
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001 213

Resolution, Optimization, and Encoding of Pointer
Variables for the Behavioral Synthesis fromC

Luc Séméria and Giovanni De Micheli, Fellow, IEEE

Abstract—As designers may model mixed hardware–software
systems using a subset of or ++, we present SpC, a solution
to synthesize and optimize hardware models with pointers. In
hardware, a pointer is not only the address of data in memory,
but it may also reference data mapped to registers, ports, or wires.
Pointer analysis is used to find the set of locations each pointer may
reference in a program at compile time. In this paper, we address
the problem of synthesizing and optimizing pointers to multiple
variables or array elements. The value of the pointers are encoded
and branching statements are used to dynamically access data ref-
erenced by pointers. A heuristic is used to efficiently encode the
values of the pointers. Compiler techniques are also used to re-
duce storage before loads and stores. An implementation using the
SUIF framework (Wilson et al., 1994; SUIF Compiler Framework)
is presented, followed by some case studies and experimental re-
sults.

I. INTRODUCTION— SYNTHESIS FROM

D IFFERENT languages have been used as input to behav-
ioral synthesis. Hardware description languages (HDLs)

such as Verilog HDL and VHDL are the most commonly used.
However, designers often write system-level models using
programming languages such asor to estimate the
system performance and verify the functional correctness of
the design. offers fast simulation as well as a vast
amount of legacy code and libraries, which facilitate the task
of system modeling. To implement parts of the design modeled
in in hardware using synthesis tools, designers must
manually translate these parts into a synthesizable subset
of HDL. This process is well known for being both time
consuming and error prone.

The use of or a subset of to describe both
hardware and software would accelerate the design process and
facilitate the hardware–software migration. Designers could de-
scribe their system using and partition it into software
and hardware blocks. Hardware synthesis tools from
would then be very useful to map models into logic
netlists.

In order to help designers refine their code from a simula-
tion model to a synthesizable behavioral description, we are
trying to efficiently synthesize the full ANSI standard [23].
This task turns out to be particularly difficult because of dy-
namic memory allocation, function calls, recursions,goto s,

Manuscript received December 8, 1999; revised June 23, 2000. This work
was supported in part by the ARPA, MARCO Gigascale Design Center, and by
Synopsys Inc. This paper was recommended by Associate Editor R. Gupta.

The authors are with the Computer Systems Laboratory, Stanford
University, Stanford, CA 95305 USA (e-mail: lucs@azur.stanford.edu;
nanni@galileo.stanford.edu).

Publisher Item Identifier S 0278-0070(01)00942-3.

type castings, and pointers. The problem with dynamic memory
allocation (malloc, free) and recursion is that the size of
the memory required for an application isa priori unknown.
Therefore, the synthesis of code involving dynamic memory
allocation would require access to an operating system running
in software or the generation of hardware allocators [44], [53].
Arbitrary control flow (e.g., due togoto statements) compli-
cates the scheduling of operations even though it has been ad-
dressed [49]. In general, the use of pointers is one of the major
difficulties, especially when combined with pointer arithmetic
and type casting. Pointers have different applications in. They
are often used in function calls to pass parameters by reference.
They are also used to scan arrays, reference data structures,
or perform any type of complex memory management opera-
tion. The semantic of pointers in is the address of data in
main memory. However, in hardware, designers may want to
optimize the memory architecture by using registers, multiple
memory banks, etc. Therefore, pointers cannot be considered as
addresses to a single memory. To enable efficient mapping of

code with pointers to hardware, the synthesis tool has to au-
tomatically generate the appropriate circuit to access the data
referenced by pointers. The resolution of pointers is a key fea-
ture for -based synthesis. It is an enabler for fast data accesses
and efficient scheduling of operations.

In this paper, we will focus on the efficient hardware imple-
mentation of pointers in models. In Section II, we present
some of the related work on synthesis fromas well as on com-
pilation of code onto parallel architectures. In Sections III and
IV, we define our synthesizable subset ofand show how var-
ious types of pointers can be synthesized. In Sections V and VI,
we discuss different techniques for optimizing the code by lim-
iting the number of live variables before the loads and stores and
encoding the value of the pointers. In Section VII, we present
SpC, our framework for the synthesis and optimization of
code with pointers using the SUIF [52], [66] compiler frame-
work and a commercial behavioral synthesis tool. Finally, in
Section VIII, results are given for a set of examples.

II. RELATED WORK

A. Hardware Synthesis from

Different subsets of and -like HDLs have been
defined and used for synthesis. First, we mention those devel-
oped in the 1980s. HARDWAREC [26] is a language with a -like
syntax and a cycle-based semantic. It does not support pointers,
recursion, or dynamic memory allocation. HARDWAREC can be
fully synthesized. CONES[47] is an automated synthesis system
that takes behavioral models written in a-based language [6]

0278–0070/01$10.00 © 2001 IEEE

214 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

and produces gate-level implementations. Here, themodel de-
scribes circuit behavior during each clock cycle of sequential
logic. This subset is very restricted and does not contain un-
bounded loops nor pointers.

In the recent past, a few projects have been looking at means
to use as an input to current design flows [12]. Con-
structs are added to model coarse-grain parallelism, commu-
nication, and data types. These constructs can be defined as
new syntactic constructs, hence creating a new language. They
can also be implemented as part of a class library [56],
[69]. Even though restrictions on the language apply for syn-
thesis, hardware–software systems are then modeled directly
using . Simulation is performed by running the executable,
which is generated after compiling the models. Standard debug-
ging environments can then be used to check the functionality
of the system.

For reactivity, SYSTEMC [29], [69] (formerly known as
SCENIC [28]) supports a mixed synchronous and asynchronous
approach implemented as a class library. The Esterel
Language (ECL) [27] is synchronous because it is based on
both and ESTEREL. Other extensions include HANDEL-C [59]
and BACH-C [22] (originally based on OCCAM), SPECC [65]
(based on SPECCHART), CYNLIB [56], and -LEVEL DESIGN

[54].
In order to map functionality to hardware, a synthesizable

subset is usually defined. We can distinguish two ap-
proaches. The first approach consists of translating a subset of
into HDL (Verilog or VHDL) that will eventually be synthesized
using today’s synthesis tools. The second approach consists of
using directly as an input to behavioral synthesis.

In order to facilitate the mapping of models into hard-
ware, several tools exist that automatically translate-based
descriptions into HDL either at the behavioral level or the reg-
ister transfer level (RTL) level. In the original BACHC compiler,
a limited subset of can be translated into VHDL at the behav-
ioral level. COWARE [55], OCAPI [41], [62], CYNAPPS[56],
and others [57], [70] automated the translation from a refined
RTL model to HDL. These subsets do not include pointers.

Kim and Choi [24] as well as the authors of this paper
[42], [44] were the first to report on the synthesis of hardware

models with pointers. Kim and Choi’s implementation is
limited to a rather small subset of. Pointers that may point to
multiple locations are not supported and such constructs as type
casting and complex data structures are not considered. Two
commercial tools, -level design C2HDL [51] and frontier
design ART BUILDER [58], also provide tools for translating

models into Verilog or VHDL. Limited scheduling and
resource-sharing techniques can be applied to quickly generate
RTL synthesizable code. Pointers are one of the limitations for
AR T BUILDER. Pointers are only supported to pass parameters
by reference or to scan arrays (pointer arithmetic). These types
of pointers can usually be removed using standard compiler
techniques (propagation and function inlining) and by adding
ports for procedures. C2HDL, on the other hand, supports all of
the ANSI constructs, excluding libraries. However, pointers
are implemented in a software-like approach. They are only
considered as addresses to data stored in memories that require
the allocation of memories to store the various variables and

addressing units. In hardware, designers may want to optimize
the locality by storing data into multiple memories, registers,
or even wires (e.g., output of functional units). Our tool SpC
presented here enables such optimization by leveraging recent
researches on pointer analysis and high-level synthesis.

Another approach is to use directly as an input to
architectural synthesis tools. This approach has been chosen by
Synopsys with COCENTRIC SYSTEMC COMPILER [19], [68] and
by NEC with CYBER [49]. and are both procedural
imperative languages. Their semantics rely on an implicit Von
Neuman architecture. The implementation of sequential func-
tional descriptions into hardware has extensively been studied
during the last decade [8], [17], [18], [25], [26], [60], [67]. Syn-
thesis from description can leverage some of this pre-
vious work on architectural synthesis but also requires the de-
velopment of some extensions for efficiently supporting the dif-
ferent constructs of . Some of the current work on func-
tion calls as well as synthesis of structures in VHDL can also
be relevant. More research is, however, required for supporting

constructs such as pointers, dynamic memory alloca-
tion, and object-oriented features.

Finally, we should also mention some of the areas in which
models mix hardware–software and other specific

architectures. For hardware–software codesign, the COWARE

N2C system [55] as well as its precursor [5] use as a
language base for system specification. Additional constructs
have been introduced to define concurrent processing blocks
and communication. This description is used to synthesize the
interfaces between the blocks. COSYMA [16] uses , another
superset of , with processes and timing constraints. During
hardware synthesis, functions are inlined and pointers are
treated only as memory references.

For synthesis of reconfigurable systems based on field pro-
grammable gate array (FPGA), several projects have been using

. For PAM-BLOX [33], a bottom-up methodology is
presented in which a library of components can be defined and
used as objects to build systems for the Pamette archi-
tecture. A similar design environment has also been developed
based on for SPLASH [20]. For mixed software and repro-
grammable FPGA architectures, the GARP compiler [7] as well
as the NIMBLE compiler [32] automatically generate retargetable
coprocessors to speed up loops. Pointers are treated as refer-
ences to the main memory. This approach is relevant for imple-
menting memory-mapped input–output (I/O). However, it can
be a limitation to parallelize data transfers inside of a datapath.
Finally, Babbet al. [2] present a compiler for a variation of the
RAW [71]parallel architecture in which one or multiple pro-
cessing units can be replaced by specialized hardware blocks.
The problem of pointers is addressed in order to map data to
different memory tiles. pointers to multiple memory locations
are, however, a limitation because these locations are mapped
to a unique memory and, therefore, cannot be accessed in par-
allel in a datapath.

To summarize the previous work, pointers are one of the main
outstanding issues for the synthesis of hardware from. In
order to guarantee good quality of results, the current prac-
tice is to support only a limited subset of the language with
severe restrictions on pointers. Otherwise, a software-like ap-

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 215

proach is taken in which the data accessed by pointers are stored
in memory. Our approach is based on the use of analysis tech-
niques (pointer analysis) in order to generate efficient hardware
from code using any kind of pointers at the behavioral level.

B. Software Compilation of and

and are two of the most commonly used pro-
gramming languages today. Many compilers exist for many
different architectures. Most of the recent compilers not only
try to map the different statements of the code into assembly
instructions, but they also try to optimize the code for a given
instruction set architecture (ISA). For distributed architectures,
parallel compilers are trying to partition programs into multiple
threads running in parallel. However, some of theconstructs
such as pointers and arbitrary control-flow operations (goto,
longjmp , etc.) make these optimizations difficult. In software,
pointers represent addresses in memory. They are often used to
pass parameters by reference, access array elements, address
dynamically allocated memory, and manage the memory. By
definition, pointers may reference multiple data, which happens
when referencing the different elements of a data structure or
an array. It may also happen inside of a function for pointers
corresponding to parameters passed by reference or, more
generally, when the value of the pointer at one point in the code
varies according to the current context or the previous flow of
operations.

