IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002 1051

Value-Sensitive Automatic Code Specialization for
Embedded Software

Eui-Young ChungStudent Member, IEEE uca Beninj Member, IEEEGiovanni DeMichelj Fellow, IEEE
Gabriele Lucullj Member, IEEEand Marco Carilli Member, IEEE

Abstract—The objective of this work is to create a framework for ~ striking design targets under tight cost constraints, which are
the optimization of embedded software. We presentalgorithms and typical of embedded systems.
a tool flow to reduce the computational effort of programs, using A traditional quality metric for embedded software is com-

value profiling and partial evaluation. Such a reduction translates - th de f he |
into both energy savings and average-case performance improve-pacmess' the most compact code for a program uses the least

ment, while preserving a tolerable increase of worst case perfor- instruction memory. Moreover, if such a program represents a
mance and code size. Our tool reduces the computational effort by pure data flow (i.e., no branching and iteration is involved), it ex-

specializing frequently executed procedures for the most common gcytes in the shortest time and consumes the least energy under

values of their parameters. The most effective specializations are . . L
automatically searched and identified, and the code is transformed the assumption that the cost of each instruction is roughly con-

through partial evaluation. Experimental results show that their ~ Stant. However, as algorithm complexity grows, the control de-
technique improves both energy consumption and performance of pendency of a program increases and specific architectural fea-
the source code up to more than a factor of two, in average about tures of a processor may favor some instructions over others in
35% over the original program. Also, their automatic search en- a5 of performance and energy consumption. Thus, two ad-
gine greatly reduces code optimization time with respect to exhaus-
tive search. ditional metrics, namely performance and energy, are consid-
ered in embedded software design. It is also very important to
distinguish between average and worst case performance be-
cause many embedded systems are targeting real-time applica-
tions [2].
Average case performance is tightly related to energy effi-
|. INTRODUCTION ciency, because short execution time can be directly translated
ROCESSOR-BASED embedded systems are pervasivehtp reduced energy by slowing down the system’s clock (or by
many modern application domains such as telecomm@ating the clock) and/or by lowering the voltage supply [1], [10],
nications, consumer electronics, and multimedia [5], [6]. TH&1]. Atthe same time, however, worst case performance should
major driving force to move from application-specific to pronot be adversely affected when optimizing for average case. In
cessor-based architectures is programmability, which increasélser words, while minimizing the expected value of program
flexibility and reduces the design time. Cost is also reduceekecution time, variance should remain under control. In this
because the design is based on high-volume commodity patstext, we propose an automatic source code transformation
(processor and memory), whereas ASIC solutions requiramework aimed at reducing the computational efftre(av-
low-volume custom components [2], [3]. eragenumber of executed instructignsith tightly controlled
The overall performance of processor-based design criticallprst case performance and code-size degradation.
depends on software quality. For this reason, software optimizaAccording to Amdahl’s law, the most effective way to im-
tion is one of the most important issues in modern embeddgtbve the average case performance is to make the common
system design [7]-[10]. Embedded software can be optimizedse fast. Many code transformation techniques exploit execu-
more aggressively than applications for general-purpose sysn frequency profiling to identify the most frequently executed
tems by exploiting detailed knowledge of workloads and hardode blocks [21], [22] ocomputational kernelsLhen, the ker-
ware platforms. Such optimization is often a critical step faiels can be optimized either by eliminating redundant opera-
tions or by matching computation and memory transfer to the

Manuscript received November 16, 2001. This work was supported in part §jaracteristics of the hardware platform (e.qg., parallelizing com-

the National Science Foundation under Grant CCR-9901190, by STMicroelgngtation, improving locality of memory transfers) [11], [30],

tronics, and by GSRC/MARCO. Recommended by Associate Editor R. CaT?SS]

posano.) o))
E.-Y. Chung and G. DeMicheli are with the Computer Systems Laboratory, Procedure inlining is a good example for this concept. This

Stanford University, Stanford, CA 94305 USA (e-mail: eychung@stanford.edigchnique first identifies the procedure calls executed frequently

nanni@stanford.edu). . e .
L. Benini is with Department of Electrical Engineering and Compute‘hen replaces each identified procedure call with a copy of the

Science, University of Bologna, Bologna 40136, Italy (e-mail: lbeniniddody of the called procedure, replacing each occurrence of a

Index Terms—Code size, common value, embedded software, en-
ergy consumption, framework, partial evaluation, performance,
search space, specialization, value profiling.

deis.unibo.it). N _ _ _ formal parameter with its corresponding actual parameter [30].
G. Luculliand M. Carilli are with AST, STMicroelectronics, Grenoble 38019Th. techni liminat Ilth head for th d .
France (e-mail: gabriele.luculli@ast.st.com; marco.carilli@ast.st.com). Is technique eliminates all the overhead for the procedure in-

Publisher Item Identifier 10.1109/TCAD.2002.801096. vocation, but its primary disadvantage is the code-size increase.

0278-0070/02$17.00 © 2002 IEEE

1052 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

Execution frequencies of program fragments are not the only ma%ntQ { b x [100]. 472001 <o
- int 1, a, b, k, m, ¢ s , €, resu = 0;
profiling information that can be used for code optimization. |00.00 000

- . 1t = £ » 100, ¢, k);
Recently,value profilinghas been proposed as a technique for e T T

. P ; 1t += foo(i, 100, ¢, m);
identifying a new class of common cases for a given program Tesult 4= fools, e d. T

[23]-[25]. The common cases identified by value profiling are
code fragments which frequently execute operations with the int foo(int fa, int fb, int *fc, int £k) {

int i, sum =

same operand values. In this case, the identified code fragments for (i = 0; 1% fb; i++)

can be specialized for the commonly observed operand values for(j = 0; j < fb/2; j++)
.. . sum += fa * fc[i] + fk;

to eliminate redundant computations.) return sum;

Profiling-driven optimization is often very effective for
embedded systems because embedded software can be char- (@
acterized by a few well-known workloads, unlike software main O {
running on a general purpose system. For example, many DSP int 1, a, b, k, m, c[100], d4[200], e, result = 0;
programs execute filter operations and the filter coefficients are if (cvdfoo(a, k)) result = spfoo(c);

| else result = foo(a, 100, c, k);
rarely changed. In our framework, procedure calls, which are for (i = 0; i < 10; i++) {
frequently executed with rarely varying parameter values, are result ” ig;’é;; i?oa,c,;)';“)’
defined as common cases. Such common cases are identified
by value profiling and specialized Ipartial evaluation. int fool(int fa, int Ib, int *fc, int £k {
. in 1, sum =

Partial evaluation is a transformation technique for special- for (i = 0; i < fb; i+4)
.. . . for(j = 0; j < £b/2; j++)
izing a procedure with respectto a subset of its parameters, where sum 4= fa * fc[i] + fk;

these parameters are held constant [4], [18]. Eventhough partial | , return sun;

evaluation is a well-developed field, there are several issues in its int spfoo(int ¥fc) { return 0; }
int cvd_foo(int a, int k) {

application that have not been fully addressed in the past. First, if (a == 0 & k == 0) return 1;

the procedures to be specialized, their parameters, and parameter | , **** %
values for specialization are assumed to be specified by the user.
Second, partial evaluation sometimes leads to code-size blowup. ®)
If applied in an uncontrolled fashion, it can actually worsen main O {
performance and energy consumption. Third, when multiple int I, 2 by Koom cl100], 4L2001, e, result = O;
procedures within a program are specialized, the interplay among e T o o R e
various specialized calls is rarely taken into consideration (refer T et % fos i 1b0r et s
to the example in Fig. 1). Because of these limitations, program result += foo(b, e, d, m);
specialization based on partial evaluation is not widely applied.
Our source code optimizer automates computational kernel | % feg(int fa, int b, int o) {
specialization through partial evaluation. The tool integrates ex- oty e AT
ecution frequency and value profiling, candidate computational retuigms;;;fa * felil + fk;
kernel selection, partial evaluation, performance, and energy }
estimation within a single optimization engine. Its input is a S { return 50+100+2k; }
target program (C source code) with typical inputs. The output e, et b
is optimized source code and estimates of average execution
time and energy for the original and optimized version of the ©

target program. The impact of optimization is assessed by |n- . e of de transformat thod: (a) |
Xample of source code transtormation usmg our metno a, onglna
struction-level simulation on the target hardware archnectua.%wam (b) specialized program for the first callfod (a = 0 andk = 0):

[12]-[14]. and (c) specialized program for the first callfob (a = 0).
The manuscript is organized as follows. In Section I,
we review related work in embedded software optimization
with emphasis on value-based specialization techniques. In
Section I, we will demonstrate the basic idea and overall flow The objective of software optimization for general purpose
of the proposed technique for program specialization baseaimputers is average case performance, while the requirements
on partial evaluation and value profiling. Also, search spacéw embedded software are more articulated [45]. Code-size
to be explored are defined. In Section 1V, we will presemrinimization is often a high-priority objective [28], [29], [50]
the profiling method and the computational-effort estimatioand energy efficiency is becoming critical as well [53].
technique. In Section V, common-case selection technique forRetargetability is a key requirement for embedded software
specialization based on computational-effort estimation will laptimization tools, because of the wide variability of target
described. In Section VI, specialization for each common calsardware platforms [46], [47], [49], [51]. Also, compiler
will be presented and the globally optimal case selection frodevelopment for specific application domains such as digital
multiple specialized cases will be discussed in Section VBignal processing was researched to exploit the special features
Finally, we will report experimental results in Section VIII andf application-specific processor architectures [54], [56]. Most
conclude our work in Section IX. research on optimizing compilers for embedded processors has

