
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002 1051

Value-Sensitive Automatic Code Specialization for
Embedded Software

Eui-Young Chung, Student Member, IEEE, Luca Benini, Member, IEEE, Giovanni DeMicheli, Fellow, IEEE,
Gabriele Luculli, Member, IEEE, and Marco Carilli, Member, IEEE

Abstract—The objective of this work is to create a framework for
the optimization of embedded software. We present algorithms and
a tool flow to reduce the computational effort of programs, using
value profiling and partial evaluation. Such a reduction translates
into both energy savings and average-case performance improve-
ment, while preserving a tolerable increase of worst case perfor-
mance and code size. Our tool reduces the computational effort by
specializing frequently executed procedures for the most common
values of their parameters. The most effective specializations are
automatically searched and identified, and the code is transformed
through partial evaluation. Experimental results show that their
technique improves both energy consumption and performance of
the source code up to more than a factor of two, in average about
35% over the original program. Also, their automatic search en-
gine greatly reduces code optimization time with respect to exhaus-
tive search.

Index Terms—Code size, common value, embedded software, en-
ergy consumption, framework, partial evaluation, performance,
search space, specialization, value profiling.

I. INTRODUCTION

PROCESSOR-BASED embedded systems are pervasive in
many modern application domains such as telecommu-

nications, consumer electronics, and multimedia [5], [6]. The
major driving force to move from application-specific to pro-
cessor-based architectures is programmability, which increases
flexibility and reduces the design time. Cost is also reduced,
because the design is based on high-volume commodity parts
(processor and memory), whereas ASIC solutions require
low-volume custom components [2], [3].

The overall performance of processor-based design critically
depends on software quality. For this reason, software optimiza-
tion is one of the most important issues in modern embedded
system design [7]–[10]. Embedded software can be optimized
more aggressively than applications for general-purpose sys-
tems by exploiting detailed knowledge of workloads and hard-
ware platforms. Such optimization is often a critical step for

Manuscript received November 16, 2001. This work was supported in part by
the National Science Foundation under Grant CCR-9901190, by STMicroelec-
tronics, and by GSRC/MARCO. Recommended by Associate Editor R. Cam-
posano.

E.-Y. Chung and G. DeMicheli are with the Computer Systems Laboratory,
Stanford University, Stanford, CA 94305 USA (e-mail: eychung@stanford.edu;
nanni@stanford.edu).

L. Benini is with Department of Electrical Engineering and Computer
Science, University of Bologna, Bologna 40136, Italy (e-mail: lbenini@
deis.unibo.it).

G. Luculli and M. Carilli are with AST, STMicroelectronics, Grenoble 38019,
France (e-mail: gabriele.luculli@ast.st.com; marco.carilli@ast.st.com).

Publisher Item Identifier 10.1109/TCAD.2002.801096.

striking design targets under tight cost constraints, which are
typical of embedded systems.

A traditional quality metric for embedded software is com-
pactness: the most compact code for a program uses the least
instruction memory. Moreover, if such a program represents a
pure data flow (i.e., no branching and iteration is involved), it ex-
ecutes in the shortest time and consumes the least energy under
the assumption that the cost of each instruction is roughly con-
stant. However, as algorithm complexity grows, the control de-
pendency of a program increases and specific architectural fea-
tures of a processor may favor some instructions over others in
terms of performance and energy consumption. Thus, two ad-
ditional metrics, namely performance and energy, are consid-
ered in embedded software design. It is also very important to
distinguish between average and worst case performance be-
cause many embedded systems are targeting real-time applica-
tions [2].

Average case performance is tightly related to energy effi-
ciency, because short execution time can be directly translated
into reduced energy by slowing down the system’s clock (or by
gating the clock) and/or by lowering the voltage supply [1], [10],
[11]. At the same time, however, worst case performance should
not be adversely affected when optimizing for average case. In
other words, while minimizing the expected value of program
execution time, variance should remain under control. In this
context, we propose an automatic source code transformation
framework aimed at reducing the computational effort (the av-
eragenumber of executed instructions) with tightly controlled
worst case performance and code-size degradation.

According to Amdahl’s law, the most effective way to im-
prove the average case performance is to make the common
case fast. Many code transformation techniques exploit execu-
tion frequency profiling to identify the most frequently executed
code blocks [21], [22] orcomputational kernels.Then, the ker-
nels can be optimized either by eliminating redundant opera-
tions or by matching computation and memory transfer to the
characteristics of the hardware platform (e.g., parallelizing com-
putation, improving locality of memory transfers) [11], [30],
[35].

Procedure inlining is a good example for this concept. This
technique first identifies the procedure calls executed frequently
then replaces each identified procedure call with a copy of the
body of the called procedure, replacing each occurrence of a
formal parameter with its corresponding actual parameter [30].
This technique eliminates all the overhead for the procedure in-
vocation, but its primary disadvantage is the code-size increase.

0278-0070/02$17.00 © 2002 IEEE

1052 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

Execution frequencies of program fragments are not the only
profiling information that can be used for code optimization.
Recently,value profilinghas been proposed as a technique for
identifying a new class of common cases for a given program
[23]–[25]. The common cases identified by value profiling are
code fragments which frequently execute operations with the
same operand values. In this case, the identified code fragments
can be specialized for the commonly observed operand values
to eliminate redundant computations.

Profiling-driven optimization is often very effective for
embedded systems because embedded software can be char-
acterized by a few well-known workloads, unlike software
running on a general purpose system. For example, many DSP
programs execute filter operations and the filter coefficients are
rarely changed. In our framework, procedure calls, which are
frequently executed with rarely varying parameter values, are
defined as common cases. Such common cases are identified
by value profiling and specialized bypartial evaluation.

Partial evaluation is a transformation technique for special-
izing a procedure with respect to a subset of its parameters, where
these parameters are held constant [4], [18]. Even though partial
evaluation is a well-developed field, there are several issues in its
application that have not been fully addressed in the past. First,
the procedures to be specialized, their parameters, and parameter
values for specialization are assumed to be specified by the user.
Second, partial evaluation sometimes leads to code-size blowup.
If applied in an uncontrolled fashion, it can actually worsen
performance and energy consumption. Third, when multiple
procedureswithinaprogramarespecialized, the interplayamong
various specialized calls is rarely taken into consideration (refer
to the example in Fig. 1). Because of these limitations, program
specialization based on partial evaluation is not widely applied.

Our source code optimizer automates computational kernel
specialization through partial evaluation. The tool integrates ex-
ecution frequency and value profiling, candidate computational
kernel selection, partial evaluation, performance, and energy
estimation within a single optimization engine. Its input is a
target program (C source code) with typical inputs. The output
is optimized source code and estimates of average execution
time and energy for the original and optimized version of the
target program. The impact of optimization is assessed by in-
struction-level simulation on the target hardware architecture
[12]–[14].

The manuscript is organized as follows. In Section II,
we review related work in embedded software optimization
with emphasis on value-based specialization techniques. In
Section III, we will demonstrate the basic idea and overall flow
of the proposed technique for program specialization based
on partial evaluation and value profiling. Also, search spaces
to be explored are defined. In Section IV, we will present
the profiling method and the computational-effort estimation
technique. In Section V, common-case selection technique for
specialization based on computational-effort estimation will be
described. In Section VI, specialization for each common case
will be presented and the globally optimal case selection from
multiple specialized cases will be discussed in Section VII.
Finally, we will report experimental results in Section VIII and
conclude our work in Section IX.

(a)

(b)

(c)

Fig. 1. Example of source code transformation using our method: (a) original
program; (b) specialized program for the first call offoo (a = 0 andk = 0);
and (c) specialized program for the first call offoo (a = 0).

II. RELATED WORK

The objective of software optimization for general purpose
computers is average case performance, while the requirements
for embedded software are more articulated [45]. Code-size
minimization is often a high-priority objective [28], [29], [50]
and energy efficiency is becoming critical as well [53].

Retargetability is a key requirement for embedded software
optimization tools, because of the wide variability of target
hardware platforms [46], [47], [49], [51]. Also, compiler
development for specific application domains such as digital
signal processing was researched to exploit the special features
of application-specific processor architectures [54], [56]. Most
research on optimizing compilers for embedded processors has

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1053

focused on fairly low-level optimizations, such as instruction
scheduling, register assignment, etc. Embedded software
optimization takes advantage of the reduced compilation
speed requirement with respect to general-purpose software
compilers, therefore embedded software development tools can
adopt more complex and aggressive approaches which are not
allowed in general purpose software development.

Recently, high-level approaches (based on source-to-source
transformations) to improve code quality were proposed.
Memory-oriented code transformation techniques were pro-
posed in [15] and [57] and other classical high-level loop
transformations for general purpose software were applied to
embedded software optimization [12]–[14]. Source-to-source
techniques are more aggressive in modifying the target pro-
gram, and they can be applied together with more traditional
optimizing compilers in the back end. One of the major con-
cerns in the adoption of high-level optimizations is that they
are hard to control, and they are often meant to be used in a
semiautomated flow that requires programmer’s guidance.