Many of the optimizations done in today’s compilers as well
as in many high-level synthesis tools are based on data-flow
analysis [1], [34]. The purpose of data-flow analysis is to
provide information on how a code segment manipulates its
data. Examples of applications include register allocation
(based on reaching-definition and live-variable analysis),
constant folding, common-subexpression elimination, loop
optimization, dead-code elimination, etc. The optimizations
presented in Section V are also applications of data-flow
analysis. To solve a given data-flow problem, the effect of
each programming language structure is modeled by transfer
functions. The result of such transfer functions often depends
on the data accesses at each statement in the program. Namely,
in order to model the effect of statements involving a pointer, it
is important to know what data may be accessed by the pointer
(points-to information).

In order to parallelize programs onto distributed architec-
tures, the independent sets of data, which can be processed
in parallel, have to be extracted [30]. The problem here is to
find statements in the program that may read or write the same
locations (aliasing problem). For this purpose, thealiasing in-
formation has to be determined between pointers. The points-to
information and the aliasing information are equivalent and
can be determined by recent analysis techniques calledpointer
analysisor alias analysis. Different pointer-analysis techniques
[37], [50], [51] exist. For hardware synthesis, we also need to
know which variables are accessed at each statement. There-
fore, pointer analysis can be used for the behavioral synthesis
of models as we will do in the next section.

III. B ACKGROUND—SYNTHESIS OF MODELS WITHPOINTERS

In software, a program is targeted to a virtual architec-
ture consisting of one memory in which all data are stored. The

semantics of pointers is the address of an element in memory.
Even thoughregister declarations may allow programmers
to specify the variables to place in registers, the assignment of
variables to registers is generally done by the compiler. The no-
tions of caches and memory pages are transparent to program-
mers.

In hardware at the behavioral level, designers want to have
control on where data are stored and optimize the locality of
the storage. Typically, a chip design contains multiple memory
banks, register files, registers, and wires. To efficiently map

code onto hardware, the storage space must be partitioned.
During synthesis, each partition is then mapped to a register, a
wire, or a memory. Some partitions may also represent pointers.
Pointers may be used to reference any variable no matter where
its information is available. Pointers are then considered as ref-
erences to memory elements, registers, wires, or ports. They can
be used to access data. In this paper, we call the action of reading
data using a pointer aload. Subsequently, astore is the action
of writing data using a pointer.

The synthesis of hardware from consists first of parti-
tioning the memory. Each partition is then mapped to a variable
(akin to wire or register in the final implementation) or an array
(akin to memory or register file). The synthesis of pointers
consists of generating the appropriate circuit for accessing data.
For this purpose, we change the addresses into numbers (i.e.,
encode pointers’ values) and replace loads and stores by some
assignments, directly accessing the data that the pointer may
reference (i.e., dereference pointers).

Example 1: Consider the following code segment.

int p, n;
int t[256];
struct { int a; int b; } in;

if
p = &in.a;

else
p = &in.b;

t[n] = p;
p = t[n + 1];

.

In the final implementation, we want to store arrayt[] in a
memory and integern, pointerp, and the two structure fields
in.a andin.b in separate registers that are accessible in par-
allel. Moreover, pointerp may point to eitherin.a or in.b . If
we associate the value0 with in.a and1 with in.b , we can
remove the pointer. First, for the addresses (&), the assignments
p = &in.a andp = &in.b can respectively be replaced by
p_tag = 0 andp_tag = 1 , wherep_tag represents the
encoded value of the pointer. Second, the dereferences () in
loads and stores can be removed as follows.

The load (t[n] = p) can be replaced by the following:

if(p_tag == 0)
t[n] = in.a; case p == &in.a

else
t[n] = in.b; case p == &in.b .

216 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

The store (p = t[n+1]) can be replaced by the following:

if(p_tag == 0)
in.a = t[n+1]; case p == &in.a

else
in.b = t[n+1]; case p == &in.b .

As we can see in Example 1, in order to efficiently map
code into hardware, we first need to partition the memory. In our
implementation, memory is partitioned into a set of location sets
as described in Section III-B. Subsequently, to synthesize load
and store operations into hardware, we need to know at compile
time the set of locations the pointers may reference (points-toin-
formation). As we have seen in Section II-B, such information
is also widely used in compilers and can be determined by re-
cent analysis techniques calledpointer analysisoralias analysis
described in Section III-C. Finally, in Section III-D, we present
how memory can be partitioned into variables and arrays, which
can be mapped to hardware.

A. Definition of the Subset

The ultimate goal of this research is to efficiently synthesize
the full ANSI . In this paper, however, we target mainly the
synthesis of pointers to statically allocated data and explore dif-
ferent optimization techniques. Extensions of this work to in-
clude more of the syntax (malloc/free) are possible [44],
[45], but beyond the scope of this paper. In this section, we only
talk about the restrictions on the synthesizable subset. Limita-
tions on the generated architecture may also exist akin to the
limitations of the behavioral synthesis tool used as a backend to
our tool.

Our subset contains all statements supported by today’s
behavioral synthesis tools, including branches, loops, assign-
ments, etc. It also contains pointers to data, which can be
stored in multiple memories, registers, or wires. It supports
pointers to statically allocated data such as variables, arrays and
structures, pointers to pointers, and pointers to functions. Since
memory blocks are instantiated at compile time, recursions
and pointers to dynamically-allocated memory of which size
is unknown at compile time are not allowed. This implies that
in general,malloc , free , and recursions are not supported.
Nevertheless,malloc followed by free could be allowed as
well as tail recursion. Calls tomalloc followed by free can
be treated as local variables [44] and tail recursion elimination
can be done by turning recursions into loops [34].

The pointer analysis techniques and the memory representa-
tion presented in the next sections support the complete ANSI

syntax. In this paper, however, we define our own synthesiz-
able subset. Our subset includes all types of pointers and type
casting. The code is assumed to be correct. Tools such as LCLint
[63] or Purify [64] can be used to check that memory reads and
writes are valid.

In addition, we set the following restrictions. One restric-
tion applies to systems described as a set of parallel processes:
pointers that reference data outside of the scope of a process
(e.g., global variables or data internal to some other processes)

are not allowed. Their resolution would require the synthesis of
some kind of interface between the circuits realizing the pro-
cesses. Such interface is usually defined during system parti-
tioning and, hence, before synthesis.

A second limitation stems from the fact that most commer-
cial synthesis tools also have restrictions on functions. Recur-
sions are usually not supported. Procedures that are mapped to
components typically have restrictions both on their function-
ality and their parameters. For example, the same function called
within different contexts may usually not be shared. Besides,
most synthesis tools do not synthesize parameter passed by ref-
erence because this is not supported by most HDL syntax. The
synthesis of functions in and the resolution of pointers inside
of functions are beyond the scope of this paper.

B. Memory Representation

The simplest memory representation consists of a single ad-
dress space in which all data are stored. This trivial represen-
tation however prevents from optimizing the locality and par-
allelizing the code. On the other hand, the most accurate rep-
resentation, which would distinguish each element of arrays or
of recursive data structures, is not practical for large programs.
As a result, most analysis techniques combine elements within a
single data structure. In order to find both an accurate and prac-
tical representation for hardware synthesis, we use the notion
of location setsintroduced by Wilson and Lam [50], [51]. Lo-
cations sets support any of the data structures available in
including arrays, structures, arrays of structures, and structures
containing arrays. This representation is also relatively simple
as it combines the different elements of an array or of recursive
data structures. It can, therefore, be used for largeprograms.

Let be the set of memory blocks corresponding to the dif-
ferent variable declarations. A location set

represents the set of locations with offsets is
in a particular block of memory . That is, is an offset

within a block and is the stride. If the stride is zero, the loca-
tion set contains a single element. Otherwise, it is assumed to
be an unbounded set of locations.

Example 2: In the code segment shown in Example 1, the
memory can be represented by the following set of location sets:
p, ; n, ; t , for the elements of arrayt ; in ,

for in.a ; and in , for in.b . Note that offsets and
strides are represented here as a number of bytes.

For simple data structures (arrays, structures, array of struc-
tures), offsets are used to identify the different fields of struc-
tures whereas strides are used to record array-element sizes.
Fig. 1 gives an example of representation for an array of struc-
tures. The representation does not distinguish the different ele-
ments within the array but it distinguishes the different instan-
tiations of variables and structures. This makes sense since all
elements of an array are usually alike. Nested arrays and struc-
tures, type casting, and pointer arithmetic are making things
more complicated, leading to some additional inaccuracies.

The representation of the memory itself depends on how loca-
tions are being accessed. Consequently, pointer analysis, which
is the subject of the next section, and memory representation are
tightly related.

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 217

Fig. 1. Representation ofstruct {int a; int b; } r[] . The
offset and stride are represented for the location set consisting of the elements
r[i].b wherei is an integer.

C. Pointer Analysis

Pointer analysis is a compiler pass to identify at compile time
the potential values of the pointers in the program. This infor-
mation is used to determine the set of locations that the pointer
may point to. With the memory representation in Section III-B,
this set of locations is actually a set of location sets. For syn-
thesis in the case of loads and stores, we want to synthesize the
logic to access or modify the location referenced by the pointer.
For this purpose, the points-to information must be bothsafe
andaccurate—safe because we have to consider all locations
the pointer may reference and accurate because the smaller the
points-to set is, the less logic we have to generate. We can dis-
tinguish two types of analyzes.

1) Flow and Context Insensitive: This analysis [46] does not
distinguish the order in which the statements are executed
(flow insensitivity) and the different calls of a function
(context insensitivity). This interprocedural analysis has
an almost linear complexity. It can be used to analyze
very large programs but the points-to information is rather
inaccurate. Within a procedure, flow-insensitive analysis
gives global information (valid for all references in the
code) rather than the information specific to each refer-
ence. Similarly, in the case of function calls, context-in-
sensitive analysis propagates the information from the
call site through the called function and back toall call
sites.

2) Flow and Context Sensitive: This analysis provides more
accurate results. It distinguishes the different paths of
control within the program and the different calls of a
function. One implementation [50], [51] by Wilson and
Lam within the SUIF framework can efficiently support
the full-featured ANSI with good accuracy. Even though
the complexity of the analysis can be exponential, it is not
a limitation for hardware synthesis because we deal with
rather small and simple programs. In addition, most of the
inaccuracy comes from features such as dynamic memory
allocation, recursion, and recursive data structures that we
do not consider in this paper.

The flow- and context-sensitive analysis is more appropriate
for hardware synthesis. In our case, the complexity of the anal-
ysis is not an issue and the coding style for modeling hardware
leads to accurate results.

Our implementation uses a flow- and context-sensitive anal-
ysis. Using the memory representation described in the pre-
vious section, the points-to information is defined as a set of
location sets. The points-to information is then used to encode
the pointers’ value and to generate the appropriate logic for ac-
cessing the data in each location set.

Example 3: In the code segment presented in Example 1,
annotations are inserted by the pointer analysis to specify where
points-to set pointers may point at loads and stores.

int p, n;
int t[256];
struct { int a; int b; } in;

if
p = &in.a; //p in,

else
p = &in.b; //p in,

t[n] = p; //p in, in,
p = t[n+1]; //p in, in,

.

In the previous code segment, the notationp, 0, 0
in, 0, 0 , in, 4, 0 stands for “p may point to

variablesin.a or in.b ,” where in.a is represented by the
location set in , andin.b is represented by the location
set in , .

