
1

Chapter #16

Energy-efficient system-level design

Luca Benini 1 and Giovanni De Micheli 2
1 Università di Bologna Bologna – Italy

2 CSL - Stanford University Stanford - CA - USA

Abstract: The complexity of current and future integrated systems requires a
paradigm shift towards component-based design techno logies
that enable the integration of large computational cores, memory
hierarchies and communication channel as well as system and
application software onto a single chip. Moving from a set of
case studies, we give an overview of energy-efficient system-
level design, emphasizing a component-based approach.

Key words: Embedded systems, Memory hierarchy, Network-on-Chip, Chip
Multiprocessor, System software, Application software, Power
management

1. INTRODUCTION

A system is a collection of components whose combined operation
provides a useful service. We consider specifically systems on chips (SoCs).
Such systems consist of hardware components integrated on a single chip
and various software layers. Har dware components are macro-cells that
provide information processing, storage, and interfacing. Software
components are programs that realize system and application functions.

When analyzing current SoC designs, it is apparent that systems are
described and realized as collections of components. Indeed, to date, there is
limited use of behavioral synthesis at the system level. System
implementation by component interconnection allows designers to realize

2 Chapter #16

complex functions while leveraging existing units and /or design
technologies, such as synthesis, on components whose size is much smaller
than the system itself.

Sometimes, system specifications are required to fit into specific
interconnections of components called hardware platforms. Thus, a
hardware platform, which is a restriction of the design space, may facilitate
system realization because it reduces the number of design options and
fosters the use and reuse of standard components. Expertise with designing
systems on a known platform is also a decisive factor in reducing design
time and in increasing designers' confidence in success.

System design consists of realizing a desired functionality while
satisfying some design constraints. Broadly speaking, constraints limit the
design space and relate to the major design trade-off between quality of
service (QoS) versus cost. QoS is closely related to performance, i.e., the
number of tasks that can be computed in a time window (system
throughput), as well as the time delay to complete a task (latency). QoS
relates also to the system dependability, i.e., to a class of specific system
figures (e.g., reliability, availability, safety) that measure the ability of the
system to deliver a service correctly, within a given time window and at any
time. Design cost relates to design and manufacturing costs (e.g., silicon
area, testability) as well as to operation costs (e.g., power consumption,
energy consumption per task).

In recent years, the design trade-off of performance versus power
consumption has received large attention because of: (i) the large number of
mobile systems that need to provide services with the energy releasable by a
battery of limited weight and size, (ii) the technical feasibility of high-
performance computation because of heat extraction, and (iii) concerns
about operating costs caused by electric power consumption in large systems
and the dependability of systems operating at high temperatures because of
power dissipation. Dependability measures will be extremely relevant in the
near future because of the use of SoCs in safety-critical applications (e.g.,
vehicular technologies) and in devices that connect humans with services
(e.g., portable terminals used to manage finances and working activities).

Recent design methodologies and tools have been addressing the problem
of energy-efficient design, aiming at providing a high-performance
realization while reducing its power dissipation. Most of these techniques, as
described in the previous chapters, address system components design. The
objective of this chapter is to describe current techniques that address
system-level design.

#16. Energy-efficient system-level design 3

2. SYSTEMS ON CHIPS AND THEIR DESIGN

We attempt to characterize SOC designs based on trends and
technologies. Electronic systems are best implemented on a single chip
because input-output pins are a scarce resource, and because on-chip
interconnect is faster and more reliable while overall cost is usually smaller.
At present, it is possible to integrate opto-electronic units on chip (e.g.,
charge-coupled device cameras) and mechanical elements (e.g.,
accelerometers) even though systems with such components go beyond the
scope of this chapter. In some domains, e.g., digital telephony, there is a
definite trend to cluster all electronics of a product on a single die.

Current near-future electronic technologies provide designers with an
increasingly larger number of transistors per chip. Standard, CMOS silicon-
based technologies with feature size around 100nm are considered here.
Such technologies support half a billion transistor chips of a few square
centimeters in size, according to the international technology semiconductor
roadmap (ITRS). As device sizes will further shrink to 50nm by the end of
the decade, chips will accommodate up to four billion transistors. Whereas
the increased amount of active devices will support increasingly more
complex design, chip power dissipation will be capped around 175W
because of packaging limitations and costs. Thus, the computing potential is
limited by energy efficiency.

At the same time, the design of large (i.e., billion transistor) chips will be
limited by the ability of humans and computer-aided design (CAD) tools to
tame their complexity. The million-transistor chip frontier was overcome by
using semi-custom technologies and cell libraries in the 1990s. Billion-
transistor chips will be designed with methodologies that limit design
options and leverage both libraries of very large scale components and
generators of embedded memory arrays.

Such library components are typically processors, controllers, and
complex functional units (e.g., MPEG macro-cells). System designers will
accept such components as basic building blocks as they are used to
accepting NAND and NOR gates without questioning their layout. At the
same time, successful component providers are expected to design reliable
and flexible units that can interact with others under varying operating
conditions and modes. Post-design, possibly in situ software (or
programmable hardware) configuration of these components, will play a
major role in achieving versatile components.

When observing any SoC layout, it is simple to recognize large memory
arrays. The ability to realize various types of embedded memories on chip
and the interspersion of storage and computing units are key to achieving
high-performance. The layout of embedded memory arrays is automatically

4 Chapter #16

generated by physical synthesis tools and can be tailored in size, aspect ratio,
and speed.

The distinguishing features of the upcoming SoCs relate directly to the
features and opportunities offered by semiconductor technology. Namely,
SoCs will display many processing elements (i.e., cores) and memory arrays.
Multi-processing will be the underlying characteristic of such chips. Thus
SoC technology will provide for both the implementation of multi-
processing computing systems and application-specific functions. The latter
class of systems is likely to be large and will be the driving force for SoC
technology. Indeed, embedded systems will be realized by SoCs realizing a
specific function, e.g., vehicular control, processing for wireless
communication, etc. Application specific SoCs will be characterized by the
presence of processing units running embedded software (and thus emulating
hardware functions) and by asymmetric structures, due to the diversity of
functions realized by the processing elements and their different storage
requirements.

The presence of several, possibly application-specific, on-chip storage
arrays presents both an opportunity and a design challenge. Indeed, the us e
of hierarchical storage that exploits spatial and temporal locality by
interspersing processing elements and storage arrays is key to achieving high
throughput with low latency [57, 70, 75]. The sizing and synthesis of
embedded storage arrays poses new challenges, because the effectiveness of
multi-processing is often limited by the ability to transfer and store
information. SoCs will generate large data traffic on chip; the energy spent
to process data is likely to be dwarfed by the energy spent to move and store
data. Thus, the design of the on-chip communication and storage systems
will be key in determining the energy/performance trade-off points of an
implementation.

The use of processing cores will force system designers to treat them as
black boxes and renounce the detailed tuning of their performance/energy
parameters. Nevertheless, many processing elements are designed to operate
at different service levels and energy consumption, e.g., by controlling their
operation frequency and voltage. Thus system designers will be concerned
with run-time power management issues, rather than with processing
element design.

As a result, the challenging issues in system-level design relate to
designing the storage components and the interconnect network of SoCs. At
the same time, designers must conceive run-time environments that manage
processing elements, memory, and on-chip network to provide for the
workload-dependent operating conditions, which yield the desired quality of
service with minimal energy consumption. In other words, SoCs will require
dedicated operating systems that provide for power management.

#16. Energy-efficient system-level design 5

The overall design of system and application software is crucial for
achieving the overall performance and energy objectives. Indeed, while
software does not consume power per se, the software execution causes
energy consumption by processing elements, storage arrays, and
interconnect network. It is well known that software design for a SoC is at
least as demanding as hardware design. For this reason, software design
issues will be covered in this chapter.

The remaining of this chapter is organized as follows. First a set of recent
SoC examples is considered to motivate this survey. Next the storage array
and interconnect network design on chip is address. The chapter concludes
with a survey of software design techniques, for both system and application
software.

3. SOC CASE STUDIES

This section analyzes three SoC designs from an energy-centric
perspective. It is organized in order of tightening power and cost constraints,
starting from a 3D graphics engine for game consoles, moving to a MPEG4
encoder-decoder for 3G wireless terminals, and concluding with an audio
recorder for low-end consumer applications. Clearly, this survey gives a very
partial view of an extremely variegated landscape, but its purpose is to focus
on the key design challenges in power-constrained integrated system design
and to enucleate system design guidelines that have lead to successful
industrial implementations.

3.1 Emotion Engine

The Emotion Engine [78, 41] was designed by Sony and Toshiba to
support 3-D graphics for the PlayStation 2 game console. From a functional
viewpoint, the design objective was to enable real-time synthesis of realistic
animated scenes in three dimensions. To achieve the desired degree of
realism, physical modeling of objects and their interactions, as well as 3-D
geometry, transformation are required. Power budget constraints are
essentially set by cost considerations: the shelf price of a game console
should be lower than 500$, thus ruling out expensive packaging and cooling.
Furthermore, game consoles should be characterized by the low cost of
ownership, robustness with respect to a wide variety of operating conditions,
and minimal maintenance. All of these requirements conflict with high
power dissipation. These challenges were met by following two fundamental
design guidelines: (i) integration of most of the critical communication,

6 Chapter #16

storage, and computation on a single SoC, and (ii) architectural
specialization for a specific class of applications.

The architecture of the Emotion Engine is depicted in Figure 1. The
system integrates three independent processing cores and a few smaller I/O
controllers and specialized coprocessors. The main CPU, the master
controller, is a superscalar RISC processor with a floating-point
coprocessor. The other two cores are floating-point vector processing units.
The first vector unit, VPU0, performs physical modeling computations,
while the second, VPU1, is dedicated to 3-D geometry computation. These
two functions are allocated to two different vector units because their
schedules are conflicting. Physical modeling is performed under the control
of the main CPU, and it is scheduled quite irregularly and unpredictably. In
contrast, geometry computations are performed in response to requests from
the rendering engine, which are spaced in equal time increments.

Figure 1: Architecture of the Emotion Engine

The main CPU is a two-way superscalar RISC core implementing the

MIPS III instruction set, plus 107 new SIMD multimedia instructions. The
core has 32 128-bit registers and two 64-bit integer units. Instruction and
data caches are two-way set associative, 16-KB and 8-KB, with one-cycle
access. Local data storage is also supported by a 16-KB scratch-pad RAM
(one-cycle access). The vector units VPU0 and VPU1 have similar micro-
architectures. However, VPU0 works as a coprocessor of the main CPU,
while VPU1 operates independently. The vector units have a four-way
SIMD organization. Instruction memory is 64-bits wide and its size is 16-KB
(for VPU1, 4-KB for VPU0). To provide single-cycle data feed to the

#16. Energy-efficient system-level design 7

floating-point units, four pipelined buffers are instantiated within the VPUs.
The quad-buffer appears as a 16-KB (for VPU1, 4-KB for VPU0), 4-ported
memory.

Communication is critical for system performance. VPU1 works
independently from the processor and produces a very large amount of data
for the external rendering engine. Therefore, there is a dedicated connec tion
and I/O port between VPU1 and the rendering engine. In contrast, VPU0
receives data from the CPU (as a coprocessor). For this reason data transfer
from/to the unit is stored in the CPU's scratch-pad memory and transferred to
VPU0 via DMA on a shared, 128-bit interconnection bus. The bus supports
transfers among the three main processors, the coprocessors, and I/O blocks
(e.g., for interfacing with high-bandwidth RDRAM).