Il. RELATED WORK

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1053

focused on fairly low-level optimizations, such as instructiothat the cached previous computations are expensive enough to
scheduling, register assignment, etc. Embedded softwaraortize the cache access overhead. The cache can also be im-
optimization takes advantage of the reduced compilatigmemented in hardware to amortize the cache access overhead
speed requirement with respect to general-purpose softwgs4].
compilers, therefore embedded software development tools ca®@ur technique is based on program specialization without
adopt more complex and aggressive approaches which are arot hardware assistance for embedded software design. Our ap-
allowed in general purpose software development. proach differs from previous approaches [18] as follows. First,
Recently, high-level approaches (based on source-to-sounaepropose a computational effort estimation technique which
transformations) to improve code quality were proposedombines value profiling with execution frequency profiling.
Memory-oriented code transformation techniques were prdsing the estimation technique, it is possible to identify the
posed in [15] and [57] and other classical high-level loopommon cases (computationally intensive procedure calls with
transformations for general purpose software were appliedtteir effective known parameter values for the specialization)
embedded software optimization [12]-[14]. Source-to-sourgean automated fashion. Second, our approach provides a sys-
techniques are more aggressive in modifying the target ptematic loop controlling strategy to avoid the code explosion
gram, and they can be applied together with more traditionadoblem (which was manually controlled by the user in pre-
optimizing compilers in the back end. One of the major comious work). Third, our approach supports the interprocedural
cerns in the adoption of high-level optimizations is that thegffect analysis of the program specialization which was men-
are hard to control, and they are often meant to be used iti@ghed only in a few papers [17]. This analysis is especially im-
semiautomated flow that requires programmer’s guidance. portant when multiple procedure calls are specialized.
Value locality is a promising high-level technique for general
purpose software optimization, but it has not been studied in IIl. BASIC IDEA AND OVERALL FLOW
depth for embedded software. Value locality is defined as the i .
likelihood of a previously seen value recurring repeatedly withi: Basic Idea and Problem Description
a physical or logical storage location [42]. Value locality enables The technique described in the following sections aims at re-
us to reduce the computational cost of a program by reusidgcing the computational effort of a given program by special-
previous computations. izing it for situations that are commonly encountered during its
Previous work shows that value locality can be exploiteekecution. The ultimate goal of this technique is to improve en-
in various ways depending on the target system architectueegy consumption as well as performance by reducing compu-
In [27], common-case specialization was proposed for har@tional effort. The specialized program requires substantially
ware synthesis using loop unrolling and algebraic reductisaduced computational effort in the common case, but it still be-
techniques. In [42] and [43], value prediction was proposédtaves correctly. The “common situations” that trigger program
to reduce the load/store operations with the modification gpecialization are detected by tracking the values passed to the
general purpose microprocessor. Also, in [34], redundaparameters of procedures. The example in Fig. 1 illustrates the
computation (an operation performs the same computatibasic idea.
for the same operand value) was defined aesult cache Consider the first call of procedufeo in proceduremain .
was proposed to avoid redundant computations by reusing tgppose the first parametaris 0 for 90% of its calling fre-
result from theresult cache Unfortunately, these techniquesquency. Also, suppose the same condition holds for the last
are not appropriate for our case because they are architechaeametek. Using these common values, a partial evaluator
dependent. For this reason, we will focus on pure softwacan generate the specialized procedspefoo as shown in
oriented approaches exploiting value locality (i.e., partidig. 1(b) which reduces the computational effort drastically.
evaluation) in this paper. In reality, the values of parameteasandk are not always 0.
Depending on the way of using the results of previous comptuherefore, the procedure cédlo cannot be completely substi-
tations, partial evaluation can be classified into two categorig¢ated by the new procedusp _foo . Instead, we replace it by
i.e., program specialization and data specialization. Progranconditional statement which selects the appropriate procedure
specialization encodes the results of previous computationscadl depending on the result oEammon value detecti¢@VD)
aresidual programwhile data specialization encodes these rggrocedure namedvd _foo in Fig. 1(b). We call this transfor-
sults in the data structures like caches [19]. mation stepsource code alternatiorAlso, the variable whose
Program specialization is more aggressive in the sense thalue is often constant (e.@) is calledconstant-like argument
it optimizes even the control flow, but it can lead to a code exc€LA).
plosion problem due to overspecialization. For example, codeWhen the CVD procedure detects a common case, the spe-
explosion can occur when a loop is unrolled and the numbeaalized code corresponding to the detected common case is ex-
of iterations is large. Furthermore, code explosion can degraslauted, which yields fewer instruction executions than the orig-
the performance of the specialized program due to increasediival code. On the other hand, the worst case scenario occurs
struction cache misses. On the other hand, data specializatiowl®en the CLA does not take any frequently observed values
much less sensitive to code explosion because the previous catentified by the profiling. In this case, the worst case perfor-
putation results are stored in a data structure which requires lesance degradation per each call is simply the product of the
memory than the textual representation of program specializast of compare instruction and the number of CLAs tested in
tion. However, this technique should be carefully applied suthe conditional statement, therefore the worst case performance

1054 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

degradation is marginal if the target procedure is computatiorase selection problems, respectively. The entire framework is
ally expensive. implemented based on SUIF [36]. CMIX [20] is chosen as a
In general, different possibilities for code optimization exispartial evaluator in the specialization engine. The instruction-set
This gives rise to a set of search problems that aim to detect theel simulator (ISS) in both the specialization engine and global
best set of transformations for the example shown in Fig. 1.dffect analyzer can be selected depending on the target processor
we ignore the common value kf the original code will be spe- to consider the underlying hardware architecture for the special-
cialized as shown in Fig. 1(c). Tl#p_foo in Fig. 1(c) has one ization. Each tool component in Fig. 2 corresponds to each step
more multiplication than thep _foo in Fig. 1(b), but the situ- of the overall transformation flow shown in Fig. 3. Thus, we will
ation thata = 0 will happen more frequently than the situatiorbriefly describe each step in this section and the details will be
that botha andk are 0. For this reason, it is not clear whictdescribed in the later sections.
specialized code is more effective to reduce the overall compu- « |nstrumentation and profiling: Two types of profiling
tational effort. This is the first search problem in our approach. are performedexecution frequency profilingnd value
Next, consider two procedure calls inside the loop of Fig. 1 profiling. Using the information fronexecution frequency
with the assumption that paramege(the second parameter of profiling, the computational efforts of procedures and pro-
the third procedure call) has single common value, 200. Each cedure calls are estimated. On the other haathe pro-
of two procedure calls has a CLA as their second argument, re- filing identifies CLAs and their common values by ob-
spectively. Partial evaluation can be applied for each procedure serving the parameter value changes of procedure calls.
call to reduce computational effort. However, there is not much « Common case selectiorBased on profiling information,
to be done by partial evaluator except loop unrolling because all all detected common cases are represented as a hierar-
other parameters are not CLAs. The effect of loop unrolling can chical tree (Section V). To reduce the search spaoce,
be either positive or negative depending on the system configu- malized computational effofNCE) is computed for each
ration. For this reason, itis required to find the best combination object in the hierarchical treeVCE represents the rela-
of loop unrolling for each call. In this example, there are four tive importance of each object in terms of computational
possible combinations for each call, but the number of combi- effort. By defining a user-defined constraint caltampu-
nations is exponential with respect to the number of loops. This tational thresholdCT), trivial common cases are pruned.
is the second search problem of our approach. « Common case specializationEach case not pruned in the
After each call is specialized with the best combination of previous step is specialized. In our framework, specializa-
loop unrolling, itis also necessary to check the interplay among tion is performed by CMIX [20] which is a compile-time
the specialized calls, because both specialized calls willincrease (off-line) partial evaluator. In addition to the specialized
code size and they may cause cache conflicts due to their al- procedure, theommon value detectidi€VD) procedure
ternative calling sequence. Thus, we need a method to analyze is generated. Also, source code alternation is performed
the global effect of the specialized calls caused by their inter- so that the original procedure call is replaced by a con-
play, which is the third problem of our approach. This paper ad- ditional statement as shown in Fig. 1. For the specialized
dresses these problems and proposes algorithms for the search code of each common case, instruction-level simulation is

of the best code specialization. performed to assess the quality of the specialization and
To summarize, we have three search problems to specialize a the cases which show improvement by specialization are
program for common cases. selected for the next step. The search space of this problem
1) Common case selections to find the most effective is exponential with respect to the number of loops and the
common case among several common cases for each details of heuristic approaches performed by the loop con-
procedure call. troller for the search space reduction will be described in
2) Common case specializatiois to specialize a procedure Section VI. _ _
call for the given common case by controlling loop un- * Global effective case selectionThis step analyzes the
rolling. interplay of the specialized calls chosen at the previous
3) Global effective case selectiors to find the most effec- step and decides the specialized calls to be included in the
tive combination of specialized calls. final solution. The search space for this analysis is also

exponential with respect to the number of the specialized
calls, thus a search space reduction technique based on the
branch and bound algorithm is applied to the binary tree
built on the specialized calls.

We will use the term “call site” and “procedure call” inter-
changeably unless there is an explicit explanation. Also, for the
sake of simplicity, we will call cycle-accurate instruction-level
simulation (simulator) instruction-level simulation (simulator).

IV. PROFILING

The automated framework configuration is shown in Fig. 2 The Structure of Profiler
where an instrumentation tool and a profiler provide the basicMany profiling techniques are based on assembler or binary
information necessary to search the solution space. The ca@recutables to extract more accurate architecture-dependent in-
putational effort estimator solves the common case selectifmmmation such as memory address tracing and execution time
problem and the specialization engine and global effect analysstimation. Since they are designed for specific machine archi-
solve the common case specialization and the global effectieetures, they have limited flexibility [21].

B. Framework Configuration and Transformation Flow

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1055

Instrumentation tool —»(__Set of promising common cases

Specialization engine
Execution frequency Value locality

instrumentation tool instrumentation tool Loop controller
Instrumented program

Profiler

Partial evaluator

C compiler

Binary
Executable
Profiling
information

Computational
effort estimator

* ISS: Instruction-set level simulation Specialized program

Fig. 2. Configuration of the proposed framework.

asv; € V,i = {0, 1, ---, N, — 1}, where N, is the total
number of nodes in a prograéi. Any edgee;; € £ connects

Set of specialized cases

v Global effect analyzer

| Binary tree builder

Set of selections for specialized cases

I I —— I ‘Il _two different_nodes;i _andvj a_nd represents their depgndency
in terms of either their execution order or nested relation. Note
I Prog"ng I I thatwv; is hierarchical, thus eacl) can hav_e its_ subtree to rep-
| r;;‘c'g'i;;u';e'“'""l resent the nested constructs. For eactvhich is a procedure,
| | independent analysis| we insert as many counters as its descendent nodes to record
Common-case | the visiting frequencies. And for each descendent node, SUIF
selection | instructions for incrementing the corresponding counter are in-
—————— * T serted foexecution frequency profiling. Value profilingquires
ey : [Architecture | additional manipulations such as type checking between formal
' i! e etton ey eny. : parameters and actual parameters of procedure calls, recording
Global Seéflggttii\é%-case %L_ _________ — the observed values, and so on.
The proposed profiler has the so-called ATOM-like structure

[37] in the sense that a user-supplied library is used for instru-
mentation, namely the source code is instrumented with simple
counters and procedure calls. The user-supplied library includes

Fig. 3. Overall source code transformation flow. the procedures required for bagiRecution frequencgndvalue
profiling. At the final stage, the instrumented source code and

In our case, it is sufficient to have only relatively accuraté!® user supplied library are linked to generate the binary exe-
information rather than accurate architecture-dependent pfytable for profiling.
files, while keeping source-level information. In other words)))
it is more important to identify which piece of code require? Computational-Effort Estimation
the largest computational effort rather than to know the exactComputational kernels can be identified by execution fre-
amount of computational efforts required for its execution. quency profiling and computational-effort estimation. Execu-
We used the SUIF compiler infrastructure [36] for sourcton frequency profiling is a widely used technique to obtain the
code instrumentation. The instrumentation is performed basasditing frequency of each node;(in &). This information rep-
on the abstract syntax trees (high-SUIF) which will represergsents how frequently each node is visited, but does not show
the control flow of the given program in high-level abstractiorthe importance of each node in terms of computational effort.
In detail, a program is represented as a gréph= {V, E}, For this reason, we used a simple estimation technique of
where node set” is matched to the high level code constructsomputational efforts for each basic unit using the number of
such ador -loop ,if —then —else ,do-while and denoted instructions of each basic unit, where the instruction set used is

1056 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

Procedure List Call List Argument List
int foo(int a, int b[4]) { call 0 ->|> arg 0 | |arg n—1 |
int i, sum; call 1
o Proc 0 l
vl sum=0; call 2 row #| Value C
vl for (i=0;i<4; i++) 0
v2 sum += a * b[i];
v3 return sum; ' .
| call0 S-1
Proc n—1
call 1 Value Table /

@

Fig. 5. Internal data structure of value profiling.

