0.5 ? m common-ground NOR embedded 
FLASH process. The chip area is 15 ?  15 mm2, and it has only 26 logically 
active pins. Standby power is less than 1mW. Peak power during recordin g 
is 150 mWand 110 mW during play. The average power increases with 
higher bit rates, but it is generally much smaller than peak power (e.g., 
75mW for recording at 24 kbps). 

The single-chip recorder demonstrates power minimization principles 
that have not been fully exploited in the SoCs examined in the previous 
subsections. The use of application-specific processing units is pushed one 
step further. Here, the programmable processor has only control and 
coordination functions. All computationally expensive data processing is 
farmed off to a specialized datapath block. An additional quantum leap in 
energy efficiency is provided by mixed-signal or analog implementation of 
key functional blocks. In this chip, analog circuits are used to support 16-bit 
per cell programming density in the embedded FLASH memory. The 16-fold 
density increase for embedded memory represents a winning point from the 
energy viewpoint as well. 

4. DESIGN OF MEMORY SYS TEMS 

The SoCs analyzed in the previous section demonstrate that today's 
integrated systems contain a significant amount of storage arrays. In many 
cases the fraction of silicon real estate devoted to memory is dominant, and 
the power spent in accessing memories dictates the overall chip power 
consumption. The general trend in SoC integration is toward increasing 
embedded memory content [56]. It is reported that, on average, 50% of the 
transistors in an SoC designed in 2001 are instantiated within memory 
arrays. This percentage is expected to grow to 70% by 2003 [29]. In view of 
this trend it is obvious that energy-efficient memory system design is a 
critical issue.  

The simplest memory organization, the flat memory, assumes that data is 
stored in a single, large array.  Even in such a simplistic setting, sizing 
memory arrays is not trivial. Undersized memories penalize system 
performance, while oversized memories cost in terms of silicon area as well 
as performance and power, because access time and power increase 
monotonically with memory size [51, 17]. 

The most obvious way to alleviate memory bottlenecks is to reduce the 
storage requirements of the target application.  To this goal, designers can 
reduce memory requirements by exploiting the principle of temporal 
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locality, i.e., trying to reuse the results of a computation as soon as possible, 
in order to reduce the need for temporary storage.  Other memory-reduction 
techniques aim at finding efficient data representations that reduce the 
amount of unused information stored in memory. Storage reduction 
techniques cannot completely remove memory bottlenecks, mainly because 
they try to optimize power and performance indirectly as a by-product of the 
reduction of memory size. As a matter of fact, memory size requirements of 
system applications have steadily increased over time. 

From the hardware design viewpoint, memory power reduction has been 
pursued mainly through technology and circuit design and through a number 
of architectural optimizations.  While technology and circuit techniques are 
reviewed in detail in previous chapters, architectural optimizations, which 
rely on the idea of overcoming the scalability limitation intrinsic of flat 
memories, are focused on here. Indeed, hierarchical memories allow the 
designer to exploit the spatial locality of reference by clustering related 
information into the same (or adjacent) arrays. 
 

4.1 On-chip Memory Hierarchy  

 
The concept of a memory hierarchy, conceptually depicted in Figure 4, is 

at the basis of most on-chip memory optimization approaches. Lower levels 
in the hierarchy are made of small memories, tightly coupled with 
processing units. Higher hierarchy levels are made of increasingly larger 
memories, placed relatively far from computation units, and possibly shared.   

Figure 4: A generic hierarchical memory model. 
 

When looking at the hierarchical structure of computational and storage 
nodes, the distance between a computation unit and a storage array 
represents the effort needed to fetch (or store) a data unit from (to) the 
memory. The main objective of energy-effic ient memory design is to 
minimize the overall energy cost for accessing memory within performance 
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and memory size constraints. Hierarchical organizations reduce memory 
power by exploiting non-uniformity (or locality) in access.  
 

Memory optimization techniques can be classified into three categories: 
 

?? Memory hierarchy design. Given a dynamic trace of memory 
accesses, obtained by profiling an application, derive a 
customized memory hierarchy.  

?? Computation transformation. Given a fixed memory hierarchy, 
modify the storage requirements and access patterns of the target 
computation to optimally match the given hierarchy. 

?? Synergistic memory and computation optimization. Concurrently 
optimize memory access patterns and memory architecture.    

 
Memory-hierarchy design is considered next.  Computation 

transformations are software-oriented techniques (see Section 5). For a 
comprehensive survey of the topic, with special emphasis on synergistic 
techniques, refer to [10, 66].   

When comparing time and energy per access in a memory hierarchy, one 
can observe that they both increase with the move from low to high 
hierarchy levels. One may be led to conclude that a low-latency memory 
architecture will also be a low -power architecture and that memory 
performance optimization implies power optimization. This conclusion is 
often incorrect for three main reasons. First, even though both power and 
performance increase with memory size and memory hierarchy levels, they 
do not increase by the same amount.  Second, performance is a worst-case 
quantity (i.e., intensive), while power is an average-case quantity (i.e., 
extensive).  Thus, memory performance can be improved by removing a 
memory bottleneck on a critical computation, but this may be harmful for 
power consumption, the impact of a new memory architecture on all 
memory accesses, not only the critical ones, needs to be considered. Third, 
several circuit-level techniques actually trade shorter access time for higher 
power (and vice versa) at a constant memory size. The following example, 
taken from [74], demonstrates how energy and performance can be 
contrasting quantities.  
 

Example 1 The memory organization options for a two-level memory 
hierarchy (on-chip cache and off-chip main memory) explored in [74] are 
the following: (i) cache size, ranging from 16 bytes to 8KB (in powers of 
two); (ii) cache line size, from 4 to 32, in powers of two; (iii) associativity (1, 
2, 4, and 8); and (iv) off -chip memory size, from 2Mbit SRAM, to 16Mbit 
SRAM.   
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The exhaustive exploration of the cach e organization for minimum 
energy for an MPEG decoding application results in an energy-optimal 
cache organization with cache size 64 bytes, line size 4 bytes, 8-way set 
associative.  Notice that this is a very small memory, almost fully associative 
(only two lines). For this organization, the total memory energy is 293 ?J, 
and the execution time is 142,000 cycles.  In contrast, exploration for 
maximum performance yields a cache size of 512 bytes, a line size of 16 
bytes, and is 8-way set associative.  Noti ce that this cache is substantially 
larger than the energy-optimal one.  In this case, the execution time is 
reduced to 121,000 cycles, but the energy becomes 1,110 ?J.   

One observes that the second cache dominates the first one for size, line 
size, and associativity; hence, it has the larger hit rate.  This is consistent 
with the fact that performance strongly depends on miss rate.  On the other 
hand, if external memory access power is not too large with respect to cache 
access (as in this case), some hit rate can be traded for decreased cache 
energy.  This justifies the fact that a small cache with a large miss rate is 
more power-efficient than a large cache with a smaller miss rate.  
 