The Emotion Engine was fabricated in 0.25 ? m technology with 0.18 ?m
drawn gate length for improved switching speed. The CPU and the VPUs are
clocked at 250MHz. External interfaces are clocked at 125 MHz. Die size is
17 ? 14.1 mm2. The chip contains 10.5 million transistors. The chip can
sustain 5 GFLOPs. With power supply VDD = 1.8 V, the power consumption
is 15 W. Clearly, such a power consumption is not adequate for portable,
battery-operated equipment; however it is much lower than that of a general-
purpose microprocessor with similar FP performance (in the same
technology).

The energy efficiency of the Emotion Engine stems form several factors.
First it contains many fast SRAM memories, providing adequate bandwidth
for localized data transfers but not at the high energy cost implied by cache
memories. On the contrary, instruction and data caches have been kept
small, and it is up to the programmer to develop tight inner loops that
minimize misses. Second, the architecture provides an extremely aggressive
degree of parallelism without pushing the envelope for maximum clock
speed. Privileging parallelism with respect to sheer speed is a well-known
low-power design technique [10]. Third, parallelism is explicit in hardware
and software (the various CPUs have well-defined tasks), and it is not
compromised by centralized hardware structures that impose unacceptable
global communication overhead. The only global communication channel
(the on-chip system bus) is bypassed by dedicated ports for high-bandwidth
point-to-point communication (e.g., between VPU1 and the rendering
hardware). Finally, the SoC contains many specialized coprocessors for
common functions (e.g., MPEG2 video decoding), which unloads the
processors and achieves very high energy efficiency and locality.
Specialization is also fruitfully exploited in the micro-architecture of the
programmable processors, which natively support a large number of
application-specific instructions.

8 Chapter #16

3.2 MPEG4 Core

In contrast with the Emotion Engine, the MPEG4 video codec SoC
described by Takahashi et al. [80] has been developed specifically for the
highly power-constrained mobile communications market. Baseband
processing for a multimedia-enabled 3G wireless terminal encompasses
several complex tasks that can, in principle, be implemented by multiple ICs.
However, it is hard to combine many chips within the small body of a
mobile terminal, and, more importantly, the high-bandwidth I/O interfaces
among the various ICs would lead to excessive power consumption. For this
reason, Takahashi et al. opted for an SoC solution that integrates most of the
digital baseband functionality. The SoC implements a video codec, a speech
codec or an audio decoder, and multiplexing and de-multiplexing between
multiple video and speech/audio streams.

Video processing is characterized by large data streams from/to memory,
and memory space requirements are significant. For this reason, the MPEG4
video codec has been implemented in an embedded-DRAM process. The
abstracted block diagram on the SoC is shown in Figure 2. The chip contains
16-Mb embedded DRAM and three signal processing cores: a video core, a
speech/audio core, and a stream -multiplexing core. Several peripheral
interfaces (camera, display, audio, and an external CPU host for
configuration) are also implemented on-chip.

Figure 2: Architect ure of the Decoder.

Each of the major signal processing cores contains a 16-bit RISC
processor and dedicated hardware accelerators. The system is a three-way

#16. Energy-efficient system-level design 9

asymmetric on-chip multiprocessor. Data transfers among the three
processors are performed via the DRAM. A virtual FIFO is configured on
the DRAM for each processor pair. The size of the FIFOs can be changed by
the firmware of each core. The communication network is organized as a set
of point-to-point channels between processors and DRAM. An arbitration
unit regulates access to the DRAM, based on DMA. Most of the traffic on
the channels is caused by cache and local memory refills issued by the three
processing cores. Communication among processors is sporadic.

The video processing core of the SoC contains a multimedia-enhanced
RISC processor with a 4-Kb direct mapped instruction cache and a 8-Kb
data cache. The video processor also includes several custom coprocessors:
2 DCT coprocessors, a motion compensation block, two motion estimation
blocks, and a filter block. All hardware accelerators have local SRAM
buffers for limiting the number of accesses to the shared DRAM. The total
SRAM memory size is 5.3 Kb. The video processing core supports
concurrent execution in real time of one encoding thread and up to four
decoding threads. The audio core has a similar organization. It also contains
an RISC processor with caches, but it includes different coprocessors. The
multiplexing core contains a RISC processor and a network interface block,
and it handles tasks without the need for hardware accelerators.

The MPEG4 core targets battery-powered portable terminals, hence, it
has been optimized for low power consumption at the architectural, circuit,
and technology level. Idle power reduction was a primary conc ern.
Therefore, clock gating is adopted throughout the chip; the local clock is
automatically stopped whenever processors or hardware accelerators are
idle. Shutdown is also supported at a coarser granularity: all RISC
processors support sleep instructions for explicit, software-controlled
shutdown, with interrupt-based wake-up. Active power minimization is
tackled primarily through the introduction of embedded DRAM, which
drastically reduces IO, bus, and memory access energy. Memory tailoring
reduces power by 20% with respect to a commodity-DRAM solution. Page
and word size have been chosen to minimize redundant data fetch and
transfer, and specialized access modes have been defined to improve latency
and throughput.

To further reduce power, the SoC was designed in a 0.25 ? m variable-
threshold CMOS technology with VDD=2.5 V. In active mode, the threshold
voltage of transistors is 0.55 V. In standby mode it is raised through body-
bias to 0.65 V to reduce leakage. The chip contains 20.5 million transistors,
chip area is 10.84 ? 10.84 mm2. The 16-Mb embedded DRAM occupies
roughly 40% of the chip. The chip consumes 260 mW at 60 MHz. Compared
to a previous design, with external commodity DRAM and separate video
and audio processing chips, power is reduced by roughly a factor of four.

10 Chapter #16

Comparing the MPEG4 core with the Emotion Engine from a power
viewpoint, one notices that the second SoC consumes roughly 60 times less
power than the first one at a comparable integration level. The differences in
speed and voltage supply account for a difference in power consumption of,
roughly, a factor of 2, which becomes a factor of 4 if one discounts area (i.e.,
focuses on power density). The residual 15 ? difference is due to the
different transistor usage (the MPEG4 core is dom inated by embedded
DRAM, which has low power density), and to architecture, circuit, and
technology optimizations. This straightforward comparison convincingly
demonstrates the impact of power -aware system design techniques and the
impressive flexibility of CMOS technology.

3.3 Single -chip Voice Recorder

Digital audio is a large market where system cost constraints are
extremely tight. For this reason, several companies are actively pursuing
single-chip solutions based on embedded memory for the on-chip storage of
sound samples [84, 43]. The main challenges are the cost per unit area of
semiconductor memory, and the power dissipation of the chip, which should
be as low as possible to reduce the cost of batteries (e.g., primary Lithium
vs. rechargeable Li-Ion).

Figure 3: Architecture of the voice recorder.

#16. Energy-efficient system-level design 11

The single-chip voice recorder and player developed by Borgatti and
coauthors [14] stores recorded audio samples on embedded FLASH
memory. The chip was originally implemented in 0.5 ?m technology with
3.0 V supply, and it is a typical example of an SoC designed for a single
application. The main building blocks (Figure 3) are: a microcontroller unit
(MCU), a speech coder and decoder, and an embedded FLASH memory. A
distinguishing feature of the system is the use of a multi-level storage
scheme to increase the speech recording capacity of the FLASH. Speech
samples are first digitized then compressed with a simple waveform coding
technique (adaptive-differential pulse-code modulation) and finally stored in
FLASH memory, 4-bits per cell.

A 4-bits per cell density requires 16 different thresholds for the FLASH
cells. Accurate threshold programming and readout requires mixed-signal
circuitry in the memory write and read paths. The embedded FLASH macro
contains 8 Mcells. It is divided into 128 sectors that can be independently
erased. Each sector contains 64-K cells, which can store 32 Kbytes in
multilevel mode. Memory read is performed though an 8-bit, two-step
analog-to-digital converter.

Besides the multilevel FLASH memory, the other main components of
the SoC are the 8-bit MCU, the ADCPM speech codec, and the 16-bit on-
chip bus. The core interfaces to two 32kB embedded RAM blocks (one for
storing data and the other for executable code and data). The two blocks are
split into 16 selectively accessed RAM modules to reduce power
consumption. The executable code is downloaded to program RAM from
dedicated sectors of the FLASH macro though 16-bit DMA transfers on the
on-chip bus. A few code blocks (startup code, download control code, and
other low-level functions) are stored in a small ROM module (4-kB).

The speech codec is a custom datapath block implementing ITU-T G.726
compression (ADPCM). Its input/output ports are in PCM format for
directly interfacing to a microphone and a loudspeaker. At a clock speed of
128 kHz, a telephone-quality speech signal can be compressed at one of four
selectable bit rates (16-40 kB/s). The compressed audio stream is packed in
blocks of 1 kB using two on-chip RAM buffers (in a two-phase fashion).
This organization guarantees that samples can be transferred to FLASH in
blocks, at a much higher burst rate than the sample rate.

The on-chip bus is synchronous and 16-bits wide, and it supports
multiple masters and interrupts. A bus arbiter manages mutual exclusion and
resolves access conflicts. A static priority order is assigned to all bus masters
at initialization time, but it can be modified through a set of dedicated
signals. The on-chip bus can be clocked at different speeds (configured
through a software accessible register). Each block is clocked at a different
speed by a dedicated clock. All clocks are obtained by dividing an externally

12 Chapter #16

provided 16-32 MHz clock. Clock gating was used extensively to reduce the
power consumption of idle sub-circuits.

The chip is fabricated in a 3 V 0.5 ? m common-ground NOR embedded
FLASH process. The chip area is 15 ? 15 mm2, and it has only 26 logically
active pins. Standby power is less than 1mW. Peak power during recordin g
is 150 mWand 110 mW during play. The average power increases with
higher bit rates, but it is generally much smaller than peak power (e.g.,
75mW for recording at 24 kbps).

The single-chip recorder demonstrates power minimization principles
that have not been fully exploited in the SoCs examined in the previous
subsections. The use of application-specific processing units is pushed one
step further. Here, the programmable processor has only control and
coordination functions. All computationally expensive data processing is
farmed off to a specialized datapath block. An additional quantum leap in
energy efficiency is provided by mixed-signal or analog implementation of
key functional blocks. In this chip, analog circuits are used to support 16-bit
per cell programming density in the embedded FLASH memory. The 16-fold
density increase for embedded memory represents a winning point from the
energy viewpoint as well.

4. DESIGN OF MEMORY SYS TEMS

The SoCs analyzed in the previous section demonstrate that today's
integrated systems contain a significant amount of storage arrays. In many
cases the fraction of silicon real estate devoted to memory is dominant, and
the power spent in accessing memories dictates the overall chip power
consumption. The general trend in SoC integration is toward increasing
embedded memory content [56]. It is reported that, on average, 50% of the
transistors in an SoC designed in 2001 are instantiated within memory
arrays. This percentage is expected to grow to 70% by 2003 [29]. In view of
this trend it is obvious that energy-efficient memory system design is a
critical issue.

The simplest memory organization, the flat memory, assumes that data is
stored in a single, large array. Even in such a simplistic setting, sizing
memory arrays is not trivial. Undersized memories penalize system
performance, while oversized memories cost in terms of silicon area as well
as performance and power, because access time and power increase
monotonically with memory size [51, 17].