D. Memory Partitioning and Mapping to Variables and Arrays

After analysis, the storage in the program can be represented
as a set of distinct location sets. This set of location sets rep-
resents a partitioning of the memory. Each partition block (i.e.,
each location set) is ultimately mapped to a wire, a register, or a
section of memory in the final design. The allocation of a given
variable to a register (or a wire) is typically the result of architec-
tural synthesis. We can distinguish two types of location sets for
statically allocated data: location sets whose strides are null (i.e.,
singletons, sets of one location) and location sets with nonzero
strides (i.e., sets of multiple locations). A singleton location set
may, therefore, be treated as a simple variable whereas a loca-
tion set with nonzero stride may be mapped to an array. In our
implementation [45], for each location set , we define
SPC as the following.

For a singleton location set (i.e.,null), SPC is a
variable. In the case of a location set representing a variable
of basic type (e.g.,char, short, int) the mapping is
straightforward. For structures, the different fields can be
mapped to separate variables (akin to registers or wires in the
final hardware) as long as they are represented by separate
location sets.

For a location set with nonzero stride (i.e.,not null),
SPC is defined as an array (e.g., array of integers).
Such array may then typically either be mapped to a memory
or a register file manually or according to current methodology
[9], [36]. For arrays of structures, the different fields of the
structures can be mapped to different memories as long as their
representations do not overlap. This allows to independently
access the different fields of the structures, leading to more
flexibility and potentially better performances.

Example 4: We have seen thatp, n, t, in.a, and
in.b in Example 1 can be represented by the location setsp,
0, 0 , n, 0, 0 , in, 0, 4 for the elements of array

218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

t , in, 0, 0 for in.a , and in, 4, 0 for in.b . As a
result, we create the following variables:

int SPC_n_0_0; //n
int SPC_p_0_0; //p
int SPC_t_0_4[256]; //t[256]
int SPC_in_0_0; //in.a
int SPC_in_4_0; //in.b .

After partitioning, the code is then transformed into

if
SPC_p_0_0 = &SPC_in_0_0;

else
SPC_p_0_0 = &SPC_in_4_0;

SPC_t_0_4[n] = SPC_p_0_0;
SPC_p_0_0 = SPC_t_0_4[n+1];

Note that the present code contains only variables and arrays.
The partitioning process can be more complex with type

casting and out of bound array accesses [45]. Nevertheless,
after memory partitioning, the storage of theprogram can be
represented as a set of distinct variables and arrays. Therefore,
in the remainder of this paper, all data are supposed to be either
variables or arrays. In the next section, we present how pointers
to variables and arrays can be synthesized. For clarity, variables
and arrays such asSPC_a_0_0 and SPC_table_0_4
will be denoteda andtable directly.

IV. POINTER SYNTHESIS

In hardware, as discussed in Section III, data may be stored
in multiple registers, memories, or even wires (e.g., output of
a functional block). Therefore, to efficiently map code into
hardware, pointers may not only address data in memory, they
may also reference registers, wires, or ports. Pointer analysis
is used to define the set of locations as a set of location sets
that each pointer may point to. Our synthesis tool generates
the appropriate circuit to dynamically access these locations
according to the pointers’ value. We distinguish two types of
pointers: pointers to a single location, which can be removed,
and pointers to multiple locations.

Loads from pointers to a single location (i.e., one location set
whose stride is null) are simply replaced by assignments from
the location accessed. Similarly, stores are simply replaced by
assignments to the location referenced. Loads and stores from
pointers to multiple locations (i.e., many location sets with zero
strides and/or one or more location set with nonzero stride) are
replaced by a set of assignments in which each location may
be dynamically accessed according to the pointer’s value. For
the sake of clarity, we will use the variable namep as a generic
pointer name.

Fig. 2. Encoding of pointers in an array.

A. Encoding the Value of the Pointers

The addresses (i.e., pointers’ values) are encoded. The en-
coded value of a pointerp consists of two fields: thetagp.tag
corresponds to the location set referenced by the pointer and the
indexp.index stores the number of bytes corresponding to
the offset of the data referenced within the location set.

The tag p.tag is only used for pointers to multiple
location sets. Its size (defined as the minimum number
of bit used to store its value) can be as small aslog
(size_of_points-to-set) . The index p.index ,
on the other hand, is used when the pointerp may point to a
location with nonzero stride (e.g., an array). Pointer arithmetic
is then supported by changing the value of the index: the value
of p.index is initialized whenp gets the address of the array
element. Then the index is modified instead ofp.

For pointer variables, the following two fields can be imple-
mented as separate variables:p_tag andp_index .

Definition 1: For a pointer variablep we define the vari-
ablesp_tag andp_index , wherep_tag encodes the loca-
tion set the pointer points to andp_index stores the offset cor-
responding to the location referenced by the pointer within the
location set.

In the case of an array of pointers, the tag and index fields are
merged into one data structure, as shown in Fig. 2. To support
type casting, it is convenient to set the size of this data structure
to be the same as the size of a pointer before encoding (typically
32 b). The tag is stored on the left part of the code and the index
on the right part of the code to support pointer arithmetic.

Example 5: Consider the following code segment:

int p, q;
int a, b, c, table[256];

q = &table[n];
if

p = &a;
q = &c;

} else {
p = &b;
q = &table[n];

q = p + 1;

In this code segment,p may point to variablesa or b and
q may point toc or an element oftable[] . In order to
remove the pointers, we create the 1-b variablesp_tag and
q_tag . Sinceq may point to an array element, we also create
the indexq_index . Forp_tag we associate the value0 with
a and1 with b. As a result, the assignmentp = &a is replaced
by p_tag = 0 and the assignmentp = &b is replaced by
p_tag = 1 . Similarly, for pointerq, we associate the value

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 219

0 with c and1 with the location set representing the elements
of table[] . The assignmentq = &c is then simply re-
placed byq_tag = 0 . The assignmentq = &table[n] is
replaced by two assignments:q_tag=1 andq_index=n 4.

Example 6: Consider the assignment of pointers(r = s) ,
wherer may point toa, b, orc ands may point tob or c . In
order to remove the pointers, we creater_tag ands_tag . For
r_tag , we associate the value0 with a, 1 with b, and2 with c .
Fors_tag , we associate0 with b and1 with c . The following
code is generated forr = s :

switch s_tag:
case 0: r_tag=1;
case 1: r_tag=2;

Now, if for r_tag the value0 was associated withb and
the value1 was associated withc , r = s would have been
replaced by

r_tag = s_tag;

This shows that the complexity of the circuit implementing
the assignment of two pointers is directly related to the encoding
of the pointers. Efficient pointer comparison and assignment of
pointers require pointers to have the same code or at least codes
as close as possible.

The encoding of the pointers’ value has an effect on the com-
plexity of the design. Example 6 gives two examples of encod-
ings that produce different implementations for the assignment
of two pointers. In Section VI, the encoding problem is formu-
lated and a heuristic solution is presented.

B. Dereferencing the Pointers

Several types of pointers can be distinguished. We have seen
in Section III-D how complex data structures can be represented
as variables and arrays. Without loss of generality, in this sec-
tion we first consider pointers that may point to variables and
array elements. We then present two extensions for pointers to
pointers and pointers to function.

1) Pointers to Variables and Arrays:We use the result
of pointer analysis to remove loads and stores. With the
assumptions of Section III-A, loads and stores can be replaced
by branching statements (e.g.,case, if then else) at
compile time. Pointer analysis defines the set of location sets
that the pointer may reference at each load and store. When
these location sets are mapped to registers or wires (e.g., output
of a functional unit), the branching statements corresponding
to a load are implemented using a multiplexer controlled by
the pointer’s value. In the case of a store, some control logic
is generated to update the value of the variable the pointer
points to. This control logic can be automatically generated by
an architectural synthesis tool. References to array elements
stored in memories or register files are treated similarly. Some
control logic is also created to access the location referenced in
the different memories or register files.

Example 7: Consider the code segment in Example 5:q =
p+1 , wherep may point toa or b andq may point to eitherc

Fig. 3. Implementation of q = p+1 , wherep may point toa or b andq
may point toc or an element oftable[] .

or an element oftable[] . To synthesize the load, we create
the temporary variablestar_p , which stores the value of the
data the pointerp points to (i.e., p) at the load instruction. Sim-
ilarly for the store, we create the temporary variabletmp_q ,
which stores the new value to be assigned to the dataq points to
at the store instruction. After encoding the pointers’ value (cf.
Example 5), the loads and stores are then replaced by the fol-
lowing code:

switch p_tag: {
case 0: star_p = a; break;
case 1: star_p = b; break;

}
tmp_q = star_p + 1;
switch q_tag: {

case 0: c = tmp_q; break;
case 1: table[q_index]=tmp_q; break;

}.

The corresponding circuit generated after synthesis is pre-
sented in Fig. 3. Note that the load (p) is implemented
by a two-input multiplexer controlled byp_tag .

The removal of the dereferences “” in loads and stores can
be done in one pass. For each load (p), we look at the
points-to set of the pointer at this instruction. If the points-to
set is only one location, the load is simply replaced by an as-
signment from this location. Otherwise, we create a temporary
variable (star_p in Example 7) that stores the value of the
data the pointer points to at the load instruction. The load in-
struction is then replaced by an assignment from this temporary
variable. Branching statements are inserted before the load to
set the value of the temporary variablestar_p according to
the values of the tagp_tag and the indexp_index .

Similarly, for each store (q =), we also look at the
points-to set of the pointerq at this instruction. If the pointer
points to only one location, the store is simply replaced by a
assignment to this location. Otherwise, we create a temporary
variable (tmp_q in Example 7) that stores the value to be
assigned to the dataq points to. The store is then replaced
by an assignment to this temporary variable and branching
statements are inserted after the store to update the values of
the variables thatq may point to according to the tagq_tag
and indexq_index .

This implementation can be generalized to pointers to
pointers and pointers to functions. In Section V, we also present
some optimizations to reduce the memory usage before loads
and between loads and stores when the pointer is a variable.

220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

2) Generalization to Other Types of Pointers:In general,
pointers may also point to other pointers and functions. The
technique presented in the previous section can be extended to
these types of pointers.

Pointer to Pointers: Pointers to pointers can be implemented
by resolving the pointers level by level.

Example 8: Consider a pointerp that may point to two
pointersq1 , q2 . Pointersq1 andq2 may in turn both point
to variablesa or b. The statement(p = p+1;) can be
resolved as the following by using a sequence of two case
statements. For the sake of clarity, the pointer’s values have
not been encoded. Encoding of the pointer’s value can be
performed in a second pass.

switch p {
case &q1:

star_p = q1; break;
case &q2:

star_p = q2; break;
}
switch star_p {

case &a:
star_star_p = a; break;

case &b:
star_star_p = b; break;

}
tmp_star_p = star_star_p + 1;
switch p { //Note: can be removed by

further analysis
case &q1: //

star_p = q1; //
break; //

case &q2: //
star_p = q2; //
break; //

} //
switch star_p {

case &a:
a = tmp_star_p; break;

case &b:
b = tmp_star_p; break;

}.

A better implementation can be obtained by removing unnec-
essary definitions. In the previous example, the thirdswitch
statement redefiningstar_p is not necessary and can be auto-
matically removed using compiler analysis techniques.

Pointer to Functions:Pointers to functions are resolved in a
straightforward manner after pointer analysis.

Example 9: For a pointerp that may point to functions
f1(int) or f2(int) , (p) (a) will simply be replaced
by the following code segment:

switch p {
case &f1: f1(a); break;
case &f2: f2(a); break; }.