The example shows that energy cannot generally be reduced as a 
byproduct of performance optimization.  On the other hand, architectural 
solutions originally devised for performance optimization are often 
beneficial in terms of energy.  Generally, when locality of access is 
improved, both performance and energy tend to improve. This fact is heavily 
exploited in software optimization techniques. 

4.2 Explorative Techniques 

Several recently proposed memory optimization techniques are 
explorative. They exploit the fact that the memory design space can usually 
be parameterized and discretized, to allow for an exhaustive or near-
exhaustive search.  Most approaches assume a memory hierarchy with one 
or more levels of caching and, in some cases, an off-chip memory.  A finite 
number of cache sizes and cache organization options are considered (e.g., 
degree of associativity, line size, cache replacement policy, as well as 
different off-chip memory alternatives--number of ports, available memory 
cuts). The best memory organization is obtained by simulating the workload 
for all possible alternative architectures. The various approaches mainly 
differ in the number of hierarchy levels that are covered by the exploration 
or the number of available dimensions in the design space. Su and Despain 
[77], Kamble and Ghose [37], Ko and Balsara [42], Bahar at al. [4], and 
Shiue and Chakrabarti [74] focus on cache memories.  Zyuban and Kogge 
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[94] study register files; Coumeri and Thomas [21] analyze embedded 
SRAMs; Juan et al. [44] study translation look-aside buffers. 

Example 1 has shown an instance of a typical design space and the result 
of the relative exploration.  An advantage of explorative techniques is that 
they allow for concurrent evaluation of multiple cost functions such as 
performance and area. The main limitation of the explorative approach is 
that it requires extensive data collection, which provides a posteriori insight.  
In order to limit the number of simulations, only a relatively small set of  
architectures can be tested and compared.   

4.3  Memory Partitioning  

Within a hierarchy level, power can be reduced by memory partitioning.  
The principle of memory partitioning is to sub-divide the address space and 
to map blocks to different physical memory banks that can be independently 
enabled and disabled. Arbitrary fine partitioning is prevented due to the fact 
that a large number of small banks is area inefficient and imposes a severe 
wiring overhead, which tends to increase communication power and 
performance.   

Partitioning techniques can be applied at all hierarchy levels, from 
register files to off-chip memories. Another aspect is the “type” of 
partitioning, such as physical or logic partitioning. Physical partitioning 
strictly maps the address space onto different, non-overlapping memory 
blocks. Logic partitioning exploits some redundancy in the various blocks of 
the partition, with the possibility of addresses that are stored several times in 
the same level of hierarchy.  

A physically-partitioned memory is energy-efficient mainly for two 
reasons. First, if accesses have high spatial and/or temporal locality, 
individual memory banks are accessed in bursts. Burst access to a single 
bank is desirable because idle times for all other banks are long, thereby 
amortizing the cost of shutdown [28]. Second, energy is saved because every 
access is on a small bank as opposed to a single large memory [77]. For 
embedded systems designed with a single application target, application 
profiling can be exploited to derive a tailored memory partition, where small 
memory banks are tightly fitted on highly-accessed address ranges, while 
“colder” regions of the address space can be mapped onto large banks. 
Clearly, such a non-uniform memory partitioning strategy can out perform 
equi-partition when access profiles are highly non-uniform and are known at 
design time [56]. 

Logic partitioning was proposed by Gonzalez et al. [30], where the on-
chip cache is split into a spatial  and into a temporal cache to store data with 
high spatial and temporal correlation, respectively. This approach relies on a 
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dynamic prediction mechanism that can be realized without modification to 
the application code by means of a prediction buffer.  

A similar idea is proposed by Milutinovic et al. [61], where a split 
spatial/temporal cache with different line sizes is used. Grun at al. [32] 
exploit this idea in the context of embedded systems for energy optimization.  
Data are statically mapped to the either cache, using the high predictability 
of the access profiles for embedded applications, and thus avoiding the 
hardware overhead of the buffer.  Depending on the application, data might 
be duplicated and thus be mapped to both caches. Another class of logic 
partitioning techniques falls within the generic scheme of Figure 5.  Buffers 
are put along the I-cache and/or the D-cache, to realize some form of cache 
parallelization.  Such schemes can be regarded as a partitioning solution 
because the buffers and the caches are actually part of the same level of 
hierarchy.   

Figure 5: Using  buffers together with caches. 

4.4 Extending the Memory Hierarchy 

Memory partitioning extends the “width” of the memory hierarchy by 
splitting, with or without replication, a given hierarchy level.  An alternative 
possibility is offered by modifying its “depth”, i.e., the number of hierarchy 
levels.  This option does not just imply the straightforward addition of extra 
levels of caching.  
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A first class of techniques is based on the insertion of “ad-hoc” memories 
between existing hierarchy levels. This approach is particularly useful for 
instruction memory, where access locality is very high. Pre-decoded 
instruction buffers [6] store instructions in critical loops in a pre-decoded 
fashion, thereby decreasing both fetch and decode energy.  Loop caches [40] 
store the most frequently executed instructions (typically contained in small 
loops) and can bypass even the first-level cache.  Notice that these additional 
memories would not be useful for performance if the first-level cache can be 
accessed in a single cycle. On the contrary, performance can be slight ly 
worsened because the access time for the loop cache is on the critical path of 
the memory system. 

Another approach is based on the replacement of one or more levels of 
caches with more energy-efficient memory structures.  Such structures are 
usually called scratch-pad buffers and are used to store a portion of the off-
chip memory, in an explicit fashion. In contrast with caches, reads and writes 
to the scratch-pad memory are controlled explicitly by the programmer. 
Clearly, allocation of data to the scratch pad should be driven by profiling 
and statistics collection. These techniques are particularly effective in 
application-specific systems, which run an application mix whose memory 
profiles can be studied a priori, thus providing intuitive candidates for the 
addresses to be put into the buffer. The work by Panda et al. [63, 64] is 
probably the most comprehensive effort in this area [64].  

4.5 Bandwidth Optimization  

When the memory architecture is hierarchical, memory transfers become 
a critical facet of memory optimization. From a performance viewpoint, both 
memory latency and bandwidth are critical design metrics [35]. From an 
energy viewpoint, memory bandwidth is much more critical than latency. 
Optimizing memory bandwidth implies reducing the average number of bits 
that are transferred across the boundary between two hierarchy levels in a 
time unit. It has been pointed out [16] that memory bandwidth is becoming 
more and more important as a metric for modern systems, because of the 
increased instruction-level parallelism generated by superscalar or VLIW 
processors and because of the density of integration that allows shorter 
latencies. Unlike latency, bandwidth is an average-case quantity. Well-
known latency-reduction techniques, such as prefetching, are inefficient in 
terms of bandwidth (and energy). 