Instruction type o ¢
v0 load 1 1
Example: Consider nodes in Fig. 4(a).f> andi, are 4 and
| compare 1 1 . :
vl crement 1 1 1: as shown in t_he_ gra_lph. Also, from Flg._ 4(bb), h_as one ad-
dition, one multiplication, and two load instructions. Among
add 1 1

them, only multiplication has cost twice higher than the other
v2 multiply 1 2 two instruction. By substituting these values into (&), =
load 2 1 Ax1x(Ix141x2+2x1) =20 Similarly, ceo = 1,
cey = 8, andcey = 2. Therefore, the computational effort of
procedurdoo is 31 by summing these values.]

v3 return 1 2

(b)

Fig. 4. Example of abstract syntax tree and instruction cost table. (a) Examgle \/glye Profiling
of abstract syntax tree. (b) Corresponding instruction cost table.

As mentioned in Section llI-A, value profiling is performed

the built-in instructions defined in SUIF framework. Due to theezlt the procedure level _In other words, each procedurg call is
rofiled because any single procedure can be called in many

lack of_spemflgatlon of a target archltecturg, itis assumed ﬂ%ﬁ‘ferent places with different argument values. We chose value
all the instructions require same computational effort. But, we ..~ ! . : . .
. L . ; rofiling instead of value tracing which records the entire his-
provide a way to distinguish the cost of each instruction when . . : .
X 4 X ; ; . ory of value observation because tracing requires huge disk

the target architecture is determined using an instruction cost
Space and accesses.

table. Each SUIF instruction is defined with its cost in the in- One of the difficulties in value profiling occurs when the ar-

struction cost table, thus the execution time of each noads tsize | :j' uitie IFV uep | i 9 urs w di

graph@ can be calculated as follows: gument size is dynamic. For example, in a program, one-dimen-
sional (1-D) integer arrays with any size can be passed to an

N_1 integer-type pointer argument whenever the corresponding pro-
ce; = fi *i; Z (0ij * ¢;) (1) cedure is called. Another difficulty occurs when the argument
=0 has complex data type because complex data type requires hi-

erarchical traversal for value profiling. For this reason, the cur-

wherece; is the estimated computational effort of node f; rent value profiling in our work is restricted to elementary-type
is the execution frequency of nodefrom execution frequency scalar and array variables. Note that this restriction is not ap-
profiling, #; is the average number of iterations for each visit dilied to the arguments defined at each procedure but to the vari-
nodew;, o;; is the number of instructiong observed in node ables passed as arguments for each procedure call. When a pro-
v;, ¢; is the cost of instructiory, and N is the total number cedure call has both types of variables as arguments, only the
of instructions defined in SUIF. Note that the basic unit of ouariables which violate this restriction are excluded from pro-
approach includes for—loop and do—while constructs. For tHiing. Pointers to procedures are not considered in our approach
reason, variable; is considered in (1). It is also worthwhile todue to their dynamic nature.
mention that (1) represents the single-level computational-effortFig. 5 shows the internal data structure of the value profiling
estimation. As mentioned in Section IV-A, the nagés hierar- system. As shown in Fig. 5, each procedure has a list of proce-
chical. Thus, the cumulative computational efforts for each nodere calls which are activated inside the procedure. Each pro-
v; can be estimated by the sum of current level computatioreddure call in the list has a list of arguments and each argument
effort and the computational effort of its descendent nodes. in this list satisfies the type constraint mentioned above and has

An example of abstract syntax tree is shown in Fig. 4(afs own fixed size value table to record the values observed and
where a solid edge represents the dependency of two notler frequencies. Each row in the value table consists of three
and a dotted edge represents their nested relation and its dietds: index field, value field, and count’) field.
responding instruction cost table is shown in Fig. 4(b). A pair The index field represents not only the index of the row, but
of numbers assigned to each nodéfis ¢;) which is obtained also the chronological order of the row in terms of the updated
from theexecution frequency profiling. time relative to other rows. Thus, the larger the index is, the

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1057

— main }
— foo T i1stcallinmain — a=>fa — 0 J‘ﬁ <0, -, —>
\
\
— 2ndcallinmain — 100=>fb — 100 4‘* <—, 100, —>
\
"~ 3rd call in main b=>fa — 2 J‘f <2, - —>
B - <3, - -
3 |~ <, 200, —>
e=>fo — 200 | — <2 200, ->
7777777 = <8,200, >
Procedure Call site — — CLA— — Value‘ ‘
Case Level
Level Level = @ —————— ‘
|

Fig. 6. Hierarchical tree representation of common cases.

more recently the corresponding row is updated. In our repiie-stored into a new rows_y, and thus the table will contain

sentation, each row is denotedgs: € {0,1,...,.5 — 1}, thoseS entries for which-f; is largest.
whereS denotes the size of value table, i.e., the number of the
rows in the table. The value field is used to store the observed V. COMMON CASE SELECTION

value, and the; field in »; counts the number of observations . .
: " dAs shown in the example of Section IlI-A, any procedure call

ith CLAs can be specialized. Some procedure calls can be ef-
%ctively specialized, while others may not show significant im-

find the values which are frequently observed, and only the ovement. Also, some CLAs are not useful for specialization.
us, it is necessary to search the procedure calls that can be

gument-value pairs which satisfy user defined constraint c:aIIe activelv specialized by using their common values

Observed Threshol@T) are reported to the user. For this pur- Due toy tr?e larqe segrch sg ace. we represent a'“ ossible

poseObserved RatiQOR;) is calculated for eachy in the value 9 i pace, P ! PO
common cases as a hierarchical tree based on profiling infor-

table as follows: . :
mation and prune out the cases which are expected to show
OR; =c¢;/f (2) only marginal improvement even after specialization.

whenever the corresponding procedure call is executed. At
end of profiling, each argument of the value table is examined

where f is the visiting frequency of this call site. The largela, Common Case Representation
OFR; is, the more frequently the value is observed. WHH; Fig. 6 shows the hierarchical tree for the example shown

is smaller tharO7’, the value in; is disregarded. I o . .
P in Fig. 1 based on the profiling information. Let us consider
The key feature of value profiling is the value table replacea- simple example how a common case is represented in a
ment policy [24]. As mentioned above, the size of each vaITurﬁ Imp xamp W ! P '

table is fixed to save memory space and table update time. fo%rircgggggfee@glea%g:i?egsfégoigrco;i%uthimre"; t?ggs
variablec; of each value table is initialized to 0. Thus, if a new P P

value is observed and at least onecpis 0, the new value is Ir?asprsci)r:eldeuEZeLArga\I/\?h(iigg_;Ssltealsesvee()j. t;)”':r?ef:‘rosrtmpz)arlocs:jaun:ij;?”
recorded in; which has the smallest index among these row: 9 P P

On the other hand, when the table is full (there iscpavhich Er?:f:\olfnvni}oingaliquem(r)gs\(lailtlja € |sszema(lu§ Ier;/](;). F'Ir?a"t)r/]’e
is 0), the following formula is used to select the row which is § IS rep d@’ — —) by pping
common value to the corresponding parameter positiaseg

be replaced:) leve). For the sake of simplicity, we ignore the paramdker
rf; = W s A (1—W)+OR; ©) which is_ the fourth parameter of procedtfup . We assume
S that variableb (the first parameter of the third call) has two
wherer f;, i € {0, 1, ..., S — 1} is replacement factor which common values, 2 and 3.

is the metric to decide which row is to be replaced. The smallerin Fig. 6, the call-site levelhas two-level subhierarchies
rf; is, the more likelyr; will be selected for replacement. Theto represent the CLAs and their common valu€tA level
weighting factorW is used to specify the importance of theepresents the mapping relation between CLA parameter and
chronological order relative to observed countThe selected its corresponding formal parameter avalue levelis used for

r; which has the smallestf; is deleted from the table ang — common values of CLAs. Iicase levelcommon values are
rj—1,5 € {i+1, ..., S—1}if j < S—1.Finally, the newvalue related to each formal parameter by positional mapping and

1058 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

TABLE | TABLE I
NOTATIONS FOR AHIERARCHICAL TREE PROFILING INFORMATION FOR THEHIERARCHICAL TREE SHOWN IN FIG. 6
level set element pi Cij @ijk
procedure P Di i | proc | NCE | j | site | freq. | NCE | k | var | value | freq.
. - 0 [mam | 5% | 0] - T 5% [- - | - -
call site C; Cij v 0

CLA A s 0] Ist 100 8% 0] a 0 100
- 4 ik 1] 2nd | 10000 | 29% | 1| 100 | 100 | 10000
value | Vijk Vijhl 1] foo | 95% 5% (0] b | 2 | 1000
case Bij | bigm =< cvo, -+ Uk, CUA, o1 > 2 | 3rd | 10000 3 8000
1] e 200 | 10000

“

—"representslon’t care—the parameter value in that position

IS not ﬁonsﬁe;]ed In thb's ca]:se. l':'hgre are sevlen r?ossmlre] Caale%ach procedure is obtained from execution frequency pro-
ever?_ t ougb the num grfo ca S|(tjes are ct))nyt ree. -5 erefi'ﬁ‘hg and computational effort estimation technique described
nothing to be examined for procedumgain because It does in Section IV. Based on this, NCE of each common case can be

not have any CLA. estimated in a hierarchical order. In other words, NCE of each

We mtrodL_Jce §ome_notat|o_n for convenience t_o indicate eaﬁ cedure is estimated first and then NCE of each call site is
level and object in a hierarchical tree as shown in Table I. calculated and so forth

_ As shown in Table Iprocedure levels denoted ad> which g i 4 hierarchical tree represents the maximum degree of
is a set of procedures denotedsgsEach procedurg; has aset o, vement to be obtained by specializing all cases belonging
of procedure callsC; = {cij, 7 = 0,1, ..., |[P| = 1,7 = 0, {5 he given node. For pruning purpose, a user constraint called
1,..., |G| — 1}. And the same rule is applied ©LA level .5 tational threshol¢CT) is defined in terms of NCE. We
andvalue Ie_veI.Ea_ch common case af; is denoted aijn i assumeCT = 0.1 for all examples illustrated in this sec-
and each dimension df;;,,, (cvi) corresponds t@ ., & = tion.