Value locality is a promising high-level technique for general
purpose software optimization, but it has not been studied in
depth for embedded software. Value locality is defined as the
likelihood of a previously seen value recurring repeatedly within
a physical or logical storage location [42]. Value locality enables
us to reduce the computational cost of a program by reusing
previous computations.

Previous work shows that value locality can be exploited
in various ways depending on the target system architecture.
In [27], common-case specialization was proposed for hard-
ware synthesis using loop unrolling and algebraic reduction
techniques. In [42] and [43], value prediction was proposed
to reduce the load/store operations with the modification of
general purpose microprocessor. Also, in [34], redundant
computation (an operation performs the same computation
for the same operand value) was defined andresult cache
was proposed to avoid redundant computations by reusing the
result from theresult cache.Unfortunately, these techniques
are not appropriate for our case because they are architecture
dependent. For this reason, we will focus on pure software
oriented approaches exploiting value locality (i.e., partial
evaluation) in this paper.

Depending on the way of using the results of previous compu-
tations, partial evaluation can be classified into two categories,
i.e., program specialization and data specialization. Program
specialization encodes the results of previous computations in
a residual program,while data specialization encodes these re-
sults in the data structures like caches [19].

Program specialization is more aggressive in the sense that
it optimizes even the control flow, but it can lead to a code ex-
plosion problem due to overspecialization. For example, code
explosion can occur when a loop is unrolled and the number
of iterations is large. Furthermore, code explosion can degrade
the performance of the specialized program due to increased in-
struction cache misses. On the other hand, data specialization is
much less sensitive to code explosion because the previous com-
putation results are stored in a data structure which requires less
memory than the textual representation of program specializa-
tion. However, this technique should be carefully applied such

that the cached previous computations are expensive enough to
amortize the cache access overhead. The cache can also be im-
plemented in hardware to amortize the cache access overhead
[34].

Our technique is based on program specialization without
any hardware assistance for embedded software design. Our ap-
proach differs from previous approaches [18] as follows. First,
we propose a computational effort estimation technique which
combines value profiling with execution frequency profiling.
Using the estimation technique, it is possible to identify the
common cases (computationally intensive procedure calls with
their effective known parameter values for the specialization)
in an automated fashion. Second, our approach provides a sys-
tematic loop controlling strategy to avoid the code explosion
problem (which was manually controlled by the user in pre-
vious work). Third, our approach supports the interprocedural
effect analysis of the program specialization which was men-
tioned only in a few papers [17]. This analysis is especially im-
portant when multiple procedure calls are specialized.

III. B ASIC IDEA AND OVERALL FLOW

A. Basic Idea and Problem Description

The technique described in the following sections aims at re-
ducing the computational effort of a given program by special-
izing it for situations that are commonly encountered during its
execution. The ultimate goal of this technique is to improve en-
ergy consumption as well as performance by reducing compu-
tational effort. The specialized program requires substantially
reduced computational effort in the common case, but it still be-
haves correctly. The “common situations” that trigger program
specialization are detected by tracking the values passed to the
parameters of procedures. The example in Fig. 1 illustrates the
basic idea.

Consider the first call of procedurefoo in proceduremain .
Suppose the first parametera is 0 for 90% of its calling fre-
quency. Also, suppose the same condition holds for the last
parameterk . Using these common values, a partial evaluator
can generate the specialized proceduresp _foo as shown in
Fig. 1(b) which reduces the computational effort drastically.

In reality, the values of parametersa andk are not always 0.
Therefore, the procedure callfoo cannot be completely substi-
tuted by the new proceduresp _foo . Instead, we replace it by
a conditional statement which selects the appropriate procedure
call depending on the result of acommon value detection(CVD)
procedure namedcvd _foo in Fig. 1(b). We call this transfor-
mation stepsource code alternation.Also, the variable whose
value is often constant (e.g.,a) is calledconstant-like argument
(CLA).

When the CVD procedure detects a common case, the spe-
cialized code corresponding to the detected common case is ex-
ecuted, which yields fewer instruction executions than the orig-
inal code. On the other hand, the worst case scenario occurs
when the CLA does not take any frequently observed values
identified by the profiling. In this case, the worst case perfor-
mance degradation per each call is simply the product of the
cost of compare instruction and the number of CLAs tested in
the conditional statement, therefore the worst case performance

1054 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

degradation is marginal if the target procedure is computation-
ally expensive.

In general, different possibilities for code optimization exist.
This gives rise to a set of search problems that aim to detect the
best set of transformations for the example shown in Fig. 1. If
we ignore the common value ofk , the original code will be spe-
cialized as shown in Fig. 1(c). Thesp _foo in Fig. 1(c) has one
more multiplication than thesp _foo in Fig. 1(b), but the situ-
ation thata 0 will happen more frequently than the situation
that botha andk are 0. For this reason, it is not clear which
specialized code is more effective to reduce the overall compu-
tational effort. This is the first search problem in our approach.

Next, consider two procedure calls inside the loop of Fig. 1
with the assumption that parametere (the second parameter of
the third procedure call) has single common value, 200. Each
of two procedure calls has a CLA as their second argument, re-
spectively. Partial evaluation can be applied for each procedure
call to reduce computational effort. However, there is not much
to be done by partial evaluator except loop unrolling because all
other parameters are not CLAs. The effect of loop unrolling can
be either positive or negative depending on the system configu-
ration. For this reason, it is required to find the best combination
of loop unrolling for each call. In this example, there are four
possible combinations for each call, but the number of combi-
nations is exponential with respect to the number of loops. This
is the second search problem of our approach.

After each call is specialized with the best combination of
loop unrolling, it is also necessary to check the interplay among
the specialized calls, because both specialized calls will increase
code size and they may cause cache conflicts due to their al-
ternative calling sequence. Thus, we need a method to analyze
the global effect of the specialized calls caused by their inter-
play, which is the third problem of our approach. This paper ad-
dresses these problems and proposes algorithms for the search
of the best code specialization.

To summarize, we have three search problems to specialize a
program for common cases.

1) Common case selectionis to find the most effective
common case among several common cases for each
procedure call.

2) Common case specializationis to specialize a procedure
call for the given common case by controlling loop un-
rolling.

3) Global effective case selectionis to find the most effec-
tive combination of specialized calls.

We will use the term “call site” and “procedure call” inter-
changeably unless there is an explicit explanation. Also, for the
sake of simplicity, we will call cycle-accurate instruction-level
simulation (simulator) instruction-level simulation (simulator).

B. Framework Configuration and Transformation Flow

The automated framework configuration is shown in Fig. 2,
where an instrumentation tool and a profiler provide the basic
information necessary to search the solution space. The com-
putational effort estimator solves the common case selection
problem and the specialization engine and global effect analyzer
solve the common case specialization and the global effective

case selection problems, respectively. The entire framework is
implemented based on SUIF [36]. CMIX [20] is chosen as a
partial evaluator in the specialization engine. The instruction-set
level simulator (ISS) in both the specialization engine and global
effect analyzer can be selected depending on the target processor
to consider the underlying hardware architecture for the special-
ization. Each tool component in Fig. 2 corresponds to each step
of the overall transformation flow shown in Fig. 3. Thus, we will
briefly describe each step in this section and the details will be
described in the later sections.

• Instrumentation and profiling: Two types of profiling
are performed,execution frequency profilingand value
profiling. Using the information fromexecution frequency
profiling, the computational efforts of procedures and pro-
cedure calls are estimated. On the other hand,value pro-
filing identifies CLAs and their common values by ob-
serving the parameter value changes of procedure calls.

• Common case selection:Based on profiling information,
all detected common cases are represented as a hierar-
chical tree (Section V). To reduce the search space,nor-
malized computational effort(NCE) is computed for each
object in the hierarchical tree. represents the rela-
tive importance of each object in terms of computational
effort. By defining a user-defined constraint calledcompu-
tational threshold(CT), trivial common cases are pruned.

• Common case specialization:Each case not pruned in the
previous step is specialized. In our framework, specializa-
tion is performed by CMIX [20] which is a compile-time
(off-line) partial evaluator. In addition to the specialized
procedure, thecommon value detection(CVD) procedure
is generated. Also, source code alternation is performed
so that the original procedure call is replaced by a con-
ditional statement as shown in Fig. 1. For the specialized
code of each common case, instruction-level simulation is
performed to assess the quality of the specialization and
the cases which show improvement by specialization are
selected for the next step. The search space of this problem
is exponential with respect to the number of loops and the
details of heuristic approaches performed by the loop con-
troller for the search space reduction will be described in
Section VI.

• Global effective case selection:This step analyzes the
interplay of the specialized calls chosen at the previous
step and decides the specialized calls to be included in the
final solution. The search space for this analysis is also
exponential with respect to the number of the specialized
calls, thus a search space reduction technique based on the
branch and bound algorithm is applied to the binary tree
built on the specialized calls.

IV. PROFILING

A. The Structure of Profiler

Many profiling techniques are based on assembler or binary
executables to extract more accurate architecture-dependent in-
formation such as memory address tracing and execution time
estimation. Since they are designed for specific machine archi-
tectures, they have limited flexibility [21].