As an example of bandwidth optimization, the work by Burger et al. [15, 
16] introduces several variants of traffic -efficient caches that reduce 
unnecessary memory traffic by the clever choice of associativity, block size, 
or replacement policy, as well as clever fetch strategies fetches.  These 
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solutions do not necessarily improve worst-case latency but result in reduced 
read and writes across different memory hierarchy levels, thus reducing 
energy as well.  

Another important class of bandwidth optimization techniques is based 
on the compression of the information passed between hierarchy levels. 
These techniques aim at reducing the large amount of redundancy in 
instruction streams by storing compressed instructions in the main memory 
and decompressing them on the fly before execution. Compression finds 
widespread application in wireless networking, where channel bandwidth is 
severely limited. In memory compression, the constraints on the speed and 
hardware complex ity of the compressor and decompressor are much tighter 
than in macroscopic networks. Furthermore, memory transfers usually have 
very fine granularity (they rarely exceed a few tens of bytes). Therefore, the 
achieved compression ratios are usually quite lo w, but compression speed is 
very high. Hardware-assisted compression has been applied mainly to 
instruction memory, [89, 50, 49, 9] and, more recently, to data memory [11].  
A comprehensive survey of memory compression techniques can be found in 
[47]. 

5. DESIGN OF INTERCONNECT NETWORKS 

As technology improves and device sizes scale down, the energy spent on 
processing and storage components decreases. On the other hand, the energy 
for global communication does not scale down. On the contrary, projections 
based on current delay optimization techniques for global wires [79] show 
that global communication on chip will require increasingly higher energy 
consumption.  
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Figure 6: The on-chip network stack 
 

The chip interconnect has to be considered and designed as an on-chip 
network, called a micro-network [8]. As for general network design, a 
layered abstraction of the micro-network (shown in Figure 6) can help us 
analyze the design problems and find energy-efficient communication 
solutions. Next, micro-network layers are considered in a bottom-up fashion. 
First, the problems due to the physical propagation of signals on chip are 
analyzed. Then general issues related to network architectures and control 
protocols are considered. Protocols are considered independently from their 
implementation, from the physical to the transport layers. The discussion of 
higher-level layers is postponed until Section 5. Last, we close this section 
by considering techniques for energy-efficient communication on mic ro-
networks. 
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5.1 Signal transmission on chip 

Global wires are the physical implementation of on-chip communication 
channels. Physical-layer signaling techniques for lossy transmission lines 
have been studied for a long time by high-speed board designers and 
microwave engineers [5, 24]. 

Traditional rail-to-rail voltage signaling with capacitive termination, as 
used today for on-chip communication, is definitely not well-suited for high-
speed, low-energy communication on future global interconnects [24]. 
Reduced swing, current-mode transmission, as used in some processor-
memory systems, can significantly reduce communication power dissipation 
while preserving speed of data communication. 

Nevertheless, as technology trends lead us to use smaller voltage swings 
and capacitances, error probabilities will rise. Thus the trend toward faster 
and lower-power communication may decrease reliability as an unfortunate 
side effect. Reliability bounds can be derived from theoretical (entropic) 
considerations [34] and measured by experiments on real circuits as voltages 
scale. 

A paradigm shift is needed to address the aforementioned challenges. 
Current design styles consider wiring-related effects as undesirable parasitics 
and try to reduce or cancel them by specific and detailed physical design 
techniques. It is important to realize that a well-balanced approach should 
not over-design wires so that their behavior approaches an ideal one because 
the corresponding cost in performance, energy-efficiency and modularity 
may be too high. Physical- layer design should find a compromise between 
competing quality metrics and  provide a clean and complete abstraction of 
channel characteristics to  micro-network layers above. 

5.2 Network architectures and control protocols 

Due to the limitations at the physical level and to the high bandwidth 
requirement, it is likely that SoC design will use network architectures 
similar to those used for multi-processors. Whereas shared medium  (e.g., 
bus-based) communication dominates today's chip designs, scalability 
reasons make it reasonable to believe that more general network topologies 
will be used in the future. In this perspective, micro-network design entails 
the specification of network architectures and control protocols [27]. The 
architecture specif ies the topology and physical organization of the 
interconnection network, while the protocols specify how to use network 
resources during system operation.  

The data-link layer abstracts the physical layer as an unreliable digital 
link, where the probability of bit errors is non null (and increasing as 
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technology scales down). Furthermore, reliability can be traded for energy 
[34, 12]. The main purpose of data-link protocols is to increase the reliability 
of the link up to a minimum required level, under the assumption that the 
physical layer by itself is not sufficiently reliable.  

An additional source of errors is contention in shared-medium networks. 
Contention resolution is fundamentally a non-deterministic process because 
it requires synchronization of a distributed system, and for this reason it can 
be seen as an additional noise source. In general, non-determinism can be 
virtually eliminated at the price of some performance penalty.  For instance, 
centralized bus arbitration in a synchronous bus eliminates contention-
induced errors, at the price of a substantial performance penalty caused by 
the slow bus clock and by bus request/release cycles.  

Future high-performance shared-medium on-chip micro-networks may 
evolve in the same direction as high-speed local area networks, where 
contention for a shared communication channel can cause errors, because 
two or more transmitters are allowed to send data on a shared medium 
concurrently. In this case, provisions must be made for dealing with 
contention-induced errors.  

An effective way to deal with errors in communication is to packetize 
data. If data is sent on an unreliable channel in packets, error containment 
and recovery is easier because the effect of the errors is contained by packet 
boundaries, and error recovery can be carried out on a packet-by-packet 
basis. At the data-link layer, error correction can be achieved by using 
standard error-correcting codes (ECC) that add redundancy to the 
transferred information. Error correction can be complemented by several 
packet-based error detection and recovery protocols. Several parameters in 
these protocols (e.g., packet size, number of outstanding packets, etc.) can be 
adjusted depending on the goal to achieve maximum performance at a 
specified residual error probability and/or within given energy consumption 
bounds. At the relatively low noise levels typical of on-chip communication, 
recent research results [12] indicate that error recovery is more energy-
efficient than forward error correction, but it increases the variance in 
communication latency. 

At the network layer, packetized data transmission can be customized by 
choosing switching or routing algorithms. The former, (e.g., circuit, packet, 
and cut-through switching), establishes the type of connection while the 
latter determines the path followed by a message through the network to its 
final destination. Switching and routing for on-chip micro-networks affect 
the performance and energy consumption heavily. Future approaches will 
most likely emphasize speed and the decentralization of routing decisions 
[1].  Robustness and fault tolerance will also be highly desirable.   
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At the transport layer, algorithms deal with the decomposition of 
messages into packets at the source and their assembly at the destination. 
Packetization granularity is a critical design decision, because the behavior 
of most network control algorithms is very sensitive to packet size. Packet 
size can be application-specific in SoCs, as opposed to general networks. In 
general, flow control and negotiation can be based on either deterministic or 
statistical procedures. Deterministic approaches ensure that traffic meets 
specifications and provide hard bounds on delays or message losses. The 
main disadvantage of deterministic techniques is that they are based on worst 
cases, and they generally lead to significant under -utilization of network 
resources. Statistical techniques are more efficient in terms of utilization, but 
they cannot provide worst-case guarantees. Similarly, from an energy 
viewpoint, deterministic schemes are expected to be more inefficient than 
statistical schemes because of their implicit worst-case assumptions. 