{01, ..., |[Ay| — 1}, where the bound ofn (|By;]) wil Usually, maximizing the usage of common values is consid-
be shown in (4). Alsocuy of c;; is one of the COMMON goy (6 he better because more information is provided to the
values ofa;;, or don't care,namelycur = {vijui, =} K € gptimizer. But in our case, maximizing the usage of common

0. 1,..., |Aii|__1}’ 10,1, ..., [Viji| __1}' values is not always advantageous (e.g., the third call in Fig. 1).
The overall size of the search space to find common cases 'Example: Consider two common casel, 200, —) and

the sum of the search space for each call site. At each call s'ktg, 200,) for the third call of proceduréoo . The profiling

we need to examine all possible cases with the ConSideratioqrﬂf)rmation is shown in Table Il which is a sample profiling
the coherence of the common values (the common value of e3¢, 1ion used for all examples in this section. From Table I,
CLA may occur at the same time or separately). For examplebas: 2 with the probability of 0.1 and: — 200 with the

shown in Fig. 1, there .are four possible cases: 1) anky 0 _probability of 1.0. Then, the probability that casge, 200, —)
(b can have any value); 2) only= 0 (a can have any value), \ i happen is 0.1, while that of cage-, 200, —) is 1.0. Thus,

2) bo”;\“ andb are lzero; 4) neithe’f‘f nor? Is zero (bOtﬂa ?nd the specialized code for cag®, 200, —) is useful only when
can have any value). Among these four cases, the last Cgsg,j,ces the computational effort ten times more than the

[case 4)1 is |gnored due to the lack of usefull mfo_rmatlon fo§ ecialized code for case-, 200, —). The cases like case
the specialization and total cases to be examined is three. Mgge,,) are pruned out before progressing to the next

generally, the search space of each call $i#;|. is step, i.e., common case specializatiofor the sake of the

[4ij-1 computation efficiency.]
|B;;| = H ([Viju] +1) =1 4 Pruning is not limited only twase Ievel.but alsq performed
k=0 at any other level based on NCE. We will describe NCE com-

where|V;;i| + 1 represents the number of possible values Hutation and pruning at eac_h level in the next subsectiqns.
each CLA @1 corresponds to any other value except common 1) Procedure Level PruningNCE of each procedure is ob-
values) and the last term-() represents case 4) (none of thédined by normalizing its computational effort to the total com-

CLAs has a common value). putational effort. Because NCE of procedumain is lower
The overall size of the search spafés than CT, it is eliminated from the hierarchical tree. Also, the
procedure which does not have any descendant is eliminated.
|P|—1|Ci|—1 The) . ; X
pruning at this level has the largest impact on reducing the
5= Z Z | Bijl- ®) search space.

=0 J=0 2) Call-Site Level Pruning:Call-site level pruning, similar

to procedure level pruning, is performed next. The profiler de-
scribed in Section IV can estimate the computational effort of

Due to the large size of the common case set, it is necessargazh procedure as well as each procedure call. Thus, NCE of
reduce the search space without missing promising candidatssch procedure call can be computed in the same way as NCE
We definecommon caseas those cases to be included in thef each procedure is computed. In Table II, the first call of pro-
search space after search space reduction. The search spaaederefoo will be pruned out because its NCE is less than the
duction is performed based on NCE. The computational effahreshold CT.

B. Pruning Trivial Cases

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1059

We also consider NCE for two subhierarchies in ¢thé-site To summarize, pruning is performed at each level, but higher
level. NCE of each CLA is calculated by weighting the NCHevel pruning is more effective because its all descendants are
of the corresponding procedure call;) by its observed ratio removed. Also, notice that pruning sacrifices the amount of the
(OR;) and can be represented as in (6). Also, NCE of eaafiformation useful in the specialization step by increasing the
common value;;x;) can be computed similarly possibility that the common situation occurs more frequently

(e.g., cas€2, 200, —) is pruned, but case-, 200, —) is not).

451l This tradeoff is controlled by the user constraint, CT.

NCE(aijx) = NCE(cij)* Y OR. (6)
k=0

VI. COMMON CASE SPECIALIZATION
Example: Let us consider the third call of proceduieo |,

whereaio is the variableb as shown in Table lla;2¢ has
two common values, 2v{200) and 3 (1201). Also, from (2), After having pruned out trivial common cases (which show
OR(v1200) = 1000/10000 = 0.1 andOR(v1201) = 8000/ marginal improvement, even when they are specialized), we
10000 = 0.8. Thus,NCE(aj29) = 0.54x (0.14-0.8) = 0.486 have only common cases (expected to show nonmarginal im-
which is larger than CT, thug, s, is not pruned aCLA level. provement by specialization) left in the hierarchical tree. For
At value level NCE(v1200) = NCFE(a120) x OR(v1200) = eachremaining case in the hierarchical tree, we perform the spe-
0.486 x 0.1 = 0.0486 which is smaller than CT and,»og is cialization using partial evaluation. The common values of each
pruned out, whereas 2o is not eliminated because its NCE iscase are used by partial evaluator for: 1) simplifying control flow
larger than CT. m (precomputingf test or unrolling loops); 2) constant folding and

3) Case Level Pruning:NCE of each case can be calculategropagation; 3) precomputing well-known functions calls such
using NCE of common values. But NCE at this level cannais trigonometric functions, and so on. These optimizations are
be obtained in the same way used in other levels because eaahperformed independently. Indeed, applying one optimiza-
case may depend on multiple common values such as ctiea technique can provide a better chance for other techniques
(2, 200, —). Thus, NCE of each case is obtained by multiplyingp succeed. For example, loop unrolling can provide a better
NCE of common values which are involved in forming the casghance to constant propagation/folding by simplifying control
and represented as follows: dependency and enlarging basic blocks.

Due to such combined effects, it is not easy to estimate the

A. Overview

|Bij|—1
quality of the specialized code analytically. For this reason, this
NCE(bijm) = H NCE(cv). @) step uses an instruction-set level simulator for the purpose of
k=0

code quality assessment with the consideration of the under-
Remember thatvy, is v, L € {0, 1, ..., [Vijr| — 1} or “— lying hardware architecture. It differs from the common case se-

and NCE —) is defined as 1. Also, note that NCE is a conservaection step which performs architecture-independent analysis.
tive metric because a case which has a large NCE may not be 6BUs, this step takes much longer time than effective case selec-
served frequently. But this metric is still meaningful in the cagdéon step due to specialization and instruction-set level simula-

level to prune the cases which yield marginal improvements.tion.

Example: Let us consider casks, = (2, 200, —) which Among the techniqgues mentioned above, loop unrolling
is a child ofc5 (third call in main) andc;, is also a child of should be used most carefully because its side effect (code-size
p1 (procedurefoo). From the example in Section V-B-2,increase) can severely degrade both performance and energy
NCE(vi200) = 0.0486. Similarly, NCE(vi210) = consumption. But in traditional applications of partial evalua-
0.54 x 10000/10000 = 0.54. From (7), NCE(biy) = tion, this fact is not deeply studied, based on the assumption
0.0486 x 0.54 = 0.027, thusb,ag is dropped from the searchthat taking more space will reduce computational effort [18].
space. But this pruning does not happen in practice becad$és assumption may be true for general systems such as
w1200 is already pruned out aalue level Also, notice that case Workstations, but may not be true for the resource limited
(—, 200, —) which has less information than caik 200, —) systems such as embedded systems. Therefore, we need to
(from the viewpoint of a specializer in the next step) is still iddress our second search problem by exploring various loop
the tree due to its high NCE (0.54). m combinations for unrolling. The size of search space for each

To reduce the search space further, we defmainated cases case specialization is simply”, wheren is the number of
those that can be eliminated from the search space. We say {@@ps inside procedurg;.
bi;jm is dominated by, if all common values ob;;,, appear In case of an exhaustive search, the specialization of each
in b;;; andNCE(b, ;) is greater than or equal §CE(b;;,,) Case is iteratively performed for the overall search space and

each iteration requires instruction-set level simulation to assess

NCE(bijm) < NCE(bj;1) ¥ cvp in by € cug tn by the specialized code quality. In our framework, loop unrolling

(8) can be suppressed by declaring the corresponding loop index

variable as a residual variable. It means that the residual vari-

wherea € b is defined agrue whena = b ora = —. For able will not be specialized, henceforth the corresponding loop
example,b;»; is dominated byb;»4. A dominated case needsconstruct will not be affected by specialization either. Because
not to be specialized because it has less information and is I6#ss search space is exponential with respect to the number of
important in terms of NCE than dominant case. loops, two heuristic approaches are proposed in this section.

1060 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

tify such undesirable cases, we use a code-size constraint and a
code-size estimation technique. The code-size constraint is set
to the cache size of the target architecture because the code size

LO: for (i = 0;i < 100; i++) {

Ll: for(j=0;j<50;j++) {

L2: for (k = 0; k < 50; k++) { larger than the cache size will increase the instruction cache miss
L3: for (I = 0; 1 < 50; l++) { drastically. Also, the code size is estimated as follows:
}
} [Kiy1]—1
L4: for (m=0;m < 100; m++) { esik)= | D csii(d) + NL(k) | « Li(k)/Us(k) (9)
5 for (n = 0; n < 100; n++) { =0

wherecs; (k) the cumulated code size of the descendent nodes
of nodew;(k) in addition to the code size ef(k) itself. Also,
NI;(k) represents the number of instructions of nagét),

1;(k) represents the average number of iterations per each vis-
iting of nodev; (k). Finally, U;(k) returns 1 when node; (k) is

The case-level information can be computed from CLA-leveinrolled andZ; (k) whenw;(k) is not unrolled. In other words,
information. These two approaches may provide lower qualitye estimate the code size to be linearly increased by a factor of
of specialization over the exhaustive approach, but reduce thek) whenw; (k) is unrolled. Notice thaf;(k) and N I;(k) are
search space (both specializations and instruction-set level savailable from the profiler in Section IV.