The most obvious way to alleviate memory bottlenecks is to reduce the
storage requirements of the target application. To this goal, designers can
reduce memory requirements by exploiting the principle of temporal

#16. Energy-efficient system-level design 13

locality, i.e., trying to reuse the results of a computation as soon as possible,
in order to reduce the need for temporary storage. Other memory-reduction
techniques aim at finding efficient data representations that reduce the
amount of unused information stored in memory. Storage reduction
techniques cannot completely remove memory bottlenecks, mainly because
they try to optimize power and performance indirectly as a by-product of the
reduction of memory size. As a matter of fact, memory size requirements of
system applications have steadily increased over time.

From the hardware design viewpoint, memory power reduction has been
pursued mainly through technology and circuit design and through a number
of architectural optimizations. While technology and circuit techniques are
reviewed in detail in previous chapters, architectural optimizations, which
rely on the idea of overcoming the scalability limitation intrinsic of flat
memories, are focused on here. Indeed, hierarchical memories allow the
designer to exploit the spatial locality of reference by clustering related
information into the same (or adjacent) arrays.

4.1 On-chip Memory Hierarchy

The concept of a memory hierarchy, conceptually depicted in Figure 4, is

at the basis of most on-chip memory optimization approaches. Lower levels
in the hierarchy are made of small memories, tightly coupled with
processing units. Higher hierarchy levels are made of increasingly larger
memories, placed relatively far from computation units, and possibly shared.

Figure 4: A generic hierarchical memory model.

When looking at the hierarchical structure of computational and storage
nodes, the distance between a computation unit and a storage array
represents the effort needed to fetch (or store) a data unit from (to) the
memory. The main objective of energy-effic ient memory design is to
minimize the overall energy cost for accessing memory within performance

14 Chapter #16

and memory size constraints. Hierarchical organizations reduce memory
power by exploiting non-uniformity (or locality) in access.

Memory optimization techniques can be classified into three categories:

?? Memory hierarchy design. Given a dynamic trace of memory
accesses, obtained by profiling an application, derive a
customized memory hierarchy.

?? Computation transformation. Given a fixed memory hierarchy,
modify the storage requirements and access patterns of the target
computation to optimally match the given hierarchy.

?? Synergistic memory and computation optimization. Concurrently
optimize memory access patterns and memory architecture.

Memory-hierarchy design is considered next. Computation

transformations are software-oriented techniques (see Section 5). For a
comprehensive survey of the topic, with special emphasis on synergistic
techniques, refer to [10, 66].

When comparing time and energy per access in a memory hierarchy, one
can observe that they both increase with the move from low to high
hierarchy levels. One may be led to conclude that a low-latency memory
architecture will also be a low -power architecture and that memory
performance optimization implies power optimization. This conclusion is
often incorrect for three main reasons. First, even though both power and
performance increase with memory size and memory hierarchy levels, they
do not increase by the same amount. Second, performance is a worst-case
quantity (i.e., intensive), while power is an average-case quantity (i.e.,
extensive). Thus, memory performance can be improved by removing a
memory bottleneck on a critical computation, but this may be harmful for
power consumption, the impact of a new memory architecture on all
memory accesses, not only the critical ones, needs to be considered. Third,
several circuit-level techniques actually trade shorter access time for higher
power (and vice versa) at a constant memory size. The following example,
taken from [74], demonstrates how energy and performance can be
contrasting quantities.

Example 1 The memory organization options for a two-level memory
hierarchy (on-chip cache and off-chip main memory) explored in [74] are
the following: (i) cache size, ranging from 16 bytes to 8KB (in powers of
two); (ii) cache line size, from 4 to 32, in powers of two; (iii) associativity (1,
2, 4, and 8); and (iv) off -chip memory size, from 2Mbit SRAM, to 16Mbit
SRAM.

#16. Energy-efficient system-level design 15

The exhaustive exploration of the cach e organization for minimum
energy for an MPEG decoding application results in an energy-optimal
cache organization with cache size 64 bytes, line size 4 bytes, 8-way set
associative. Notice that this is a very small memory, almost fully associative
(only two lines). For this organization, the total memory energy is 293 ?J,
and the execution time is 142,000 cycles. In contrast, exploration for
maximum performance yields a cache size of 512 bytes, a line size of 16
bytes, and is 8-way set associative. Noti ce that this cache is substantially
larger than the energy-optimal one. In this case, the execution time is
reduced to 121,000 cycles, but the energy becomes 1,110 ?J.

One observes that the second cache dominates the first one for size, line
size, and associativity; hence, it has the larger hit rate. This is consistent
with the fact that performance strongly depends on miss rate. On the other
hand, if external memory access power is not too large with respect to cache
access (as in this case), some hit rate can be traded for decreased cache
energy. This justifies the fact that a small cache with a large miss rate is
more power-efficient than a large cache with a smaller miss rate.

The example shows that energy cannot generally be reduced as a
byproduct of performance optimization. On the other hand, architectural
solutions originally devised for performance optimization are often
beneficial in terms of energy. Generally, when locality of access is
improved, both performance and energy tend to improve. This fact is heavily
exploited in software optimization techniques.

4.2 Explorative Techniques

Several recently proposed memory optimization techniques are
explorative. They exploit the fact that the memory design space can usually
be parameterized and discretized, to allow for an exhaustive or near-
exhaustive search. Most approaches assume a memory hierarchy with one
or more levels of caching and, in some cases, an off-chip memory. A finite
number of cache sizes and cache organization options are considered (e.g.,
degree of associativity, line size, cache replacement policy, as well as
different off-chip memory alternatives--number of ports, available memory
cuts). The best memory organization is obtained by simulating the workload
for all possible alternative architectures. The various approaches mainly
differ in the number of hierarchy levels that are covered by the exploration
or the number of available dimensions in the design space. Su and Despain
[77], Kamble and Ghose [37], Ko and Balsara [42], Bahar at al. [4], and
Shiue and Chakrabarti [74] focus on cache memories. Zyuban and Kogge

16 Chapter #16

[94] study register files; Coumeri and Thomas [21] analyze embedded
SRAMs; Juan et al. [44] study translation look-aside buffers.

Example 1 has shown an instance of a typical design space and the result
of the relative exploration. An advantage of explorative techniques is that
they allow for concurrent evaluation of multiple cost functions such as
performance and area. The main limitation of the explorative approach is
that it requires extensive data collection, which provides a posteriori insight.
In order to limit the number of simulations, only a relatively small set of
architectures can be tested and compared.

4.3 Memory Partitioning

Within a hierarchy level, power can be reduced by memory partitioning.
The principle of memory partitioning is to sub-divide the address space and
to map blocks to different physical memory banks that can be independently
enabled and disabled. Arbitrary fine partitioning is prevented due to the fact
that a large number of small banks is area inefficient and imposes a severe
wiring overhead, which tends to increase communication power and
performance.

Partitioning techniques can be applied at all hierarchy levels, from
register files to off-chip memories. Another aspect is the “type” of
partitioning, such as physical or logic partitioning. Physical partitioning
strictly maps the address space onto different, non-overlapping memory
blocks. Logic partitioning exploits some redundancy in the various blocks of
the partition, with the possibility of addresses that are stored several times in
the same level of hierarchy.

A physically-partitioned memory is energy-efficient mainly for two
reasons. First, if accesses have high spatial and/or temporal locality,
individual memory banks are accessed in bursts. Burst access to a single
bank is desirable because idle times for all other banks are long, thereby
amortizing the cost of shutdown [28]. Second, energy is saved because every
access is on a small bank as opposed to a single large memory [77]. For
embedded systems designed with a single application target, application
profiling can be exploited to derive a tailored memory partition, where small
memory banks are tightly fitted on highly-accessed address ranges, while
“colder” regions of the address space can be mapped onto large banks.
Clearly, such a non-uniform memory partitioning strategy can out perform
equi-partition when access profiles are highly non-uniform and are known at
design time [56].

Logic partitioning was proposed by Gonzalez et al. [30], where the on-
chip cache is split into a spatial and into a temporal cache to store data with
high spatial and temporal correlation, respectively. This approach relies on a

#16. Energy-efficient system-level design 17

dynamic prediction mechanism that can be realized without modification to
the application code by means of a prediction buffer.

A similar idea is proposed by Milutinovic et al. [61], where a split
spatial/temporal cache with different line sizes is used. Grun at al. [32]
exploit this idea in the context of embedded systems for energy optimization.
Data are statically mapped to the either cache, using the high predictability
of the access profiles for embedded applications, and thus avoiding the
hardware overhead of the buffer. Depending on the application, data might
be duplicated and thus be mapped to both caches. Another class of logic
partitioning techniques falls within the generic scheme of Figure 5. Buffers
are put along the I-cache and/or the D-cache, to realize some form of cache
parallelization. Such schemes can be regarded as a partitioning solution
because the buffers and the caches are actually part of the same level of
hierarchy.

Figure 5: Using buffers together with caches.

4.4 Extending the Memory Hierarchy

Memory partitioning extends the “width” of the memory hierarchy by
splitting, with or without replication, a given hierarchy level. An alternative
possibility is offered by modifying its “depth”, i.e., the number of hierarchy
levels. This option does not just imply the straightforward addition of extra
levels of caching.

18 Chapter #16

A first class of techniques is based on the insertion of “ad-hoc” memories
between existing hierarchy levels. This approach is particularly useful for
instruction memory, where access locality is very high. Pre-decoded
instruction buffers [6] store instructions in critical loops in a pre-decoded
fashion, thereby decreasing both fetch and decode energy. Loop caches [40]
store the most frequently executed instructions (typically contained in small
loops) and can bypass even the first-level cache. Notice that these additional
memories would not be useful for performance if the first-level cache can be
accessed in a single cycle. On the contrary, performance can be slight ly
worsened because the access time for the loop cache is on the critical path of
the memory system.

Another approach is based on the replacement of one or more levels of
caches with more energy-efficient memory structures. Such structures are
usually called scratch-pad buffers and are used to store a portion of the off-
chip memory, in an explicit fashion. In contrast with caches, reads and writes
to the scratch-pad memory are controlled explicitly by the programmer.
Clearly, allocation of data to the scratch pad should be driven by profiling
and statistics collection. These techniques are particularly effective in
application-specific systems, which run an application mix whose memory
profiles can be studied a priori, thus providing intuitive candidates for the
addresses to be put into the buffer. The work by Panda et al. [63, 64] is
probably the most comprehensive effort in this area [64].

4.5 Bandwidth Optimization

When the memory architecture is hierarchical, memory transfers become
a critical facet of memory optimization. From a performance viewpoint, both
memory latency and bandwidth are critical design metrics [35]. From an
energy viewpoint, memory bandwidth is much more critical than latency.
Optimizing memory bandwidth implies reducing the average number of bits
that are transferred across the boundary between two hierarchy levels in a
time unit. It has been pointed out [16] that memory bandwidth is becoming
more and more important as a metric for modern systems, because of the
increased instruction-level parallelism generated by superscalar or VLIW
processors and because of the density of integration that allows shorter
latencies. Unlike latency, bandwidth is an average-case quantity. Well-
known latency-reduction techniques, such as prefetching, are inefficient in
terms of bandwidth (and energy).

