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Resolution, Optimization, and Encoding of Pointer
Variables for the Behavioral Synthesis frarn

Luc Séméria and Giovanni De Michgkellow, IEEE

Abstract—As designers may model mixed hardware-software type castings, and pointers. The problem with dynamic memory
systems using a subset af' or C++, we present SpC, a solution allocation (malloc, free ) and recursion is that the size of
to synthesize and optimize hardwareC models with pointers. In the memory required for an applicationaspriori unknown.

hardware, a pointer is not only the address of data in memory, Theref th thesis 6f code involving d .
but it may also reference data mapped to registers, ports, or wires. erefore, the synthesis 0f code involving dynamic memory

Pointer analysis is used to find the set of locations each pointer may allocation would require access to an operating system running
reference in a program at compile time. In this paper, we address in software or the generation of hardware allocators [44], [53].
the problem of synthesizing and optimizing pointers to multiple  Arbitrary control flow (e.g., due tgoto statements) compli-
variables or array elements. The value of the pointers are encoded 5105 the scheduling of operations even though it has been ad-
and branching statements are gsgd to dynamlcfal_ly access data ref- d d a9l | | th f boint . fth .
erenced by pointers. A heuristic is used to efficiently encode the d"€SS€d [49]. In general, the use of pointers is one of the major
values of the pointers. Compiler techniques are also used to re- difficulties, especially when combined with pointer arithmetic
duce storage before loads and stores. An implementation using the and type casting. Pointers have different applicatiords.ifhey
SUIF framework (Wilson etal, 1994; SUIF Compiler Framework)  are often used in function calls to pass parameters by reference.
gsurt);esented, followed by some case studies and experimental rerhey are also used to scan arrays, reference data structures,
' or perform any type of complex memory management opera-
tion. The semantic of pointers i€ is the address of data in
main memory. However, in hardware, designers may want to
IFFERENT languages have been used as input to behajptimize the memory architecture by using registers, multiple
ioral synthesis. Hardware description languages (HDLB)emory banks, etc. Therefore, pointers cannot be considered as
such as Verilog HDL and VHDL are the most commonly used@ddresses to a single memory. To enable efficient mapping of
However, designers often write system-level models usifgcode with pointers to hardware, the synthesis tool has to au-
programming languages such @sor C++ to estimate the tomatically generate the appropriate circuit to access the data
system performance and verify the functional correctness referenced by pointers. The resolution of pointers is a key fea-
the design.C/C++ offers fast simulation as well as a vasture forC-based synthesis. It is an enabler for fast data accesses
amount of legacy code and libraries, which facilitate the tasid efficient scheduling of operations.
of system modeling. To implement parts of the design modeledin this paper, we will focus on the efficient hardware imple-
in C/C++ in hardware using synthesis tools, designers mugentation of pointers i€’ models. In Section I, we present
manually translate these parts into a synthesizable subseme of the related work on synthesis frohas well as on com-
of HDL. This process is well known for being both timepilation of C code onto parallel architectures. In Sections Il and
consuming and error prone. IV, we define our synthesizable subsetdfind show how var-

The use ofC/C++ or a subset o/ C++ to describe both ious types of pointers can be synthesized. In Sections V and VI,
hardware and software would accelerate the design process wedliscuss different techniques for optimizing the code by lim-
facilitate the hardware—software migration. Designers could déing the number of live variables before the loads and stores and
scribe their system using/C++ and partition it into software encoding the value of the pointers. In Section VII, we present
and hardware blocks. Hardware synthesis tools fton0'++  SpC, our framework for the synthesis and optimizationCof
would then be very useful to ma@/C++ models into logic code with pointers using the SUIF [52], [66] compiler frame-
netlists. work and a commercial behavioral synthesis tool. Finally, in

In order to help designers refine their code from a simul&ection VIII, results are given for a set of examples.
tion model to a synthesizable behavioral description, we are
trying to efficiently synthesize the full WsI C standard [23]. II. RELATED WORK
This task turns out to be particularly difficult because of dy- .
namic memory aIIocation,pfunction )éalls, recursiogsfo s, yA' Hardware Synthesis froii/C'++