Fig. 7. Example of a loop tree.

ulations) drastically. Example: Consider the loop tree shown in Fig. 7. Suppose
that the subtree on the rightranch (formed by L1, L2, and
B. Semi-Exhaustive Approach L3) has higher computational effort than the subtree on the left

The first heuristic search algorithm is called semi-exhaugf"’mch(formed by L4 and L5). In case of a pure exhaustive ap-

tive search. Unlike pure exhaustive search, semi-exhaustive B _aqh, there arﬁ 610‘;(%comb|n_a'|[_|on§ of (Ijoo_p uTroll(ljngl,lthus
proach performs a complete search for each loop nest rathert given case should be specialized and simulate times to

for the entire set of loops. Thus, pure exhaustive search guarg'ﬂ— the best.com.b|.nat|on.. Inthe case of the sem|.-exhau.st|ve ap-
tees a globally optimal solution, while the semi-exhaustive a roach, we first visit the right subtre&{) because it has higher

proach can provide a suboptimal solution. This is the trade mputational effort. Because the right subtree_ is gthree-level
between the searching time and the code quality. The tradeOffP n_est (L1,L2, and L_3)’ Fhere are eight _comblna_nons of loop
will be explained in the experimental part (Section VIII). unrolling a_nd ?” combinations are e>_<am|ned_t(_) find the b.eSt

For this purpose, we represent the entire loop structure Iqop combination for the subtree. While examining these eight

side a procedure as a loop tree and an example of loop tregqénbmatlons, the code size of each combination is estimated

shown in Fig. 7. To construct such a loop tree, we first leveliZ&'N9 (9). If the estimated code size is larger than the code size
the loop structure. The outermost loop is assigndeitel 0and constraint, the combination is excluded from the specialization.

the next outermost loop is assignedewel 1 and so on. Next, After finding the best combination for the right subtréd), we

we represent each loop as a node and place each node to ité’iég-the left subtree £4) which has four possible loop combi-

signed level. Finally, we represent the nested relation betwé@{'ons and find the best S.O'““OT‘ in the same way. After loop
glllng for both subtrees is decided, we move to the top node

two nodes as an edge connecting these two nodes. Notice Th | binati for thi de b
if a loop has multiple loop nests, the connecting edges are id (ﬁ? - There are only two combinations for this node because

tified as abranchand we call each branch pattsabtree. For p unrolling for all its_descendent nodes is alre_ady_ decidgd.
example, the edge betweéf and L4 and the edge betwedr Thus, we need to_examme the total 14 loop combinations using
andL1 form abranch.Also, there are two subtrees connected t@e semi-exhaustive approach. u

the branch: a subtree formed b¢ and L5 and a subtree formed

by L1, L2, andL3. Each node is representedagk), where; C- One-Shot Approach

is the level to which the node belongs ahds the index of the The second heuristic approach to solve the common case spe-
nodes that have the same parent. Thus, if a node is not connecfatization problem is calledne-shot approactit is close to the

to a branchf is always zero. semi-exhaustive approadmyt differs because the choice of the

After constructing a loop tree, the best loop combination fdrest combination for each subtree depends on just code-size es-
unrolling is searched for each subtree in a bottom-up fashitimation instead of an exhaustive search within the subtree. The
(i.e., thebranchin the lower level is visited first). For a given code-size estimation is performeddepth-first searctiashion
branch, we visit the subtrees in the order of their computatiorfar each subtree. We will illustrate this approach using the fol-
efforts. lowing example.

While searching the best solution of each subtree, we excludd€example: Let us consider the loop tree shown in Fig. 7. The
the loop combinations which are expected to increase the caudtree L1) is visited first due to the same reason as in the semi-
size drastically, because such loop combinations increase spdiaustive approach (higher computational effort). Initially, all
cialization, compilation, and simulation time drastically. Furnodes are assumed not to be unrolled. However, at this time, all
thermore, such combinations provide a very low quality of speight possible combinations are not examined. Instead, unrolled
cialized code due to the high instruction cache misses. To idewde size is estimated @epth-first ordeffrom the lowest level

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1061

main() {
int *a, b, *c;

if (alil > 0)
foo(a, b);

bar (int *fa, int *fc) {
bar2(fa, fal0]);

bar2(fc, fcl[0]);

Fig. 9. Example of binary tree fav/.
Fig. 8. A more complex example for global effective case selection.

) . o gr Which is the amount of improvement in terms of the given

(L3) to the highest levell1)]. First, L3 is visited and the un- ¢qst metric (either energy consumption or performance) and
rolled code size is estimated. If the unrolled code size is larggizined when each call is specialized at the common case
than the code-size constraint, the code estimation proced“rgﬂécialization step. We always seris in descending order for
terminated and the node is decided not to be unrolled. Als&, i.e.,gr > ges1. We denote a combination of the specialized
all nodes in the higher level of this subtree are determined nQjjis as.. _e C,i=1{0,1,---,|C| — 1} and|C| = olM|
to be unrolled. Otherwise (estimated code size is smaller thifs the search space is e;<pon’entially large. Eaha binary
code-size constraint), we decide to unroll this node and maygc(or to represent which specialized calls are included in this
up to nodeL2. The same procedure is repeated until it reach@§mpination. For example, = (1, 1, 1) meansmnq, m,, and
to the top of the subtree. After all nodes in the right graph a6, are included in the combina{im:@). Also, ¢; = (1, 1, 0)
traversed, we move to the left graph and the same decision pfsgns onlymg andm; are included in the combin:ati:)q.
cedure is applied.. Finally, we move up to the top node and tE%lChci has two gain attributeleal_g; andactual_g; which
same procedure is repeated. . _ B areideal gainandactual gain,respectively.

To summarize, this approach requires only single special- Ideal gain (ideal_g;) is the sum of gains of the individual
ization and simulation, but it is more limited in improving the specialized calls i;] each combination by assuming that

quality of partial evaluation. there is no interference with each other. Thus, this is the
maximum gain that can be achieved for the given combi-
nation.

The last search problem is to analyze the interplay among ¢ Actual gain (actual_g;) is the sum of gains of special-
the specialized calls to maximize the specialization effect in a ized calls in each combination with the consideration of
global perspective. We already described this problem in Sec- their interference. Thus, it is always less than or equal to
tion Ill using a simple example in Fig. 1. We consider now a (when there is no interference) the ideal gain and can be
more complex example. obtained by instruction-set level simulation.

Example: Consider the situation in Fig. 8. Suppose that the We represent each combinatiaras a path in a binary tree as
call of procedurefoo and both calls of procedugar2 in- shown in Fig. 9. The rightmost path represesfs= (1, 1, 1)
side procedurdar are computationally expensive and havand the second rightmost path represents= (1, 1, 0}, and
common cases. Then, all three call sites are specialized inde-on. Each level of the tree corresponds to each element of the
pendently in the common case specialization step. If we anectorc; and the right edge and the left edge correspond to “1”
lyze their interplay in a local scope (intraprocedural analysignd “0,” respectively. Thus, the number of levels in the binary
two calls inside procedurear will interfere with each other tree is alway$M|. Each edge; (), i = {0, 1, ..., 20+ —1}
marginally. Furthermore, the interplay between procedure calid! = {0, 1, ..., |[M| — 1} also has a gain attributg ().
bar2 and proceduréoo is not detected because their interWherel is the level to which the edge belongs arislthe index
play occurs in interprocedure level, even though they may affeaftan edge in level (from left to right).
to each other severely. Thus, the interplay among the specialtnitially, ¢;(|M| — 1) (the gain of each edge connected to the
ized calls should be analyzed in a global scope (interproceduesf nodes) is set taleal_g;. At the same timeg;(!) is set to
analysis). B max{gy(l + 1), g2:41({ + 1)}, namely the edges above the

The interprocedural analysis may reveal that the combinaaf-level inherit the maximum gain of their children. After the
tion of multiple specialized calls may yield a gain inferior tggain initialization as shown in Fig. 9, we perform the search pro-
the sum of the gains of the individual specialized calls, becausedure based on theanch and boundlgorithm in Fig. 10. We
of mutual interference such as the I-cache conflict. Also, it isill illustrate the how the procedure works using the following
not obvious to estimate their interference analytically. For thexample.
reason, each combination should be assessed by instruction-sExample: The gain for the right edge ofs calledg-(2), is
level simulation and the best combination is chosen for the finaitially set to 45 {deal go) because this path corresponds to
solution. ¢o = (1, 1, 1) which meansng, m;, andm, are included in

We represent each specialized calliag € M, k& = the combinatiom,. Similarly, gs(2) (the gain for the left edge of
{0,1, ..., |M]| — 1}. Eachm;, has an attribute called gainng) is setto 35 (correspondstg = (1, 1, 0)). Also, g3(1) =

VIl. GLOBAL EFFECTIVE CASE SELECTION

1062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

search-solution (binary-tree) { remark, this step can be extended to consider the code-size in-
1nitialze _gain;
solution ;gtraverse_tree(root_node_o:t‘_binary_tree) ; crease constraint by the use of the code-size increase estimation
Tevioe . . .
returm solution mentioned in Section VI.
traverse_tree(binary_tree node)
if gbiliaiy_ixl'lee_nofe t==d NULL)
silmulate € sSelecte case;
e ahe BoLacte VIIl. EXPERIMENTAL RESULTS
if (rightmodevisited == FALSE) { A. Experimental Setting
select right_edge; i i
gainright.edge = traverse.tree(rightnode); Even though source code transformations are applicable
if (gainright_edge >= gain left_edge) 5 to a wide set of architectures, we consider now two specific
{5 Ceotusion wo WOy - Prunne * hardware platforms to be able to quantify the results. The
rosave ;ﬁi?fg}ffseigt;’. solution; SmartBadge, an ARM processor-based portable device [26]
¢ (et node visited) and ST200 processor developed by STMicroelectronics .and
return gain_left_edge; Hewlett-Packard [38], [39] were selected as the target architec-
elzjlict left_edge; tures. For these target architectures, we applied the proposed
ain_left_edge = traverse_tree(left_node); i i i
g (gaimig%t_e dge e pain et adgey { technique to seven DSP application C progran@empress ,
select right_edge; Expand, Edetect , andConvolve from [32],g721 en-
save this case to solution
delete left descendent; code from [31], andFFT from [33], FIR [39], turbo code
}return gainright_edge; [41] andSW radio
1 i i .
e gglite right descendent; C_:ompress compresses a pixel image b_y a factor of 4:1
save current case to solutiom; while preserving its information content using DCT aBg-
return gain.left_edge; .
pand performs the reverse process using IDEdetect de-
} } tects the edges in a 256 gray-level pixel image using Sobel oper-
ators andConvolve convolves an image relying on 2-D-con-

volution routine.g721 encoder is a CCITT ADPCM en-
Fig. 10. Search procedure for the given binary tree. coder.FFT performs FFT using Duhamel-Hollman method for