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1055

Fig. 2. Configuration of the proposed framework.

Fig. 3. Overall source code transformation flow.

In our case, it is sufficient to have only relatively accurate
information rather than accurate architecture-dependent pro-
files, while keeping source-level information. In other words,
it is more important to identify which piece of code requires
the largest computational effort rather than to know the exact
amount of computational efforts required for its execution.

We used the SUIF compiler infrastructure [36] for source
code instrumentation. The instrumentation is performed based
on the abstract syntax trees (high-SUIF) which will represent
the control flow of the given program in high-level abstraction.
In detail, a program is represented as a graph ,
where node set is matched to the high level code constructs
such asfor -loop , if –then –else , do-while and denoted

as , , where is the total
number of nodes in a program. Any edge connects
two different nodes and and represents their dependency
in terms of either their execution order or nested relation. Note
that is hierarchical, thus each can have its subtree to rep-
resent the nested constructs. For eachwhich is a procedure,
we insert as many counters as its descendent nodes to record
the visiting frequencies. And for each descendent node, SUIF
instructions for incrementing the corresponding counter are in-
serted forexecution frequency profiling. Value profilingrequires
additional manipulations such as type checking between formal
parameters and actual parameters of procedure calls, recording
the observed values, and so on.

The proposed profiler has the so-called ATOM-like structure
[37] in the sense that a user-supplied library is used for instru-
mentation, namely the source code is instrumented with simple
counters and procedure calls. The user-supplied library includes
the procedures required for bothexecution frequencyandvalue
profiling. At the final stage, the instrumented source code and
the user supplied library are linked to generate the binary exe-
cutable for profiling.

B. Computational-Effort Estimation

Computational kernels can be identified by execution fre-
quency profiling and computational-effort estimation. Execu-
tion frequency profiling is a widely used technique to obtain the
visiting frequency of each node (in). This information rep-
resents how frequently each node is visited, but does not show
the importance of each node in terms of computational effort.

For this reason, we used a simple estimation technique of
computational efforts for each basic unit using the number of
instructions of each basic unit, where the instruction set used is

1056 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

(a)

(b)

Fig. 4. Example of abstract syntax tree and instruction cost table. (a) Example
of abstract syntax tree. (b) Corresponding instruction cost table.

the built-in instructions defined in SUIF framework. Due to the
lack of specification of a target architecture, it is assumed that
all the instructions require same computational effort. But, we
provide a way to distinguish the cost of each instruction when
the target architecture is determined using an instruction cost
table. Each SUIF instruction is defined with its cost in the in-
struction cost table, thus the execution time of each nodeof
graph can be calculated as follows:

(1)

where is the estimated computational effort of node,
is the execution frequency of nodefrom execution frequency
profiling, is the average number of iterations for each visit of
node , is the number of instructions observed in node

, is the cost of instruction , and is the total number
of instructions defined in SUIF. Note that the basic unit of our
approach includes for–loop and do–while constructs. For this
reason, variable is considered in (1). It is also worthwhile to
mention that (1) represents the single-level computational-effort
estimation. As mentioned in Section IV-A, the nodeis hierar-
chical. Thus, the cumulative computational efforts for each node

can be estimated by the sum of current level computational
effort and the computational effort of its descendent nodes.

An example of abstract syntax tree is shown in Fig. 4(a),
where a solid edge represents the dependency of two nodes
and a dotted edge represents their nested relation and its cor-
responding instruction cost table is shown in Fig. 4(b). A pair
of numbers assigned to each node is which is obtained
from theexecution frequency profiling.

Fig. 5. Internal data structure of value profiling.

Example: Consider node in Fig. 4(a). and are 4 and
1, as shown in the graph. Also, from Fig. 4(b),has one ad-
dition, one multiplication, and two load instructions. Among
them, only multiplication has cost twice higher than the other
two instruction. By substituting these values into (1),

. Similarly, ,
, and . Therefore, the computational effort of

procedurefoo is 31 by summing these values.

C. Value Profiling

As mentioned in Section III-A, value profiling is performed
at the procedure level. In other words, each procedure call is
profiled because any single procedure can be called in many
different places with different argument values. We chose value
profiling instead of value tracing which records the entire his-
tory of value observation because tracing requires huge disk
space and accesses.

One of the difficulties in value profiling occurs when the ar-
gument size is dynamic. For example, in a program, one-dimen-
sional (1-D) integer arrays with any size can be passed to an
integer-type pointer argument whenever the corresponding pro-
cedure is called. Another difficulty occurs when the argument
has complex data type because complex data type requires hi-
erarchical traversal for value profiling. For this reason, the cur-
rent value profiling in our work is restricted to elementary-type
scalar and array variables. Note that this restriction is not ap-
plied to the arguments defined at each procedure but to the vari-
ables passed as arguments for each procedure call. When a pro-
cedure call has both types of variables as arguments, only the
variables which violate this restriction are excluded from pro-
filing. Pointers to procedures are not considered in our approach
due to their dynamic nature.

Fig. 5 shows the internal data structure of the value profiling
system. As shown in Fig. 5, each procedure has a list of proce-
dure calls which are activated inside the procedure. Each pro-
cedure call in the list has a list of arguments and each argument
in this list satisfies the type constraint mentioned above and has
its own fixed size value table to record the values observed and
their frequencies. Each row in the value table consists of three
fields: index field, value field, and count () field.

The index field represents not only the index of the row, but
also the chronological order of the row in terms of the updated
time relative to other rows. Thus, the larger the index is, the

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1057

Fig. 6. Hierarchical tree representation of common cases.

more recently the corresponding row is updated. In our repre-
sentation, each row is denoted as, ,
where denotes the size of value table, i.e., the number of the
rows in the table. The value field is used to store the observed
value, and the field in counts the number of observations
of the corresponding value. The table is continuously updated
whenever the corresponding procedure call is executed. At the
end of profiling, each argument of the value table is examined to
find the values which are frequently observed, and only the ar-
gument-value pairs which satisfy user defined constraint called
Observed Threshold() are reported to the user. For this pur-
pose,Observed Ratio() is calculated for each in the value
table as follows:

(2)

where is the visiting frequency of this call site. The larger
is, the more frequently the value is observed. When

is smaller than , the value in is disregarded.
The key feature of value profiling is the value table replace-

ment policy [24]. As mentioned above, the size of each value
table is fixed to save memory space and table update time. The
variable of each value table is initialized to 0. Thus, if a new
value is observed and at least one ofis 0, the new value is
recorded in which has the smallest index among these rows.
On the other hand, when the table is full (there is nowhich
is 0), the following formula is used to select the row which is to
be replaced:

(3)

where , is replacement factor which
is the metric to decide which row is to be replaced. The smaller

is, the more likely will be selected for replacement. The
weighting factor is used to specify the importance of the
chronological order relative to observed count. The selected

which has the smallest is deleted from the table and
, if . Finally, the new value

is stored into a new row , and thus the table will contain
those entries for which is largest.

V. COMMON CASE SELECTION

As shown in the example of Section III-A, any procedure call
with CLAs can be specialized. Some procedure calls can be ef-
fectively specialized, while others may not show significant im-
provement. Also, some CLAs are not useful for specialization.
Thus, it is necessary to search the procedure calls that can be
effectively specialized by using their common values.

Due to the large search space, we represent all possible
common cases as a hierarchical tree based on profiling infor-
mation and prune out the cases which are expected to show
only marginal improvement even after specialization.

A. Common Case Representation

Fig. 6 shows the hierarchical tree for the example shown
in Fig. 1 based on the profiling information. Let us consider
a simple example how a common case is represented in a
hierarchical tree. The program has two procedures:main and
foo (procedure level), and procedurefoo is called three times
in procedure main (call-site level). The first procedure call
has single CLAa which is passed to the formal parameterfa
(CLA level) and its common value is zero (value level). Finally,
the common case is represented as by mapping the
common value to the corresponding parameter position (case
level). For the sake of simplicity, we ignore the parameterfk
which is the fourth parameter of procedurefoo . We assume
that variableb (the first parameter of the third call) has two
common values, 2 and 3.

In Fig. 6, the call-site level has two-level subhierarchies
to represent the CLAs and their common values.CLA level
represents the mapping relation between CLA parameter and
its corresponding formal parameter andvalue levelis used for
common values of CLAs. Incase level,common values are
related to each formal parameter by positional mapping and

1058 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

TABLE I
NOTATIONS FOR AHIERARCHICAL TREE

“ ” representsdon’t care—the parameter value in that position
is not considered in this case. There are seven possible cases,
even though the number of call sites are only three. There is
nothing to be examined for proceduremain because it does
not have any CLA.

We introduce some notation for convenience to indicate each
level and object in a hierarchical tree as shown in Table I.