Different subsets of®/C++ and C-like HDLs have been

. . _ _defined and used for synthesis. First, we mention those devel-
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and produces gate-level implementations. HereCthmdel de- addressing units. In hardware, designers may want to optimize
scribes circuit behavior during each clock cycle of sequentitde locality by storing data into multiple memories, registers,
logic. This subset is very restricted and does not contain umr- even wires (e.g., output of functional units). Our tool SpC
bounded loops nor pointers. presented here enables such optimization by leveraging recent
In the recent past, a few projects have been looking at meaasearches on pointer analysis and high-level synthesis.
to useC'/C++ as an input to current design flows [12]. Con- Another approach is to usgé/C++ directly as an input to
structs are added to model coarse-grain parallelism, comnauehitectural synthesis tools. This approach has been chosen by
nication, and data types. These constructs can be definedSgmopsys with ©CENTRIC SYSTEMC COMPILER[19], [68] and
new syntactic constructs, hence creating a new language. ThgyNEC with CrBER [49]. C' and C++ are both procedural
can also be implemented as part of'a-+ class library [56], imperative languages. Their semantics rely on an implicit Von
[69]. Even though restrictions on the language apply for syfdeuman architecture. The implementation of sequential func-
thesis, hardware—software systems are then modeled diretityal descriptions into hardware has extensively been studied
usingC++-. Simulation is performed by running the executableluring the last decade [8], [17], [18], [25], [26], [60], [67]. Syn-
which is generated after compiling the models. Standard debtigesis fromC/C++ description can leverage some of this pre-
ging environments can then be used to check the functionahtipus work on architectural synthesis but also requires the de-
of the system. velopment of some extensions for efficiently supporting the dif-
For reactivity, SSTEMC [29], [69] (formerly known as ferentconstructs af'/C++. Some of the current work on func-
SCENIC [28]) supports a mixed synchronous and asynchronotign calls as well as synthesis of structures in VHDL can also
approach implemented as’a++ class library. The Esterél’ be relevant. More research is, however, required for supporting
Language (ECL) [27] is synchronous because it is based 61{C++ constructs such as pointers, dynamic memory alloca-
bothC and ESTEREL Other extensions includeANDEL-C [59] tion, and object-oriented features.
and BacH-C [22] (originally based on €cawm), SPECC [65] Finally, we should also mention some of the areas in which
(based on BEACHART), CYNLIB [56], and C-LEVEL DESIGN C/C++ models mix hardware—software and other specific
[54]. architectures. For hardware—software codesign, tb@/&RE
In order to map functionality to hardware, a synthesizabM2C system [55] as well as its precursor [5] USgC++ as a
C'/C++ subset is usually defined. We can distinguish two afanguage base for system specification. Additional constructs
proaches. The first approach consists of translating a subSet diave been introduced to define concurrent processing blocks
into HDL (Verilog or VHDL) that will eventually be synthesizedand communication. This description is used to synthesize the
using today’s synthesis tools. The second approach consistintérfaces between the blockso€vmA [16] usesC*, another
usingC/C++ directly as an input to behavioral synthesis.  superset ofC, with processes and timing constraints. During
In order to facilitate the mapping af' models into hard- hardware synthesis, functions are inlined and pointers are
ware, several tools exist that automatically transi@tbased treated only as memory references.
descriptions into HDL either at the behavioral level or the reg- For synthesis of reconfigurable systems based on field pro-
ister transfer level (RTL) level. In the originalBHC compiler, grammable gate array (FPGA), several projects have been using
a limited subset of” can be translated into VHDL at the behav{'/C++. For PAM-BLox [33], a bottom-up methodology is
ioral level. @WARE [55], OCAPI [41], [62], CrNAPPS[56], presented in which a library of components can be defined and
and others [57], [70] automated the translation from a refinesed asC++ objects to build systems for the Pamette archi-
RTL model to HDL. These subsets do not include pointers. tecture. A similar design environment has also been developed
Kim and Choi [24] as well as the authors of this papdrased onC for SpLASH [20]. For mixed software and repro-
[42], [44] were the first to report on the synthesis of hardwamgrammable FPGA architectures, ther® compiler [7] as well
C models with pointers. Kim and Choi’'s implementation iss the NMBLE compiler [32] automatically generate retargetable
limited to a rather small subset 6f. Pointers that may point to coprocessors to speed up loops. Pointers are treated as refer-
multiple locations are not supported and such constructs as tgpees to the main memory. This approach is relevant for imple-
casting and complex data structures are not considered. Tmwenting memory-mapped input—output (I/0). However, it can
commercial tools,C-level design C2HDL [51] and frontier be a limitation to parallelize data transfers inside of a datapath.
design ART BUILDER [58], also provide tools for translating Finally, Babbet al.[2] present a compiler for a variation of the
C models into Verilog or VHDL. Limited scheduling andRAW [71]parallel architecture in which one or multiple pro-
resource-sharing techniques can be applied to quickly genermaasing units can be replaced by specialized hardware blocks.
RTL synthesizable code. Pointers are one of the limitations féhe problem of pointers is addressed in order to map data to
AR|T BUILDER. Pointers are only supported to pass parametaiferent memory tiles. pointers to multiple memory locations
by reference or to scan arrays (pointer arithmetic). These ty@ee, however, a limitation because these locations are mapped
of pointers can usually be removed using standard compitera unique memory and, therefore, cannot be accessed in par-
techniques (propagation and function inlining) and by addiradlel in a datapath.
ports for procedures. C2HDL, on the other hand, supports all of To summarize the previous work, pointers are one of the main
the ANSIC constructs, excluding libraries. However, pointersutstanding issues for the synthesis of hardware fonin
are implemented in a software-like approach. They are ondyder to guarantee good quality of results, the current prac-
considered as addresses to data stored in memories that reqigeeis to support only a limited subset of the language with
the allocation of memories to store the various variables asdvere restrictions on pointers. Otherwise, a software-like ap-



SEMERIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROMY 215

proach is taken in which the data accessed by pointers are staehantics of pointers is the address of an element in memory.
in memory. Our approach is based on the use of analysis teElwven thouglregister  declarations may allow programmers
niques pointer analysikin order to generate efficient hardwargo specify the variables to place in registers, the assignment of
from C code using any kind of pointers at the behavioral leveVariables to registers is generally done by the compiler. The no-
tions of caches and memory pages are transparent to program-
B. Software Compilation af’ and C++ mers. _ _
C and C++ are o of the most commonly used pro- In hardware at the behavioral level, designers want to have

control on where data are stored and optimize the locality of

gramming Ialjguages today. Many compilers e>_<|st for mani¥e storage. Typically, a chip design contains multiple memory
different architectures. Most of the recent compilers not on

: . anks, register files, registers, and wires. To efficiently ma
try to map the different statements of the code into assem Ycode orgllto hardware g:he storage space must be par>t/ition£d.

instructions, but they also try to optimize the code for a glVelﬂuring synthesis, each partition is then mapped to a register, a

instruction set architecture (ISA). For distributed archltectureV%ire’ or a memory. Some partitions may also represent pointers.

parallel compller_s are trying to partition programs into mUItIpl?’ointers may be used to reference any variable no matter where
threads running in parallel. However, some of €heonstructs ., . T ) . .
its information is available. Pointers are then considered as ref-

such as pointers and arbitrary control-flow operatiagig, erences to memory elements, registers, wires, or ports. They can

longjmp , etc.) make these optimizations difficult. In software etused to access data. In this paper, we call the action of reading

pointers represent addresses in memory. They are often use 10, using a pointer wad. Subsequently, toreis the action

e e T o e, ging datsusing a paner
y y Y. 9 Y- BYThe synthesis of hardware frod consists first of parti-

definition, pointers may _reference multiple data, which happeﬂ(s)ning the memory. Each patrtition is then mapped to a variable
when referencing the different elements of a data structure

L . ure Bkin to wire or register in the final implementation) or an array
an array. It may also happen inside of a function for pointefs

corresponding to parameters passed by reference or, makm to memory or register file). The synthesis of pointers

e . . . O )
generally, when the value of the pointer at one point in the co 8n3|sts of generating the appropriate circuit for accessing data.

varies according to the current context or the previous flow of this purpose, we change the addresses into numbers (i.e.,
operations 9 P Zhcode pointers’ values) and replace loads and stores by some

Many of the optimizations done in today’s compilers as WeﬁSSlgnmentS, directly accessing the data that the pointer may

as in many high-level synthesis tools are based on data_ﬂ(r)sz\}‘erence (i.e., dereference pointers).