floating-point type complex numbers (16 poirittbo code

is an iterative (de)coding algorithm of 2-D systematic convolu-
max{ge(2), g7(2)} = 45 and the gains of other edges are alsgona| codes using log-likelihood algebra. FinalB\W radio
decided in the same way. Next, we apply the procedure in Fig. Hrforms a series of operations (CIC lowpass filter, FM demod-
First, we visitthe rightmost patlag). Forco, we performinstruc- yation, IIR/FIR deemphasis) for the input in ADC format.
tion-set level simulation to geictual_go, andg-(2) is updated The experiment was conducted for two aspects, search space
toactual_go. We compargz(2) to g¢(2) which is the maximum reduction and quality of the transformed code. The quality of
gain that can be achieved by combinationlf gz(2) > g6(2),it transformed code was analyzed in terms of energy saving, per-
is obvious that is better tham; , thus we eliminate the left edgeformance improvement, and code-size increase. Each applica-
of ng (identical to eliminate:;). On the other hand, #-(2) < tion program was profiled to collect computational effort and
96(2), c1 can be better thary. Thus, we perform instruction-set CLAs with their common values. There exist two important pa-
level simulation forc; and updateys(2) with actual_g1. Then, rameters in value profiling as described in Section IV-C. First,
we can decide which combination is better and prune out tbbserved ratiqOR) is the ratio of the observation frequency of
worse combination. Next, we move to nogein the next level a specific parameter value over the total call site visiting fre-
by updatingys(1) tomax{gs(2), g7(2)} without simulation be- quency. Seconabserved threshol@DT) is a threshold value to
cause we already selected eithgior ¢; in level 2. If g3(1) > select common values among observed parameter values—only
g2(1), we can prune out the left descendentfc, andc;) due the observed parameter values which show OR higher than OT
to the same reason. But,g§(1) < g2(1), we visit noden; to are selected as common values. In this experiment, OT was set to
choose the better combination framandecz by performing the 0.5, thus only observed parameter values which have OR higher
same procedure as we did fgrandc; . After choosing eithee, than 0.5 were selected as common values.
or c3, we compare two edges of node and select better one.
We repeat the same procedure until there remains only one pathSearch Space Reduction

in the binary tree. B e first analyzed the effectiveness of the proposed search
To summarize, the algorithm first builds a binary tree to enépace reduction techniques. Fig. 11 shows the pruning ratio
merate all possible selections of specialized calls. Second, fieved by each step with computation thresh@id = 0.1.
expected gain of each path is computed as a cost function f@jtice that this step is architecture-independent as shown in
the pruning purpose by ignoring the interplay effect. Third, theig. 3, thus Fig. 11 is common to both SmartBadge and ST200
actual cost of each path is defined as an actual gain considefprgcessor.
the interplay effect; this is available from instruction-set level The procedure pruning step always plays an important role
simulation. The purpose of this search problem is to find the reduce the search space, but the call-site pruning step shows
path which shows the maximum actual gain among all pathiarge variation depending on the property of the application
The pruning occurs when the expected gain of the current pgiftograms. This is because the computational kernels of some
is less than the maximum actual gain obtained up to this pojprograms such asompress andFFT were called only once,
which is the bounding function of this search problem. As a finathile the kernel ofj721 encode was called several times in

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1063

14 Tl compren Bovmed CFdoea OFFT | ialization ti i -
R R specialization time. The common case selection step was com

I3 KW radn W average = monly used for each approach to avoid large search space. Also,
the global effective case selection step was used in all three

1P LY s)
; {l specializations because it is an exact solution. As expected, the

[Y
= i‘ \ one-shot approach showed the smallest running time and semi-

exhaustive approach was ranked at second. In average, both the

one-shot and semi-exhaustive approaches are about 8.3 (8.0)
times and 2.7 (2.5) times faster than exhaustive approach in
SmartBadge (ST200 processor) environment, respectively.
Notice that Fig. 12 only shows the reduction ratio of the
search space, which is different from the specialization time
in the sense that search space reduction ratio only implies the
Fig. 11. Search space reduction using common case selection. reduction ratio of the number of specializations, while the
specialization time includes partial evaluation, compilation,
—_— and instruction-set level simulation.
4 12:!’,"{'[‘;‘ :‘l;;f:'\':":i ?:::'E';t*“" i'ru;]m e In SmartBadge environment, our tool was executed on a SUN
- [05Wradie Bavwraze UltraSPARC running at 200 MHz with 512-MB memory. The
’ E4et, BEss EEn; overall procedure of our tool takes less than 20 min with the
T one-shot approach, while it takes from 10 min (FIR) to 7 h (turbo

s e

=
b

procedine culsde rine daidiwaled

1 code) depending on the complexity of the loop structure in addi-
| tion to the overall program complexity and program input data
' size.
| In ST200 environment, our tool was executed on a Sony
| VAIO R538DS equipped with a Pentium Il running at 500
T I | MHz with 128-MB memory. The difference of execution time
il B | n between the one-shot and semi-exhaustive approaches is still
sk vrw-sbil phital large, but the semi-exhaustive approach benefits by the faster
i amman-cans spocialivsion | "i:'_:-'h'c":':;'_::'" machine (also faster simulator) because it requires more iter-
ations including simulation, compilation, and specialization.
Fig.12. Search space reduction ratio in common case and global effective &880 code with the semi-exhaustive approach still showed
selection step. the longest execution time (2 h and 20 min).
It is interesting that the exhaustive approach often generated

different sites with different calling frequencies. Thus, this ste%?ugels'zf of I(;Od?hWh'cg IS oné Qlf E[he main prtl)btl_ems n part-
is useful for the kernels called frequently in different sites wit| a evaluation. -or the code, compriation or simufation was no
terminated within a few hours, which is a bottleneck for automa-

different frequencies.) . . :
. For this reason, we adopted time-out approach especially

The ineffectiveness of the case pruning step was due to hi i i S
OT which was set to 0.5 for value profiling. Under this OT, th r'the exhaustive approach by assuming that the code requiring
' g simulation time would be very huge and require large en-

OR of each common value was usually large enough to yi .
gy consumption.

NCE larger than CT used in this experiment (0.1). Dominatéd . .
case pruning was effective for most of application programs be—TabIe Il shows the quality of tra}nsformed code in terms of
cause many of common values were constark & 1.0) energy, performance, and code size for the three approaches.

Next, the pruning methods used in common case speciali%Qtice that the energy consumption was measured with the

tion and global effective case selection were evaluated. Fig. QﬁSlde(atlon of §hutdown tecr_mlque. As shown in Table ”I.’
shows the pruning ratios of these two steps for SmartBad semi-exhaustive approach is comparable to the exhaustive

environment. Our technique in ST200 processor environm proach in terms of transformed code quality with much less

also showed similar results. As shown in Fig. 12, both Semi_eg(gmputation time (63% for SmartBadge and §0% for ST200
' essor). The one-shot solution is also useful by trading off its

haustive and one-shot approaches drastically reduced the seBI8 lit d tation ti About 8.0 ti fast d
space by 64% and 88%, respectively. Also, the pruning tecpRd€ quality and computation time. (About 8. IMES faster an
nsumes 2% more energy compared to exhaustive approach).

nigue in the global effective case selection step showed 5 '
d g b e could not perform the exhaustive approachtioibo code

of search space reduction and large variation of pruning ra geause its computational kernel had too many loops (18) which
depending on the property of application programs. There yielded a huge number of loop combinatiop¥i(= 261 844). It

nothing to be pruned fdompress , FFT, andg721 encode ¢ Iso worthwhile to mention that the deviation of improvement

rograms because only one case was passed from common Esa?sg .
gpe%ialization step y P Is Targely depending on the nature of the programs. For the best

case, the improvement is more than twiéglétect), but for
the worst case, about 10% (0%) is imprové&binpress) in
SmartBadge (ST200 processor) environment.

Both the one-shot and semi-exhaustive approaches were conitis interesting that our tool specializ€&bmpress andEx-
pared to the exhaustive approach in terms of code quality goahd in different ways depending on the target architecture.

C. Code Quality Improvement

1064 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

TABLE 1lI
QUALITY OF THE CODE TRANSFORMEDWITH DIFFERENT APPROACHES(NORMALIZED TO ORIGINAL CODE)

a) Specialized code quality in SmartBadge environment
C programs Code Quality
exhaustive semi-exhaustive one-shot
E P S E P S E P S
Compress 09109111011 091(091]1.01] 093]0.93|115
Expand 0.84 | 0.83 | 1.15 {| 0.84 | 0.83 | 1.15 || 0.90 | 0.90 | 1.12
Edetect 0.44 | 0.37 | 1.20 || 0.44 | 0.37 | 1.20 || 0.44 | 0.37 | 1.20
FFT 0.86 | 0.86 | 1.16 || 0.86 | 0.86 | 1.16 |l 0.86 | 0.86 | 1.16
g721 encode |[0.88 | 0.88 | 1.04 [j 0.88 | 0.88 | 1.04 || 0.88 | 0.88 | 1.04
Convolve 054|048 | 1.18 || 0.54 | 0.48 | 1.18 || 0.54 | 0.48 | 1.18
FIR 0.53 | 053 { 1.12 || 0.53 | 0.53 | 1.12 || 0.53 | 0.53 | 1.12
turbo code - - - 0.80 (090 | 1.22 || 0.89 | 0.90 | 1.22
SW radio 0.67 | 0.65 | 1.09 || 0.67 | 0.65 | 1.09 || 0.67 | 0.65 | 1.09

Average 0711069 [1.12 { 0.73 | 0.71 | 1.13 | 0.74 | 0.72 | 1.14

(b) Specialized code quality in ST200 processor environment
C programs Code Quality
exhaustive semi-exhaustive one-shot
E P S E P S E P S
Compress 1.00 | 1.00 | 1.00 |} 1.00 | 1.00 [1.00 [1.00 | 1.00 { 1.00
Expand 094 | 095 | 1.08 || 0.94 | 0.95 | 1.08 || 1.00 | 1.00 | 1.00
Edetect 0.27 | 0.26 | 1.04 || 0.27 | 0.26 | 1.04 || 0.27 | 0.26 | 1.04
FFT 018019114 || 0.18 | 0.19 | 1.14 {| 0.18 [0.19 | 1.14
g721 encode |j 0.91 | 0.95 | 1.01 |[0.91 | 0.95 | 1.01 0.91 (0.95 | 1.01
Convolve 0.65] 0.68 | 1.04 || 0.65 | 0.68 | 1.04 || 0.65 | 0.68 | 1.04
FIR 0.38 1035 | 1.06 || 0.38 | 0.35 | 1.06 || 0.38 | 0.35 | 1.06
turbo code - - - 0.82 | 0.82 | 1.23 || 0.82 | 0.82 | 1.23
SW radio 0.81|0.79 | 1.10 | 0.81 | 0.79 | 1.10 {| 0.81 | 0.79 | 1.10

Average 0.64]0.64 [1.06 || 0.67 | 0.67 | 1.09 || 0.68 | 0.67 | 1.08

* E: energy, P: performance, S: code size

TABLE IV Expand fixed are their fixed-point versions, respectively.
IMPROVEMENT RATIO OF PLOATING POINT AND FIXED-POINT Notice that the improvement by the specialization is mainly
VERSIONS(SEMI-EXHAUSTIVE) . .
due to loop unrolling for both versions of two programs.