5.3 Energy-efficient design: techniques and examples 

This section delves into a few specific instances of energy-efficient 
micro-network design problems. In most cases, specific solutions that have 
been proposed in the literature are also outlined, although it should be clear 
that many design issues are open and significant progress in this area is 
expected in the near future. 

5.3.1 Physical Layer   At the physical layer, low -swing signaling is 
actively investigated to reduce communication energy on global 
interconnects [92]. In the case of a simple CMOS driver, low-swing 
signaling is achieved by lowering the driver's supply voltage Vdd. This 
implies a quadratic dynamic -power reduction (because Pdyn = K Vdd

2). 
Unfortunately, swing reduction at the transmitter complicates the receiver's 
design. Increased sensitivity and noise immunity are required to guarantee 
reliable data reception. Differential receivers have superior sensitivity and 
robustness, but they require doubling the bus width. To reduce the overhead, 
pseudo-differential schemes have been proposed, where a reference  signal is 
shared among several bus lines and receivers, and incoming data is 
compared against the reference in each receiver. Pseudo-differential 
signaling reduces the number of signal transitions, but it has reduced noise 
margins with respect to fully-differential signaling. Thus, reduced switching 
activity is counterbalanced by higher swings, and determining the minimum -
energy solution requires careful circuit-level analysis.   

Another key physical-layer issue is synchronization. Traditional on-chip 
communication has been based on the synchronous assumption, which 
implies the presence of global synchronization signals (i.e., clocks) that 
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define data sampling instants throughout the chip. Unfortunately, clocks are 
extremely energy-inefficient, and it is a well-known fact that they are 
responsible for a significant fraction of the power budget in digital integrated 
systems. Thus, postulating global synchronization when designing on-chip 
micro-networks is not an optimal choice from the energy viewpoint. 
Alternative on-chip synchronization protocols that do not require the 
presence of a global clock have been proposed in the past [93,7] but their 
effectiveness has not been studied in detail from the energy viewpoint.  

5.3.2 Data-link layer  At the data-link layer, a key challenge is to 
achieve the specified communication relia bility level with minimum energy 
expense. Several error recovery mechanisms developed for macroscopic 
networks can be deployed in on-chip micro-networks, but their energy 
efficiency should be carefully assessed in this context. As a practical 
example, cons ider two alternative reliability-enhancement techniques:  
error-correcting codes and error-detecting codes with retransmission. Both 
approaches are based on transmitting redundant information over the data 
link, but error-correction is generally more demanding than error detection in 
terms of redundancy and decoding complexity. Hence, we can expect error-
correcting transmission to be more power-hungry in the error-free case. 
However, when an error arises, error-detecting schemes require 
retransmission of the corrupted data. Depending on the network architecture, 
retransmission can be very costly in terms of energy (and performance). 

Clearly, the trade-off between the increased cost of error correction and 
the energy penalty of retransmission should be carefully explored when 
designing energy-efficient micro-networks [34].  Either scheme may be 
optimal, depending on system constraints and on physical channel 
characteristics.  Automatic design space exploration could be very beneficial 
in this area. 

Bertozzi et al. [12] considered error-resilient codes for 32-bit buses. 
Namely, they consider Hamming encoding/decoding schemes that support 
single-error correction, double-error detection, and (non-exhaustive) multi-
error detection. The physical overhead of these schemes is 6 or 7 additional 
bus lines plus the encoders and decoders. When error is detected and not 
corrected, data retransmission occurs. When error is not detected, the system 
has a catastrophic failure. For a given reliability specification of mean time 
to failure (MTTF) - ranging from 10 years to a few milliseconds - it is 
possible to determine the average energy per useful bit that is transmitted 
under various hypotheses. Such hypotheses include wiring length, and thus 
the ratio of energy spent on wires over the energy spent in coding, and 
voltage swings. In particular, for long MTTF (1015 sec) and wires (5 pF), 
error detection with retransmission is more energy-efficient than forward 
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error correction, mainly for two reasons. First, for the same level of 
redundancy, error detection is more robust than error correction; hence, the 
signal-to-noise ratio can be lowered more aggressively. Second, the error-
detecting decoder is simpler and consumes less power than the error-
correcting decoder. These two advantages overcome retransmission costs, 
which are sizable, but they are incurred under the relatively rare occurrence 
of transmission errors.   

In case of shared-medium network links (such as busses), the media-
access-control function of the data link layer is also critical for energy 
efficiency. Currently, centralized time-division multiplexing schemes (also 
called centralized arbitration) are widely adopted [3, 20, 86]. In these 
schemes, a single arbiter circuit decides which transmitter  accesses  the bus 
for every time slot. Unfortunately, the poor scalability of centralized 
arbitration indicates that this approach is likely to be energy-inefficient as 
micro-network complexity scales up. In fact, the energy cost of 
communicating with the arbiter and the hardware complexity of the arbiter 
itself scale up more than linearly with the number of bus masters.  

Distributed arbitration schemes as well as alternative multiplexing 
approaches, such as code division multiplexing, have been extensively 
adopted in shared-medium macroscopic networks and are actively being 
investigated for on-chip communication [90]. However, research in this area 
is just burgeoning, and significant work is needed to develop energy-aware 
media-access-control for future micro-networks. 
 

5.3.3 Network layer   Network architecture heavily influences 
communication energy. As hinted in the previous section, shared-medium 
networks (busses) are currently the most common choice, but it is intuitively 
clear that busses are not energy-efficient as network size scales up [33]. In 
bus-based communication, data is always broadcasted from one transmitter 
to all possible receivers, while in most cases messages are destined to only 
one receiver or a small group of receivers. Bus contention, with the related 
arbitration overhead, further contributes to the energy overhead.   

Preliminary studies on energy-efficient on-chip communication indicate 
that hierarchical and heterogeneous architectures are much more energy-
efficient than busses [68, 93]. In their work, Zhang et al. [93] develop a 
hierarchical generalized mesh where network nodes with a high 
communication bandwidth requirement are clustered and connected through 
a programmable generalized mesh consisting of several short 
communication channels joined by programmable switches. Clusters are 
then connected through a generalized mesh of global long communication 
channels. Clearly such architecture is heterogeneous because the energy cost 
of intra-cluster communication is much smaller than that of inter-cluster 
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communication. While the work of Zhang et al. demonstrates that power can 
be saved by optimizing network architecture, many network design issues 
are still open, and tools and algorithms are needed to explore the design 
space and to tailor network architecture to specific applications or classes of 
applications. 