analysis [1], [34]. The purpose of data-flow analysis is to Example 1: Consider the following code segment.
provide information on how a code segment manipulates its
data. Examples of applications include register allocatidt “P, N
(based on reaching-definition and live-variable analysigfit t[256]; _ _
constant folding, common-subexpression elimination, loggruct { int a; int b; } in;
optimization, dead-code elimination, etc. The optimizations "
presented in Section V are also applications of data-flolv ("')_
analysis. To solve a given data-flow problem, the effect of P = &in.a;
each programming language structure is modeled by transfése .
functions. The result of such transfer functions often depends? = &in.b;
on the data accesses at each statement in the program. Namely,
in order to model the effect of statements involving a pointer,tirtn = P
is important to know what data may be accessed by the point€r = tn + 1;
(points-to informatioin It
In order to parallelize programs onto distributed architec-

tures, the independent sets of data, which can be processe@ the final implementation, we want to store artfly in a

in parallel, have to be extracted [30]. The problem here is fRemory and integen, pointerp, and the two structure fields
find statements in the program that may read or write the safiga andin.b in separate registers that are accessible in par-
locations (aliasing problem). For this purpose, #i@singin-  allel. Moreover, pointep may point to eithein.a orin.b . If
formation has to be determined between pointers. The pointsyge associate the valiewith in.a andl with in.b , we can
information and the aliasing information are equivalent anémove the pointer. First, for the address&s the assignments
can be determined by recent analysis techniques cpdleder p = gin.a andp = &in.b canrespectively be replaced by
analysisor alias analysisDifferent pointer-analysis techniquesp tag = 0 andp_tag = 1 , wherep_tag represents the
[37], [50], [51] exist. For hardware synthesis, we also need &hcoded value of the pointer. Second, the dereferendeis (
know which variables are accessed at each statement. Th@gds and stores can be removed as follows.

fore, pointer analysis can be used for the behavioral synthesishe load {{n] =  *p) can be replaced by the following:
of C models as we will do in the next section.

if(p_tag == 0)
tin] = in.a; /* case p == &ina */
In software, aC program is targeted to a virtual architecelse

ture consisting of one memory in which all data are stored. Thet[n] = in.b; /* case p == &inb */.

Ill. BACKGROUND—SYNTHESIS OFC MODELS WITH POINTERS
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The store{p = t[n+1] )canbereplaced by the following: are not allowed. Their resolution would require the synthesis of
some kind of interface between the circuits realizing the pro-
cesses. Such interface is usually defined during system parti-

if(p_tag == 0) tioning and, hence, before synthesis.
ina = tn+1]; /* case p == &ina */ A second limitation stems from the fact that most commer-
else cial synthesis tools also have restrictions on functions. Recur-
in.b = t[n+1]; /* case p == &inb */. sions are usually not supported. Procedures that are mapped to

components typically have restrictions both on their function-
. . _ ality and their parameters. For example, the same function called
Coﬁ‘: ivr\llt% fgr] df,ve;rénwE;ggf rzee:c’j Lg O;?t(ietricfg gg%ﬂgzrnﬁ?owithin different contexts may usually not be shared. Besides,

' P Y- ost synthesis tools do not synthesize parameter passed by ref-

implementation, memory is partitioned into a set of location seésﬁance because this is not supported by most HDL syntax. The

:rs1(;jgfocrgboedelrgtisoencs“%r':ol Irtﬁ;j\?v:kr)jev?/gir::aya :Eg Ezngffgr:]o t/e?thesis of functions i and the resolution of pointers inside
P ' Rffunctions are beyond the scope of this paper.

time the set of locations the pointers may referepcénts-toin-
formation). As we have seen in Section II-B, such information
is also widely used in compilers and can be determined by - Memory Representation
cent analysis techniques callgdinter analysi®r alias analysis

described in Section IlI-C. Finally, in Section IlI-D, we presené
how memory can be partitioned into variables and arrays, whi

can be mapped to hardware.

The simplest memory representation consists of a single ad-
ess space in which all data are stored. This trivial represen-
tz;}ion however prevents from optimizing the locality and par-
allelizing the code. On the other hand, the most accurate rep-
L resentation, which would distinguish each element of arrays or
A. Definition of the Subset of recursive data structures, is not practical for large programs.