Fig. 4. Optimization of a load.

In order to map this code into hardware, functionsf1 andf2
can be inlined and the value of pointerp is encoded.

The synthesis of the functions themselves is then performed
according to the synthesis tool (e.g., map to component, inline
…). In our implementation, functions are inlined before syn-
thesis.

V. OPTIMIZATION OF LOADS AND STORES

In the previous section, we have seen how pointers can be
removed after pointer analysis. Now we optimize the code for
hardware synthesis. First, we present techniques to reduce the
amount of storage necessary before loads (p) and stores

p = when the pointerp is a variable.
In this section, the following assumptions are made. The

pointer p is a variable. Its points-to set consists of a set of
variables (mapped to registers or wires). The optimizations pre-
sented here are only performed when the previous assumptions
hold. Their generalization to loads and stores from pointers
within an array or pointers pointing to array elements is beyond
the scope of this paper.

The goal of the optimizations presented here is to reduce the
number of live variables1 before loads and stores. When vari-
ables are stored in registers, the number of registers used in a
given program corresponds to the maximum number of vari-
ables live at a clock boundary. The direct effect of our opti-
mizations is, therefore, to reduce the number of registers used
in the design. Besides, synthesis tools may also take advantage
of having less live variables before loads and stores to improve
performance by more efficiently reusing registers.

A. Optimization of Loads

By definition, a load may read any variable of the points-to
set. It also uses the value of the pointer to select which variable
is actually read. This implies that all variables of the points-to
set and the pointer variable are live before the load. However,
only one variable is really necessary: the variable the pointer
points to.

Definition 2: For a pointer variablep, we definestar_p
as a variable whose value is equal to the value of the data the
pointerp points to at any point in the program.

A load p) is then equivalent to an assignment from
star_p . The number of live variables before a load can then
be reduced by at most the number of variables in the points-to
set as we can see in Example 10.

Example 10: In Fig. 4, the load(out = p) , wherep may
point toa, b, orc , is replaced by an assignment fromstar_p .

1A variable islive at a particular point in a program if there is a path to the
exit along which its value may be used before it is redefined (i.e.,killed). It is
deadif there is no such a path [1], [34].

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 221

Fig. 5. Example of code segment before and after optimizing load.

The number of live variables before the load goes froma,
b, c, p to star_p} , assuming that none of these vari-
ables are live after the load.

The issue is then to definestar_p in such a way that the
number of live variables is reduced. In our implementation, each
load is replaced by assignments fromstar_p . The variable
star_p itself is defined each timep or any variable in the
points-to set is modified. Dead-code elimination [1], [34] is then
performed to remove all unnecessary definitions ofstar_p .

However, the early definition ofstar_p may also increase
the number of live variables. When all variables of the points-to
set are live,star_p is just a copy of one of these variables and
is not necessary. Therefore, in order to minimize the number
of live variables,star_p is killed (i.e., redefined) when all
variables of the points-to set are live. The following is an outline
of the complete algorithm for the optimization of loads.

1) Updatestar_p whenp or any variable of the points-to
set changes.

2) Do live variable analysis [1], [34] (implemented as back-
ward data-flow analysis).

3) Insert definition ofstar_p when all variables of the
points-to set are live.

4) Do dead-code elimination.

Example 11: Let us take the code segment shown in Fig. 5
before and after optimization, where the pointerp may point to
a, b, or c .

We assume that none of the variables are live after the last
line. During the first pass, we replacep bystar_p and update
star_p aftera = in . Then, because oftemp = a + b +
c , a, b, andc are live at the firstwait() statement. After live
variable analysis, we add the case statements which define (i.e.,
kill) star_p . Finally, dead-code elimination will remove the
first definition of star_p at the beginning of the code. The
number of live variables before the load has been reduced from

a, b, c, p, temp} to star_p, temp} .
This optimization can drastically decrease the number of live

variables before loads. Nevertheless, it increases the number
of branching statements, which correspond to combinational
steering logic to control the value ofstar_p . Therefore, there
is a tradeoff here between the number of live variables (i.e., reg-
isters) and the amount of steering logic in the hardware imple-
mentation.

B. Optimization of Stores

In this section, we try to apply the same idea of creating tem-
porary variables to reduce the number of life variables before
stores.

Example 12: Let p be a pointer that may point toa, b, or
c . Consider the storep = in , assuming that all variables of
the points-to set are live after the store. As a result, we have
five variables {p, in, a, b, c } live before the store. Now
assume that, at runtime,p points toa. Since the value ofa is
going to be redefined by the store there, it is not needed before
the store. As a result, the number of live variables before the
store could be reduced by one. Note that the same applies when
p points tob or c .

As we have seen in Example 12, the number of live variables
before a store can be reduced by at most one. The reason is that
the store needs all variables of the points-to set (that are live after
the store) except the variable thatp points to. For this purpose,
given a pointerp and the size of its points-to setpts_size ,
we define the following class of variables:

_starN_p, for N in {1, 2, ,
(pts_size-1)}.

(“_starN_p ” stands for “notstar_p ”), variables whose
values are equal to the values of the variables in the points-to
setp, doesnot point to.

Note that each_starN_p can be defined in such a way that
it may only store the value of either variables of a fixed pair as
shown in Example 13.

Example 13: If p may point to a, b, or c , we create
_star1_p and_star2_p and define them as the following
(note that other formulations may be used):

_star1_p = (p!=&a)?a:b;
_star2_p = (p!=&b)?b:c;

As a result, the storep = in , which leads to five live vari-
ables (cf. Example 12) can be replaced by the following code
segment, which uses only four variables {p, _star1_p,
_star2_p, in }:

switch p: {
case &a: a = in; b = _star1_p;

c = _star2_p; break;
case &b: a = _star1_p ; b = in;

c = _star2_p; break
case &c: a = _star1_p ; b = _star2_p;

c = in; break;
}.

To optimize the number of live variables before stores, let us
first consider an adaptation of the algorithm described in Sec-
tion V-A. Indeed, one could imagine an algorithm where the
_starN_p variables are used at each store and defined when
p or any variable of the points-to set is modified. Since each
_starN_p variable can only store the value of one of two vari-
ables of the points-to set, they should bekilled each time one of

222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

the variables of the points-to set is live. For hardware synthesis,
this creates a lot of logic to control their value, which turns out
not to be very practical.

In our implementation, we take a conservative approach by
optimizing stores only in the case of a load followed by a store.
Such a case happens after inlining functions in which the pa-
rameters passed by reference are both read and written within
the function.

Example 14: Let us look at the example of (p = p+1),
wherep may point toa or b. Such a code may be generated
after inlining the function callincr(p) , whereincr(int

is defined as

incr(int q) q = q + 1; .

The code corresponding to (p = p+1) after optimization
using_star1_p is the following:

// definition of star_p and _star1_p
if(p 0)

star_p a;
_star1_p = b;

else
star_p b;
_star1_p a;

star_p star_p 1;

// assignements to a and b
if(p 0)

a star_p;
b _star1_p;

else
b star_p;
a _star1_p; .

Fig. 6 shows the control data-flow graph (CDFG) before and
after optimization. The definition of the temporary variables
has been inserted before the load and the variables of the
points-to set are updated after the store. We can verify that
the number of live variables between the load and store has
been reduced from four {a, b, p, star_p } to three
{ star_p, _star1_p, p }.

For a pointerp, the algorithm for reducing the number of live
variables between loads and stores is the following.

1) List the stores dominated2 by loads from the same pointer
(implemented as a forward data-flow analysis [1], [34]).

2) List the loads postdominated3 by stores from the same
pointer (implemented as a backward data-flow analysis
[1], [34]).

3) Do live variable analysis assuming that each store in the
list generated at Step 1 kills all variables in the points-to
set.

2Instructiond dominates instructioni in a flowgraph if every possible execu-
tion path from the entry node toi includesd [34].

3Instructionsi post-dominates instructiond in a flowgraph if every possible
execution path from thed to theexit (akasink) node includesi [34].

Fig. 6. CDFG for p = p+1 with p!{ a, b }.

4) If for all loads in the list generated at Step 2 none of the
variables in the points-to set are live:

• definestar_p and the_starN_p variables be-
fore the loads and whenp or any variable of the
points-to set changes between loads and stores;

• usestar_p and the_starN_p variables to up-
date the values of variables in the points-to set after
the stores.

Even though this optimization reduces the number of live
variables before stores by at most one, it helps reduce the
number of registers. There is, however, a tradeoff between the
number of registers used and the amount of steering logic. This
optimization can be performed while optimizing the loads, as
we will see in Section VII.

VI. ENCODING OFPOINTERS

In software, the pointers’ values represent addresses in
memory. These values are used in loads and stores; they have
a fixed size and can then be assigned (p = q) or compared (p
== q). In hardware, we want to reduce the size of the storage
and the complexity of the decoding logic in loads and stores.
In Section IV-A, we have seen that the encoding of a pointer
consists of two field: a tag and an index. In this section, we are
trying to encode the tag part more efficiently. Other techniques
similar to the encoding of memory addresses [4], [36] could be
used to encode the index part, although they are not addressed
in this paper.

Definition 3: We define the size of a pointer as the bit width
of its tag.

When the size of the pointer is decreased, the number of bit
registers used to store its value is also reduced. The decoding
logic for loads and stores is also simplified. We have seen that
a load can be implemented as a multiplexer controlled by the
pointers’ value (tag part). Reducing the pointers’ size simplifies
also the complexity of the decoding logic for this multiplexer.
However, as we have seen in Example 6, when pointers are as-
signed or compared, we may have to addcase statements to

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 223

“translate” the values of the pointers by means of some combi-
national circuit. We can use encoding techniques to minimize
the size of these circuits. Our goal is twofold: 1) we want to en-
code each pointer with the minimum number of bits in order to
minimize the storage as well as the decoding logic for loads and
stores; and 2) we want to minimize the logic related to assign-
ment and comparison of pointers.

We will first present the problem of pointers’ encoding. The
exact solution to this problem leads to what we call alocal en-
codingin which two pointers that point to the same location set
may have different encodings. This problem is, however, hard
to solve and a heuristic is then introduced in which two pointers
that point to the same location set share the same encoding.
This gives aglobal encodingof the pointers’ value. In order
to get closer to the exact solution corresponding to the local en-
coding, two optimizations are then presented calledsplittingand
folding. These optimizations can be seen as adding “locality” to
the global encoding.

A. Definition of the Problem

In this section, we present the problem of encoding the value
of the pointers. Our first goal is to minimize the size of the
pointers. Then, when a pointer is assigned or compared to an-
other pointer, we want the corresponding tags to be equal (e.g.,
p_tag = q_tag) or “as close as possible” to each other. If
two tags have different bit width, one tag can be equal to a sub-
field of the other. Assignments would then be performed by con-
catenating or removing bits, whereas comparisons would only
be executed on subfields of the two codes. This reduces the size
of the circuit that translates or compares the tags while keeping
the number of bits to a minimum.

Definition 4: For two pointers and , the pointer depen-
dence relation is one if and only if the two pointers are
assigned or compared (otherwise it is zero).

Definition 5: Thepointer-dependence graphis an undirected
graph in which the nodes are the pointers and the edges are the
relations between the pointers. An edge between two nodes is
defined when the two corresponding pointers are assigned or
compared.

Example 15: Consider the following code segment:

int r1, r2, r3, q1, q2;

if(i 0)
{ r1 &a; r2 &b; r3 &c; }

else
{ r1 &b; r2 &c; r3 &d; }

if(j 0)
{ q1 r1; q2 r2; }

else
{ q1 r2; q2 r3; }
.