Network architecture is only one facet of network layer design, the other 
major facet being network control. A critical issue in this area is the choice 
of a switching scheme for indirect network architectures. From the energy 
viewpoint, the tradeoff is between the cost of setting up a circuit-switched 
connection once for all and the overhead for switching packets throughout 
the entire communication time on a packet-based connection. In the former 
case the network control overhead is “lumped” and incurred once, while in 
the latter case, it is distributed over many small contributions, one for each 
packet. When communication flow between network nodes is extremely 
persistent and stationary, circuit-switched schemes are likely to be 
preferable, while packet-switched schemes should be more energy-efficient 
for irregular and non-stationary communication patterns. Needless to say, 
circuit switching and packet switching are just two extremes of a spectrum, 
with many hybrid solutions in between [85].  

5.3.4 Transport layer   Above the network layer, the 
communication abstraction is an end-to-end connection. The transport layer 
is concerned with optimizing the use of network resources and providing a 
requested quality of service. Clearly, energy can be seen as a network 
resource or a component in a quality of service metric.  An example of a 
transport-layer design issue is the choice between connection-oriented and 
connectionless protocols. Energy efficiency can be heavily  impacted by this 
decision. In fact, connection-oriented protocols can be energy inefficient 
under heavy traffic conditions because they tend to increase the number of 
re-transmissions. On the other hand, out-of-order data delivery may imply 
additional work at the receiver, which causes additional energy consumption. 
Thus, communication energy should be balanced against computation energy 
at destination nodes. 

Another transport- layer task with far-reaching implications on energy is 
flow control. When many transmitters compete for limited communication 
resources, the network becomes congested, and the cost per transmitted bit 
increases because of increased contention and contention resolution 
overhead. Flow control can mitigate the effect of congestion by regulating 
the amount of data that enters the network at the price of some throughput 
penalty. Energy reduction by flow control has been extensively studied for 
wireless networks [85, 67], but it is an unexplored research area for on-chip 
micro-networks. 
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6. SOFTWARE 

Systems have several software layers running on top of the hardware. 
Both system and application software programs are considered here. 

Software does not consume energy per se, but it is the execution and 
storage of software that requires energy consumption by the underlying 
hardware. Software execution corresponds to performing operations on 
hardware, as well as storing and transferring data. Thus software execution 
involves power dissipation for computation, storage, and communication. 
Moreover, storage of computer programs in semiconductor memories 
requires energy (e.g., refresh of DRAMs, static power for SRAMs).  
 

The energy budget for storing programs is typically small (with the 
choice of appropriate components) and predictable at design time. 
Nevertheless, reducing the size of the stored programs is beneficial. This can 
be achieved by compilation (see Section 5.2.2) and code compression. In the 
latter case, the compiled instruction stream is compressed before storage. At 
run time, the instruction stream is decompressed on the fly. Besides reducing 
the storage requirements, instruction compression reduces the data traffic 
between memory and processor and the corresponding energy cost. (See also 
Section 3.5.) Several approaches have been devised to reduce instruction 
fetch-and-store overhead, as surveyed in [56]. The following subsections 
focus mainly on system-level design techniques to reduce the power 
consumption associated with the execution of software. 
 
 

6.1 System software  

The notion of operating system (OS) is generalized to capture the system 
programs that provide support for the operation of SoCs. Note that the 
system support software in current SoCs usually consists of ad hoc routines, 
designed for a specific integrated core processor, under the assumption that a 
processor provides global, centralized control for the system. In future SoCs, 
the prevailing paradigm will be peer -to-peer interaction among several, 
possibly heterogeneous, processing elements. Thus, system software will be 
designed as a modular distributed system. Each programmable component 
will be provided with system software to support its own operation, to 
manage its communication with the communication infrastructure, and to 
interact effectively with the system software of the neighboring components. 

Seamless composition of components around the micro-network will 
require the system software to be configurable according to the requirements 
of the network. Configuration of system software may be achieved in 
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various ways, ranging from manual adaptation to automatic configuration. 
At one end of the spectrum, software optimization and compactness are 
privileged; at the other end, design ease and time are favored. With this 
vision, on-chip communication protocols should be programmable at the 
system software level, to adapt the underlying layers (e.g., transport) to the 
characteristics of the components. 

Let us now consider the broad objectives of system software. For most 
SoCs, which are dedicated to some specific application, the goal of system 
software is to provide the required quality of service within the physical 
constraints. Consider, for example, an SoC for a wireless mobile video 
terminal. Quality of service relates to the video quality, which implies 
specific performance levels of the computation and storage elements as well 
as of the micro-network. Constraints relate to the strength and S/N ratio of 
the radio-frequency signal and to the energy available in the battery. Thus, 
the major task of system software is to provide high performance by 
orchestrating the information processing within the service stations and 
providing the “best” information flow. Moreover, this task should be 
achieved while keeping energy consumption to a minimum. 

The system software provides us with an abstraction of the underlying 
hardware platform. In a nutshell, one can view the system as a queuing 
network of service stations. Each service station models a computational or 
storage unit, while the queuing network abstracts the micro-network. 
Moreover, one can assume that: 
 

?? Each service station can operate at various service levels, providing 
corresponding performance and energy consumption levels. This 
abstracts the physical implementation of components with adjustable 
voltage and/or frequency levels, as well as with the ability to disable 
their functions in full or in part. 

 
?? The information flow between the various units can be controlled by 

the system software to provide the appropriate quality of service. This 
entails controlling the routing of the information, the local buffering 
into storage arrays, and the rate of the information flow. 

 
In other words, the system software must support the dynamic power 

management (DPM) of its components as well as dynamic information-flow 
management. 
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6.1.1 Dynamic Power Management   Dynamic power management 
(DPM) is a feature of the run-time environment of an electronic system that 
dynamically reconfigures it to provide the requested services and 
performance levels with a minimum number of active components or a 
minimum activity level on such components [9]. DPM encompasses a set of 
techniques that achieve energy-efficient computation by selectively turning 
off (or reducing the performance of) system components when they are idle 
(or partially unexploited). DPM is often realized by throttling the frequency 
of processor operation (and possibly stopping the clock) and/or reducing the 
power supply voltage. Dynamic frequency scaling (DFS) and dynamic 
voltage scaling (DVS) are the terms commonly used to denote power 
management over a range of values. Typically, DVS is used in conjunction 
with DFS since reduced voltage operation requires lower operating 
frequencies, while the converse is not true. 

The fundamental premise for the applicability of DPM is that systems 
(and their components) experience non-uniform workloads during operation 
time. Such an assumption is valid for most systems, both when considered in 
isolation and when inter -networked. A second assumption of DPM is that it 
is possible to predict, with a certain degree of confidence, the fluctuations of 
workload. Workload observation and prediction should not consume 
significant energy. 