The ultimate goal of this research is to efficiently synthesiz&s a result, most analysis techniques combine elements within a
the full ANSI C. In this paper, however, we target mainly thesingle data structure. In order to find both an accurate and prac-
synthesis of pointers to statically allocated data and explore difsal representation for hardware synthesis, we use the notion
ferent optimization techniques. Extensions of this work to iref location setdntroduced by Wilson and Lam [50], [51]. Lo-
clude more of th€' syntax (nalloc/free ) are possible [44], cations sets support any of the data structures availabie in
[45], but beyond the scope of this paper. In this section, we orilycluding arrays, structures, arrays of structures, and structures
talk about the restrictions on the synthesizable subset. Limitaantaining arrays. This representation is also relatively simple
tions on the generated architecture may also exist akin to #h&it combines the different elements of an array or of recursive
limitations of the behavioral synthesis tool used as a backenddata structures. It can, therefore, be used for l&¥grograms.
our tool. Let B be the set of memory blocks corresponding to the dif-

Our subset contains all statements supported by todafésent variable declarations. A location det= (loc, f, s) €
behavioral synthesis tools, including branches, loops, assidghx N x Z represents the set of locations with offsgfst-is|i €
ments, etc. It also contains pointers to data, which can B¢ in a particular block of memorijoe. That is, f is an offset
stored in multiple memories, registers, or wires. It supporwithin a block ands is the stride. If the stride is zero, the loca-
pointers to statically allocated data such as variables, arrays #nd set contains a single element. Otherwise, it is assumed to
structures, pointers to pointers, and pointers to functions. Sifaean unbounded set of locations.
memory blocks are instantiated at compile time, recursionsExample 2: In the code segment shown in Example 1, the
and pointers to dynamically-allocated memory of which siz@emory can be represented by the following set of location sets:
is unknown at compile time are not allowed. This implies thgp, 0, 0); {(n, 0, 0); (t, 0, 4) for the elements of arraly; (in ,
in generalmalloc , free , and recursions are not supportedd, 0 forin.a ;and(in , 4, 0) forin.b . Note that offsets and
Neverthelesspalloc followed byfree could be allowed as strides are represented here as a number of bytes.
well as tail recursion. Calls tmalloc followed byfree can For simple data structures (arrays, structures, array of struc-
be treated as local variables [44] and tail recursion eliminatieares), offsets are used to identify the different fields of struc-
can be done by turning recursions into loops [34]. tures whereas strides are used to record array-element sizes.

The pointer analysis techniques and the memory represeriay. 1 gives an example of representation for an array of struc-
tion presented in the next sections support the complete AN8tes. The representation does not distinguish the different ele-
C syntax. In this paper, however, we define our own synthesiments within the array but it distinguishes the different instan-
able subset. Our subset includes all types of pointers and tyjations of variables and structures. This makes sense since all
casting. The code is assumed to be correct. Tools such as LClgl@ments of an array are usually alike. Nested arrays and struc-
[63] or Purify [64] can be used to check that memory reads atutes, type casting, and pointer arithmetic are making things
writes are valid. more complicated, leading to some additional inaccuracies.

In addition, we set the following restrictions. One restric- The representation of the memory itself depends on how loca-
tion applies to systems described as a set of parallel processiesis are being accessed. Consequently, pointer analysis, which
pointers that reference data outside of the scope of a prociegfie subject of the next section, and memory representation are
(e.g., global variables or data internal to some other processigiitly related.
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[r[O}].}a-fI folb |;[1]La"§ 1lb | ,r[z].a1 r[2].b| 3la) e Example 3:In the code segment presented in Example 1,
\/\J/W annotations are inserted by the pointer analysis to specify where
offset  stride stride stride points-to set pointers may point at loads and stores.

Fig. 1. Representation ostruct {int a; int b; } [ ] . The * n:

offset and stride are represented for the location set consisting of the eIemenFs p,

b wherei is an integer. int t[256];

struct { int a; int b; } in;
C. Pointer Analysis it ()

p = &na; /lp — {{in, 0,0}
Pointer analysis is a compiler pass to identify at compile timglse

the potential values of the pointers in the program. This infor-p = &in.b; //p — {{in, 4,0)}
mation is used to determine the set of locations that the pointer
may point to. With the memory representation in Section lll-B[n] =  *p; llp — {{in, 0,0),(in, 4,0)}
this set of locations is actually a set of location sets. For syrp = t[n+1]; //p — {(in, 0,0 4,0
thesis in the case of loads and stores, we want to synthesize.the
logic to access or modify the location referenced by the pointer.
For this purpose, the points-to information must be bedfe :
andaccurate—safe because we have to consider all locatio .In the prewous'code segment, the notat{?r,] 0, 0 >. N
the pointer may reference and accurate because the smalle&?ﬁ%’ 0,0 ). (in, 4, 0 )} stands for “p may point to

points-to set is, the less logic we have to generate. We can (?@[la_blesm.a_l orin.b , _where_:m.a is represented by t_he
tinguish two types of analyzes. ocation setin , 0, 0) andin.b is represented by the location

set(in , 4, 0).
1) Flow and Context Insensitiv&his analysis [46] does not
distinguish the order in which the statements are executed Memory Partitioning and Mapping to Variables and Arrays