In this example, we consider the pointers {r1, r2, r3,
q1, q2 } and the variables {a, b, c, d }. The pointers are
defined as follows:r1 may point to the variablesa or b, r2

(a) (b)

Fig. 7. (a) Example of pointer-dependence graph. (b) Definitions of the
points-to sets of each pointer.

may point tob or c , andr3 may point toc or d. Then,q1 may
take the value ofr1 or r2 andq2 may take the value ofr2 or
r3 . Consequently,q1 may point toa, b, orc andq2 may point
to b, c , or d.

This leads to the pointer-dependence graph in Fig. 7(a).
The encoding problem can be stated as follows. For each

pointer we represent its points-to set as a set of symbols cor-
responding to the location sets the pointer may point to. Thus,
we have an ensemble of sets of symbols and the dependencies
among the sets represented by thepointer-dependencegraph.
The problem consists of encoding the symbols in the sets. There
are two constraints on the encoding: 1) the supercube4 of the
codes of the symbols in each set must have minimum size and
2) the symbols that correspond to the same location set in two
dependent sets must be encoded as close as possible. The rea-
sons for the first constraint are to minimize the number of bits
to store and to reduce the decoding logic for loads and stores.
The reason for the second constraint is to reduce the size of the
combinational circuit implementing pointers’ assignments and
comparisons.

Example 16: In Example 15, the pointersr1 , r2 , andr3
may point to two different variables andq1 andq2 may point to
three different variables. As a result, we want to encode pointers
r1 , r2 , andr3 on 1 b and pointersq1 andq2 on 2 b.

Fig. 8(a) shows an example of a nonoptimal encoding. The
encoding technique used here is a straightforward minimum-
length encoding in which the value “0” is assigned to the first
variable in the points-to set, 1 is assigned to the second variable
of the points-to set, etc. This encoding is not optimal; some logic
has to be added in the circuit to implement the assignmentsq2
= r3 andq1 = r2 , as shown in Fig. 8(a).

To find an optimal encoding, we look at the dependence be-
tween the pointers. Pointerq1 may take the value ofr1 or r2 .
Therefore, we want the codes ofr1 andr2 to be subfields of
the code ofq1 . Similarly, q2 may take the value ofr2 or r3 .
We want the codes ofr2 andr3 to be subfields of the code of
q2 . An optimal encoding verifying these properties is shown on
Fig. 8(b).

For r1 , value 0 is assigned toa and value 1 tob. For r2 , 0
will be assigned tob and 1 toc . As a result,q1 = r1 will be
replaced byq1_tag = {0, r1_tag} andq1 = r2 will
be replaced byq1_tag = {r2_tag, 1} (where{,} is the
concatenation operator).

B. Problem Formulation

Let us consider pointers . For each
pointer , let be its points-to set. The points-to set

4Thesupercubeof a set of cubes is the smallest cube containing all the cubes
in the set [10].

224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

(a)

(b)

Fig. 8. Example of (a) nonoptimal and (b) optimal encoding. Codes that are
changed in the optimal encoding are shown in bold.

is a set of symbols , where each
symbol is associated with a location set. We definethe set of
the encoded symbols of the points-to set. The encoded values
of the symbols in each set are noted .

Definition 6: Two sets and are said to be dependent if
their associated pointers are dependent (Definition 4).

Our first goal is to minimize the number of bit registers as
well as the size of the decoders required to store and decode
the pointers’ values. We want to minimize the dimension of the
supercube of the encoded symbols in each set. This minimum is
achieved when the sum of the dimensions of supercubes is also
minimized

supercube (1)

Example 17: In the encoding presented in Fig. 8(a) and (b),
is

minimum.
When two pointers are assigned or compared, we also want

to minimize the size of the circuit implementing the translation
of the codes. For this purpose, the distance between encoded
symbols in two dependent sets has to be minimum

(2)

where is the distance between the two encoded sets. When
the pointers have the same points-to set and the encoding has the
same length , is defined as

(3)

where
number of symbols in the points-to sets;
set of the permutation functions ofbits;
Hamming distance.

Note that the two equal points-to sets may have different encod-
ings.

In general, the points-to sets may differ and their encoding
may have different lengths. The computation of the distance
is then more complex. For example, the distance between two
sets whose encodings have different lengths can be computed
by padding the shorter codes with zeros or ones. Then, if the
points-to sets and differ, we are only interested in the
distance between the encoding of the symbols common to the
two points-to sets.

Our goal is to minimize (1) and (2). There is a tradeoff be-
tween the storage area (number of registers) and the amount of
logic used to translate the codes. For example, one may optimize
the size of the pointers keeping the amount of logic minimum
by minimizing first (2) and then (1). In general, we can cast the
problem as the following:

supercube

(4)

where is a coefficient between zero and one.
Since this problem is computationally hard to solve, we use

heuristics.

C. Simplified Problem

1) Formalism for a Global Solution:In the general formu-
lation of the problem presented in Section VI-B, different codes
may be associated with the symbols in each set. Therefore, the
encoding has to be foundlocally for each set. The problem can
be simplified by constraining all symbols associated with the
same location set to share the same code. The encoding is then
foundglobally for all the symbols that correspond to the same
location set in the points-to sets. The final encoding values of
the pointers is then found by picking the relevant bits (i.e., the
bits that are not identical for the different encodings of the sym-
bols in the points-to set).

Example 18: Fig. 8(a) gives an example of local encoding. It
is a local encoding because the different variablesa, b, c , and
d are associated with different codes in each points-to set. For
example,b is associated with1 for r1 and0 for r2 .

Fig. 8(b) gives an example of a better global encoding. The
encoding is global because the pointers initially share the same
encoding shown in Fig. 9. No circuit is necessary to translate
the values of the pointers in assignments and comparisons. The
size of each pointer can be reduced by selecting the relevant bits
for each pointer. These relevant bits are found as the following.
Pointerr2 may point tob or c . In the global encoding, value
01 is assigned tob and11 is assigned toc . The value of the
second bit in the encoding is then constant equal to1 for the two
encoded symbols in the points-to set ofr2 . As a result, pointer
r2 does not need to store this bit and the size ofr2 can be

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 225

(a) (b)

Fig. 9. (a) Global encoding. (b) Selection of the relevant bits for each pointer.

reduced to 1 b. Similarly, the size ofr1 andr3 can be also be
reduced to 1 b.

For a global encoding, minimizing (2) is then irrelevant be-
cause the distance between the codes of the symbols that corre-
spond to the same location set in the different points-to sets is
null (i.e., . The
complexity of the logic to perform assignments and, to some
extent, comparison is then minimal. However, the size of the
pointers may vary and affect the size of the decoding circuit in
loads and stores. Our goal becomes to minimize (1) only.

For this simplified problem, it is convenient to consider the
symbols (i.e., location sets) in the unionof the points-to sets.
These symbols will be denoted: . The
size of the problem is reduced. Instead of dealing with

symbols, we only deal with symbols ,
where is the number of location sets. We use now a formalism
that has been used to solve other encoding problems [11], [48].

Definition 7: The relation matrix is defined as the matrix
in which the rows represent the points-to sets and the columns
represent the symbols. Entry of is one if and only if the
symbol is in the set .

Example 19: Let us take the case of Example 15, wherer1
may point to the variablesa or b, r2 may point tob or c , and
r3 may point toc or d, etc. We can construct the following
relation matrix:

For example, the first row of the matrix shows thatr1 may point
to a or b.

We search for an encoding matrix. Namely, each row in
corresponds to a points-to set. For each rowof , we want the
supercubes of the rows of corresponding to the ones into
have minimum size. This correspondsto the constraint expressed
in (1). This problem corresponds to the input encoding problem
[10], [11], [48] if the zeros in matrix are replaced bydo not
cares(i.e.,). In other words, our problem is a simpler instance
of the general input encoding problem.

2) Global Encoding Algorithm:The problem of input
encoding has been extensively studied [3], [11], [15], [35],
[38]–[40], [48]. We use an approach reminiscent of POW3 [3]
and MUSTANG [35].

Definition 8: An affinity graph is an undirected
weighted graph in which the nodes are the symbols

and the edges are the relations
between the symbols in , represented by the relation matrix

(a) (b)

Fig. 10. (a) Example of relation matrix. (b) Corresponding affinity graph.

(a) (b)

Fig. 11. (a) Example of optimal encoding. (b) Corresponding representation
in the Boolean hyperspace.

. The weight on the edge is defined as the
following:

(5)

where
number of pointers;
total number of symbols;
number of symbols in the set ;
element of the relation matrix.

The weight in the affinity graph increases with the
number of sets that contain bothand . When two location
sets are in many points-to sets, we want their codes to be
close. This is even more important for small points-to sets.
For example, if we have symbols in the points-to set

, their codes must be next to each other to minimize the
dimension of the supercube of the encoded set. Whereas
if we have symbols in the points-to set , the
Hamming distance between the encoding of the symbols in the
points-to set can be as much as . Therefore,
the weight is the sum of the contributions of the points-to
sets that contain both and , where the contribution of each
points-to set is .

The pointer encoding problem can be solved as an embedding
of the affinity graph in the Boolean hypercube as done in [3],
[21], [35], and [38].

Example 20: The relation matrix presented in Example 19
[cf. Fig. 10(a)] can be used to generate the affinity graph in
Fig. 10(b).

Let us look at , the weight on the edge {a, b }. The
variablesa andb are both in the points-to sets ofr1 andq1 .
The weight is 3, sum of 2, contribution fromr1 , and 1,
contribution from q1.

After graph embedding, the encoding presented in Fig. 11 can
be found. The graph embedding will try to put the encoding of
the symbols that are adjacent to the edge of higher weight next
to each other. As a result, the encoding ofb is next to the en-
coding ofc (edge {b, c } has a weight of four). The encodings
of symbolsa andb are also next to each other and so are the en-
codings ofc andd.

226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

(a) (b)

Fig. 12. (a) Pointer-dependence graph. (b) Definitions of the points-to sets.

Note that the aforementioned algorithms are solving a simpli-
fied problem (global encoding) in which all points-to sets share
the same encoding. In order to better approximate the exact so-
lution, two optimizations are presented in the next sections. In
the exact solution (local encoding), two symbols can share the
same code. We use this property in Section VI-D in a technique
called folding. One symbol can also have multiple codes. The
notion of splitting presented in Section VI-E is based on this
property.

D. Encoding with Folding

In the local encoding problem, two symbols can share the
same the code.

Definition 9: We define as folding the action of assigning the
same code to two different symbols.

Proposition 1: Two symbols can be folded if and only if they
are not both in the same points-to set and not in any two depen-
dent points-to sets.

The rationale for this proposition is that we want to distin-
guish each symbol inside a points-to set and, in the case of a
comparison, we want to distinguish the symbols in the two de-
pendent points-to sets.

In the relation matrix , folding the symbols and are
equivalent to replacing columnsand by one column such
that

for in (6)

In the affinity graph, folding is done by merging (or fusing5

) the nodes corresponding to the symbols into one new
node corresponding to . The weights on the edges incident to
this new node corresponding to are then defined as

(7)

Graph-embedding techniques can be modified to incorporate
folding. In Section VI-F, we present a column-based encoding
algorithm with folding.

Example 21: Let us consider the pointer-dependence graph
in Fig. 12, wherer1 , r2 , andr3 point respectively to {a, b,
c}, { b, c, d }, and {c, d, e }.