Designing power-managed systems encompasses several tasks, including 
the selection of power-manageable components with appropriate 
characteristics, determining the power management policy [9], and 
implementing the policy at an appropriate level of system software. DPM 
was described in a previous Chapter.  This chapter considers only the 
relations between DPM policy implementation and system software. 

A power management policy is an algorithm that observes requests and 
states of one or more components and issues commands related to frequency 
and voltage settings. This chapter also considers the limiting cases of turning 
on/off the clock and/or the power supply to a component. Whereas policies 
can be implemented in hardware (as a part of the control-unit of a 
component), software implementations achieve much greater flexibility and 
ease of integration. Thus a policy can be seen as a program that is executed 
at run-time by the system software.  

The simplest implementation of a policy is by a filter driver, i.e., by a 
program attached to the software driver of a specific component. The driver 
monitors the traffic to/from the component and has access to the component 
state. Nevertheless, the driver has a limited view of other components. Thus 
such an implementation of power management may suffer from excessive 
locality. 
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Power management policies can be implemented in system kernels and 
be tightly coupled to process management. Indeed, process management has 
knowledge of currently-executing tasks and tasks coming up for execution. 
Process managers also know which components (devices) are needed by 
each task. Thus, policy implementation at this level of system software 
enjoys both a global view and an outlook of the system operation in the near 
future. Predictive component wake-up is possible with the knowledge of 
upcoming tasks and required components. 

The system software can be designed to improve the effectiveness of 
power management. Power management exploits idle times of components. 
The system software scheduler can sequence tasks for execution with the 
additional goal of clustering component operation, thus achieving fewer but 
longer idle periods. Experiments with implementing DPM policies at 
different levels of system software [55] have shown increasing energy 
savings as the policies have deeper interaction with the system software 
functions. 

6.1.2  Information-flow management   Dynamic information-flow 
management relates to configuring the micro-network and its bandwidth to 
satisfy the information flow requirements. This problem is tightly related to 
DPM and can be seen as an application of DPM to the micro-network 
instead of to components. Again, policies implemented at the system 
software layer request either specific protocols or parameters at the lower 
layers to achieve the appropriate information flow, using the least amount of 
resources and energy.  

An example of information-flow management is provided by the Maia 
processor [91], which combines an ARM8 processor core with 21 satellite 
units, including processing and storage units.  The ARM8 processor 
configures the memory-mapped satellites using a 32bit configuration bus, 
and communicates data with satellites using two pairs of I/O interface ports 
and direct memory read/writes.  Connections between satellites are through a 
2-level hierarchical mesh-structured reconfigurable network. Dynamic 
voltage scaling is applied to the ARM8 core to increase energy efficiency. 

With this approach, the micro-network can be configured before running 
specific applications and tailored to these applications. Thus, application 
programs can be spatially distributed and achieve an energy savings of one 
order of magnitude as compared to a DSP processor with the same 
performance level. Such savings are due to the ability of Maia to reconfigure 
itself to best match the applications, to activate satellites only when data is 
present, and to operate at dynamically varying rates. 
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6.2 Application software  

The energy cost of executing a program depends on its machine code and 
on the corresponding micro-architecture, if one excludes the intervention of 
the operating system in the execution (e.g., swapping). Thus, for any given 
micro-architecture, the energy cost is tied to the machine code. 

There are two important problems of interest: software design and 
software compilation. Software design affects energy consumption because 
the style of the software source program (for any given function) affects the 
energy cost. For example, the probability of swapping depends on 
appropriate array dimensioning while considering the hardware storage 
resources. As a second example, the use of specific constructs, such as 
guarded instructions instead of branching constructs for the ARM 
architecture [10], may significantly reduce the energy cost. Several efforts 
have addressed the problem of automatically re-writing software programs to 
increase their efficiency. Other efforts have addressed the generation of 
energy-efficient software from high-level specification. We call these 
techniques software synthesis. 

Eventually, since the machine code is derived from the source code from 
compilation, it is the compilation process itself that affects the energy 
consumption. It is important to note that most compilers were written for 
achieving high-performing code with short compilation time. The design of  
an embedded system running dedicated software has brought a renewed 
interest in compilation, especially because of the desire of achieving high-
quality code (i.e., fast, energy efficient) possibly at the expense of longer 
compilation time (which is tolerable for embedded systems running code 
compiled by the manufacturer). 

For both software synthesis and compilation it is important to define the 
metrics of interest well. Typically, the performance (e.g., latency) and 
energy of a given program can be evaluated in the worst  or average case. 
Worst-case latency analysis is relevant to real-time software design when 
hard timing constraints are specified. In general, average latency and average 
energy consumption are of interest. Average measures require the 
knowledge of the environment, i.e., the distribution of program inputs, which 
eventually affect the branches taken and the number of iterations. When such 
information is unavailable, meaningful average measures are impossible to 
achieve. 

To avoid this problem, some authors have measured the performance and 
energy on the basic blocks, thus avoiding the effects of branching and 
iteration. It is often the case that instructions can be grouped into two 
classes. Instructions with no memory access tend to have similar energy cost 
and execute in a single cycle. Instructions with memory access have higher 
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latency and energy cost. With these assumptions, reducing code size and 
reducing memory accesses (e.g., spills) achieves the fastest and most energy-
efficient code. Nevertheless this argument breaks down when instructions 
(with no memory access) have non-uniform energy cost even though 
experimental results do not show significant variation between compilation 
for low latency and for low energy. 

It is very important to stress that system design requires the coordination 
of various hardware and software components. Thus, evaluation of software 
programs cannot be done in isolation. Profiling techniques can and must be 
used to determine the frequency distribution of the values of the input to 
software programs and subprograms. Such information is of paramount 
importance for achieving application software that is energy efficient in the 
specific environment where it will be executed. It is also interesting to note 
that, given a specific environment profile, the software can be restructured so 
that lower energy consumption can be achieved at the price of slightly higher 
latency. In general, the quest for maximum performance pushes toward the 
speculative execution and aggressive exploitation of all hardware resources 
available in the system. In contrast, energy efficiency requires a more 
conservative approach, which limits speculation and reduces the amount of 
redundant work that can be tolerated for a marginal performance increase 
[58]. 

6.2.1 Software synthesis   Software synthesis is a term used with 
different connotations. In the present context, software synthesis is an 
automated procedure that generates source code that can be compiled. 
Whereas source code programs can be synthesized from different starting 
points, source code synthesis from programs written in the same 
programming language are considered here. Software synthesis is often 
needed because the energy consumption of executing a program depends on 
the style and constructs used. Optimizing compilers are biased by the 
starting source code to be compiled. Recall that programs are often written 
with only functionality and/or performance in mind, and rarely with 
concerns for energy consumption. Moreover, it is common practice to use 
legacy code for embedded applications, sometimes with high-energy 
penalties. Nevertheless, it is conceivable to view this type of software 
synthesis as pre-processing for compilation with specific goals.  
 