As an example of bandwidth optimization, the work by Burger et al. [15,
16] introduces several variants of traffic -efficient caches that reduce
unnecessary memory traffic by the clever choice of associativity, block size,
or replacement policy, as well as clever fetch strategies fetches. These

#16. Energy-efficient system-level design 19

solutions do not necessarily improve worst-case latency but result in reduced
read and writes across different memory hierarchy levels, thus reducing
energy as well.

Another important class of bandwidth optimization techniques is based
on the compression of the information passed between hierarchy levels.
These techniques aim at reducing the large amount of redundancy in
instruction streams by storing compressed instructions in the main memory
and decompressing them on the fly before execution. Compression finds
widespread application in wireless networking, where channel bandwidth is
severely limited. In memory compression, the constraints on the speed and
hardware complex ity of the compressor and decompressor are much tighter
than in macroscopic networks. Furthermore, memory transfers usually have
very fine granularity (they rarely exceed a few tens of bytes). Therefore, the
achieved compression ratios are usually quite lo w, but compression speed is
very high. Hardware-assisted compression has been applied mainly to
instruction memory, [89, 50, 49, 9] and, more recently, to data memory [11].
A comprehensive survey of memory compression techniques can be found in
[47].

5. DESIGN OF INTERCONNECT NETWORKS

As technology improves and device sizes scale down, the energy spent on
processing and storage components decreases. On the other hand, the energy
for global communication does not scale down. On the contrary, projections
based on current delay optimization techniques for global wires [79] show
that global communication on chip will require increasingly higher energy
consumption.

20 Chapter #16

Figure 6: The on-chip network stack

The chip interconnect has to be considered and designed as an on-chip
network, called a micro-network [8]. As for general network design, a
layered abstraction of the micro-network (shown in Figure 6) can help us
analyze the design problems and find energy-efficient communication
solutions. Next, micro-network layers are considered in a bottom-up fashion.
First, the problems due to the physical propagation of signals on chip are
analyzed. Then general issues related to network architectures and control
protocols are considered. Protocols are considered independently from their
implementation, from the physical to the transport layers. The discussion of
higher-level layers is postponed until Section 5. Last, we close this section
by considering techniques for energy-efficient communication on mic ro-
networks.

#16. Energy-efficient system-level design 21

5.1 Signal transmission on chip

Global wires are the physical implementation of on-chip communication
channels. Physical-layer signaling techniques for lossy transmission lines
have been studied for a long time by high-speed board designers and
microwave engineers [5, 24].

Traditional rail-to-rail voltage signaling with capacitive termination, as
used today for on-chip communication, is definitely not well-suited for high-
speed, low-energy communication on future global interconnects [24].
Reduced swing, current-mode transmission, as used in some processor-
memory systems, can significantly reduce communication power dissipation
while preserving speed of data communication.

Nevertheless, as technology trends lead us to use smaller voltage swings
and capacitances, error probabilities will rise. Thus the trend toward faster
and lower-power communication may decrease reliability as an unfortunate
side effect. Reliability bounds can be derived from theoretical (entropic)
considerations [34] and measured by experiments on real circuits as voltages
scale.

A paradigm shift is needed to address the aforementioned challenges.
Current design styles consider wiring-related effects as undesirable parasitics
and try to reduce or cancel them by specific and detailed physical design
techniques. It is important to realize that a well-balanced approach should
not over-design wires so that their behavior approaches an ideal one because
the corresponding cost in performance, energy-efficiency and modularity
may be too high. Physical- layer design should find a compromise between
competing quality metrics and provide a clean and complete abstraction of
channel characteristics to micro-network layers above.

5.2 Network architectures and control protocols

Due to the limitations at the physical level and to the high bandwidth
requirement, it is likely that SoC design will use network architectures
similar to those used for multi-processors. Whereas shared medium (e.g.,
bus-based) communication dominates today's chip designs, scalability
reasons make it reasonable to believe that more general network topologies
will be used in the future. In this perspective, micro-network design entails
the specification of network architectures and control protocols [27]. The
architecture specif ies the topology and physical organization of the
interconnection network, while the protocols specify how to use network
resources during system operation.

The data-link layer abstracts the physical layer as an unreliable digital
link, where the probability of bit errors is non null (and increasing as

22 Chapter #16

technology scales down). Furthermore, reliability can be traded for energy
[34, 12]. The main purpose of data-link protocols is to increase the reliability
of the link up to a minimum required level, under the assumption that the
physical layer by itself is not sufficiently reliable.

An additional source of errors is contention in shared-medium networks.
Contention resolution is fundamentally a non-deterministic process because
it requires synchronization of a distributed system, and for this reason it can
be seen as an additional noise source. In general, non-determinism can be
virtually eliminated at the price of some performance penalty. For instance,
centralized bus arbitration in a synchronous bus eliminates contention-
induced errors, at the price of a substantial performance penalty caused by
the slow bus clock and by bus request/release cycles.

Future high-performance shared-medium on-chip micro-networks may
evolve in the same direction as high-speed local area networks, where
contention for a shared communication channel can cause errors, because
two or more transmitters are allowed to send data on a shared medium
concurrently. In this case, provisions must be made for dealing with
contention-induced errors.

An effective way to deal with errors in communication is to packetize
data. If data is sent on an unreliable channel in packets, error containment
and recovery is easier because the effect of the errors is contained by packet
boundaries, and error recovery can be carried out on a packet-by-packet
basis. At the data-link layer, error correction can be achieved by using
standard error-correcting codes (ECC) that add redundancy to the
transferred information. Error correction can be complemented by several
packet-based error detection and recovery protocols. Several parameters in
these protocols (e.g., packet size, number of outstanding packets, etc.) can be
adjusted depending on the goal to achieve maximum performance at a
specified residual error probability and/or within given energy consumption
bounds. At the relatively low noise levels typical of on-chip communication,
recent research results [12] indicate that error recovery is more energy-
efficient than forward error correction, but it increases the variance in
communication latency.

At the network layer, packetized data transmission can be customized by
choosing switching or routing algorithms. The former, (e.g., circuit, packet,
and cut-through switching), establishes the type of connection while the
latter determines the path followed by a message through the network to its
final destination. Switching and routing for on-chip micro-networks affect
the performance and energy consumption heavily. Future approaches will
most likely emphasize speed and the decentralization of routing decisions
[1]. Robustness and fault tolerance will also be highly desirable.

#16. Energy-efficient system-level design 23

At the transport layer, algorithms deal with the decomposition of
messages into packets at the source and their assembly at the destination.
Packetization granularity is a critical design decision, because the behavior
of most network control algorithms is very sensitive to packet size. Packet
size can be application-specific in SoCs, as opposed to general networks. In
general, flow control and negotiation can be based on either deterministic or
statistical procedures. Deterministic approaches ensure that traffic meets
specifications and provide hard bounds on delays or message losses. The
main disadvantage of deterministic techniques is that they are based on worst
cases, and they generally lead to significant under -utilization of network
resources. Statistical techniques are more efficient in terms of utilization, but
they cannot provide worst-case guarantees. Similarly, from an energy
viewpoint, deterministic schemes are expected to be more inefficient than
statistical schemes because of their implicit worst-case assumptions.

5.3 Energy-efficient design: techniques and examples

This section delves into a few specific instances of energy-efficient
micro-network design problems. In most cases, specific solutions that have
been proposed in the literature are also outlined, although it should be clear
that many design issues are open and significant progress in this area is
expected in the near future.

5.3.1 Physical Layer At the physical layer, low -swing signaling is
actively investigated to reduce communication energy on global
interconnects [92]. In the case of a simple CMOS driver, low-swing
signaling is achieved by lowering the driver's supply voltage Vdd. This
implies a quadratic dynamic -power reduction (because Pdyn = K Vdd

2).
Unfortunately, swing reduction at the transmitter complicates the receiver's
design. Increased sensitivity and noise immunity are required to guarantee
reliable data reception. Differential receivers have superior sensitivity and
robustness, but they require doubling the bus width. To reduce the overhead,
pseudo-differential schemes have been proposed, where a reference signal is
shared among several bus lines and receivers, and incoming data is
compared against the reference in each receiver. Pseudo-differential
signaling reduces the number of signal transitions, but it has reduced noise
margins with respect to fully-differential signaling. Thus, reduced switching
activity is counterbalanced by higher swings, and determining the minimum -
energy solution requires careful circuit-level analysis.

Another key physical-layer issue is synchronization. Traditional on-chip
communication has been based on the synchronous assumption, which
implies the presence of global synchronization signals (i.e., clocks) that

24 Chapter #16

define data sampling instants throughout the chip. Unfortunately, clocks are
extremely energy-inefficient, and it is a well-known fact that they are
responsible for a significant fraction of the power budget in digital integrated
systems. Thus, postulating global synchronization when designing on-chip
micro-networks is not an optimal choice from the energy viewpoint.
Alternative on-chip synchronization protocols that do not require the
presence of a global clock have been proposed in the past [93,7] but their
effectiveness has not been studied in detail from the energy viewpoint.

5.3.2 Data-link layer At the data-link layer, a key challenge is to
achieve the specified communication relia bility level with minimum energy
expense. Several error recovery mechanisms developed for macroscopic
networks can be deployed in on-chip micro-networks, but their energy
efficiency should be carefully assessed in this context. As a practical
example, cons ider two alternative reliability-enhancement techniques:
error-correcting codes and error-detecting codes with retransmission. Both
approaches are based on transmitting redundant information over the data
link, but error-correction is generally more demanding than error detection in
terms of redundancy and decoding complexity. Hence, we can expect error-
correcting transmission to be more power-hungry in the error-free case.
However, when an error arises, error-detecting schemes require
retransmission of the corrupted data. Depending on the network architecture,
retransmission can be very costly in terms of energy (and performance).

Clearly, the trade-off between the increased cost of error correction and
the energy penalty of retransmission should be carefully explored when
designing energy-efficient micro-networks [34]. Either scheme may be
optimal, depending on system constraints and on physical channel
characteristics. Automatic design space exploration could be very beneficial
in this area.

Bertozzi et al. [12] considered error-resilient codes for 32-bit buses.
Namely, they consider Hamming encoding/decoding schemes that support
single-error correction, double-error detection, and (non-exhaustive) multi-
error detection. The physical overhead of these schemes is 6 or 7 additional
bus lines plus the encoders and decoders. When error is detected and not
corrected, data retransmission occurs. When error is not detected, the system
has a catastrophic failure. For a given reliability specification of mean time
to failure (MTTF) - ranging from 10 years to a few milliseconds - it is
possible to determine the average energy per useful bit that is transmitted
under various hypotheses. Such hypotheses include wiring length, and thus
the ratio of energy spent on wires over the energy spent in coding, and
voltage swings. In particular, for long MTTF (1015 sec) and wires (5 pF),
error detection with retransmission is more energy-efficient than forward

#16. Energy-efficient system-level design 25

error correction, mainly for two reasons. First, for the same level of
redundancy, error detection is more robust than error correction; hence, the
signal-to-noise ratio can be lowered more aggressively. Second, the error-
detecting decoder is simpler and consumes less power than the error-
correcting decoder. These two advantages overcome retransmission costs,
which are sizable, but they are incurred under the relatively rare occurrence
of transmission errors.