As shown in Table I,procedure levelis denoted as which
is a set of procedures denoted as. Each procedure has a set
of procedure calls, ,

. And the same rule is applied toCLA level
andvalue level.Each common case of is denoted as
and each dimension of () corresponds to

, where the bound of () will
be shown in (4). Also, of is one of the common
values of or don’t care,namely

, .
The overall size of the search space to find common cases is

the sum of the search space for each call site. At each call site,
we need to examine all possible cases with the consideration of
the coherence of the common values (the common value of each
CLA may occur at the same time or separately). For example as
shown in Fig. 1, there are four possible cases: 1) only
(can have any value); 2) only (can have any value);
3) both and are zero; 4) neither nor is zero (both and

can have any value). Among these four cases, the last case
[case 4)] is ignored due to the lack of useful information for
the specialization and total cases to be examined is three. More
generally, the search space of each call site, , is

(4)

where represents the number of possible values of
each CLA (1 corresponds to any other value except common
values) and the last term (1) represents case 4) (none of the
CLAs has a common value).

The overall size of the search spaceis

(5)

B. Pruning Trivial Cases

Due to the large size of the common case set, it is necessary to
reduce the search space without missing promising candidates.
We definecommon casesas those cases to be included in the
search space after search space reduction. The search space re-
duction is performed based on NCE. The computational effort

TABLE II
PROFILING INFORMATION FOR THEHIERARCHICAL TREE SHOWN IN FIG. 6

of each procedure is obtained from execution frequency pro-
filing and computational effort estimation technique described
in Section IV. Based on this, NCE of each common case can be
estimated in a hierarchical order. In other words, NCE of each
procedure is estimated first and then NCE of each call site is
calculated and so forth.

NCE in a hierarchical tree represents the maximum degree of
improvement to be obtained by specializing all cases belonging
to the given node. For pruning purpose, a user constraint called
computational threshold(CT) is defined in terms of NCE. We
will assume for all examples illustrated in this sec-
tion.

Usually, maximizing the usage of common values is consid-
ered to be better because more information is provided to the
optimizer. But in our case, maximizing the usage of common
values is not always advantageous (e.g., the third call in Fig. 1).

Example: Consider two common cases and
for the third call of procedurefoo . The profiling

information is shown in Table II which is a sample profiling
information used for all examples in this section. From Table II,

with the probability of 0.1 and with the
probability of . Then, the probability that case
will happen is 0.1, while that of case is 1.0. Thus,
the specialized code for case is useful only when
it reduces the computational effort ten times more than the
specialized code for case . The cases like case

are pruned out before progressing to the next
step, i.e., common case specialization,for the sake of the
computation efficiency.

Pruning is not limited only tocase level,but also performed
at any other level based on NCE. We will describe NCE com-
putation and pruning at each level in the next subsections.

1) Procedure Level Pruning:NCE of each procedure is ob-
tained by normalizing its computational effort to the total com-
putational effort. Because NCE of proceduremain is lower
than CT, it is eliminated from the hierarchical tree. Also, the
procedure which does not have any descendant is eliminated.
The pruning at this level has the largest impact on reducing the
search space.

2) Call-Site Level Pruning:Call-site level pruning, similar
to procedure level pruning, is performed next. The profiler de-
scribed in Section IV can estimate the computational effort of
each procedure as well as each procedure call. Thus, NCE of
each procedure call can be computed in the same way as NCE
of each procedure is computed. In Table II, the first call of pro-
cedurefoo will be pruned out because its NCE is less than the
threshold CT.

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1059

We also consider NCE for two subhierarchies in thecall-site
level. NCE of each CLA is calculated by weighting the NCE
of the corresponding procedure call () by its observed ratio
() and can be represented as in (6). Also, NCE of each
common value () can be computed similarly

(6)

Example: Let us consider the third call of procedurefoo ,
where is the variableb as shown in Table II. has
two common values, 2 () and 3 (). Also, from (2),

and
. Thus,

which is larger than CT, thus is not pruned atCLA level.
At value level,

which is smaller than CT and is
pruned out, whereas is not eliminated because its NCE is
larger than CT.

3) Case Level Pruning:NCE of each case can be calculated
using NCE of common values. But NCE at this level cannot
be obtained in the same way used in other levels because each
case may depend on multiple common values such as case

. Thus, NCE of each case is obtained by multiplying
NCE of common values which are involved in forming the case
and represented as follows:

(7)

Remember that is or “—”
and NCE is defined as 1. Also, note that NCE is a conserva-
tive metric because a case which has a large NCE may not be ob-
served frequently. But this metric is still meaningful in the case
level to prune the cases which yield marginal improvements.

Example: Let us consider case which
is a child of (third call in main) and is also a child of

(procedurefoo). From the example in Section V-B-2,
. Similarly,

. From (7),
, thus is dropped from the search

space. But this pruning does not happen in practice because
is already pruned out atvalue level.Also, notice that case

which has less information than case
(from the viewpoint of a specializer in the next step) is still in
the tree due to its high NCE (0.54).

To reduce the search space further, we definedominated cases
those that can be eliminated from the search space. We say that

is dominated by if all common values of appear
in and is greater than or equal to

(8)

where is defined astrue when or . For
example, is dominated by . A dominated case needs
not to be specialized because it has less information and is less
important in terms of NCE than dominant case.

To summarize, pruning is performed at each level, but higher
level pruning is more effective because its all descendants are
removed. Also, notice that pruning sacrifices the amount of the
information useful in the specialization step by increasing the
possibility that the common situation occurs more frequently
(e.g., case is pruned, but case is not).
This tradeoff is controlled by the user constraint, CT.

VI. COMMON CASE SPECIALIZATION

A. Overview

After having pruned out trivial common cases (which show
marginal improvement, even when they are specialized), we
have only common cases (expected to show nonmarginal im-
provement by specialization) left in the hierarchical tree. For
each remaining case in the hierarchical tree, we perform the spe-
cialization using partial evaluation. The common values of each
case are used by partial evaluator for: 1) simplifying control flow
(precomputingif test or unrolling loops); 2) constant folding and
propagation; 3) precomputing well-known functions calls such
as trigonometric functions, and so on. These optimizations are
not performed independently. Indeed, applying one optimiza-
tion technique can provide a better chance for other techniques
to succeed. For example, loop unrolling can provide a better
chance to constant propagation/folding by simplifying control
dependency and enlarging basic blocks.

Due to such combined effects, it is not easy to estimate the
quality of the specialized code analytically. For this reason, this
step uses an instruction-set level simulator for the purpose of
code quality assessment with the consideration of the under-
lying hardware architecture. It differs from the common case se-
lection step which performs architecture-independent analysis.
Thus, this step takes much longer time than effective case selec-
tion step due to specialization and instruction-set level simula-
tion.

Among the techniques mentioned above, loop unrolling
should be used most carefully because its side effect (code-size
increase) can severely degrade both performance and energy
consumption. But in traditional applications of partial evalua-
tion, this fact is not deeply studied, based on the assumption
that taking more space will reduce computational effort [18].
This assumption may be true for general systems such as
workstations, but may not be true for the resource limited
systems such as embedded systems. Therefore, we need to
address our second search problem by exploring various loop
combinations for unrolling. The size of search space for each
case specialization is simply , where is the number of
loops inside procedure .

In case of an exhaustive search, the specialization of each
case is iteratively performed for the overall search space and
each iteration requires instruction-set level simulation to assess
the specialized code quality. In our framework, loop unrolling
can be suppressed by declaring the corresponding loop index
variable as a residual variable. It means that the residual vari-
able will not be specialized, henceforth the corresponding loop
construct will not be affected by specialization either. Because
the search space is exponential with respect to the number of
loops, two heuristic approaches are proposed in this section.

1060 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

Fig. 7. Example of a loop tree.

The case-level information can be computed from CLA-level
information. These two approaches may provide lower quality
of specialization over the exhaustive approach, but reduce the
search space (both specializations and instruction-set level sim-
ulations) drastically.

B. Semi-Exhaustive Approach

The first heuristic search algorithm is called semi-exhaus-
tive search. Unlike pure exhaustive search, semi-exhaustive ap-
proach performs a complete search for each loop nest rather than
for the entire set of loops. Thus, pure exhaustive search guaran-
tees a globally optimal solution, while the semi-exhaustive ap-
proach can provide a suboptimal solution. This is the tradeoff
between the searching time and the code quality. The tradeoff
will be explained in the experimental part (Section VIII).

For this purpose, we represent the entire loop structure in-
side a procedure as a loop tree and an example of loop tree is
shown in Fig. 7. To construct such a loop tree, we first levelize
the loop structure. The outermost loop is assigned tolevel 0and
the next outermost loop is assigned tolevel 1, and so on. Next,
we represent each loop as a node and place each node to its as-
signed level. Finally, we represent the nested relation between
two nodes as an edge connecting these two nodes. Notice that
if a loop has multiple loop nests, the connecting edges are iden-
tified as abranchand we call each branch path asubtree.For
example, the edge between and and the edge between
and form abranch.Also, there are two subtrees connected to
the branch: a subtree formed by and and a subtree formed
by , , and . Each node is represented as , where
is the level to which the node belongs andis the index of the
nodes that have the same parent. Thus, if a node is not connected
to a branch, is always zero.