The relation matrix and the associated affinity graph are rep-
resented in Fig. 13. The number of variables (i.e., location set)
in each points-to set is either three (forr1 , r2 , andr3) or four
(for q1 andq2). Therefore, we want to code the symbols as-
sociated with the variables on 2 b. However, since we have five
symbols, an encoding with less than 3 b cannot be found without
folding.

5A pair of verticesa, b in a graph are said to befused(merged or identified)
if the two vertices are replaced by a single vertex such that every edge that was
incident on eithera or b or on both is incident on the new vertex [13].

(a) (b)

Fig. 13. (a) Relation matrix. (b) Corresponding affinity graph before folding.

(a) (b)

Fig. 14. (a) Relation matrix. (b) Corresponding affinity graph after foldinga
ande.

(a) (b)

Fig. 15. (a) Encoding after foldinga ande. (b) Corresponding representation
in the Boolean hyperspace.

The symbola is in the points-to set ofr1 andq1 , whereas
the symbole is in the points-to set ofr3 andq2 . According
to the pointer-dependence graph, these points-to sets are not de-
pendent. The symbols associated witha ande can be folded.
After folding, we end up with the graph in Fig. 14. This leads to
an encoding that requires only 2 b (see Fig.15).

E. Encoding with Splitting

In the local encoding problem, one symbol can also have dif-
ferent codes in the different points-to sets.

Definition 10: We define splitting the action of assigning two
or more codes to one symbol (or location set).

In Sections VI-C and VI-D, each location set was associated
with a unique symbol that was encoded. After splitting, one lo-
cation set may be associated with more than one symbol: split-
ting a symbol is equivalent to creating a new symbol, which
corresponds to the same location set. The original symboland
the newly created are then encoded into and , respec-
tively.

Proposition 2: A points-to set that contains a symbol
may, after splitting , contain the newly created symbol if
and only if there is no code equal toin the encoded set or
in any encoded set dependent of.

Example 22: Let us consider the pointer-dependence graph
in Fig. 16, wherer1 , r2 , and r3 may, respectively, point to
{ a, b }, { b, c }, and {a, c }. The relation matrix and the
corresponding affinity graph are presented in Fig. 17.

We would like to encoder1 , r2 , andr3 with 1 b andq with
2 b. We also want the codes ofr1 , r2 , andr3 to be subfields
of the code ofq.

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 227

(a) (b)

Fig. 16. (a) Pointer-dependence graph. (b) Definitions of the points-to sets.

(a) (b)

Fig. 17. (a) Relation matrix. (b) Corresponding affinity graph before splitting.

(a) (b)

Fig. 18. (a) Encoding without splitting. (b) Corresponding representation in
the Boolean hyperspace.

(a) (b)

Fig. 19. (a) Relation matrix. (b) Corresponding affinity graph after splitting
symbola.

Using the encoding technique without splitting symbols, we
can find the encoding in Fig. 18. In this case,r1 and r2 are
encoded on 1 b but the encoding ofr3 requires 2 b.

After splitting the symbola, we end up with the two symbols
a anda . The new encoding problem is presented in Fig. 19. We
can find the encoding in Fig. 20, where the symbola is in the
points-to set ofr1 , r2 , andq, anda in the points-to set ofr3
andq.

The encoding in Fig. 20 is optimal:r1 , r2 , andr3 are en-
coded on 1 b and the assignments toq (q = r1, q = r2,
q = r3) do not require any additional logic.

As described in Section VI-B, the symbols in each set can
have different codes. Therefore, to minimize the dimension of
the supercube of the encoded symbols in a points-to set [i.e.,
(1)], we can create new symbols associated with the same loca-
tion sets for this points-to set. Note that if we split the symbols
for each points-to set, we end up with a local encoding scheme
close to the one presented in Section VI-B. The only difference
is that one symbol may have multiple encodings within the same
points-to set. However, to limit the increase in complexity, we
are trying to split as few symbols as possible and only when
useful to reduce the cost function.

When a symbol is split, a new symbol is created. For
each points-to set such that , we decide whether the
new points-to set contains or both and . The new
set of encoded symbols can be defined as

Fig. 20. Result of the encoding after splitting symbola.

where

is either or (8)

In order to minimize (1), for every set that may contain
or , we want to minimize

supercube (9)

which corresponds to

supercube

where

is either or (10)

In the relation matrix , splitting is done by adding a column
relative to . For each row corresponding to a points-to

set such that , the pair of entries is set
to (0, 1), (1, 0), or (1, 1) according to (10). If (10) achieves its
minimum for the three values , , and , then we
select . Example 23 illustrates the reason for this choice.

The new affinity graph can then be recomputed from the re-
lation matrix. Splitting as well as folding can be incorporated in
our graph-embedding algorithm as presented in Section VI-F.

Example 23: In Example 22 for the points-to set ofr3 , (10)
is minimum for {a’} ; the dimension of the supercube of
the encoded symbols in the new points-to set is minimum equal
to one when it containsa only. As a result, in the relation matrix
in Fig. 19, the entry is set to zero and is set to one. For
the points-to set ofq, (10) is minimum (equal to two) when
is either {a}, { a }, or { a, a }. a, a is then selected and
the new points-to set ofq contains botha anda . Consequently,
the entries and are both set to one. Sincea is in the new
points-to set ofr1 anda in the new point-to set ofr3 , this
allows us to implement bothq = r3 andq = r1 trivially.

F. Encoding Algorithm

We propose a column-based approach such that the encoding
matrix can be found column by column [10], [11], [14]. Our
algorithm without folding and splitting is similar to the one used
in Pow3 [3]. The pseudocode of the algorithm with folding and
splitting is presented in Fig. 21.

The algorithm encodes the pointers withb, where
. We consider one bit of the code at a time. For a

symbol associated with the code, we consider the bits
for . At each iteration , we construct theth
column of the encoding matrix by assigning bit to all sym-
bols for . We ultimately want to distinguish
all symbols. Therefore, in our algorithm, we have to make sure
that at each iteration, we have less than 2 symbols asso-
ciated with the same code. For example, for , we
cannot have more than two symbols with the same code.

Definition 11: There is a class violation at iterationwhen
more than 2 symbols have the same code so far.

228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

Fig. 21. Graph embedding algorithm with splitting and folding.

Note that at iteration, we are only considering thefirst bits
of the codes since the other ones have not been assigned yet.

At each iteration , is defined for every symbol . The as-
signment is done by considering the symbols on every edge end-
points starting with the edges with highest weights. The weights
at each iteration are adjusted using the following formula [3]:

(11)

(a) (b)

Fig. 22. (a) Pointer-dependence graph. (b) Definitions of the points-to sets.

Fig. 23. (a) Relation matrix. (b) Affinity graph at the beginning of iteration 1.
(c) Affinity graph at the beginning of iteration 2.

where is the Hamming distance between the partially
assigned codes of symbolsand .

For the symbols incident to the edges , we try to as-
sign the same value to both and . However, this may not be
possible in two cases. First, at each iteration of, the number
of symbols having the same code is limited to prevent class vi-
olations (cf. Definition 11). Moreover, if the symbolsand
are also incident to other edges whose weights are higher than

, they may already have been assigned two different values
and . These two conditions are expressed below in Propo-

sition 3.
Definition 12: An edge is said to be violated at it-

eration if the bits and associated with the two symbols
incident to the edge have different values.

Proposition 3: An is violated at iteration if either
one of the following conditions apply.

• There is class violation (and therefore,and need to
have different values).

• Different values and have already been assigned to
the two symbols.

In the case of a class violation, we try to fold one of the sym-
bols on the edge with any of the previously assigned
symbols. At this stage, two symbols are folded if Proposition 1
holds and if they have the same partial code so far.

If the edge is still violated (i.e.,), we try to
split the symbols incident to the edge. One symbol can be split
if the newly created symbol does not cause any class violation
or can be folded with another symbol. In our algorithm, for a
symbol , we create a new symbol associated with a code
such that for and . In case of a class
violation, we try to fold this new symbol. If folding cannot be
done, the symbol is not split.

Example 24: Consider the problem presented in Fig. 22. The
associated relation matrix and affinity graph are presented in
Fig. 23 in which pointerq1 may take the value ofr1 , r2 , or
r3 andq2 may take the value ofr3 , r4 , or r5 .

Since we have four symbols, we want to encode them on
b. The encoding is computed in two iterations. After the first

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 229

iteration, at most, two symbols can have the same encoding to
prevent class violations.

At iteration , we first take the edge with the highest
weight {b, c } and assign the value 0 tob andc . Since we
want the code to be 2-b long, we can have at most two sym-
bols with the same code after the first iteration. The value1 is,
therefore, assigned toa andd and all edges beside {b, c } are
violated. We then try to fold the symbols. Folding cannot be per-
formed. For example, for the edge {a, b }, a cannot be folded
with b because both symbols are in the points-to set ofr1 and
q1 . Symbola cannot be folded withc either because both sym-
bols are in the points-to set ofr2 andq1 . The violated edges
are {a, b }, { a, c }, { d, c }, and {d, b }. We then try to
split the symbols on these edges. Splitting cannot be performed
either. For example, when we try to split variablea, we create
a new variablea with code 0 and the following relation matrix
is computed:

(12)

We have three variables {a , b, c } with the same code 0,
which creates a class violation. We then try to folda with b
or c . This cannot be done becausea andb are in the points-to
sets ofr1 andq1 anda andc are both in the points-to sets
of r2 andq1 . As a result, the encoding after the first iteration
is 0 for b andc and1 for a andd. At iteration , we
assign the value 0 tob, 1 toc , 0 toa, and 1 tod. Note that other
values could be assigned depending on the order in which edges
of equal weight are taken in the implementation. All edges are
violated. Among the edges with maximum weight are {a, c }
and {b, d }. We try to split a on the edge {a, c } and create
the new symbola . The resulting relation matrix is

(13)

Variablea can be folded withd because Proposition 1 holds:
a andd have the same code at the previous iteration and are not
elements of dependent points-to sets. After folding, we end up
with the following relation matrix:

(14)

(a) (b)

Fig. 24. (a) Encoding after splitting and folding (where “–” is ado not care.
b) Corresponding representation in the Boolean hyperspace.

Fig. 25. Toolflow for the synthesis of pointer inC .

The variabled (which is now mapped to a symbol representing
bothd anda) can also be split and the new symbold can be
folded witha. The final relation matrix is then

(15)

We end up with the encoding in Fig. 24 in which all constraints
are satisfied.

VII. I MPLEMENTATION

We have implemented the different algorithms using the SUIF
environment [52], [66]. The toolflow is presented in Fig. 25. Our
implementation takes a function with pointers inand gener-
ates a module in Verilog. This module can then be synthesized
using the behavioral compiler [67]. For hardware synthesis, the
timing information is expressed in the model: wait() in

will be translated into @(posedge clk) in Verilog. The
ports and the data types are defined in a separate header file. The
translation from to Verilog consists of different passes. After
the front end, we inline the functions and perform the pointer
analysis [50]. Then the points-to information is used to remove
and optimize pointers in the following order:

— define the points-to set of each pointer;
— replace the loads and stores (insertstar_p andtmp_p);

230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

— optimize load 1: definestar_p whenp or any variable
of the points-to set change;

— optimize loads followed by stores: create the_starN_p
variables;

— optimize load 2: killstar_p when all variables of the
points-to set are live;

— encode pointers’ value;
— dead-code elimination.
The intermediate code without pointers is then translated into

Verilog using Csuif2Verilog.
We have recently ported our research to the Synopsys Cocen-

tric SystemC compiler [68] to synthesizemodels into hard-
ware directly, without having to translate into HDL. In ad-
dition, we have also developed a tool to implement dynamic
memory allocation in hardware [44].