In case of shared-medium network links (such as busses), the media-
access-control function of the data link layer is also critical for energy
efficiency. Currently, centralized time-division multiplexing schemes (also
called centralized arbitration) are widely adopted [3, 20, 86]. In these
schemes, a single arbiter circuit decides which transmitter accesses the bus
for every time slot. Unfortunately, the poor scalability of centralized
arbitration indicates that this approach is likely to be energy-inefficient as
micro-network complexity scales up. In fact, the energy cost of
communicating with the arbiter and the hardware complexity of the arbiter
itself scale up more than linearly with the number of bus masters.

Distributed arbitration schemes as well as alternative multiplexing
approaches, such as code division multiplexing, have been extensively
adopted in shared-medium macroscopic networks and are actively being
investigated for on-chip communication [90]. However, research in this area
is just burgeoning, and significant work is needed to develop energy-aware
media-access-control for future micro-networks.

5.3.3 Network layer Network architecture heavily influences
communication energy. As hinted in the previous section, shared-medium
networks (busses) are currently the most common choice, but it is intuitively
clear that busses are not energy-efficient as network size scales up [33]. In
bus-based communication, data is always broadcasted from one transmitter
to all possible receivers, while in most cases messages are destined to only
one receiver or a small group of receivers. Bus contention, with the related
arbitration overhead, further contributes to the energy overhead.

Preliminary studies on energy-efficient on-chip communication indicate
that hierarchical and heterogeneous architectures are much more energy-
efficient than busses [68, 93]. In their work, Zhang et al. [93] develop a
hierarchical generalized mesh where network nodes with a high
communication bandwidth requirement are clustered and connected through
a programmable generalized mesh consisting of several short
communication channels joined by programmable switches. Clusters are
then connected through a generalized mesh of global long communication
channels. Clearly such architecture is heterogeneous because the energy cost
of intra-cluster communication is much smaller than that of inter-cluster

26 Chapter #16

communication. While the work of Zhang et al. demonstrates that power can
be saved by optimizing network architecture, many network design issues
are still open, and tools and algorithms are needed to explore the design
space and to tailor network architecture to specific applications or classes of
applications.

Network architecture is only one facet of network layer design, the other
major facet being network control. A critical issue in this area is the choice
of a switching scheme for indirect network architectures. From the energy
viewpoint, the tradeoff is between the cost of setting up a circuit-switched
connection once for all and the overhead for switching packets throughout
the entire communication time on a packet-based connection. In the former
case the network control overhead is “lumped” and incurred once, while in
the latter case, it is distributed over many small contributions, one for each
packet. When communication flow between network nodes is extremely
persistent and stationary, circuit-switched schemes are likely to be
preferable, while packet-switched schemes should be more energy-efficient
for irregular and non-stationary communication patterns. Needless to say,
circuit switching and packet switching are just two extremes of a spectrum,
with many hybrid solutions in between [85].

5.3.4 Transport layer Above the network layer, the
communication abstraction is an end-to-end connection. The transport layer
is concerned with optimizing the use of network resources and providing a
requested quality of service. Clearly, energy can be seen as a network
resource or a component in a quality of service metric. An example of a
transport-layer design issue is the choice between connection-oriented and
connectionless protocols. Energy efficiency can be heavily impacted by this
decision. In fact, connection-oriented protocols can be energy inefficient
under heavy traffic conditions because they tend to increase the number of
re-transmissions. On the other hand, out-of-order data delivery may imply
additional work at the receiver, which causes additional energy consumption.
Thus, communication energy should be balanced against computation energy
at destination nodes.

Another transport- layer task with far-reaching implications on energy is
flow control. When many transmitters compete for limited communication
resources, the network becomes congested, and the cost per transmitted bit
increases because of increased contention and contention resolution
overhead. Flow control can mitigate the effect of congestion by regulating
the amount of data that enters the network at the price of some throughput
penalty. Energy reduction by flow control has been extensively studied for
wireless networks [85, 67], but it is an unexplored research area for on-chip
micro-networks.

#16. Energy-efficient system-level design 27

6. SOFTWARE

Systems have several software layers running on top of the hardware.
Both system and application software programs are considered here.

Software does not consume energy per se, but it is the execution and
storage of software that requires energy consumption by the underlying
hardware. Software execution corresponds to performing operations on
hardware, as well as storing and transferring data. Thus software execution
involves power dissipation for computation, storage, and communication.
Moreover, storage of computer programs in semiconductor memories
requires energy (e.g., refresh of DRAMs, static power for SRAMs).

The energy budget for storing programs is typically small (with the
choice of appropriate components) and predictable at design time.
Nevertheless, reducing the size of the stored programs is beneficial. This can
be achieved by compilation (see Section 5.2.2) and code compression. In the
latter case, the compiled instruction stream is compressed before storage. At
run time, the instruction stream is decompressed on the fly. Besides reducing
the storage requirements, instruction compression reduces the data traffic
between memory and processor and the corresponding energy cost. (See also
Section 3.5.) Several approaches have been devised to reduce instruction
fetch-and-store overhead, as surveyed in [56]. The following subsections
focus mainly on system-level design techniques to reduce the power
consumption associated with the execution of software.

6.1 System software

The notion of operating system (OS) is generalized to capture the system
programs that provide support for the operation of SoCs. Note that the
system support software in current SoCs usually consists of ad hoc routines,
designed for a specific integrated core processor, under the assumption that a
processor provides global, centralized control for the system. In future SoCs,
the prevailing paradigm will be peer -to-peer interaction among several,
possibly heterogeneous, processing elements. Thus, system software will be
designed as a modular distributed system. Each programmable component
will be provided with system software to support its own operation, to
manage its communication with the communication infrastructure, and to
interact effectively with the system software of the neighboring components.

Seamless composition of components around the micro-network will
require the system software to be configurable according to the requirements
of the network. Configuration of system software may be achieved in

28 Chapter #16

various ways, ranging from manual adaptation to automatic configuration.
At one end of the spectrum, software optimization and compactness are
privileged; at the other end, design ease and time are favored. With this
vision, on-chip communication protocols should be programmable at the
system software level, to adapt the underlying layers (e.g., transport) to the
characteristics of the components.

Let us now consider the broad objectives of system software. For most
SoCs, which are dedicated to some specific application, the goal of system
software is to provide the required quality of service within the physical
constraints. Consider, for example, an SoC for a wireless mobile video
terminal. Quality of service relates to the video quality, which implies
specific performance levels of the computation and storage elements as well
as of the micro-network. Constraints relate to the strength and S/N ratio of
the radio-frequency signal and to the energy available in the battery. Thus,
the major task of system software is to provide high performance by
orchestrating the information processing within the service stations and
providing the “best” information flow. Moreover, this task should be
achieved while keeping energy consumption to a minimum.

The system software provides us with an abstraction of the underlying
hardware platform. In a nutshell, one can view the system as a queuing
network of service stations. Each service station models a computational or
storage unit, while the queuing network abstracts the micro-network.
Moreover, one can assume that:

?? Each service station can operate at various service levels, providing
corresponding performance and energy consumption levels. This
abstracts the physical implementation of components with adjustable
voltage and/or frequency levels, as well as with the ability to disable
their functions in full or in part.

?? The information flow between the various units can be controlled by

the system software to provide the appropriate quality of service. This
entails controlling the routing of the information, the local buffering
into storage arrays, and the rate of the information flow.

In other words, the system software must support the dynamic power

management (DPM) of its components as well as dynamic information-flow
management.

#16. Energy-efficient system-level design 29

6.1.1 Dynamic Power Management Dynamic power management
(DPM) is a feature of the run-time environment of an electronic system that
dynamically reconfigures it to provide the requested services and
performance levels with a minimum number of active components or a
minimum activity level on such components [9]. DPM encompasses a set of
techniques that achieve energy-efficient computation by selectively turning
off (or reducing the performance of) system components when they are idle
(or partially unexploited). DPM is often realized by throttling the frequency
of processor operation (and possibly stopping the clock) and/or reducing the
power supply voltage. Dynamic frequency scaling (DFS) and dynamic
voltage scaling (DVS) are the terms commonly used to denote power
management over a range of values. Typically, DVS is used in conjunction
with DFS since reduced voltage operation requires lower operating
frequencies, while the converse is not true.

The fundamental premise for the applicability of DPM is that systems
(and their components) experience non-uniform workloads during operation
time. Such an assumption is valid for most systems, both when considered in
isolation and when inter -networked. A second assumption of DPM is that it
is possible to predict, with a certain degree of confidence, the fluctuations of
workload. Workload observation and prediction should not consume
significant energy.

Designing power-managed systems encompasses several tasks, including
the selection of power-manageable components with appropriate
characteristics, determining the power management policy [9], and
implementing the policy at an appropriate level of system software. DPM
was described in a previous Chapter. This chapter considers only the
relations between DPM policy implementation and system software.

A power management policy is an algorithm that observes requests and
states of one or more components and issues commands related to frequency
and voltage settings. This chapter also considers the limiting cases of turning
on/off the clock and/or the power supply to a component. Whereas policies
can be implemented in hardware (as a part of the control-unit of a
component), software implementations achieve much greater flexibility and
ease of integration. Thus a policy can be seen as a program that is executed
at run-time by the system software.

The simplest implementation of a policy is by a filter driver, i.e., by a
program attached to the software driver of a specific component. The driver
monitors the traffic to/from the component and has access to the component
state. Nevertheless, the driver has a limited view of other components. Thus
such an implementation of power management may suffer from excessive
locality.

30 Chapter #16

Power management policies can be implemented in system kernels and
be tightly coupled to process management. Indeed, process management has
knowledge of currently-executing tasks and tasks coming up for execution.
Process managers also know which components (devices) are needed by
each task. Thus, policy implementation at this level of system software
enjoys both a global view and an outlook of the system operation in the near
future. Predictive component wake-up is possible with the knowledge of
upcoming tasks and required components.

The system software can be designed to improve the effectiveness of
power management. Power management exploits idle times of components.
The system software scheduler can sequence tasks for execution with the
additional goal of clustering component operation, thus achieving fewer but
longer idle periods. Experiments with implementing DPM policies at
different levels of system software [55] have shown increasing energy
savings as the policies have deeper interaction with the system software
functions.

6.1.2 Information-flow management Dynamic information-flow
management relates to configuring the micro-network and its bandwidth to
satisfy the information flow requirements. This problem is tightly related to
DPM and can be seen as an application of DPM to the micro-network
instead of to components. Again, policies implemented at the system
software layer request either specific protocols or parameters at the lower
layers to achieve the appropriate information flow, using the least amount of
resources and energy.

An example of information-flow management is provided by the Maia
processor [91], which combines an ARM8 processor core with 21 satellite
units, including processing and storage units. The ARM8 processor
configures the memory-mapped satellites using a 32bit configuration bus,
and communicates data with satellites using two pairs of I/O interface ports
and direct memory read/writes. Connections between satellites are through a
2-level hierarchical mesh-structured reconfigurable network. Dynamic
voltage scaling is applied to the ARM8 core to increase energy efficiency.

With this approach, the micro-network can be configured before running
specific applications and tailored to these applications. Thus, application
programs can be spatially distributed and achieve an energy savings of one
order of magnitude as compared to a DSP processor with the same
performance level. Such savings are due to the ability of Maia to reconfigure
itself to best match the applications, to activate satellites only when data is
present, and to operate at dynamically varying rates.

#16. Energy-efficient system-level design 31

6.2 Application software

The energy cost of executing a program depends on its machine code and
on the corresponding micro-architecture, if one excludes the intervention of
the operating system in the execution (e.g., swapping). Thus, for any given
micro-architecture, the energy cost is tied to the machine code.