Source-level transformations.   Recently several researchers have 
proposed source-to-source transformations to improve software code quality, 
and in particular energy consumption. Some transformations are directed 
toward using storage arrays more efficiently [17,65]. Others exploit the 
notion of value locality. Value locality is defined as the likelihood of a 
previously-seen value recurring repeatedly within a physical or logical 



#16. Energy-efficient system-level design 33
 
storage location [52]. With value locality information, the computational 
cost of a program can be reduced by reusing previous computations. 

Researchers have shown that value locality can be exploited in various 
ways depending on the target system architecture. In [46], common-case 
specialization was proposed for hardware synthesis using loop unrolling and 
algebraic reduction techniques. In [52, 48], value prediction was proposed to 
reduce the load/store operations with the modification of a general purpose 
microprocessor. Some authors  [72] considered redundant computation, i.e., 
performing the same computation for the same operand value. Redundant 
computation can be avoided by reusing results from a result cache. 
Unfortunately, some of these techniques are architecture dependent, and thus 
cannot be used within a general-purpose software synthesis utility. 

Next a family of techniques for source code optimization, based on 
specialization of programs and data, is considered. Program specialization 
encodes the results of previous computations in a residual program, while 
data specialization encodes these results in the data structures like caches 
[18]. Program specialization is more aggressive in the sense that it optimizes 
even the control flow, but it can lead to a code explosion problem due to 
over-specialization. For example, code explosion can occur when a loop is 
unrolled and the number of iterations is large. Furthermore, code explosion 
can degrade the performance of the specialized program due to increased 
instruction cache misses. 

On the other hand, data specialization is much less sensitive to code 
explosion because the previous computation results are stored in a data 
structure that requires less memory than the textual representation  of 
program specialization. However, this technique should be carefully applied 
such that the cached previous computations are expensive enough to 
amortize the cache access overhead. The cache can also be implemented in 
hardware to amortize the cache access overhead [72]. 

A specific instance of program specialization was proposed by Chung et 
al. [19]. In this approach, the computational effort of a source code program 
is estimated with both value  and execution-frequency profiling. The most 
effective specializations are automatically searched and identified, and the 
code is transformed through partial evaluation. Experimental results show 
that this technique improves both energy consumption and performance of 
the source code up to more than a factor of two and in average about 35% 
over the original program. 
 
Example 2 Consider the source code in Figure 7 (a), and the first call of 
procedure foo in procedure main . If the first parameter a were 0 for all 
cases, this procedure could be reduced to procedure sp_foo  by partial 
evaluation, as shown in Figure 7 (b). 
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In reality, the value of parameter a is not always 0 , and the call to 
procedure foo cannot be substituted by procedure sp_foo. Instead, it can be 
replaced by a branching statement that selects an appropriate procedure 
call, depending on the result of the common value detection (CVD). The 
CVD procedure is named cvd_foo in Figure 7 (b). This is called 
transformation step source code alternation. Its effectiveness depends on the 
frequency with which a takes the common value 0. 
 
main () {  

int i, a, b, c[100], d[200], e, result = 0; 
...............  
...............  
result = foo(a, 100, c); 
for (i = 0; i < 10; i++) { 

result += foo(i, 100, c); 
result += foo(b, e, d);  
result += foo(b, 200, d); 

}  
} 
int foo(int fa, int fb, int *fc) {  

int i, sum = 0;  
for (i = 0; i < fb; i++) 
for(j = 0; j < fb/2; j++) 

sum += fa * fc[i]; 
return sum; 

} 
 (a) Original program 

 
main () { 

int i, a, b, c[100], d[200], e, result = 0; 
...............  
...............  
if (cvd_foo(a)) result += sp_foo(b);  
else result += foo(a, 100, c);  
for (i = 0; i < 10; i++) {  

result += foo(i, 100, c); 
result += foo(b, e, d);  
result += foo(b, 200, d);  

} 
} 
int foo(int fa, int fb, int *fc) { 

int i, sum = 0; 
for (i = 0; i < fb; i++) 

for(j = 0; j < fb/2; j++) 
sum += fa * fc[i]; 

return sum;  
} 
int sp_foo(int *c) { 

return 0; 
} 
int cvd_foo(int a) { 

if (a == 0) return 1; 
return 0;  

} 
  (b) New specialized program 
 
Figure 7: Example of source code alternation 
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Software libraries.   Software engineers working on embedded 
systems use often software libraries, like those developed by standards 
groups (e.g, MPEG) or by system companies (e.g., Intel's multimedia library 
for the SA-1110 and TI's library for the TI'54x DSP.) Embedded operating 
systems typically provide a choice from a number of math and other libraries 
[22]. When a set of pre-optimized libraries is available, the designer has to 
choose the elements that perform best for a given section of the code. Such a 
manual optimization is er ror-prone and should be replaced by automated 
library insertion techniques that can be seen as part of software synthesis. 

For example, consider a section of code that calls the log function. The 
library may contain four different software implementations: double, float, 
fixed point using simple bit manipulation algorithm [23, 71], and fixed point 
using polynomial expansion. Each implementation has a different accuracy, 
performance, and energy trade-off. 

Thus, the automation of the use of software libraries entails two major 
tasks. First, characterize the library element implementations in terms of the 
criteria of interest. This can be achieved by analyzing the corresponding 
instruction flow for a given architecture. Second, recognize the sections of 
code that can be replaced effectively by library elements. 

In the case of computation-intensive basic blocks of data-flows, code 
manipulation techniques based on symbolic algebra have shown to be 
effective in both optimizing the computation by reshaping the data flow and 
in performing the automatic mapping to library elements. Moreover, these 
tasks can be fully automated. These methods are based on the premise that in 
several application domains (e.g., multimedia) computation can be reduced 
to the evaluation of po lynomials with fixed-point precision. The loss in 
accuracy is usually compensated by faster evaluation and lower energy 
consumption. Next, polynomials can be algebraically manipulated using 
symbolic techniques, similar to those used by tools such as Maple. 
Polynomial representations of computation can be also decomposed into 
sequences of operations to be performed by software library elements or 
elementary instructions. Such a decomposition can be driven by energy 
and/or performance minimization goals. Recent experiments have shown 
large energy gains on applications such as MP3 decoding [69]. 
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6.2.2  Software Compilation  Most software compilers consist of 
three layers: the front-end, the machine-independent optimization, and the 
back-end. The front-end is responsible for parsing and performing syntax 
and semantic analysis, as well as for generating an intermediate form, which 
is the object of many machine-independent optimizations [2]. The back-end 
is specific to the hardware architecture, and it is often called code generator 
or codegen. Typically, energy-efficient compilation is performed by 
introducing specific transformations in the back-end, because they are 
directly related to the underlying architecture.  Nevertheless, some machine-
independent optimizations can be useful in general to reduce energy 
consumption [60]. An example is selective loop unrolling, which reduces the 
loop overhead but is effective if the loop is short enough. Another example is 
software pipelining, which decreases the number of stalls by fetching 
instructions from different iterations. A third example is removing tail 
recursion, which eliminates the stack overhead. 