VIII. R ESULTS

We first show the results for the resolution of pointers in rel-
atively large examples. Then we illustrate the effect of pointers’
encoding and of the optimization of loads and stores on selected
examples.

Since there are no synthesis benchmarks written inwith
pointers, the objective of this section is to show the technical
feasibility of mapping descriptions to logic gates. In order to
test our tool on real examples, we present the implementation of
two algorithm: a two-dimensional inverse discrete cosine trans-
form (2-D IDCT) [31] and an alpha blender written in. The
2-D IDCT is widely used in image compression standards such
as JPEG, MPEG, and H263. The 2-D IDCT implemented con-
sists of two one-dimensional inverse discrete cosine transforms
(1-D IDCTs). For this purpose, we use three different memories:
the input buffer (in_table), the intermediate buffer that stores
the result of the first 1-D IDCT (buf_table), and the output
buffer (out_table). These memories are accessed through
pointers and pointer arithmetic. Pointers are also used in the 1-D
IDCT to reference two register banks (buff1 andbuff2).

The 2-D IDCT is implemented using only one call to 1-D
IDCT (function1d_idct), which is inlined before synthesis

2d_idct ()
int i, p_ in, p_out;
for(i 0; i 2; i)

if(i 0)
// first iteration

p_in in_table;
// p_in input buffer

p_out buf_table;
// p_out intermediate buffer
else
// second iteration

p_in buf_table;
// p_in intermediate buffer

p_out out_table;
// p_out output_buffer

1d_idct(p_in, p_out);
// unique call to 1D IDCT

.

TABLE I
RESULT OF THESYNTHESIS OF THEIDCT RUNNING AT 20 MHz USING

TARGET LIBRARY lsi_10k (AREA IN LIBRARY UNITS)

Fig. 26. Architecture of the 2-D IDCT.

Note that in this specific example, pointers are not only used
to access memories, but they are also used for sharing resources.
In this example, only one1d_idct is synthesized. Since func-
tions are inlined in our framework, a more standard implemen-
tation of the 2-D IDCT algorithm, in which the1d_idct func-
tion is called twice, would lead to two 1-D IDCT blocks. Such a
design would typically be larger and more difficult to efficiently
synthesize. Using pointers here provides a convenient and effi-
cient way of performing resource sharing.

The second example corresponds to an alpha blender. Alpha
blenders are used in video and signal processing to superimpose
multiple images. Our implementation takes three images and
alpha planes of size 8 8. The alpha plane defines the degree
of opacity for each pixel in the image. The order in which the
images are placed with respect to each other (e.g., front, middle,
back) is defined by a layer number associated with each image.
The different images and alpha planes are stored in separate
arrays (mapped to separate memories) in order to access them
in parallel. Pointers are used to access the different arrays.

The results after synthesis are presented on Table I. The cen-
tral processing unit (CPU) time for translating themodel into
Verilog was calculated on SunUltra2. The Verilog modules were
synthesized with Behavior Compiler without unrolling loops.
The architecture of the IDCT is presented in Fig. 26. The design
consists of five multipliers, four adders, and two arithemetic
and logic units (ALUs). Other implementations can be found
by changing the timing and resource constraints.

We have written several models to study the effects of the dif-
ferent optimizations presented in Sections V and VI. These op-
timizations consist of encoding the pointers’ value and reducing
the number of live variables before loads and between loads and
stores.

The first set of results illustrates the effects of each feature of
the optimizer. Tables II and III show the examples with the area
and cumulative timing after pointer resolution with and without
optimization.

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 231

TABLE II
AREA AFTERSYNTHESIS AND OPTIMIZATION USING TARGET LIBRARY lsi_10k

(AREA IN LIBRARY UNITS)

TABLE III
TIMING AFTER SYNTHESIS AND OPTIMIZATION USING TARGET

LIBRARY lsi_10k (IN ns)

The first model (load) tests the optimization of loads. It con-
tains one pointer that may point to three integers stored in reg-
isters. After the definition of the pointer, we have two paths and
then a load. In one path, none of the variables of the points-to
set are used. In the other path, all variables of the points-to set
become live. Without any optimization, we have five 32 b regis-
ters (i.e., 2334 units of noncombinational area). After optimiza-
tion, the number of registers is reduced to three (i.e., 1523 units
of noncombinational area). This reduction of the storage goes
with an increase of the combinational area and of the cumula-
tive timing caused by adding steering logic to update the value
of star_p . There is a tradeoff between the number of registers
and the size of the steering logic.

In the second example (load/store), we have a pointer
that may point to two integer variables stored in registers. This
pointer is used as a parameter in a function call. After inlining
the function, we end up with a load followed by a store. Here
the optimization saves one register with a little increase of the
amount of steering logic.

Finally, the last example (encoding) implements the model
described in Example 15 with the two encodings presented in
Example 16. Here the encoding of the pointers value reduces
the combinational logic by 40%. Since the design is simpler,
the circuit is also faster.

The second set of examples compares our encoding algorithm
to other encoding schemes. The results are presented in Table IV.
They have been obtained as follows. Pointers’ encoding has ef-
fect on three components of the design: the number of registers
necessary to store the pointers’ value (storage), the logic nec-
essary to assign and compare pointers (assignment), and the
implementation of loads and stores (load/store). Each of
these components is synthesized using Synopsys design com-
piler. We present the results for five different schemes.

TABLE IV
AREA AFTER SYNTHESIS AND OPTIMIZATION USING tsmc.35 LIBRARY (IN
LIBRARY UNITS). FOR EACH EXAMPLE, P REPRESENTS THENUMBER OF

POINTERS ANDN THE NUMBER OF VARIABLES

First, we present the results for a global encoding (global)
in which we associate the same code with all symbols asso-
ciated to the same variable in the different points-to sets. In
this case, assignments or comparisons of pointers can be per-
formed without translating the values of the pointers. However,
the number of bits used for the encoding is not minimal, which
leads to larger decoding circuits (cf. bothload/store and
assignment) and more registers (cf.storage).

The second scheme (simple-alg) is the implementation of
the heuristic algorithm presented in Section VI without splitting
and folding. The size of the pointer is then reduced but is still
not always minimal. The results for the algorithm with folding
and splitting (split&fold) are given. The length of the codes
is then close to the minimum and the size of the combinational
circuit for bothassignment and load/store is reduced,
which gives better results.

Results for minimum-length encoding (min-length)
are also given. In this suboptimal encoding (similar to the
nonoptimal encoding used in Example 16), each variable in
each points-to set is simply associated with a number (zero
for the first variable, one for the second variable, etc. …). The
number of bits used to encode each tag is then minimum but
the size of the circuit that translates the values of the pointers
is not. Finally, one-hot (1-hot) encoding gives larger codes.
However, the specific proprieties of the resulting codes can be
used to simplify the decoding logic, especially in loads and
stores.

In this section, we have shown howcode with pointer vari-
ables can be synthesized by removing the pointers and using
high-level synthesis. Moreover, variations on the implementa-
tion may be explored using the optimizations presented in Sec-
tions V and VI. Even though the effect of these optimizations
may be limited in general, they can be used to reduce the storage

232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

areas and/or the steering logic. In particular, optimization of
loads and stores can be used to reduce the number of registers
with an increase on the amount of steering logic. Encoding, on
the other hand, can be used to reduce both the size of the pointers
and the logic necessary to translate and decode the pointers’
value, leading to better performances.

IX. CONCLUSION

We have presented how code with pointers can be effi-
ciently mapped to hardware. With our methodology, memory is
partitioned into location sets and pointer analysis is used to de-
fine where locations are accessed in the program. Pointers can
then be synthesized by encoding their values and by generating
circuits to dynamically access the different locations they may
reference.

Our toolflow fits into current methodology and supports the
mapping of data to multiple memories, registers, or wires. Com-
piler techniques are used to reduce the storage before pointer
loads and stores. Heuristics are used to efficiently encode the
values of pointers by reducing their size and by optimizing the
circuits implementing assignments and comparisons of pointers.

The synthesis of pointers raises the level of abstraction at the
input of high-level synthesis. Models can be described at the
behavioral level using the notions of a single address space and
of indirect memory references found in many programming lan-
guages. The techniques and optimizations presented here can be
generalized to support more of the syntax as well as
other programming languages, facilitating the mapping of func-
tions and complex data structures including object-oriented fea-
tures into hardware.

ACKNOWLEDGMENT

The authors would like to thank D. Heine of Stanford Univer-
sity, Stanford, CA, for his help with the implementation using
SUIF and J. Kunkel and A. Ghosh of Synopsys Inc., Mountain
View, CA, for their comments and support. The authors would
also like to thank the anonymous reviewers for their comments
and suggestions.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers, Principles, Tech-
niques, and Tools. Reading, MA: Addison-Wesley, 1986.

[2] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Ama-
rasinghe, “Parallelizing applications into silicon,” inProc. IEEE Work-
shop FPGAs Custom Computing Machines, Napa, CA, Apr. 1999.

[3] L. Benini and G. De Micheli, “State assignment for low power dissipa-
tion,” IEEE J. Solid-State Circuits, vol. 11, pp. 258–268, Mar. 1995.

[4] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Address
bus encoding techniques for system-level power optimization,” inProc.
Design Automation Test Eur., Paris, France, Feb. 1998, pp. 861–866.

[5] I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, and
D. Verkest, “Hardware/software codesign of digital telecommunication
systems,”Proc. IEEE, vol. 85, pp. 391–418, Mar. 1997.

[6] C. T. Bye, M. R. Lightner, and D. L. Ravenscroft, “A functional mod-
eling and simulation environment based on ESIM and C,” inProc. Int.
Conf. Computer-Aided Design, Nov. 1984, pp. 51–53.

[7] T. J. Callahan and J. Wawrzynek, “Instruction-level parallelism for
reconfigurable computing,” inProc. 8th Int. Workshop Field Pro-
grammable Logic Applications, Berlin, Germany, 1998, pp. 248–257.

[8] R. Composano and W. Wolf,High-Level VLSI Synthesis. Norwell,
MA: Kluwer, 1991.

[9] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A.
Vandecappelle,Custom Memory Management Methodology. Norwell,
MA: Kluwer, 1998.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits, New
York: McGraw-Hill, 1994.

[11] , “Symbolic design of combinational and sequential logic circuits
implemented by two-level logic macros,”IEEE Trans. Computer-Aided
Design, vol. CAD-5, pp. 597–616, 1986.

[12] , “Hardware synthesis fromC=C++,” in Proc. Design Automation
Test Eur., Munich, Germany, pp. 382–383.

[13] N. Deo,Graph Theory with Applications to Engineering and Computer
Science. Englewood Cliffs, NJ: Prentice-Hall, 1974.

[14] T. A. Dolotta and E. J. McCluskey, “The encoding of internal states of
sequential machines,”IEEE Trans. Electron. Comput., vol. EC-13, pp.
549–562, Oct. 1964.

[15] C. Duff, “Codage d’automates et theorie des cubes intersectants,” Ph.D.
dissertation, Inst. Nat. Polytech. de Grenoble, Grenoble, France, Mar.
1991.