After constructing a loop tree, the best loop combination for
unrolling is searched for each subtree in a bottom-up fashion
(i.e., thebranch in the lower level is visited first). For a given
branch, we visit the subtrees in the order of their computational
efforts.

While searching the best solution of each subtree, we exclude
the loop combinations which are expected to increase the code
size drastically, because such loop combinations increase spe-
cialization, compilation, and simulation time drastically. Fur-
thermore, such combinations provide a very low quality of spe-
cialized code due to the high instruction cache misses. To iden-

tify such undesirable cases, we use a code-size constraint and a
code-size estimation technique. The code-size constraint is set
to the cache size of the target architecture because the code size
larger than the cache size will increase the instruction cache miss
drastically. Also, the code size is estimated as follows:

(9)

where the cumulated code size of the descendent nodes
of node in addition to the code size of itself. Also,

represents the number of instructions of node ,
represents the average number of iterations per each vis-

iting of node . Finally, returns 1 when node is
unrolled and when is not unrolled. In other words,
we estimate the code size to be linearly increased by a factor of

when is unrolled. Notice that and are
available from the profiler in Section IV.

Example: Consider the loop tree shown in Fig. 7. Suppose
that the subtree on the rightbranch (formed by L1, L2, and
L3) has higher computational effort than the subtree on the left
branch(formed by L4 and L5). In case of a pure exhaustive ap-
proach, there are 64 (2) combinations of loop unrolling, thus
the given case should be specialized and simulated 64 times to
find the best combination. In the case of the semi-exhaustive ap-
proach, we first visit the right subtree () because it has higher
computational effort. Because the right subtree is a three-level
loop nest (L1, L2, and L3), there are eight combinations of loop
unrolling and all combinations are examined to find the best
loop combination for the subtree. While examining these eight
combinations, the code size of each combination is estimated
using (9). If the estimated code size is larger than the code size
constraint, the combination is excluded from the specialization.
After finding the best combination for the right subtree (), we
visit the left subtree () which has four possible loop combi-
nations and find the best solution in the same way. After loop
unrolling for both subtrees is decided, we move to the top node
(). There are only two combinations for this node because
loop unrolling for all its descendent nodes is already decided.
Thus, we need to examine the total 14 loop combinations using
the semi-exhaustive approach.

C. One-Shot Approach

The second heuristic approach to solve the common case spe-
cialization problem is calledone-shot approach.It is close to the
semi-exhaustive approach,but differs because the choice of the
best combination for each subtree depends on just code-size es-
timation instead of an exhaustive search within the subtree. The
code-size estimation is performed indepth-first searchfashion
for each subtree. We will illustrate this approach using the fol-
lowing example.

Example: Let us consider the loop tree shown in Fig. 7. The
subtree () is visited first due to the same reason as in the semi-
exhaustive approach (higher computational effort). Initially, all
nodes are assumed not to be unrolled. However, at this time, all
eight possible combinations are not examined. Instead, unrolled
code size is estimated indepth-first order[from the lowest level

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1061

Fig. 8. A more complex example for global effective case selection.

() to the highest level ()]. First, is visited and the un-
rolled code size is estimated. If the unrolled code size is larger
than the code-size constraint, the code estimation procedure is
terminated and the node is decided not to be unrolled. Also,
all nodes in the higher level of this subtree are determined not
to be unrolled. Otherwise (estimated code size is smaller than
code-size constraint), we decide to unroll this node and move
up to node . The same procedure is repeated until it reaches
to the top of the subtree. After all nodes in the right graph are
traversed, we move to the left graph and the same decision pro-
cedure is applied. Finally, we move up to the top node and the
same procedure is repeated.

To summarize, this approach requires only single special-
ization and simulation, but it is more limited in improving the
quality of partial evaluation.

VII. GLOBAL EFFECTIVE CASE SELECTION

The last search problem is to analyze the interplay among
the specialized calls to maximize the specialization effect in a
global perspective. We already described this problem in Sec-
tion III using a simple example in Fig. 1. We consider now a
more complex example.

Example: Consider the situation in Fig. 8. Suppose that the
call of procedurefoo and both calls of procedurebar2 in-
side procedurebar are computationally expensive and have
common cases. Then, all three call sites are specialized inde-
pendently in the common case specialization step. If we ana-
lyze their interplay in a local scope (intraprocedural analysis),
two calls inside procedurebar will interfere with each other
marginally. Furthermore, the interplay between procedure call
bar2 and procedurefoo is not detected because their inter-
play occurs in interprocedure level, even though they may affect
to each other severely. Thus, the interplay among the special-
ized calls should be analyzed in a global scope (interprocedural
analysis).

The interprocedural analysis may reveal that the combina-
tion of multiple specialized calls may yield a gain inferior to
the sum of the gains of the individual specialized calls, because
of mutual interference such as the I-cache conflict. Also, it is
not obvious to estimate their interference analytically. For this
reason, each combination should be assessed by instruction-set
level simulation and the best combination is chosen for the final
solution.

We represent each specialized call as ,
. Each has an attribute called gain

Fig. 9. Example of binary tree forM .

which is the amount of improvement in terms of the given
cost metric (either energy consumption or performance) and
obtained when each call is specialized at the common case
specialization step. We always sort s in descending order for

, i.e., . We denote a combination of the specialized
calls as and ,
thus the search space is exponentially large. Eachis a binary
vector to represent which specialized calls are included in this
combination. For example, means , , and

are included in the combination . Also,
means only and are included in the combination .
Each has two gain attributes _ and _ which
areideal gainandactual gain,respectively.

• Ideal gain (_) is the sum of gains of the individual
specialized calls in each combination by assuming that
there is no interference with each other. Thus, this is the
maximum gain that can be achieved for the given combi-
nation.

• Actual gain (_) is the sum of gains of special-
ized calls in each combination with the consideration of
their interference. Thus, it is always less than or equal to
(when there is no interference) the ideal gain and can be
obtained by instruction-set level simulation.

We represent each combinationas a path in a binary tree as
shown in Fig. 9. The rightmost path represents
and the second rightmost path represents , and
so on. Each level of the tree corresponds to each element of the
vector and the right edge and the left edge correspond to “1”
and “0,” respectively. Thus, the number of levels in the binary
tree is always . Each edge
and also has a gain attribute .
Where is the level to which the edge belongs andis the index
of an edge in level (from left to right).

Initially, (the gain of each edge connected to the
leaf nodes) is set to _ . At the same time, is set to

, namely the edges above the
leaf-level inherit the maximum gain of their children. After the
gain initialization as shown in Fig. 9, we perform the search pro-
cedure based on thebranch and boundalgorithm in Fig. 10. We
will illustrate the how the procedure works using the following
example.

Example: The gain for the right edge of called , is
initially set to 45 (_) because this path corresponds to

which means , , and are included in
the combination . Similarly, (the gain for the left edge of

) is set to 35 (corresponds to). Also,

1062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

Fig. 10. Search procedure for the given binary tree.

and the gains of other edges are also
decided in the same way. Next, we apply the procedure in Fig. 10.
First, we visit the rightmost path (). For , we perform instruc-
tion-set level simulation to get _ , and is updated
to _ . We compare to which is the maximum
gain that can be achieved by combination. If , it
is obvious that is better than , thus we eliminate the left edge
of (identical to eliminate). On the other hand, if

, can be better than . Thus, we perform instruction-set
level simulation for and update with . Then,
we can decide which combination is better and prune out the
worse combination. Next, we move to nodein the next level
by updating to without simulation be-
cause we already selected eitheror in level 2. If

, we can prune out the left descendent of(and) due
to the same reason. But, if , we visit node to
choose the better combination fromand by performing the
same procedure as we did forand . After choosing either
or , we compare two edges of node and select better one.
We repeat the same procedure until there remains only one path
in the binary tree.

To summarize, the algorithm first builds a binary tree to enu-
merate all possible selections of specialized calls. Second, the
expected gain of each path is computed as a cost function for
the pruning purpose by ignoring the interplay effect. Third, the
actual cost of each path is defined as an actual gain considering
the interplay effect; this is available from instruction-set level
simulation. The purpose of this search problem is to find the
path which shows the maximum actual gain among all paths.
The pruning occurs when the expected gain of the current path
is less than the maximum actual gain obtained up to this point
which is the bounding function of this search problem. As a final

remark, this step can be extended to consider the code-size in-
crease constraint by the use of the code-size increase estimation
mentioned in Section VI.

VIII. E XPERIMENTAL RESULTS

A. Experimental Setting

Even though source code transformations are applicable
to a wide set of architectures, we consider now two specific
hardware platforms to be able to quantify the results. The
SmartBadge, an ARM processor-based portable device [26]
and ST200 processor developed by STMicroelectronics and
Hewlett-Packard [38], [39] were selected as the target architec-
tures. For these target architectures, we applied the proposed
technique to seven DSP application C programs—Compress ,
Expand , Edetect , andConvolve from [32], g721 en-
code from [31], andFFT from [33], FIR [39], turbo code
[41], andSW radio .