programs SmartBadge | ST200 processor As shown in Table IV, the improvement ratio using our tech-

E P E P nique is about 2.5 times larger for the fixed-point version com-

(Clc?rilg:::ﬁijg 8:2(1) 8:% 01.§)01 01.501 pared to the floating .pc.)int version in SmartBadge environment.
Expand float | 0.84 | 0.83 | 0.94 | 0.95 On the other hand, it is about five times larger in ST200 pro-
Expand_fixed | 0.55 | 0.53 | 0.73 0.76 cessor environment. It means that the relative cost of floating
* E: energy, P: performance, S: code size point emulation in ST200 processor environment is twice larger

than that in SmartBadge environment. But, the improvement
ratio using our technique in SmartBadge environment is still
Compress andExpand show nonmarginal improvement injarger than in ST200 processor environment. It implies that the
SmartBadge environment, whereas their improvement rat|o|5bp overhead elimination by our technique is more effective

the ST200 processor is marginal. Also, the improvement rajig ¢ twice) in SmartBadge environment rather than in ST200
of FFT is much larger in ST200 processor environment th ocessor environment

in SmartBadge environment, even th(.)th the specialized p %1n the case oEFT, the specialization step eliminates trigono-
grams for both architectures are identical. The common feature

of these programs is that the computational kernels of all thrmeem.C fu.nctlons. such a0s . The cpmputatmn cost of @s .
programs have floating-point operations which are not direct ynetion is fou_r times more EXpensive in STZOO processor envi-
supported by the hardware in both architectures, but they Zpoment thanin SmartBadge_ environment in terms qfn_um_berof
handled by floating point emulation. From the careful analysfdOcK cycles (measured by simulators). Thus, the elimination of
of these programs, we found two reasons for this fact. Fir§HCh functions is more advantageous in ST200 processor than
the computation cost of floating-point emulation in a ST20t SmartBadge environment.
processor is much more expensive than in a SmartBadge enln sSummary, our technique is more effective in fixed-point
vironment (relative to their integer operations). Notice that tHéfithmetic programs, therefore it is desirable to apply our tech-
floating point emulation is performed by the built-in librarynique after transforming the floating point arithmetic programs
functions which is out of the scope in our technique. Second, tigo the fixed-point arithmetic programs as proposed in [40].
loop overhead in SmartBadge is larger than in ST200 proces#iso, the computation cost of the built-in functions such as
The results in Table IV support this claimCom- trigonometric functions is architecture dependent, thus the im-
press _float and Expand _float are the floating pactofthe specialization varies largely depending on the under-
point versions used in Table Il andompress _fixed and lying hardware architecture.

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1065

As a final remark, the run time of the optimization flow de- To summarize, our technique shows a constant improvement
pends on two user-defined constraigtd’ and OT that drive ratio when it transforms programs wigitatic common values,
the pruning. Also, program size and loop depth are critical fabut transformation withrdynamic common valuesan largely
tors in specialization step, because our approach uses instrucgiddnge the improvement ratio depending on the input data like
set-level simulation. Nevertheless, it is important to remembgther profiling-based techniques. Also, restricted variation of
that low energy and fast execution of the target code is tH¥namic common valugan be treated by our framework at the
overall objective, which can be achieved at the expense of lon§&Pense of code-size increase.
optimization time for large programs.

IX. CONCLUSION

D. Input Data Sensitivity Analysis We presented algorithms and a tool flow to reduce the com-

The variation of improvement (whatever the metric is) is gutational effort of software programs, by using value profiling
ﬂp_d partial evaluation. We showed that the average energy and

common problem of profiling-based techniques because p i o X :
filing information can be largely varied depending on the traindd" time of the optimized programs is drastically reduced. The

input data set. Our technique is also affected by input data Jygin contribution of this work is the automation of an optimiza-
and the improvement ratio shown in Section VIII-C may pton flow for software programs. Such a flow operates at the

largely varied if common values used for transformation heavifPurce level and is compatible with other software optimization
depend on input data set techniques, e.g., loop optimizations and procedure in-lining.

We analyzed the common values identified by ourframeworkWIthln our approach_,_ a first tool perform_s program- in-
and they can be classified into two categories. The Comms“umentatu_)n and profiling to cqllect useful information for
values in the first category are sensitive to input data set, Whﬁgnsforgatulans, SltJCh ‘15 e>|<|ec.ttit|08 f_rethJﬁncy ?.rl‘.d c_orfnmonly
those in the second category are independent to input data §BEETVEC values at each call site. Lsing the protiing informa-
i.e., they are statically declared (or computed) values sont@" anot_her tool selects common cases ba_sed on _th_e est|_mated
where in the program. We call the common values in the ﬁrgpmputatlongl effort. E_ach selected case Is spgmahzed inde-
categorydynamic common valuesd those in the second Catepender_‘ltly using a partial eva]uator. ”.] the selection step, c.ode
gorystatic common valueblotice thatstatic common valuese explosion due to loop unrolling—which may hamper partial

rarely (or never) changed input data identified by a programmg}/aluation—is avoided by code-size estimation technique and

but this information is not used for optimization due to the confruning. Finally, the mterplay among the mult|ple_ spec[allzed
plexity and/or future modification cases is analyzed based on instruction-set level simulation. The

0, 0 1
A program transformed usimgfatic common valueshows a tragssfcg)g/m(e:;jlto:/o)di?] s;\llc;vrvas aen ae\:?c:?rglgr?c?e/(i)nng o/\i)e(ranneenrtg\)//v;ﬁv;g/gs
constant improvement ratio because the transformation is in éc)/) c:) de-s?ze increage ?n ST200 rocepssor (SmartBad ;)
pendent to input data set. In our experiment, many of bencti> " P 9

mark programs were transformed usstgtic common values. en(vjllrfr)rnenr:ﬁmlour aporoach is limited to the common cases at
Compress andExpand programs initially computeos table Y, PP

with a fixed number of sampling points and these results ag%eeg(rt“;%%i%r%cﬁtIﬁ)ﬁgﬁg:{iéﬁ'ﬁ‘éﬁ ?gec;u(retechlrggu?ec\:gg
identified as common values. g¥21 encode program, the 9., '00p

static common valueare a quantization table and its size deV-VhICh may provide a better quality of code specialization. Also,

fined in a program. It is interesting that two quantization tg1€ specialization technique will be extended to consider more
bles with different sizes are defined in this program, but on@/chnecture—dependent characteristics.
one quantization table was consistently used in each call site.
Thus, even though marstatic common valuesere observed

in procedure point of view, each call site was related to a singley;

static common valueProgramsEdetect , Convolve , and

REFERENCES

L. Benini and G. De MicheliDynamic Power Management: Design
Technigues and CAD Tools New York: Kluwer, 1997.

FIR identified filter coefficient tables astatic common values [
(with their size) and these coefficient values and sizes were effi-[3]
ciently used for the transformation. In prograumbo code
the number of delay elements was identified atadic common
value.

In case ofFFT, the number of sampling points was identi-
fied as adynamic common value , thus the improvement
ratio was largely varied. In the worst case, the transformed pro—[G]
gram does not show any improvement if the identified common
value is not observed during the program execution. However]7]
the variation ofdynamic common valugas limited to several
numbers such as 4, 8, 16, and so on. Such a limited divergencg;
can be handled in our framework because our framework can
manipulate multiple common cases for single call sites using 3[9]
multiway branch statement with multipg@mmon value detec-
tion procedures at the expense of code-size increase.

(4]
(5]

Y.-T. Li and S. Malik, Performance Analysis of Real-Time Embedded
Software New York: Kluwer, 1999.

W. Wolf, Computers as Components—Principles of Embedded Com-
puting System Design Boston, MA: Morgan Kaufmann, 2001.

N. Jones, C. Gomard, and P. Sest&fistial Evaluation and Automatic
Program Generation Englewood Cliffs, NJ: Prentice Hall, 1993.

G. Goossens, J. V. Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and
P. Paulin, “Embedded software in real-time signal processing systems:
Design technologiesProc. IEEE vol. 85, pp. 436—454, Mar. 1997.

P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens, “Em-
bedded software in real-time signal processing systems: Application and
architecture trendsProc. IEEE vol. 85, pp. 419-435, Mar. 1997.

J. R. Lorch and A. J. Smith, “Software strategies for portable computer
energy managementEEE Personal Commuywol. 5, pp. 60-73, June
1998.

N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye, “Energy-
driven integrated hardware-software optimizations using SimplePower,”
in Proc. ISCA—Int. Symp. Computer Architectt2600, pp. 95-106.

V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low en-
ergy: An overview,” inProc. IEEE Symp. Low Power Electronjd994,

pp. 38-39.

1066

(10]

(11]

(12]

(23]

[14]

(15]

[16]

(17]
(18]

(19]

(20]

[21]

(22]
(23]
(24]
(25]

(26]

(27]

(28]

(29]

(30]

(31]
(32]
(33]
(34]
(35]
(36]

(37]

(38]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

J. M. Rabaey and M. Pedram, Edsgw-Power Design Methodolo-
gies New York: Kluwer, 1996.

L. Benini and G. De Micheli, “System-level power optimization tech- [40]
nigues and tools,Proc. ACM TODAES—Trans. Design Automation
Electronic Systemwol. 5, no. 2, pp. 115-192, 2000.

H. Mehta, R. Owens, M. Irwin, R. Chen, and D. Ghosh, “Techniques for[41]
low energy software,” irProc. ISLPED—Int. Symp. Low Power Elec-
tronics and Designl1997, pp. 72—75.

G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, and M. Irwin,
“Memory system energy: Influence of hardware-software optimiza-
tions,” in Proc. ISLPED—Int. Symp. Low Power Electronics and
Design 2000, pp. 244-246.

Y. Li and J. Henkel, “A framework for estimating and minimizing en-
ergy dissipation of embedded HW/SW systemsPrioc. DAC—Design
Automation Conf.1997, pp. 188-193. [44]
F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and
A. VandecappelleCustom Memory Management Methodology: Explo-
ration of Memory Organization for Embedded Multimedia System De-[45]
sign New York: Kluwer, 1998.

F. Catthoor, S. Wuytack, E. De Greef, L. Nachtergaele, and H. De Man[46]
“System-level transformation for low power data transfer and storage,”
in Low-Power CMOS DesignA. Chandrakasan and R. Brodersen,
Eds. New York: IEEE Press, 1998.

K. Cooper, M. Hall, and K. Kennedy, “A methodology for procedure
cloning,” Computer Languagesol. 19, no. 2, pp. 105-117, 1993.

C. Consel and O. Denvy, “Tutorial notes on partial evaluationPrioc.
ACM Symp. Principles of Programming Languagk393, pp. 493-501.