(flow insensitivity and the different calls of a function  After analysis, the storage in the program can be represented
(context insensitivily This interprocedural analysis hasyg 3 set of distinct location sets. This set of location sets rep-
an almost linear complexity. It can be used to analyz@sents a partitioning of the memory. Each partition block (i.e.,
very large programs but the points-to information is rathefach |ocation set) is ultimately mapped to a wire, a register, or a
inaccurate. Within a procedure, flow-insensitive analysigaction of memory in the final design. The allocation of a given
gives global information (valid for all references in thegriable to a register (or a wire) is typically the result of architec-
code) rather than the information specific to each refefyrg| synthesis. We can distinguish two types of location sets for
ence. Similarly, in the case of function calls, context-instatically allocated data: location sets whose strides are null (i.e.,
sensitive analysis propagates the information from thgngletons, sets of one location) and location sets with nonzero
call site through the called function and backalocall  strides (i.e., sets of multiple locations). A singleton location set
sites. may, therefore, be treated as a simple variable whereas a loca-
2) Flow and Context Sensitivé&his analysis provides more tion set with nonzero stride may be mapped to an array. In our
accurate results. It distinguishes the different paths ﬁﬁplementation [45], for each location Séic, f, s), we define
control within the program and the different calls of &pcioc_f_s as the following.
function. One implementation [50], [51] by Wilson and  For a singleton location set (i.es,null), SPCloc_f_s is a
Lam within the SUIF framework can efficiently supportariaple. In the case of a location set representing a variable
the full-featured Aisi C with good accuracy. Even thoughgt pasic type (e.g.char, short, int ) the mapping is
the complexity of the analysis can be exponential, itis n@trajghtforward. For structures, the different fields can be
a limitation for hardware synthesis because we deal Wifjapped to separate variables (akin to registers or wires in the

rather small and simple programs. In addition, most of tha| hardware) as long as they are represented by separate
inaccuracy comes from features such as dynamic memagyation sets.

allocation, recursion, and recursive data structures thatweror g |ocation set with nonzero stride (i.es.,not null),

do not consider in this paper. SPCloc_f_s is defined as an array (e.g., array of integers).
The flow- and context-sensitive analysis is more appropriaBich array may then typically either be mapped to a memory
for hardware synthesis. In our case, the complexity of the anal-a register file manually or according to current methodology
ysis is not an issue and the coding style for modeling hardwd#, [36]. For arrays of structures, the different fields of the
leads to accurate results. structures can be mapped to different memories as long as their
Our implementation uses a flow- and context-sensitive anaépresentations do not overlap. This allows to independently
ysis. Using the memory representation described in the pescess the different fields of the structures, leading to more
vious section, the points-to information is defined as a set fiéxibility and potentially better performances.
location sets. The points-to information is then used to encodeExample 4:We have seen thap, n, t, in.a, and
the pointers’ value and to generate the appropriate logic for aeb in Example 1 can be represented by the location§gts
cessing the data in each location set. 0, 0)¢(n, 0, 0 ), (in, 0, 4 ) for the elements of array



218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

t,(in, 0, 0 )forina ,and({in, 4, 0 )forinb .Asa
result, we create the following variables:

N e

tag index

Fig. 2. Encoding of pointers in an array.

int SPC_ n 00; /In
int *SPC p 0 0; /lp

int SPC_t_0_4[256]; //t[256] A. Encoding the Value of the Pointers
int SPC_in_0_0; /lin.a The addresses (i.e., pointers’ values) are encoded. The en-
int SPC_in_4_0; /fin.b . coded value of a pointgr consists of two fields: theag p.tag

corresponds to the location set referenced by the pointer and the
indexp.index stores the number of bytes corresponding to
After partitioning, the code is then transformed into the offset of the data referenced within the location set.

The tag p.tag is only used for pointers to multiple
location sets. Its size (defined as the minimum number
of bit used to store its value) can be as small [&xg »
(size_of_points-to-set) 1. The index p.index
on the other hand, is used when the poimtanay point to a
location with nonzero stride (e.g., an array). Pointer arithmetic
is then supported by changing the value of the index: the value
of p.index s initialized whenp gets the address of the array
element. Then the index is modified insteacpof

For pointer variables, the following two fields can be imple-
mented as separate variablpstag andp_index .