Compress compresses a pixel image by a factor of 4 : 1
while preserving its information content using DCT andEx-
pand performs the reverse process using IDCT.Edetect de-
tects the edges in a 256 gray-level pixel image using Sobel oper-
ators andConvolve convolves an image relying on 2-D-con-
volution routine.g721 encoder is a CCITT ADPCM en-
coder.FFT performs FFT using Duhamel–Hollman method for
floating-point type complex numbers (16 point).turbo code
is an iterative (de)coding algorithm of 2-D systematic convolu-
tional codes using log-likelihood algebra. Finally,SW radio
performs a series of operations (CIC lowpass filter, FM demod-
ulation, IIR/FIR deemphasis) for the input in ADC format.

The experiment was conducted for two aspects, search space
reduction and quality of the transformed code. The quality of
transformed code was analyzed in terms of energy saving, per-
formance improvement, and code-size increase. Each applica-
tion program was profiled to collect computational effort and
CLAs with their common values. There exist two important pa-
rameters in value profiling as described in Section IV-C. First,
observed ratio(OR) is the ratio of the observation frequency of
a specific parameter value over the total call site visiting fre-
quency. Second,observed threshold(OT) is a threshold value to
select common values among observed parameter values—only
the observed parameter values which show OR higher than OT
are selected as common values. In this experiment, OT was set to
0.5, thus only observed parameter values which have OR higher
than 0.5 were selected as common values.

B. Search Space Reduction

We first analyzed the effectiveness of the proposed search
space reduction techniques. Fig. 11 shows the pruning ratio
achieved by each step with computation threshold .
Notice that this step is architecture-independent as shown in
Fig. 3, thus Fig. 11 is common to both SmartBadge and ST200
processor.

The procedure pruning step always plays an important role
to reduce the search space, but the call-site pruning step shows
large variation depending on the property of the application
programs. This is because the computational kernels of some
programs such ascompress andFFT were called only once,
while the kernel ofg721 encode was called several times in

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1063

Fig. 11. Search space reduction using common case selection.

Fig. 12. Search space reduction ratio in common case and global effective case
selection step.

different sites with different calling frequencies. Thus, this step
is useful for the kernels called frequently in different sites with
different frequencies.

The ineffectiveness of the case pruning step was due to high
OT which was set to 0.5 for value profiling. Under this OT, the
OR of each common value was usually large enough to yield
NCE larger than CT used in this experiment (0.1). Dominated
case pruning was effective for most of application programs be-
cause many of common values were constant ().

Next, the pruning methods used in common case specializa-
tion and global effective case selection were evaluated. Fig. 12
shows the pruning ratios of these two steps for SmartBadge
environment. Our technique in ST200 processor environment
also showed similar results. As shown in Fig. 12, both semi-ex-
haustive and one-shot approaches drastically reduced the search
space by 64% and 88%, respectively. Also, the pruning tech-
nique in the global effective case selection step showed 55%
of search space reduction and large variation of pruning ratio
depending on the property of application programs. There was
nothing to be pruned forCompress ,FFT, andg721 encode
programs because only one case was passed from common case
specialization step.

C. Code Quality Improvement

Both the one-shot and semi-exhaustive approaches were com-
pared to the exhaustive approach in terms of code quality and

specialization time. The common case selection step was com-
monly used for each approach to avoid large search space. Also,
the global effective case selection step was used in all three
specializations because it is an exact solution. As expected, the
one-shot approach showed the smallest running time and semi-
exhaustive approach was ranked at second. In average, both the
one-shot and semi-exhaustive approaches are about 8.3 (8.0)
times and 2.7 (2.5) times faster than exhaustive approach in
SmartBadge (ST200 processor) environment, respectively.

Notice that Fig. 12 only shows the reduction ratio of the
search space, which is different from the specialization time
in the sense that search space reduction ratio only implies the
reduction ratio of the number of specializations, while the
specialization time includes partial evaluation, compilation,
and instruction-set level simulation.

In SmartBadge environment, our tool was executed on a SUN
UltraSPARC running at 200 MHz with 512-MB memory. The
overall procedure of our tool takes less than 20 min with the
one-shot approach, while it takes from 10 min (FIR) to 7 h (turbo
code) depending on the complexity of the loop structure in addi-
tion to the overall program complexity and program input data
size.

In ST200 environment, our tool was executed on a Sony
VAIO R538DS equipped with a Pentium III running at 500
MHz with 128-MB memory. The difference of execution time
between the one-shot and semi-exhaustive approaches is still
large, but the semi-exhaustive approach benefits by the faster
machine (also faster simulator) because it requires more iter-
ations including simulation, compilation, and specialization.
turbo code with the semi-exhaustive approach still showed
the longest execution time (2 h and 20 min).

It is interesting that the exhaustive approach often generated
a huge size of code which is one of the main problems in par-
tial evaluation. For the code, compilation or simulation was not
terminated within a few hours, which is a bottleneck for automa-
tion. For this reason, we adopted time-out approach especially
for the exhaustive approach by assuming that the code requiring
long simulation time would be very huge and require large en-
ergy consumption.

Table III shows the quality of transformed code in terms of
energy, performance, and code size for the three approaches.
Notice that the energy consumption was measured with the
consideration of shutdown technique. As shown in Table III,
the semi-exhaustive approach is comparable to the exhaustive
approach in terms of transformed code quality with much less
computation time (63% for SmartBadge and 60% for ST200
processor). The one-shot solution is also useful by trading off its
code quality and computation time. (About 8.0 times faster and
consumes 2% more energy compared to exhaustive approach).
We could not perform the exhaustive approach forturbo code
because its computational kernel had too many loops (18) which
yielded a huge number of loop combinations (). It
is also worthwhile to mention that the deviation of improvement
is largely depending on the nature of the programs. For the best
case, the improvement is more than twice (Edetect), but for
the worst case, about 10% (0%) is improved (Compress) in
SmartBadge (ST200 processor) environment.

It is interesting that our tool specializedCompress andEx-
pand in different ways depending on the target architecture.

1064 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

TABLE III
QUALITY OF THE CODE TRANSFORMEDWITH DIFFERENTAPPROACHES(NORMALIZED TO ORIGINAL CODE)

TABLE IV
IMPROVEMENT RATIO OF FLOATING POINT AND FIXED-POINT

VERSIONS(SEMI-EXHAUSTIVE)

Compress andExpand show nonmarginal improvement in
SmartBadge environment, whereas their improvement ratio in
the ST200 processor is marginal. Also, the improvement ratio
of FFT is much larger in ST200 processor environment than
in SmartBadge environment, even though the specialized pro-
grams for both architectures are identical. The common feature
of these programs is that the computational kernels of all three
programs have floating-point operations which are not directly
supported by the hardware in both architectures, but they are
handled by floating point emulation. From the careful analysis
of these programs, we found two reasons for this fact. First,
the computation cost of floating-point emulation in a ST200
processor is much more expensive than in a SmartBadge en-
vironment (relative to their integer operations). Notice that the
floating point emulation is performed by the built-in library
functions which is out of the scope in our technique. Second, the
loop overhead in SmartBadge is larger than in ST200 processor.

The results in Table IV support this claim.Com-
press _float and Expand _float are the floating
point versions used in Table III andCompress _fixed and

Expand _fixed are their fixed-point versions, respectively.
Notice that the improvement by the specialization is mainly
due to loop unrolling for both versions of two programs.

As shown in Table IV, the improvement ratio using our tech-
nique is about 2.5 times larger for the fixed-point version com-
pared to the floating point version in SmartBadge environment.
On the other hand, it is about five times larger in ST200 pro-
cessor environment. It means that the relative cost of floating
point emulation in ST200 processor environment is twice larger
than that in SmartBadge environment. But, the improvement
ratio using our technique in SmartBadge environment is still
larger than in ST200 processor environment. It implies that the
loop overhead elimination by our technique is more effective
(about twice) in SmartBadge environment rather than in ST200
processor environment.

In the case ofFFT, the specialization step eliminates trigono-
metric functions such ascos . The computation cost of acos
function is four times more expensive in ST200 processor envi-
ronment than in SmartBadge environment in terms of number of
clock cycles (measured by simulators). Thus, the elimination of
such functions is more advantageous in ST200 processor than
in SmartBadge environment.

In summary, our technique is more effective in fixed-point
arithmetic programs, therefore it is desirable to apply our tech-
nique after transforming the floating point arithmetic programs
into the fixed-point arithmetic programs as proposed in [40].
Also, the computation cost of the built-in functions such as
trigonometric functions is architecture dependent, thus the im-
pact of the specialization varies largely depending on the under-
lying hardware architecture.

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1065

As a final remark, the run time of the optimization flow de-
pends on two user-defined constraints and that drive
the pruning. Also, program size and loop depth are critical fac-
tors in specialization step, because our approach uses instruction
set-level simulation. Nevertheless, it is important to remember
that low energy and fast execution of the target code is the
overall objective, which can be achieved at the expense of longer
optimization time for large programs.