There are two important problems of interest: software design and
software compilation. Software design affects energy consumption because
the style of the software source program (for any given function) affects the
energy cost. For example, the probability of swapping depends on
appropriate array dimensioning while considering the hardware storage
resources. As a second example, the use of specific constructs, such as
guarded instructions instead of branching constructs for the ARM
architecture [10], may significantly reduce the energy cost. Several efforts
have addressed the problem of automatically re-writing software programs to
increase their efficiency. Other efforts have addressed the generation of
energy-efficient software from high-level specification. We call these
techniques software synthesis.

Eventually, since the machine code is derived from the source code from
compilation, it is the compilation process itself that affects the energy
consumption. It is important to note that most compilers were written for
achieving high-performing code with short compilation time. The design of
an embedded system running dedicated software has brought a renewed
interest in compilation, especially because of the desire of achieving high-
quality code (i.e., fast, energy efficient) possibly at the expense of longer
compilation time (which is tolerable for embedded systems running code
compiled by the manufacturer).

For both software synthesis and compilation it is important to define the
metrics of interest well. Typically, the performance (e.g., latency) and
energy of a given program can be evaluated in the worst or average case.
Worst-case latency analysis is relevant to real-time software design when
hard timing constraints are specified. In general, average latency and average
energy consumption are of interest. Average measures require the
knowledge of the environment, i.e., the distribution of program inputs, which
eventually affect the branches taken and the number of iterations. When such
information is unavailable, meaningful average measures are impossible to
achieve.

To avoid this problem, some authors have measured the performance and
energy on the basic blocks, thus avoiding the effects of branching and
iteration. It is often the case that instructions can be grouped into two
classes. Instructions with no memory access tend to have similar energy cost
and execute in a single cycle. Instructions with memory access have higher

32 Chapter #16

latency and energy cost. With these assumptions, reducing code size and
reducing memory accesses (e.g., spills) achieves the fastest and most energy-
efficient code. Nevertheless this argument breaks down when instructions
(with no memory access) have non-uniform energy cost even though
experimental results do not show significant variation between compilation
for low latency and for low energy.

It is very important to stress that system design requires the coordination
of various hardware and software components. Thus, evaluation of software
programs cannot be done in isolation. Profiling techniques can and must be
used to determine the frequency distribution of the values of the input to
software programs and subprograms. Such information is of paramount
importance for achieving application software that is energy efficient in the
specific environment where it will be executed. It is also interesting to note
that, given a specific environment profile, the software can be restructured so
that lower energy consumption can be achieved at the price of slightly higher
latency. In general, the quest for maximum performance pushes toward the
speculative execution and aggressive exploitation of all hardware resources
available in the system. In contrast, energy efficiency requires a more
conservative approach, which limits speculation and reduces the amount of
redundant work that can be tolerated for a marginal performance increase
[58].

6.2.1 Software synthesis Software synthesis is a term used with
different connotations. In the present context, software synthesis is an
automated procedure that generates source code that can be compiled.
Whereas source code programs can be synthesized from different starting
points, source code synthesis from programs written in the same
programming language are considered here. Software synthesis is often
needed because the energy consumption of executing a program depends on
the style and constructs used. Optimizing compilers are biased by the
starting source code to be compiled. Recall that programs are often written
with only functionality and/or performance in mind, and rarely with
concerns for energy consumption. Moreover, it is common practice to use
legacy code for embedded applications, sometimes with high-energy
penalties. Nevertheless, it is conceivable to view this type of software
synthesis as pre-processing for compilation with specific goals.

Source-level transformations. Recently several researchers have
proposed source-to-source transformations to improve software code quality,
and in particular energy consumption. Some transformations are directed
toward using storage arrays more efficiently [17,65]. Others exploit the
notion of value locality. Value locality is defined as the likelihood of a
previously-seen value recurring repeatedly within a physical or logical

#16. Energy-efficient system-level design 33

storage location [52]. With value locality information, the computational
cost of a program can be reduced by reusing previous computations.

Researchers have shown that value locality can be exploited in various
ways depending on the target system architecture. In [46], common-case
specialization was proposed for hardware synthesis using loop unrolling and
algebraic reduction techniques. In [52, 48], value prediction was proposed to
reduce the load/store operations with the modification of a general purpose
microprocessor. Some authors [72] considered redundant computation, i.e.,
performing the same computation for the same operand value. Redundant
computation can be avoided by reusing results from a result cache.
Unfortunately, some of these techniques are architecture dependent, and thus
cannot be used within a general-purpose software synthesis utility.

Next a family of techniques for source code optimization, based on
specialization of programs and data, is considered. Program specialization
encodes the results of previous computations in a residual program, while
data specialization encodes these results in the data structures like caches
[18]. Program specialization is more aggressive in the sense that it optimizes
even the control flow, but it can lead to a code explosion problem due to
over-specialization. For example, code explosion can occur when a loop is
unrolled and the number of iterations is large. Furthermore, code explosion
can degrade the performance of the specialized program due to increased
instruction cache misses.

On the other hand, data specialization is much less sensitive to code
explosion because the previous computation results are stored in a data
structure that requires less memory than the textual representation of
program specialization. However, this technique should be carefully applied
such that the cached previous computations are expensive enough to
amortize the cache access overhead. The cache can also be implemented in
hardware to amortize the cache access overhead [72].

A specific instance of program specialization was proposed by Chung et
al. [19]. In this approach, the computational effort of a source code program
is estimated with both value and execution-frequency profiling. The most
effective specializations are automatically searched and identified, and the
code is transformed through partial evaluation. Experimental results show
that this technique improves both energy consumption and performance of
the source code up to more than a factor of two and in average about 35%
over the original program.

Example 2 Consider the source code in Figure 7 (a), and the first call of
procedure foo in procedure main . If the first parameter a were 0 for all
cases, this procedure could be reduced to procedure sp_foo by partial
evaluation, as shown in Figure 7 (b).

34 Chapter #16

In reality, the value of parameter a is not always 0 , and the call to
procedure foo cannot be substituted by procedure sp_foo. Instead, it can be
replaced by a branching statement that selects an appropriate procedure
call, depending on the result of the common value detection (CVD). The
CVD procedure is named cvd_foo in Figure 7 (b). This is called
transformation step source code alternation. Its effectiveness depends on the
frequency with which a takes the common value 0.

main () {

int i, a, b, c[100], d[200], e, result = 0;
...............
...............
result = foo(a, 100, c);
for (i = 0; i < 10; i++) {

result += foo(i, 100, c);
result += foo(b, e, d);
result += foo(b, 200, d);

}
}
int foo(int fa, int fb, int *fc) {

int i, sum = 0;
for (i = 0; i < fb; i++)
for(j = 0; j < fb/2; j++)

sum += fa * fc[i];
return sum;

}
 (a) Original program

main () {

int i, a, b, c[100], d[200], e, result = 0;
...............
...............
if (cvd_foo(a)) result += sp_foo(b);
else result += foo(a, 100, c);
for (i = 0; i < 10; i++) {

result += foo(i, 100, c);
result += foo(b, e, d);
result += foo(b, 200, d);

}
}
int foo(int fa, int fb, int *fc) {

int i, sum = 0;
for (i = 0; i < fb; i++)

for(j = 0; j < fb/2; j++)
sum += fa * fc[i];

return sum;
}
int sp_foo(int *c) {

return 0;
}
int cvd_foo(int a) {

if (a == 0) return 1;
return 0;

}
 (b) New specialized program

Figure 7: Example of source code alternation

#16. Energy-efficient system-level design 35

Software libraries. Software engineers working on embedded
systems use often software libraries, like those developed by standards
groups (e.g, MPEG) or by system companies (e.g., Intel's multimedia library
for the SA-1110 and TI's library for the TI'54x DSP.) Embedded operating
systems typically provide a choice from a number of math and other libraries
[22]. When a set of pre-optimized libraries is available, the designer has to
choose the elements that perform best for a given section of the code. Such a
manual optimization is er ror-prone and should be replaced by automated
library insertion techniques that can be seen as part of software synthesis.

For example, consider a section of code that calls the log function. The
library may contain four different software implementations: double, float,
fixed point using simple bit manipulation algorithm [23, 71], and fixed point
using polynomial expansion. Each implementation has a different accuracy,
performance, and energy trade-off.

Thus, the automation of the use of software libraries entails two major
tasks. First, characterize the library element implementations in terms of the
criteria of interest. This can be achieved by analyzing the corresponding
instruction flow for a given architecture. Second, recognize the sections of
code that can be replaced effectively by library elements.

In the case of computation-intensive basic blocks of data-flows, code
manipulation techniques based on symbolic algebra have shown to be
effective in both optimizing the computation by reshaping the data flow and
in performing the automatic mapping to library elements. Moreover, these
tasks can be fully automated. These methods are based on the premise that in
several application domains (e.g., multimedia) computation can be reduced
to the evaluation of po lynomials with fixed-point precision. The loss in
accuracy is usually compensated by faster evaluation and lower energy
consumption. Next, polynomials can be algebraically manipulated using
symbolic techniques, similar to those used by tools such as Maple.
Polynomial representations of computation can be also decomposed into
sequences of operations to be performed by software library elements or
elementary instructions. Such a decomposition can be driven by energy
and/or performance minimization goals. Recent experiments have shown
large energy gains on applications such as MP3 decoding [69].

36 Chapter #16

6.2.2 Software Compilation Most software compilers consist of
three layers: the front-end, the machine-independent optimization, and the
back-end. The front-end is responsible for parsing and performing syntax
and semantic analysis, as well as for generating an intermediate form, which
is the object of many machine-independent optimizations [2]. The back-end
is specific to the hardware architecture, and it is often called code generator
or codegen. Typically, energy-efficient compilation is performed by
introducing specific transformations in the back-end, because they are
directly related to the underlying architecture. Nevertheless, some machine-
independent optimizations can be useful in general to reduce energy
consumption [60]. An example is selective loop unrolling, which reduces the
loop overhead but is effective if the loop is short enough. Another example is
software pipelining, which decreases the number of stalls by fetching
instructions from different iterations. A third example is removing tail
recursion, which eliminates the stack overhead.

The main tasks of a code generator are instruction selection, register
allocation, and scheduling. Instruction selection is the task of choosing
instructions, each performing a fragment of the computation. Register
allocation is the task of allocating data to registers; when all registers are in
use, data is spilled to the main memory. Spills are usually undesirable
because of the performance and energy overhead of saving temporary
information in the main memory. Instruction scheduling is ordering
instructions in a linear sequence. When considering compilation for general-
purpose microprocessors, instruction selection and register allocation are
often achieved by dynamic programming algorithms [2], which also generate
the order of the instructions. When considering compilers for application-
specific architectures (e.g., DSPs), the compiler back-end is often more
complex, because of irregular structures such as inhomogeneous register sets
and connections. As a result, instruction selection, register allocation, and
scheduling are intertwined problems that are much harder to solve [31].

Energy-efficient compilation-exploiting instruction selection was
proposed by Tiwari et al. [81] and tied to software analysis and
determination of base costs for operations. Tiwari proposed an instruction
selection algorithm based on the classical dynamic programming tree cover
[2] where instruction weights are the energy costs. Experimental results
showed that this algorithm yields results similar to the traditional algorithm
because energy weights do not differ much in practice.