Definition 1. For a pointer variablep we define the vari-

Note that the present code contains only variables and arrsj/&/€SP_tag andp_index , wherep_tag encodes the loca-

The partitioning process can be more complex with tydiPn Setthe pointer points to apdindex - stores the offset cor-
casting and out of bound array accesses [45]. Neverthele@sg,pc_’nd'ng to the location referenced by the pointer within the
after memory partitioning, the storage of tigprogram can be location set. . . )
represented as a set of distinct variables and arrays. Thereford?) the case of an array of pointers, the tag and index fields are
in the remainder of this paper, all data are supposed to be eitfi9d into one data structure, as shown in Fig. 2. To support
variables or arrays. In the next section, we present how point@fge casting, it is convenient to set the size of this data structure

to variables and arrays can be synthesized. For clarity, variabfgQ€ the same as the size of a pointer before encoding (typically
and arrays such a8PC_a_0_0 and SPC_table 0 4 [--/] 32 b). The tag is stored on the left part of the code and the index

on the right part of the code to support pointer arithmetic.
Example 5: Consider the following code segment:

it (o)
SPC p 0O
else
SPC p 0 0 = &SPC_in_4 0;

&SPC _in_0_0;

SPC_t 0.4[n] = *SPC_p_0_0;
*SPC_p_0_0 = SPC_t_0_4[n+1];

will be denoteda andtable directly.

IV. POINTER SYNTHESIS int  *p, *q;

In hardware, as discussed in Section IIl, data may be stof8§ & b, ¢, table[256];
in multiple registers, memories, or even wires (e.g., output of’
a functional block). Therefore, to efficiently map code into 9 = &table[n];
hardware, pointers may not only address data in memory, tHEy () 4
may also reference registers, wires, or ports. Pointer analysi® ~ &a;
is used to define the set of locations as a set of location set§l = &C;

that each pointer may point to. Our synthesis tool generate€!se { _
the appropriate circuit to dynamically access these locationsP = &b;
according to the pointers’ value. We distinguish two types of 9 = &table[n];

pointers: pointers to a single location, which can be removed,
and pointers to multiple locations.

Loads from pointers to a single location (i.e., one location s =P+ L
whose stride is null) are simply replaced by assignments from
the location accessed. Similarly, stores are simply replaced byn this code segmenp may point to variables or b and
assignments to the location referenced. Loads and stores frgrmay point toc or an element otable[ ] . In order to
pointers to multiple locations (i.e., many location sets with zeremove the pointers, we create the 1-b varialpeag and
strides and/or one or more location set with nonzero stride) aretag . Sinceq may point to an array element, we also create
replaced by a set of assignments in which each location ming indexg_index . Forp_tag we associate the valiewith
be dynamically accessed according to the pointer’'s value. Foandl with b. As a result, the assignmemt= &a is replaced
the sake of clarity, we will use the variable namas a generic by p_tag = 0 and the assignmemt = &b is replaced by
pointer name. p_tag = 1 . Similarly, for pointerq, we associate the value
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0 with ¢ and1 with the location set representing the elements g_ifﬁégie[] ) q_tag

of table[ ] . The assignment| = &c is then simply re-

placed byg_tag = 0 . The assignmerg = &table[n] is

replaced by two assignments:tag=1 andq_index=n *4.
Example 6: Consider the assignment of pointérs= s) , b—>

wherer may point toa, b, orc ands may point tob orc. In

order to remove the pointers, we createag ands_tag . For

r_tag ,we associate the val@ewith a, 1 withb, and2 withc.  Fig. 3. Implementation ofq = *p+1, wherep may point toa or b andq

Fors_tag , we associat® with b and1 with c. The following may point toc or an element ofable[ ]

code is generated far = s :

g _index

or an element ofable] ] . To synthesize the load, we create

switch s_tag: the temporary variablstar_p , which stores the value of the
case 0: r_tag=1; data the pointgr points to (i.e.;'p) at the load instruction. Sim-
case 1: r_tag=2; ilarly for the store, we create the temporary variatre_(,

which stores the new value to be assigned to theglataints to

Now, if for r_tag the valueO was associated with and at the store instruction. After encoding the pointers’ value (cf.
the valuel was associated with, r = s would have been Example 5), the loads and stores are then replaced by the fol-

replaced by lowing code:
r_tag = s_tag; switch p_tag: {
case 0: star_p = a; break;

b; break;