D. Input Data Sensitivity Analysis

The variation of improvement (whatever the metric is) is a
common problem of profiling-based techniques because pro-
filing information can be largely varied depending on the trained
input data set. Our technique is also affected by input data set,
and the improvement ratio shown in Section VIII-C may be
largely varied if common values used for transformation heavily
depend on input data set.

We analyzed the common values identified by our framework
and they can be classified into two categories. The common
values in the first category are sensitive to input data set, while
those in the second category are independent to input data set,
i.e., they are statically declared (or computed) values some-
where in the program. We call the common values in the first
categorydynamic common valuesand those in the second cate-
gorystatic common values.Notice thatstatic common valuesare
rarely (or never) changed input data identified by a programmer,
but this information is not used for optimization due to the com-
plexity and/or future modification.

A program transformed usingstatic common valuesshows a
constant improvement ratio because the transformation is inde-
pendent to input data set. In our experiment, many of bench-
mark programs were transformed usingstatic common values.
Compress andExpand programs initially computecos table
with a fixed number of sampling points and these results are
identified as common values. Ing721 encode program, the
static common valuesare a quantization table and its size de-
fined in a program. It is interesting that two quantization ta-
bles with different sizes are defined in this program, but only
one quantization table was consistently used in each call site.
Thus, even though manystatic common valueswere observed
in procedure point of view, each call site was related to a single
static common value.ProgramsEdetect , Convolve , and
FIR identified filter coefficient tables asstatic common values
(with their size) and these coefficient values and sizes were effi-
ciently used for the transformation. In programturbo code ,
the number of delay elements was identified as astatic common
value.

In case ofFFT, the number of sampling points was identi-
fied as adynamic common value , thus the improvement
ratio was largely varied. In the worst case, the transformed pro-
gram does not show any improvement if the identified common
value is not observed during the program execution. However,
the variation ofdynamic common valuewas limited to several
numbers such as 4, 8, 16, and so on. Such a limited divergence
can be handled in our framework because our framework can
manipulate multiple common cases for single call sites using a
multiway branch statement with multiplecommon value detec-
tion procedures at the expense of code-size increase.

To summarize, our technique shows a constant improvement
ratio when it transforms programs withstatic common values,
but transformation withdynamic common valuescan largely
change the improvement ratio depending on the input data like
other profiling-based techniques. Also, restricted variation of
dynamic common valuecan be treated by our framework at the
expense of code-size increase.

IX. CONCLUSION

We presented algorithms and a tool flow to reduce the com-
putational effort of software programs, by using value profiling
and partial evaluation. We showed that the average energy and
run time of the optimized programs is drastically reduced. The
main contribution of this work is the automation of an optimiza-
tion flow for software programs. Such a flow operates at the
source level and is compatible with other software optimization
techniques, e.g., loop optimizations and procedure in-lining.

Within our approach, a first tool performs program in-
strumentation and profiling to collect useful information for
transformations, such as execution frequency and commonly
observed values at each call site. Using the profiling informa-
tion, another tool selects common cases based on the estimated
computational effort. Each selected case is specialized inde-
pendently using a partial evaluator. In the selection step, code
explosion due to loop unrolling—which may hamper partial
evaluation—is avoided by code-size estimation technique and
pruning. Finally, the interplay among the multiple specialized
cases is analyzed based on instruction-set level simulation. The
transformed code shows an average 35% (26%) energy savings
and 38% (31%) in average performance improvement with 7%
(13%) code-size increase in ST200 processor (SmartBadge)
environment.

Currently, our approach is limited to the common cases at
the procedure-call level, but we believe that our technique can
be extended to the lower level common cases (e.g., loop level)
which may provide a better quality of code specialization. Also,
the specialization technique will be extended to consider more
architecture-dependent characteristics.

REFERENCES

[1] L. Benini and G. De Micheli,Dynamic Power Management: Design
Techniques and CAD Tools. New York: Kluwer, 1997.

[2] Y.-T. Li and S. Malik, Performance Analysis of Real-Time Embedded
Software. New York: Kluwer, 1999.

[3] W. Wolf, Computers as Components—Principles of Embedded Com-
puting System Design. Boston, MA: Morgan Kaufmann, 2001.

[4] N. Jones, C. Gomard, and P. Sestoft,Partial Evaluation and Automatic
Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

[5] G. Goossens, J. V. Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and
P. Paulin, “Embedded software in real-time signal processing systems:
Design technologies,”Proc. IEEE, vol. 85, pp. 436–454, Mar. 1997.

[6] P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens, “Em-
bedded software in real-time signal processing systems: Application and
architecture trends,”Proc. IEEE, vol. 85, pp. 419–435, Mar. 1997.

[7] J. R. Lorch and A. J. Smith, “Software strategies for portable computer
energy management,”IEEE Personal Commun., vol. 5, pp. 60–73, June
1998.

[8] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye, “Energy-
driven integrated hardware-software optimizations using SimplePower,”
in Proc. ISCA—Int. Symp. Computer Architecture, 2000, pp. 95–106.

[9] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low en-
ergy: An overview,” inProc. IEEE Symp. Low Power Electronics, 1994,
pp. 38–39.

1066 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 9, SEPTEMBER 2002

[10] J. M. Rabaey and M. Pedram, Eds.,Low-Power Design Methodolo-
gies. New York: Kluwer, 1996.

[11] L. Benini and G. De Micheli, “System-level power optimization tech-
niques and tools,”Proc. ACM TODAES—Trans. Design Automation
Electronic Systems, vol. 5, no. 2, pp. 115–192, 2000.

[12] H. Mehta, R. Owens, M. Irwin, R. Chen, and D. Ghosh, “Techniques for
low energy software,” inProc. ISLPED—Int. Symp. Low Power Elec-
tronics and Design, 1997, pp. 72–75.

[13] G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, and M. Irwin,
“Memory system energy: Influence of hardware-software optimiza-
tions,” in Proc. ISLPED—Int. Symp. Low Power Electronics and
Design, 2000, pp. 244–246.

[14] Y. Li and J. Henkel, “A framework for estimating and minimizing en-
ergy dissipation of embedded HW/SW systems,” inProc. DAC—Design
Automation Conf., 1997, pp. 188–193.

[15] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle,Custom Memory Management Methodology: Explo-
ration of Memory Organization for Embedded Multimedia System De-
sign. New York: Kluwer, 1998.

[16] F. Catthoor, S. Wuytack, E. De Greef, L. Nachtergaele, and H. De Man,
“System-level transformation for low power data transfer and storage,”
in Low-Power CMOS Design, A. Chandrakasan and R. Brodersen,
Eds. New York: IEEE Press, 1998.

[17] K. Cooper, M. Hall, and K. Kennedy, “A methodology for procedure
cloning,” Computer Languages, vol. 19, no. 2, pp. 105–117, 1993.

[18] C. Consel and O. Denvy, “Tutorial notes on partial evaluation,” inProc.
ACM Symp. Principles of Programming Languages, 1993, pp. 493–501.

[19] S. Chirokoff and C. Consel, “Combining program and data spe-
cialization,” in Proc. ACM SIGPLAN Workshop Partial Evaluation
and Semantics-Based Program Manipulation (PEPM’99), 1999, pp.
45–59.

[20] L. O. Andersen, “Program analysis and specialization for the C
programming language,” Ph.D. dissertation, DIKU, Univ. Copenhagen,
May 1994.

[21] J. Pierce, M. Smith, and T. Mudge, “Instrumentation tools,” inFast Sim-
ulation of Computer Architectures, T. Conte and C. Gimarc, Eds. New
York: Kluwer, 1995, pp. 47–86.

[22] T. Ball and J. Larus, “Optimally profiling and tracing programs,” inProc.
ACM Symp. Principles Programming Languages, 1992, pp. 59–70.

[23] B. Calder, P. Feller, and A. Eustace, “Value profiling,” inProc. Int. Symp.
Microarchitecture, 1997, pp. 259–269.

[24] , “Value profiling and optimization,”J. Instruction-Level Paral-
lelism, vol. 1, 1999.

[25] F. Gabbay and A. Mendelson, “Can program profiling support value pre-
diction?,” inProc. Int. Symp. Microarchitecture, 1997, pp. 270–280.

[26] T. Simunic, L. Benini, and G. De Micheli, “Cycle accurate simulation
of energy consumption in embedded systems,” inProc. DAC—Design
Automation Conf., 1999, pp. 867–872.

[27] G. Lakshminarayana, A. Raghunathan, K. Khouri, K. Jha, and S. Dey,
“Common-case computation: A high-level technique for power and
performance optimization,” inProc. DAC—Design Automation Conf.,
1999, pp. 56–61.

[28] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instruction selection
using binate covering for code size optimization,” inProc. ICCAD—Int.
Conf. Computer-Aided Design, 1995, pp. 393–399.

[29] K. D. Cooper and P. Schileke, “Non-local instruction scheduling with
limited code growth,” inProc. ACM SIGPLAN Workshop Languages,
Compilation, and Tools Embedded Systems, 1998, pp. 193–207.

[30] D. Bacon, S. Graham, and O. Sharp, “Compiler transformation for high-
performance computing,”ACM Computing Surv., vol. 26, no. 4, pp.
345–420, 1994.