[16] R. Ernst, J. Henkel, T. Benner, W. Ye, U. Holtmann, and M. Trawny,
“The COSYMA environment for hardware/software cosynthesis of small
embedded systems,”Microprocess. Microsyst., vol. 20, no. 3, pp.
159–166, May 1996.

[17] D. Gajski, F. Vahid, S. Narayan, and J. Gong,Specification and Design
of Embedded Systems. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[18] D. Gajski, N. Dutt, A. Wu, and S. Lin,High-Level Synthesis, Introduc-
tion to Chip and System Design. Norwell, MA: Kluwer, 1992.

[19] A. Ghosh, J. Kunkel, and S. Liao, “Hardware synthesis fromC=C++,”
in Proc. Design Automation Test Eur., Munich, Germany, pp. 387–389.

[20] M. B. Gokhale and R. Minnich, “FPGA computing in a data parallelC ,”
in Proc. IEEE Workshop FPGAs Custom Computing Machines, Napa,
CA, 1993, pp. 94–101.

[21] E. Goldberg, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli,
“Theory and algorithms for face hypercube embedding,”IEEE Trans.
Computer-Aided Design, vol. 17, pp. 472–488, June 1998.

[22] A. Kay, T. Nomura, A. Yamada, K. Nishida, R. Sakurai, and T. Kambe,
“Hardware synthesis with Bach system,” inProc. IEEE Int. Symp. Cir-
cuits and Systems, Orlando, FL, May 1999.

[23] B. Kernighan and D. Ritchie, The C Programming
Language. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[24] H. Kim and K. Choi, “Transformation from C to synthesizable VHDL,”
in Proc. Asia Pacific Conf. HDL APCHDL, July 1998, pp. 85–88.

[25] D. Knapp,Behavioral Synthesis: Digital System Design Using the Syn-
opsys Design Compiler. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[26] D. Ku and G. De Micheli,High-Level Synthesis of ASICs Under Timing
and Synchronization Constraints. Norwell, MA: Kluwer, 1992.

[27] L. Lavagno and E. Sentovich, “ECL: A specification environment for
system-level design,” inProc. Design Automation Conf., New Orleans,
LA, June 1999, pp. 511–516.

[28] S. Liao, S. Tjiang, and R. Gupta, “An efficient implementation of reac-
tivity for modeling hardware in the scenic design environment,” inProc.
Design Automation Conf., 1997, pp. 70–75.

[29] S. Liao, “Toward a new standard for system level design,” inProc.
8th Int. Workshop Hardware–Software Codesign, San Diego, CA, May
2000, pp. 2–6.

[30] S.-W. Liao, A. Diwan, R. P. Bosch Jr., A. Ghuloum, and M. S. Lam,
“SUIF explorer: An interactive and interprocedural parallelizer,” in
Proc. 7th ACM SIGPLAN Symp. Principles Practice Parallel Program.,
May 1999, pp. 37–48.

[31] E. Linzer and E. Reig, “New scaled DCT algorithms for fused mul-
tiply/add architectures,” inProc. Int. Conf. Acoustics, Speech, Signal
Processing, vol. 1–5, 1991, pp. 2201–2204.

[32] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood,
“Hardware-software codesign of embedded reconfigurable architec-
tures,” inProc. Design Automation Conf., Los Angeles, CA, June 2000,
pp. 507–512.

[33] O. Mencer, M. Morf, and J. Flynn. PAM-Blox, high-perfor-
mance FPGA design for adaptive computing. presented at IEEE
Symp. FPGAs Custom Computing Machines. [Online]. Available:
http://umunhum.stanford.edu/PAM-Blox

[34] S. S. Muchnick,Advanced Compiler Design and Implementation. San
Mateo, CA: Morgan Kaufmann, 1997.

[35] A. R. Newton, S. Devaras, H.-K. Ma, and A. Sangiovanni-Vincentelli,
“MUSTANG: State assignment of finite state machines targeting multi-
level logic implementations,”IEEE Trans. Computer-Aided Design, vol.
7, pp. 1290–1300, Dec. 1988.

[36] P. R. Panda, N. D. Dutt, and A. Nicolau,Memory Issues in Embedded
Systems-On-Chip: Optimizations and Exploration. Norwell, MA:
Kluwer, 1998.

SÉMÉRIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROM 233

[37] R. Rugina and M. Rinard, “Pointer analysis for multithreaded
programs,” in Proc. SIGPLAN Conf. Program Language Design
Implementation, Atlanta, GA, May 1999, pp. 77–90.

[38] G. Saucier, “State assignment of asynchronous sequential machines
using graph techniques,”IEEE Trans. Computer, Mar. 1972.

[39] G. Saucier, C. Duff, and F. Poirot, “State assignment using a new em-
bedding method based on intersecting cube theory,” inProc. Design Au-
tomation Conf., Las Vegas, NV, June 1989, pp. 321–326.

[40] G. Saucier, M. C. Depaulet, and P. Sicard, “ASYL: A rule-based system
for controller synthesis,”IEEE Trans. Computer-Aided Design, vol.
CAD-6, pp. 1088–1097, Nov. 1987.

[41] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens,
“A programming environment for the design of complex high speed
ASICs,” in Proc. Design Automation Conf., San Francisco, CA, June
1998, pp. 315–320.

[42] L. Séméria and G. De Micheli, “SpC: Synthesis of pointers in C, ap-
plication of pointer analysis to the behavioral synthesis from C,” in
Proc. IEEE/ACM Int. Conf. Computer-Aided Design, San Jose, CA, Nov.
1998, pp. 340–346.

[43] , “Encoding of pointers for hardware synthesis,” inProc. Int. Work-
shop IP-Based Synthesis Syst. Design, Grenoble, France, Dec. 1998, pp.
57–63.

[44] L. Séméria, K. Sato, and G. De Micheli, “Resolution of dynamic
memory allocation and pointers for the behavioral synthesis fromC ,”
in Proc. Design Automation Test Eur., Paris, France, Mar. 2000, pp.
312–319.

[45] , “Memory representation and hardware synthesis ofC code with
pointers and complex data structures,” inProc. Synthesis and Systems
Integration Mixed Technologies Workshop, Kyoto, Japan, Apr. 2000, pp.
43–48.

[46] B. Steensgaard, “Points-to analysis by type inference of programs with
structures and unions,” inProc. Int. Conf. Compiler Construction,
Berlin, Germany, Apr. 1996, pp. 136–150.

[47] C. Stoud, R. Munoz, and D. Pierce, “Behavioral model synthesis with
cones,”IEEE Design Test Comput., vol. 5, pp. 22–30, June 1988.

[48] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State assignment of fi-
nite state machines for optimal two-level logic implementation,”IEEE
Trans. Computer-Aided Design, vol. 9, pp. 905–924, Sept. 1990.

[49] K. Wakabayashi, “C-based synthesis with behavioral synthesizer,
cyber,” inProc. Design Automation Test Eur., Munich, Germany, 1999,
pp. 390–391.

[50] R. Wilson, “Efficient, context-sensitive pointer analysis ForC pro-
grams,” Ph.D. dissertation, Stanford University, Stanford, CA, 1997.

[51] R. Wilson and M. Lam, “Efficient context-sensitive pointer analysis for
C programs,” inProc. ACM SIGPLAN Conf. Programming Languages
Design Implementation, La Jolla, CA, June 1995, pp. 1–12.

[52] R. P. Wilson , R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. Tjiang, S. W. Liao, C. W. Tseng, M. W. Hall, M. S.
Lam, and J. L. Hennessy, “SUIF: An infrastructure for research on par-
allelizing and optimizing compilers,”ACM SIPLAN Notices, vol. 28, no.
9, pp. 67–70, Sept. 1994.

[53] S. Wuytack, J. L. da Silva Jr., F. Catthoor, G. de Jong, and C. Ykman,
“Memory management for embedded network applications,”IEEE
Trans. Computer-Aided Design, vol. 18, pp. 533–544, May 1999.

[54] C Level Design [Online]. Available: http://www.cleveldesign.com
[55] CoWare N2C [Online]. Available: http://www.coware.com/n2c.html
[56] CynApps [Online]. Available: http://www.cynapps.com
[57] EtherDesign Software [Online]. Available: http://www.etherdesign.com

[58] Frontier Design AR|T BUILDER [Online]. Available: http://www.fron-
tierd.com/artbuilder.htm

[59] Handle-C [Online]. Available: http://oldwww.comlab.ox.ac.uk/oucl
/groups/hwcweb/handel/index.html

[60] Mentor Graphics Monet [Online]. Available: http://www.mentor
.com/monet

[61] Get2Chip [Online]. Available: http://www.get2chip.com
[62] OCAPI [Online]. Available: http://www.imec.be/ocapi
[63] LCLint [Online]. Available: http://lclint.cs.virginia.edu
[64] Rational Software Purify [Online]. Available: http://www.rational.com
[65] SpecC [Online]. Available: http://www.specc.gr.jp
[66] SUIF Compiler Framework [Online]. Available: http://suif.stanford.edu
[67] Synopsys Inc. Behavioral Compiler [Online]. Available:

http://www.synopsys.com
[68] Synopsys Inc. CoCentric SystemC Compiler [Online]. Available:

_http://www.synopsys.com/products/cocentric_systemC
[69] SystemC [Online]. Available: http://www.systemc.org
[70] Transmogrifier [Online]. Available: http://www.eecg.toronto.edu/EECG

/RESEARCH/tmcc/tmcc/
[71] RAW Architecture [Online]. Available: http://www.cag.lcs.mit.edu/raw

Luc Sémériareceived the Engineer degree from the École Nationale Supérieure
des Télécommunications, Paris, France, in 1996 and the M.S. degree in electrical
engineering from Stanford University, Stanford, CA, in 1998. He is working to-
ward the Ph.D. degree in the Electrical Engineering Department, Stanford Uni-
versity.

While studying, he has held several summer positions at Synopsys Inc.,
Mountain View, CA. His research interests include system-level design,
hardware–software codesign, and optimizing compiler. He is currently working
on the synthesis of hardware fromC .

Giovanni De Micheli (S’79–M’83–SM’89–F’94) received the Nuclear Engi-
neer degree from the Politecnico di Milano, Milan, Italy, in 1979 and the M.S.
and Ph.D. degrees in electrical engineering and computer science from the Uni-
versity of California, Berkeley, in 1980 and 1983, respectively.

He is a Professor of Electrical Engineering and Computer Science at Stan-
ford University, Stanford, CA. He was Codirector of the NATO Advanced Study
Institutes on Hardware–Software Codesign, Tremezzo, Italy, in 1995 and the
Logic Synthesis and Silicon Compilation, L’Aquila, Italy, in 1986. He is author
of Synthesis and Optimization of Digital Circuits(New York: McGraw-Hill,
1994) and coauthor of four other books. His research interests include several
aspects of design technologies for integrated circuits and systems, with partic-
ular emphasis on synthesis, system-level design, hardware–software codesign,
and low-power design.

Dr. De Micheli received a Presidential Young Investigator Award in 1988.
He received the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGNBest
Paper Award and two Best Paper Awards at the Design Automation Confer-
ence in 1983 and 1993. He was Vice President (for publications) of the IEEE
CAS Society from 1999 to 2000. He is currently the Editor-in-Chief of the IEEE
TRANSACTIONS ONCOMPUTER-AIDED DESIGN. He was the Program Chair and
General Chair of the Design Automation Conference in 1996, 1997, and 2000,
respectively, and was also the Program Chair and the General Chair of the In-
ternational Conference on Computer Design in 1988 and 1989, respectively.