Instruction scheduling is an enumeration of the instructions consistent
with the partial order induced by data and control flow dependencies.
Instruction re-ordering for low-energy can be done by exploiting the degrees
of freedom allowed by the partial order. Instruction re-ordering may have
several beneficial effects, including reduction of inter -instruction effects [82,

#16. Energy-efficient system-level design 37

53] as well as switching on the instruction bus [76] and/or in some hardware
circuits, such as the instruction decoder.

Su et al. [76] proposed a technique called cold scheduling, which aims at
ordering the instructions to reduce the inter-instruction effects. In their
model, the inter -instruction effects were dominated by the switching on the
internal instruction bus of a processor and by the corresponding power
dissipation in the processor's control circuit. Given op-codes for the
instructions, each pair of consecutive instructions requires as many bit lines
to switch as the Hamming distance between the respective op-codes. The
cold scheduling algorithm belongs to the family of list schedulers [25]. At
each step of the algorithm, all instructions that can be scheduled next are
placed on a ready list. The priority for scheduling an instruction is inversely
proportional to the Hamming distance from the currently scheduled
instruction, thus minimizing locally the inter-instruction energy consumption
on the instruction bus. Su [76] reported a reduction in overall bit switching
in the range of 20 to 30%.

Register assignment aims at utilizing the available registers most
effectively by reducing spills to main memory. Moreover, a register can be
labeled during the compilation phase, and register assignment can be
performed with the objective of reducing the switching in the instruction
register as well as in the register decoders [60]. Again, the idea is to reduce
the Hamming distance between pairs of consecutive register accesses. When
comparing this approach to cold scheduling, note that now the instruction
order is fixed, but the register labels can be changed. Metha et al. [60]
proposed an algorithm that improves upon an initial register labeling by
greedily swapping labels until no further switching reduction is allowed.
Experimental results showed an improvement ranging from 4.2% to 9.8%.

Registers are only the last level of a memory hierarchy, which usually
contains caches, buffers, multi-banked memories, etc. Compilers can have a
large impact on energy consumption by optimizing not only register accesses
but all kinds of memory traffic patterns as well. Many compiler
transformations have limited scope, and they are not very effective in
reducing memory power outside the register file. However, some restricted
classes of programming constructs (namely, loop nets with data-independent
iterations) can be transformed and optimized by the compiler in a very
aggressive fashion. The theory and practice of loop transformations was
intensely explored by parallelizing and high-performance compilers in the
past [88], and it is being revisited from a memory energy minimization
viewpoint with promising results [38, 39, 65]. These techniques are likely to
have greater impact on SoCs because they have very heterogeneous memory
architectures, and they often expose memory transfers to the programmer, as

38 Chapter #16

outlined in the case studies (this is rarely done in general-purpose
processors).

6.2.3 Application software and power management The quest for
very low energy software cost leads to the crafting and tuning of very
specific application programs. Thus, a reasonable question is–why not let the
application programs finely control the servic e levels and energy cost of the
underlying hardware components? There are typically two objections to such
an approach. First, application software should be independent of the
hardware platform for portability reasons. Second, system software typically
supports multiple tasks. When a task controls the hardware, unfair resource
utilization and deadlocks may become serious problems.

For these reasons, it has been suggested [54] that application programs
contain system calls that request the system software to control a hardware
component, e.g., by turning it on or shutting it down, or by requesting a
specific frequency and/or voltage setting. The request can be accepted or
denied by the operating system, which has access to the task schedule
information and to the operating levels of the components. The advantage of
this approach is that OS-based power management is enhanced by receiving
detailed service request information from applications and thus is in a
position to make better decisions.

Another approach is to let the compiler extract the power management
requests directly from the application programs at compile time. This is
performed by an analysis of the code. Compiler-directed power management
has been investigated for variable-voltage, variable-speed systems. A
compiler can analyze the control-data flow graph of a program to find paths
where execution time is much shorter than the worst-case. It can then insert
voltage downscaling directives at the entry points of such paths, thereby
slowing down the processor (and saving energy) only when there is
sufficient slack [73].

7. CONCLUSIONS

This concluding chapter has surveyed some of the challenges in
achieving energy-efficient system-level design, with specific emphasis on
SoC implementation.

Digital systems with very low energy consumption require the use of
components that exploit all features of the underlying technologies (as
described in the previous chapters) and the realization of an effective
interconnection of such components. Network technologies will play a major
role in the design of future SoCs, as the communication among components

#16. Energy-efficient system-level design 39

will be realized as a network on chip. Micro-network architectural choices
and control protocol design will be key in achieving high performance and
low-energy consumption.

A large, maybe dominant, effort in SoC design is spent in writing
software, because the operation of programmable components can be
tailored to specific needs by means of embedded software. System software
must be designed to orchestrate the concurrent operation of on-chip
components and network. Dynamic power management and information-
flow management are implemented at the system software level, thus adding
to the complexity of its design. Eventually, application software design,
synthesis, and compilation will be crucial tasks in realizing low-energy
implementations.

Because of the key challenges presented in this book, SoC design
technologies will remain a central engineering problem, deserving large
human and financial resources for research and development.

References
[1] B. Ackland et al., “A Single Chip, 1.6-Billion, 16-b MAC/s Multiprocessor DSP,” IEEE

Journal of Solid-State Circuits, vol. 35, no. 3, March 2000.
[2] A. Aho, R. Sethi, J. Ullman, Compilers. Principles, Techniques and Tools. Addison-

Wesley, 1988.
[3] P. Aldworth, “System-on-a-Chip Bus Architecture for Embedded Applications,” IEEE

International Conference on Computer Design, pp. 297-298, Nov. 1999.
[4] R. Bahar, G. Albera, S. Manne, “Power and Performance Tradeoffs Using Various

Caching Strategies,” ACM/IEEE International Symposium on Low Lower Electronics
and Design, pp. 64-69, Aug. 1998.

[5] H. Bakoglu, Circuits, Interconnections, and Packaging for VLSI , Addison-Wesley, 1990
[6] R. Bajwa, M. Hiraki, H. Kojima, D. Gorny, K. Nitta, A. Shridhar, K. Seki, K. Sasaki,

“Instruction Buffering to Reduce Power in Processors for Signal Processing,” IEEE
Transactions on VLSI Systems, vol. 5, no. 4, pp. 417-424, Dec. 1998.

[7] W. Bainbridge, S. Furber, “Delay insensitive system-on-chip interconnect using 1-of-4
data encoding,” IEEE International Symposium on synchronous Circuits and Systems,
pp. 118-126, 2001.

[8] L. Benini and G. De Micheli, ``Networks on Chip: A New SoC Paradigm,'' IEEE
Computers, January 2002, pp. 70-78.

[9] L. Benini, A. Bogliolo, G. De Micheli, “A Survey of Design Techniques for System -
Level Dynamic Power Management,” IEEE Transactions on Very Large-Scale
Integration Systems, vol. 8, no. 3, pp. 299-316, June 2000.

[10] L. Benini, G. De Micheli, “System-Level Power Optimization: Techniques and Tools,”
ACM Transactions on Design Automation of Electronic Systems, vol. 5, no. 2, pp. 115-
192, April 2000.

[11] L. Benini, D. Bruni, A. Macii, E. Macii, “Hardware-Assisted Data Compression for
Energy Minimization in Systems with Embedded Processors,” IEEE Design and Test in
Europe, pp. 449-453, March. 2002.

[12] D.Bertozzi, L. Benini and G. De Micheli, “Low-Power Error-Resilient Encoding for On-
Chip Data Busses,” IEEE Design and Test in Europe, pp. 102-109, March 2002.

[13] D. Bertsekas, R. Gallager, Data Networks. Prentice Hall, 1991.

40 Chapter #16

[14] M. Borgatti et al.,”A 64-Min Single-Chip Voice Recorder/Player Using Embedded 4-

b/cell FLASH Memory ,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 516-
521, March. 2001.

[15] D.Burger, J. Goodman, A. Kagle, ”Limited Bandwidth to Affect Processor Design,”
IEEE Micro, vol. 17, no. 6, November/December 1997.

[16] D. C. Burger, Hardware Techniques to Improve the Performance of the
Processor/Memory Interface, Ph.D. Dissertation, University of Wisconsin-Madison,
1998.

[17] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A.
Vandecappelle, Custom Memory Management Methodology: Exploration of
Memory Organization for Embedded Multimedia System Design, Kluwer, 1998

[18] S. Chirokoff and C. Consel, “Combining Program and Data Specialization”,
ACM SIGPL AN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM '99), pp.45-59, San Antonio, Texas, USA,
January 1999

[19] E.Y.Chung, L. Benini and G. De Micheli,”Automatic Source Code
Specialization for Energy Reduction,” ISLPED, IEEE Symposium on Low
Power Electronics and Design, 2000, pp. 80-83.

[20] B. Cordan, ”An efficient bus architecture for system-on-chip design,” IEEE Custom
Integrated Circuits Conference , pp. 623-626, 1999.

[21] S. Coumeri, D. Thomas, ”Memory Modeling for System Synthesis,” ACM/IEEE
International Symposium on Low Power Electronics and Design , pp. 179-184, Aug.
1998.

[22] J.Crenshaw math Toolkit for Real-Time Programming, CMP Books, kansas,
2000.

[23] Cygnus Solutions, eCOS reference Manual, 1999
[24] W. Dally and J. Poulton, Digital Systems Engineering, Cambridge University Press,

1998.
[25] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
[26] D. Ditzel, ”Transmeta's Crusoe: Cool Chips for Mobile Computing”, Hot Chips

Symposium
[27] J. Duato, S. Yalamanchili, L. Ni, Interconn ection Networks: an Engineering

Approach. IEEE Computer Society Press, 1997.
[28] A. Farrahi, G. Tellez, M. Sarrafzadeh, “Memory Segmentation to Exploit Sleep

Mode Operation,” ACM/IEEE Design Automation Conference, pp. 36-41, June
1995.

[29] Gartner, Inc., Final 2000 Worldwide Semiconductor Market Share, 2000.
[30] A. Gonzalez, C. Aliagas, M. Valero, “A Data-Cache with Multiple Caching Strategies

Tuned to Different Types of Locality,” ACM International Conference on
Supercomputing, pp. 338--347, July 1995.

[31] G. Goossens, P. Paulin, J. Van Praet, D. Lanneer, W.Guerts, A. Kifli and C.Liem,
“Embedded Software in Real-Time Signal Processing Systems: Design Technologies,”
Proceedings of the IEEE , vol. 85, no. 3, pp. 436--54, March 1997.

[32] P. Grun, N. Dutt, A. Nicolau, “Access Pattern Based Local Memory Customization for
Low-Power Embedded Systems,” Design Automation and Test in Europe, pp. 778--784,
March 2001.

[33] P. Guerrier, A. Grenier, “A generic architecture for on-chip packet-switched
interconnections,” Design Automation and Test in Europe Conference , pp. 250-256,
2000.

#16. Energy-efficient system-level design 41

[34] R. Hegde, N. Shanbhag, ”Toward achieving energy efficiency in presence of deep

submicron noise,” IEEE Transactions on VLSI Systems, pp. 379--391, vol. 8, no. 4,
August 2000.

[35] J. Hennessy, D. Patterson, Computer Architecture - A Quantitative Approach , II Edition,
Morgan Kaufmann Publishers, 1996.