[31] C.-H. Lee. [Online]. Available: http://www.cs.ucla.edu/~leec/media-
bench.

[32] M. Stoodley. [Online]. Available: http://www.eecg.toronto.edu/
~stoodla/benchmarks.

[33] P. Duhamel and H. Hollman, “Split-radix FFT algorithm,”Electron.
Lett., vol. 20, no. 1, pp. 14–16, 1984.

[34] S. E. Richardson, “Caching function results: Faster arithmetic by
avoiding unnecessary computation,” Sun Microsystems Lab., 1992.

[35] M. Wolfe, High Performance Compilers for Parallel Com-
puting. Reading, MA: Addison-Wesley, 1996.

[36] Stanford Compiler Group, “The SUIF Library: A set of core routines for
manipulating SUIF data structures,” Stanford Univ., 1994.

[37] A. Srivastava and A. Eustace, “ATOM: A system for building cus-
tomized programming analysis tools,”Proc. PLDI—Programming
Language Design and Implementation, pp. 196–205, 1994.

[38] . [Online]. Available: http://www.st.com

[39] P. Faraboschi and F. Homewood, “ST200: A VLIW architecture for
media-oriented applications,” inMicroprocessor Forum, 2000.

[40] T. Simunic, L. Benini, G. De Micheli, and M. Hans, “Source code op-
timization and profiling of energy consumption in embedded systems,”
in Proc. ISSS—Int. Symp. System Synthesis, 2000, pp. 193–198.

[41] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,”IEEE Trans. Inform. Theory, vol. 42, Apr.
1996.

[42] M. Lipasti, C. Wilkerson, and J. Shen, “Value locality and load value
prediction,”Proc. ASPLOS—Architectural Support Programming Lan-
guages and Operating Systems, pp. 138–147, 1996.

[43] K. Lepak and M. Lipasti, “On the value locality of store instructions,”
in Proc. ISCA—Int. Symp. Computer Architecture, 2000, pp. 182–191.

[44] V. Nirkhe and W. Pugh, “Partial evaluation of high-level imperative pro-
gram languages with applications in hard real-time systems,” inProc.
ACM Symp. Principles Programming Languages, 1992, pp. 269–280.

[45] P. Marwedel and G. Goossens, Eds.,Code Generation for Embedded
Processors. New York: Kluwer, 1995.

[46] A. Sudarsanam, “Code optimization libraries for retargetable com-
pilation for embedded digital signal processors,” Ph.D. disseration,
Princeton Univ. Dept. EE, 1998.

[47] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, “CodeSyn: A retar-
getable code synthesis system,” inProc. Int. Symp. High-level Synthesis,
1994.

[48] P. Chou and G. Borriello, “Software scheduling in the co-synthesis of
reactive real-time systems,” inProc. DAC—Design Automation Conf.,
1994, pp. 1–4.

[49] R. Leupers and P. Marwedel,Retargetable Compiler Technology for Em-
bedded Systems Tools and Applications. New York: Kluwer, 2001.

[50] R. Leupers,Code Optimization Techniques for Embedded Processors
Methods, Algorithms, and Tools. New York: Kluwer, 2000.

[51] C. Liem, Retargetable Compilers for Embedded Core Processors
Methods and Experiences in Industrial Applications. New York:
Kluwer, 1997.

[52] F. Thoen, M. Cornero, G. Goossens, and H. De Man, “Software synthesis
for real-time information processing systems,” inProc. Workshop Lan-
guages, Compilers, and Tools for Real-Time Systems, 1995, pp. 60–69.

[53] V. Tiwari, S. Malik, and A. Wolfe, “Instruction level power analysis and
optimization of software,”J. VLSI Signal Processing Syst., vol. 13, no.
1–2, pp. 223–233, 1996.

[54] S. P. Rajan, A. Sudarsanam, and S. Malik, “Development of an opti-
mizing compiler for fujitsu fixed-point digital signal processor,” inProc.
CODES—Int. Workshop Hardware/Software Codesign, 1999, pp. 2–6.

[55] S. Hanono and S. Devadas, “Instruction selection, resource allocation,
and scheduling in the Aviv retargetable code generator,” inProc.
DAC—Design Automation Conf., 1998, pp. 510–515.

[56] G. Araujo and S. Malik, “Code generation for fixed-point DSPs,”Proc.
ACM TODAES—Trans. Design Automation Electronic Systems, vol. 3,
no. 2, pp. 136–161, 1998.

[57] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle, and P. Kjeldsberg, “Data and memory
optimization techniques for embedded systems,”Proc. ACM TO-
DAES—Trans. Design Automation of Electronic Systems, vol. 6, no. 2,
pp. 149–206, 2001.

[58] H. Lekatsas, J. Henkel, and W. Wolf, “Code compression for low-power
embedded system design,” inProc. DAC—Design Automation Conf.,
2000, pp. 294–299.

Eui-Young Chung (S’99) received the B.S. and M.S.
degrees in electronic engineering from Korea Univer-
sity, Seoul, Korea, in 1988 and 1990, respectively. He
is currently pursuing the Ph.D. degree in electrical en-
gineering, Stanford University.

From 1990 to 1997, he was a Research Engineer in
the CAD group, Samsung Electronics, Seoul, Korea.
His research interests include CAD of VLSI circuits
and system-level low-power design methodology in-
cluding software optimization.

CHUNG et al.: VALUE-SENSITIVE AUTOMATIC CODE SPECIALIZATION FOR EMBEDDED SOFTWARE 1067

Luca Benini (S’94–M’97) received the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1997.

He is an Associate Professor in the Department
of Electrical Engineering and Computer Science
(DEIS), University of Bologna. He also holds
visiting researcher positions at Stanford University
and the Hewlett-Packard Laboratories, Palo Alto,
CA. His research interests include all aspects of
CAD of digital circuits, with special emphasis on
low-power applications, and in the design of portable

systems. On these topics he has published more than 140 papers in international
journals and conferences.

Dr. Benini is a member of the organizing committee of the International Sym-
posium on Low Power Design. He is a member of the technical program com-
mittee of several technical conferences, including the Design Automation Con-
ference, International Symposium on Low Power Design, and the Symposium
on Hardware–Software Codesign.

Giovanni DeMicheli (S’80–M’82–SM’83–F’94) is
Professor of Electrical engineering, and by courtesy,
of computer science at Stanford University, Stanford,
CA. His research interests include several aspects
of design technologies for integrated circuits and
systems, with particular emphasis on synthesis,
system-level design, hardware–software codesign,
and low-power design. He is author ofSynthesis
and Optimization of Digital Circuits,(New York:
McGraw-Hill, 1994) and co-author and/or co-editor
of five other books and of over 250 technical

articles. He is a member of the technical advisory board of several EDA
companies, including Magma Design Automation, Coware, and Aplus Design
Technologies. He was member of the technical advisory board of Ambit
Design Systems. He is a founding member of the ALaRI institute at Universita’
della Svizzera Italiana (USI), in Lugano, Switzerland, where he is currently
scientific counselor.

Dr. De Micheli is a Fellow of ACM. He received the Golden Jubilee Medal
for outstanding contributions to the IEEE CAS Society in 2000. He received
the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS Best Paper
Award and two Best Paper Awards at the Design Automation Conference, in
1983 and in 1993. He is President-Elect of the IEEE CAS Society for 2002 and
he was its Vice President (for publications) in 1999 through 2000. He was Ed-
itor-in-Chief of the IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN/ICAS
from 1987 to 2001. He was the Program Chair and General Chair of the Design
Automation Conference (DAC) from 1996 to 1997 and 2000, respectively. He
was the Program and General Chair of the International Conference on Com-
puter Design (ICCD) in 1988 and 1989, respectively.

Gabriele Luculli (M’01) received the laurea degree
and Ph.D. degree in electronic engineering from Pisa
University, in 1996, and Scuola Superiore S.Anna of
Pisa, in 2000, respectively.

He is a R&D Manager in the Advanced System
Technology group of STMicroelectronics, where he
contributes to the development of design methodolo-
gies for SOC design. From 1995 to 2000, he had sev-
eral work experiences in different research centers,
among them IEI Institute of CNR, NATO Research
Center, and PARADES Center in Rome. His research

interests include several aspects of design technologies for system-on-chip de-
sign, with particular emphasis on system-level design, software performance
estimation, and embedded OS synthesis.

Marco Carilli (M’00) graduated in physics at Uni-
versity La Sapienza of Rome, Italy.

He is Director of Design Systems in the Advanced
System Technology group of STmicroelectronics. He
joined ST in 1987 and he has been working primarily
on design automation R&D projects ever since, con-
tributing to the birth of corporate CAD in the com-
pany. He has taken various technical and manage-
ment responsibilities in Central R&D first, then in the
former Programmable Products Group (now CMG),
where he was responsible for the System-On-Chip

R&D group and for setting up and developing the entire corporate design reuse
standardization program. Before ST, Marco worked for SOGEI (Finsiel Group).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