The main tasks of a code generator are instruction selection, register 
allocation, and scheduling. Instruction selection is the task of choosing 
instructions, each performing a fragment of the computation. Register 
allocation is the task of allocating data to registers; when all registers are in 
use, data is spilled to the main memory. Spills are usually undesirable 
because of the performance and energy overhead of saving temporary 
information in the main memory. Instruction scheduling is ordering 
instructions in a linear sequence. When considering compilation for general-
purpose microprocessors, instruction selection and register allocation are 
often achieved by dynamic programming algorithms [2], which also generate 
the order of the instructions. When considering compilers for application-
specific architectures (e.g., DSPs), the compiler back-end is often more 
complex, because of irregular structures such as inhomogeneous register sets 
and connections. As a result, instruction selection, register allocation, and 
scheduling are intertwined problems that are much harder to solve [31]. 

Energy-efficient compilation-exploiting instruction selection was 
proposed by Tiwari et al. [81] and tied to software analysis and 
determination of base costs for operations. Tiwari proposed an instruction 
selection algorithm based on the classical dynamic programming tree cover 
[2] where instruction weights are the energy costs. Experimental results 
showed that this algorithm yields results similar to the traditional algorithm 
because energy weights do not differ much in practice. 

Instruction scheduling is an enumeration of the instructions consistent 
with the partial order induced by data and control flow dependencies. 
Instruction re-ordering for low-energy can be done by exploiting the degrees 
of freedom allowed by the partial order. Instruction re-ordering may have 
several beneficial effects, including reduction of inter -instruction effects [82, 
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53] as well as switching on the instruction bus [76] and/or in some hardware 
circuits, such as the instruction decoder. 

Su et al. [76] proposed a technique called cold scheduling, which aims at 
ordering the instructions to reduce the inter-instruction effects. In their 
model, the inter -instruction effects were dominated by the switching on the 
internal instruction bus  of a processor and by the corresponding power 
dissipation in the processor's control circuit. Given op-codes for the 
instructions, each pair of consecutive instructions requires as many bit lines 
to switch as the Hamming distance between the respective op-codes.  The 
cold scheduling algorithm belongs to the family of list schedulers [25]. At 
each step of the algorithm, all instructions that can be scheduled next are 
placed on a ready list. The priority for scheduling an instruction is inversely 
proportional to the Hamming distance from the currently scheduled 
instruction, thus minimizing locally the inter-instruction energy consumption 
on the instruction bus. Su [76] reported a reduction in overall bit switching 
in the range of 20 to 30%. 

Register assignment aims at utilizing the available registers most 
effectively by reducing spills to main memory. Moreover, a register can be 
labeled during the compilation phase, and register assignment can be 
performed with the objective of reducing the switching in the instruction 
register as well as in the register decoders [60]. Again, the idea is to reduce 
the Hamming distance between pairs of consecutive register accesses. When 
comparing this approach to cold scheduling, note that now the instruction 
order is fixed, but the register labels can be changed. Metha et al. [60] 
proposed an algorithm that improves upon an initial register labeling by 
greedily swapping labels until no further switching reduction is allowed. 
Experimental results showed an improvement ranging from 4.2% to 9.8%. 

Registers are only the last level of a memory hierarchy, which usually 
contains caches, buffers, multi-banked memories, etc. Compilers can have a 
large impact on energy consumption by optimizing not only register accesses 
but all kinds of memory traffic patterns as well. Many compiler 
transformations have limited scope, and they are not very effective in 
reducing memory power outside the register file. However, some restricted 
classes of programming constructs (namely, loop nets with data-independent 
iterations) can be transformed and optimized by the compiler in a very 
aggressive fashion. The theory and practice of loop transformations was 
intensely explored by parallelizing and high-performance compilers in the 
past [88], and it is being revisited from a memory energy minimization 
viewpoint with promising results [38, 39, 65]. These techniques are likely to 
have greater impact on SoCs because they have very heterogeneous memory 
architectures, and they often expose memory transfers to the programmer, as 
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outlined in the case studies  (this is rarely done in general-purpose 
processors). 

6.2.3 Application software and power management  The quest for 
very low energy software cost leads to the crafting and tuning of very 
specific application programs. Thus, a reasonable question is–why not let the 
application programs finely control the servic e levels and energy cost of the 
underlying hardware components? There are typically two objections to such 
an approach. First, application software should be independent of the 
hardware platform for portability reasons. Second, system software typically 
supports multiple tasks. When a task controls the hardware, unfair resource 
utilization and deadlocks may become serious problems. 

For these reasons, it has been suggested [54] that application programs 
contain system calls that request the system software to control a hardware 
component, e.g., by turning it on or shutting it down, or by requesting a 
specific frequency and/or voltage setting. The request can be accepted or 
denied by the operating system, which has access to the task schedule 
information and to the operating levels of the components. The advantage of 
this approach is that OS-based power management is enhanced by receiving 
detailed service request information from applications and thus is in a 
position to make better decisions. 

Another approach is to let the compiler extract the power management 
requests directly from the application programs at compile time. This is 
performed by an analysis of the code. Compiler-directed power management 
has been investigated for variable-voltage, variable-speed systems. A 
compiler can analyze the control-data flow graph of a program to find paths 
where execution time is much shorter than the worst-case. It can then insert 
voltage downscaling directives at the entry points of such paths, thereby 
slowing down the processor (and saving energy) only when there is 
sufficient slack [73]. 

7. CONCLUSIONS 

This concluding chapter has surveyed some of the challenges in 
achieving energy-efficient system-level design, with specific emphasis on 
SoC implementation.  

Digital systems with very low energy consumption require the use of 
components that exploit all features of the underlying technologies (as 
described in the previous chapters) and the realization of an effective 
interconnection of such components. Network technologies will play a major 
role in the design of future SoCs, as the communication among components 
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will be realized as a network on chip. Micro-network architectural choices 
and control protocol design will be key in achieving high performance and 
low-energy consumption. 

A large, maybe dominant, effort in SoC design is spent in writing 
software, because the operation of programmable components can be 
tailored to specific needs by means of embedded software. System software 
must be designed to orchestrate the concurrent operation of on-chip 
components and network. Dynamic power management and information-
flow management are implemented at the system software level, thus adding 
to the complexity of its design. Eventually, application software design, 
synthesis, and compilation will be crucial tasks in realizing low-energy 
implementations. 

Because of the key challenges presented in this book, SoC design 
technologies will remain a central engineering problem, deserving large 
human and financial resources for research and development. 
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