S. Chirokoff and C. Consel, “Combining program and data spe-
cialization,” in Proc. ACM SIGPLAN Workshop Partial Evaluation [49]
and Semantics-Based Program Manipulation (PEPM,98999, pp.
45-59. [50]
L. O. Andersen, “Program analysis and specialization for the C
programming language,” Ph.D. dissertation, DIKU, Univ. Copenhagen,[51]
May 1994.

J. Pierce, M. Smith, and T. Mudge, “Instrumentation tools Fast Sim-

ulation of Computer Architecture$. Conte and C. Gimarc, Eds. New [52]
York: Kluwer, 1995, pp. 47-86.

T. Balland J. Larus, “Optimally profiling and tracing programs, Piroc.
ACM Symp. Principles Programming Languag&392, pp. 59-70.

B. Calder, P. Feller, and A. Eustace, “Value profiling,Rroc. Int. Symp.
Microarchitecture 1997, pp. 259-269.

——, “Value profiling and optimization,”J. Instruction-Level Paral-
lelism, vol. 1, 1999. [54]
F. Gabbay and A. Mendelson, “Can program profiling support value pre-
diction?,” inProc. Int. Symp. Microarchitecturd 997, pp. 270-280.

T. Simunic, L. Benini, and G. De Micheli, “Cycle accurate simulation [55]
of energy consumption in embedded systems Piac. DAC—Design
Automation Conf.1999, pp. 867-872.

G. Lakshminarayana, A. Raghunathan, K. Khouri, K. Jha, and S. Dey[56]
“Common-case computation: A high-level technique for power and
performance optimization,” ifProc. DAC—Design Automation Conf.
1999, pp. 56-61.

S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instruction selection
using binate covering for code size optimization,Proc. ICCAD—Int.
Conf. Computer-Aided Desigh995, pp. 393-399.

K. D. Cooper and P. Schileke, “Non-local instruction scheduling with
limited code growth,” inProc. ACM SIGPLAN Workshop Languages,
Compilation, and Tools Embedded Systet®98, pp. 193-207.

D. Bacon, S. Graham, and O. Sharp, “Compiler transformation for high-
performance computing,ACM Computing Suryvol. 26, no. 4, pp.
345-420, 1994.

C.-H. Lee. [Online]. Available: http://www.cs.ucla.edu/~leec/media-
bench.

M. Stoodley. [Online].
~stoodla/benchmarks.

P. Duhamel and H. Hollman, “Split-radix FFT algorithnmElectron.
Lett, vol. 20, no. 1, pp. 14-16, 1984.

S. E. Richardson, “Caching function results: Faster arithmetic
avoiding unnecessary computation,” Sun Microsystems Lab., 1992.
M. Wolfe, High Performance Compilers for Parallel Com-
puting Reading, MA: Addison-Wesley, 1996.

Stanford Compiler Group, “The SUIF Library: A set of core routines fo
manipulating SUIF data structures,” Stanford Univ., 1994.

A. Srivastava and A. Eustace, “ATOM: A system for building cus:
tomized programming analysis toolsProc. PLDI—Programming
Language Design and Implementatjqp. 196-205, 1994.

. [Online]. Available: http://www.st.com

(39]

[42]

(43]

[47]

(48]

(53]

[57]

(58]

Available: http://www.eecg.toronto.edu/

P. Faraboschi and F. Homewood, “ST200: A VLIW architecture for
media-oriented applications,” Microprocessor Forum2000.

T. Simunic, L. Benini, G. De Micheli, and M. Hans, “Source code op-
timization and profiling of energy consumption in embedded systems,”
in Proc. ISSS—Int. Symp. System Synth26i0, pp. 193-198.

J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codesfEEE Trans. Inform. Theoryol. 42, Apr.
1996.

M. Lipasti, C. Wilkerson, and J. Shen, “Value locality and load value
prediction,” Proc. ASPLOS—Architectural Support Programming Lan-
guages and Operating Systemsp. 138-147, 1996.

K. Lepak and M. Lipasti, “On the value locality of store instructions,”
in Proc. ISCA—Int. Symp. Computer Architec{u#800, pp. 182-191.

V. Nirkhe and W. Pugh, “Partial evaluation of high-level imperative pro-
gram languages with applications in hard real-time systemsPrac.
ACM Symp. Principles Programming Languag#392, pp. 269-280.

P. Marwedel and G. Goossens, Ed3ade Generation for Embedded
Processors New York: Kluwer, 1995.

A. Sudarsanam, “Code optimization libraries for retargetable com-
pilation for embedded digital signal processors,” Ph.D. disseration,
Princeton Univ. Dept. EE, 1998.

P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, “CodeSyn: A retar-
getable code synthesis system,Piroc. Int. Symp. High-level Synthesis
1994.

P. Chou and G. Borriello, “Software scheduling in the co-synthesis of
reactive real-time systems,” ifroc. DAC—Design Automation Conf.
1994, pp. 1-4.

R. Leupers and P. Marwed@&letargetable Compiler Technology for Em-
bedded Systems Tools and Applicationslew York: Kluwer, 2001.

R. Leupers,Code Optimization Techniques for Embedded Processors
Methods, Algorithms, and Tools New York: Kluwer, 2000.

C. Liem, Retargetable Compilers for Embedded Core Processors
Methods and Experiences in Industrial ApplicationdNew York:
Kluwer, 1997.

F. Thoen, M. Cornero, G. Goossens, and H. De Man, “Software synthesis
for real-time information processing systems,’Hroc. Workshop Lan-
guages, Compilers, and Tools for Real-Time Systé985, pp. 60—69.

V. Tiwari, S. Malik, and A. Wolfe, “Instruction level power analysis and
optimization of software,J. VLSI Signal Processing Systol. 13, no.
1-2, pp. 223-233, 1996.

S. P. Rajan, A. Sudarsanam, and S. Malik, “Development of an opti-
mizing compiler for fujitsu fixed-point digital signal processor,’Rmoc.
CODES—Int. Workshop Hardware/Software Codesi§®9, pp. 2-6.

S. Hanono and S. Devadas, “Instruction selection, resource allocation,
and scheduling in the Aviv retargetable code generator,’Pinc.
DAC—Design Automation Conl998, pp. 510-515.

G. Araujo and S. Malik, “Code generation for fixed-point DSHar6c.
ACM TODAES—Trans. Design Automation Electronic Systeais3,

no. 2, pp. 136-161, 1998.

P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle, and P. Kjeldsberg, “Data and memory
optimization techniques for embedded systenBroc. ACM TO-
DAES—Trans. Design Automation of Electronic Systewis 6, no. 2,

pp. 149-206, 2001.

H. Lekatsas, J. Henkel, and W. Wolf, “Code compression for low-power
embedded system design,” Rroc. DAC—Design Automation Conf.
2000, pp. 294-299.

Eui-Young Chung (S'99) received the B.S. and M.S.
degrees in electronic engineering from Korea Univer-
sity, Seoul, Korea, in 1988 and 1990, respectively. He
is currently pursuing the Ph.D. degree in electrical en-
gineering, Stanford University.

From 1990 to 1997, he was a Research Engineer in
the CAD group, Samsung Electronics, Seoul, Korea.
His research interests include CAD of VLSI circuits
and system-level low-power design methodology in-
cluding software optimization.

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE

Luca Benini (S'94-M'97) received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1997.

He is an Associate Professor in the Departmer
of Electrical Engineering and Computer Science
(DEIS), University of Bologna. He also holds
visiting researcher positions at Stanford University
f’r F and the Hewlett-Packard Laboratories, Palo Alto
\ CA. His research interests include all aspects o
CAD of digital circuits, with special emphasis on
low-power applications, and in the design of portable

i

1067

Gabriele Luculli (M’'01) received the laurea degree
and Ph.D. degree in electronic engineering from Pisa
University, in 1996, and Scuola Superiore S.Anna of
Pisa, in 2000, respectively.

He is a R&D Manager in the Advanced System
Technology group of STMicroelectronics, where he
contributes to the development of design methodolo-
gies for SOC design. From 1995 to 2000, he had sev-
eral work experiences in different research centers,
among them IEI Institute of CNR, NATO Research
Center, and PARADES Center in Rome. His research

systems. On these topics he has published more than 140 papers in internatiatexiests include several aspects of design technologies for system-on-chip de-

journals and conferences.

sign, with particular emphasis on system-level design, software performance

Dr. Benini is a member of the organizing committee of the International Syrestimation, and embedded OS synthesis.

posium on Low Power Design. He is a member of the technical program com-
mittee of several technical conferences, including the Design Automation Con-
ference, International Symposium on Low Power Design, and the Symposium
on Hardware—Software Codesign.

Giovanni DeMicheli (S'80-M'82-SM’'83-F'94) is

Professor of Electrical engineering, and by courtesy
of computer science at Stanford University, Stanford
CA. His research interests include several aspec
of design technologies for integrated circuits an
systems, with particular emphasis on synthesi
system-level design, hardware—software codesign,

'r McGraw-Hill, 1994) and co-author and/or co-editor

of five other books and of over 250 technical
articles. He is a member of the technical advisory board of several EDA
companies, including Magma Design Automation, Coware, and Aplus Design
Technologies. He was member of the technical advisory board of Ambit
Design Systems. He is a founding member of the ALaRl institute at Universita’
della Svizzera ltaliana (USI), in Lugano, Switzerland, where he is currently
scientific counselor.

Dr. De Micheli is a Fellow of ACM. He received the Golden Jubilee Medal
for outstanding contributions to the IEEE CAS Society in 2000. He received
the 1987 IEEE RANSACTIONS ONCOMPUTERAIDED DESIGNICAS Best Paper
Award and two Best Paper Awards at the Design Automation Conference, in
1983 and in 1993. He is President-Elect of the IEEE CAS Society for 2002 and
he was its Vice President (for publications) in 1999 through 2000. He was Ed-
itor-in-Chief of the IEEE RANSACTIONS ONCOMPUTERAIDED DESIGNICAS
from 1987 to 2001. He was the Program Chair and General Chair of the Design
Automation Conference (DAC) from 1996 to 1997 and 2000, respectively. He
was the Program and General Chair of the International Conference on Com-
puter Design (ICCD) in 1988 and 1989, respectively.

Marco Carilli (M'00) graduated in physics at Uni-
versity La Sapienza of Rome, Italy.

He is Director of Design Systems in the Advanced
System Technology group of STmicroelectronics. He
joined ST in 1987 and he has been working primarily
on design automation R&D projects ever since, con-
tributing to the birth of corporate CAD in the com-
pany. He has taken various technical and manage-
ment responsibilities in Central R&D first, thenin the
former Programmable Products Group (now CMG),
where he was responsible for the System-On-Chip

and low-power design. He is author &ynthesis R&D group and for setting up and developing the entire corporate design reuse
and Optimization of Digital Circuits(New York: standardization program. Before ST, Marco worked for SOGEI (Finsiel Group).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