[36] R. Ho, K. Mai, M. Horowitz, “The Future of wires,” Proceedings of the IEEE, January
2001.

[37] M. Kamble, K. Ghose, “Analytical Energy Dissipation Models for Low-Power Caches,”
ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 143-
148, August 1997.

[38] M. Kandemir, M. Vijaykrishnan, M. Irwin, W. Ye, “Influence of compiler optimizations
on system power, ”IEEE Transactions on VLSI Systems, vol. 9, no. 6, pp. 801-804, Dec.
2001.

[39] H. Kim, M. Irwin, N. Vijaykrishnan, M. Kandemir, “Effect of compiler optimizations on
memory energy,” IEEE Workshop on Signal Processing Systems, pp. 663-672, 2000.

[40] J. Kin, M. Gupta, W. Mangione-Smith, “The Filter Cache: An Energy Efficient Memory
Structure,” IEEE/ACM International Symposium on Microarchitecture, pp. 184-193,
Dec. 1997.

[41] A. Kunimatsu et al., “Vector Unit Architecture for Emotion Synthesis,” IEEE Micro ,
vol. 20, no. 2, pp. 40-47, March-April 2000.

[42] U. Ko, P. Balsara, A. Nanda, “Energy Optimization of Multilevel Cache Architectures
for RISC and CISC Processors,” IEEE Transactions on VLSI Systems, vol. 6, no. 2, pp.
299-308, June 1998.

[43] G. Jackson et al., “An Analog Record, Playback and Processing System on a Chip for
Mobile Communications Devices,” IEEE Custom Integrated Circuits Conference, pp.
99-102, San Diego, CA, May 1999.

[44] T. Juan, T. Lang, J. Navarro, “Reducing TLB Power Requirements,” ACM/IEEE
International Symposium on Low Power Electronics and Design, pp. 196-201, August
1997.

[45] K. Lahiri, A. Raghunathan, G. Lakshminarayana, S. Dey, “Communication architecture
tuners: a methodology for the design of high-performance communication architectures
for systems-on-chip,” IEEE/ACM Design Automation Conference, pp. 513--518, 2000.

[46] G. Lakshminarayana, A. Raghunathan, K. Khouri, K. Jha, and S. Dey, “Common-Case
Computation: A High-Level Technique for Power and Performance Optimization”,
Design Automation Conference , pp.56-61, 1999

[47] C. Lefurgy, Efficient Execution of Compressed Programs, Doctoral Dissertation, Dept.
of CS and Eng., University of Michigan, 2000.

[48] K. Lepak and M. Lipasti, “On the value locality of store instructions”, ISCA, pp. 182-
191, 2000

[49] H. Lekatsas, W. Wolf, “Code Compression for Low Power Embedded Systems,”
ACM/IEEE Design Automation Conference, pp. 294--299, June 2000.

[50] S. Liao, S. Devadas, K. Keutzer, “Code Density Optimization for Embedded DSP
Processors Using Data Compression Techniques,” IEEE Transactions on CAD/ICAS,
vol. 17, no. 7, pp. 601--608, July 1998.

[51] D. Lidsky, J. Rabaey, “Low-Power Design of Memory Intensive Functions,” IEEE
Symposium on Low Power Electronics, San Diego, CA, pp. 16-17, September 1994.

[52] M. Lipasti, C. Wilkerson, and J. Shen, “Value Locality and Load Value Prediction”,
ASPLOS, pp.138-147, 1996

42 Chapter #16

[53] M. Lorenz, R. Leupers, P. Marwedel, T. Drager, G. Fettweis, “Low-energy DPS code

generation using a genetic algorithm,” IEEE International Conference on Computer
Design, pp. 431-437, Sept. 2001.

[54] Y. Lu, L. Benini and G. De Micheli, “Requester-Aware Power Reduction,” ISSS,
International System Synthesis Symposium , 2000, pp. 18-23.

[55] Y. Lu, L. Benini and G. De Micheli, “Power Aware Operating Systems for Interacting
Systems,” IEEE Transactions on VLSI, April 2002.

[56] A. Macii, L. Benini, M. Poncino, Memory Design Techniques for Low Energy
Embedded Systems, Kluwer, 2002.

[57] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, M. Horowitz, “Smart Memories: a
modular reconfigurable architecture,” IEEE International Symposium on Computer
Architecture, pp. 161-171, June 2000.

[58] S. Manne, A. Klauser, D. Grunwald, “Pipeline gating: speculation control for energy
reduction,” International Symposium on Computer Architecture, pp. 122-131, July 1998.

[59] H. Mehta, R. M. Owens, M. J. Irwin, “Some Issues in Gray Code Addressing,” Great
Lakes Symposium on VLSI, pp. 178--180, March 1996.

[60] H. Mehta, R. Owens, M. Irwin, R. Chen, D. Ghosh, “Techniques for Low Energy
Software,” International Symposium on Low Power Electronics and Design , pp. 72-75,
Aug 1997.

[61] V. Milutinovic, B. Markovic, M. Tomasevic, M. Tremblay, “A new cache architecture
concept: The Split Temporal/Spatial Cache,” IEEE Mediterranean Electrotechnical
Conference, pp. 1108-1111, March 1996.

[62] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor,” IEEE
Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1703--1714, Nov. 1996.

[63] P. Panda, N. Dutt, Memory Issues in Embedded Systems-on-Chip Optimization and
Exploration, Kluwer, 1999.

[64] P. Panda, N. Dutt, A. Nicolau, “On-Chip vs. Off-Chip Memory: The Data Partitioning
Problem in Embedded Processor-Based Systems”, ACM Transactions on Design
Automation of Electronic Systems, vol. 5, no. 3, pp. 682--704, July 2001.

[65] R. Panda et al., “Data memory organization and optimization in application-specific
systems,” IEEE Design \& Test of Computers, vol. 18, no. 3, pp. 56-68, May-June 2001.

[66] P. R. Panda, F. Catthor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,A.
Vandecappelle, P. G. Kjeldsberg, “Data and Memory Optimization Techniques for
Embedded Systems”, ACM Transactions on Design Automation of Electronic Systems,
vol. 6, no. 2, pp. 149-206, April 2001.

[67] I. Papadimitriou, M. Paterakis, “Energy-conserving access protocols for transmitting data
in unicast and broadcast mode,” International Symposium on Personal, Indoor and
Mobile Radio Communication, pp. 416--420, 2000.

[68] C. Patel, S. Chai, S. Yalamanchili, D. Shimmel, “Power constrained design of
multiprocessor interconnection networks,” IEEE International Conference on Computer
Design, pp. 408-416, 1997.

[69] A. Peymandoust, T. Simunic and G. De Micheli, “Complex Library Mapping for
Embedded Software using Symbolic Algebra,” DAC, Design Automation Conference,
2002.

[70] D. Patterson, et al., “A Case for intelligent RAM,” IEEE Micro, vol. 17, no. 2, pp. 34-44,
March-April 1997.

[71] Redhat , Linux-ARM math Library Reference Manual
[72] S.E. Richardson, “Caching Function Results: Faster Arithmetic by Avoiding

Unnecessary Computation”, Tech. report, Sun Microsystems Laboratories , 1992

#16. Energy-efficient system-level design 43

[73] D. Shin, J. Kim, “A profile-based energy -efficient intra-task voltage scheduling

algorithm for hard real-time applications,” IEEE International Symposium on Low-
Power Electronics and Design, pp. 271-274, Aug.2001.

[74] W. Shiue, C. Chakrabarti, “Memory Exploration for Low Power, Embedded Systems,”
DAC-36: ACM/IEEE Design Automation Conference, pp. 140-145, June 1999.

[75] A. Shubat, “Moving the market to embedded memory,” IEEE Design & Test of
Computers, vol. 18, no. 3, pp. 16-27, May-June 2001.

[76] C. Su, C. Tsui, A. Despain, “Saving Power in the Control Path of Embedded
Processors,” IEEE Design and Test of Computers, vol. 11, no. 4, pp. 24--30, Winter
1994.

[77] C. L. Su, A. Despain, “Cache Design Trade -Offs for Power and Performance
Optimization: A Case Study,” ACM/IEEE International Symposium on Low Power
Design, pp. 63-68, April 1995.

[78] M. Suzuoki et al., “A Microprocessor with a 128-bit CPU, Ten Floating-Point MACs,
Four Floating-Point Dividers, and an MPEG-2 Decoder,” IEEE Journal of Solid-State
Circuits, vol. 34, no. 11, pp. 1608--1618, Nov. 1999.

[79] D.Sylvester and K.Keutzer, “A Global Wiring Paradigm for Deep Submicron Design,”
IEEE Transactions on CAD/ICAS, vol.19, No. 2, pp. 242-252, February 2000.

[80] M. Takahashi et al., “A 60-MHz 240-mW MPEG-4 Videophone LSI with 16-Mb
embedded DRAM,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1713-
1721, Nov. 2000.

[81] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Embedded Software: A First Step
Towards Software Power Minimization,” IEEE Transactions on VLSI Systems, vol. 2,
no.4, pp.437--445, Dec. 1994.

[82] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power Analysis and
Optimization of Software,” Journal of VLSI Signal Processing, vol. 13, no.1-2, pp.223--
233, 1996.

[83] T. Theis, “The future of Interconnection Technology,” IBM Journal of Research and
Development, vol. 44, No. 3, May 2000, pp. 379-390.

[84] H. V. Tran et al., “A 2.5-V, 256-level nonvolatile analog storage device using EEPROM
technology,” IEEE International Solid-State Circuits Conference, pp. 270-271, Feb.
1996.

[85] J. Walrand, P. Varaiya, High-Performance Communication Networks. Morga n
Kaufman, 2000.

[86] S. Winegarden, “A bus architecture centric configurable processor system,” IEEE
Custom Integrated Circuits Conference, pp. 627--630, 1999.

[87] A. Wolfe, “Issues for Low-Power CAD Tools: A System -Level Design Study,” Design
Automation for Embedded System , vol. 1, no. 4, pp. 315-332, 1996.

[88] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley,
1996.

[89] Y. Yoshida, B. Song, H. Okuhata, T. Onoye, I. Shirakawa, “An Object Code
Compression Approach to Embedded Processors,” ACM/IEEE International Symposium
on Low Power Electronics and Design, pp. 265-268, August 1997.

[90] R. Yoshimura, T. Koat, S. Hatanaka, T. Matsuoka, K. Taniguchi, “DS-CDMA wired bus
with simple interconnection topology for parallel processing system LSIs,” IEEE Solid-
State Circuits Conference, pp. 371-371, Jan. 2000.

[91] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J. Rabaey, “A 1-V
Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Signal
Processing,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1697--1704, Nov.
2000.

44 Chapter #16

[92] H. Zhang, V. George, J. Rabaey, “Low-swing on-chip signaling techniques:

effectiveness and robustness,” IEEE Transactions on VLSI Systems, vol. 8, no. 3, pp.
264-272, June 2000.

[93] H. Zhang, M. Wan, V. George, J. Rabaey, “Interconnect architecture exploration for
low-energy configurable single-chip DSPs,” IEEE Computer Society Workshop on VLSI,
pp. 2-8, 1999.

[94] V. Zyuban, P. Kogge, “The Energy Complexity of Register Files,” ACM/IEEE
International Symposium on Low Power Electronics and Design , pp. 305-310, Aug.t
1998.

[95] International Technology Roadmap for Semiconductors http://public.itrs.net/