This shows that the complexity of the circuit implementin% case 1. star_p
the assignment of two pointers is directly related to the encodifg
of the pointers. Efficient pointer comparison and assignment§fP_d = star_p + 1,
pointers require pointers to have the same code or at least cotédch d_tag: {
as close as possible. case 0: ¢ = tmp_g; break;
The encoding of the pointers’ value has an effect on the com-cas€é 1. table[q_index]=tmp_q; break;
plexity of the design. Example 6 gives two examples of encob-
ings that produce different implementations for the assignment

of two pointers. In Section VI, the encoding problem is formu- The corresponding circuit generated after synthesis is pre-
lated and a heuristic solution is presented. sented in Fig. 3. Note that the load ( =*p) is implemented
by a two-input multiplexer controlled by_tag .
The removal of the dereferences’‘in loads and stores can
Several types of pointers can be distinguished. We have séendone in one pass. For each load (=*p), we look at the
in Section 111-D how complex data structures can be representeaints-to set of the pointer at this instruction. If the points-to
as variables and arrays. Without loss of generality, in this seset is only one location, the load is simply replaced by an as-
tion we first consider pointers that may point to variables argignment from this location. Otherwise, we create a temporary
array elements. We then present two extensions for pointersv&iable étar_p in Example 7) that stores the value of the
pointers and pointers to function. data the pointer points to at the load instruction. The load in-
1) Pointers to Variables and ArraystWe use the result struction is then replaced by an assignment from this temporary
of pointer analysis to remove loads and stores. With thariable. Branching statements are inserted before the load to
assumptions of Section IlI-A, loads and stores can be replacat the value of the temporary variald@ar_p according to
by branching statements (e.gase, if then else ) at the values of the tag_tag and the indexp_index .
compile time. Pointer analysis defines the set of location setsSimilarly, for each store*q = ---), we also look at the
that the pointer may reference at each load and store. Whmmints-to set of the pointeg at this instruction. If the pointer
these location sets are mapped to registers or wires (e.g., oufgmitts to only one location, the store is simply replaced by a
of a functional unit), the branching statements correspondiagsignment to this location. Otherwise, we create a temporary
to a load are implemented using a multiplexer controlled byariable {mp_qg in Example 7) that stores the value to be
the pointer’s value. In the case of a store, some control logissigned to the data points to. The store is then replaced
is generated to update the value of the variable the point®r an assignment to this temporary variable and branching
points to. This control logic can be automatically generated lsyatements are inserted after the store to update the values of
an architectural synthesis tool. References to array elemettis variables thafj may point to according to the tag tag
stored in memories or register files are treated similarly. Soraed indexq_index .
control logic is also created to access the location referenced imhis implementation can be generalized to pointers to
the different memories or register files. pointers and pointers to functions. In Section V, we also present
Example 7: Consider the code segment in Exampléd: = some optimizations to reduce the memory usage before loads
*p+1, wherep may point toa or b andgq may point to eithec  and between loads and stores when the pointer is a variable.

B. Dereferencing the Pointers
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2) Generalization to Other Types of Pointert general, a |b |c ' lstar_p
pointers may also point to other pointers and functions. The |
technique presented in the previous section can be extended to s R W I out=star_p
these types of pointers. péb out | lout
c I

Pointer to Pointers: Pointers to pointers can be implemented
by resolving the pointers level by level.

Example 8: Consider a pointep that may point to two
pointersql, g2. Pointersql andg2 may in turn both point
to variablesa or b. The statement**p = **p+1;) canbe  |norderto map this code into hardware, functiéhsandf2
resolved as the following by using a sequence of two caggn be inlined and the value of poingeis encoded.
statements. For the sake of clarity, the pointer's values haveThe synthesis of the functions themselves is then performed
not been encoded. Encoding of the pointer's value can Becording to the synthesis tool (e.g., map to component, inline
performed in a second pass. ...). In our implementation, functions are inlined before syn-

Fig. 4. Optimization of a load.

thesis.
SW(I:::e p&c{11: V. OPTIMIZATION OF LOADS AND STORES
star_ p = ql; break; In the previous section, we have seen how pointers can be
case &Q2: removed after pointer analysis. Now we optimize the code for
star_p = q2; break; hardware synthesis. First, we present techniques to reduce the
} amount of storage necessary before loads£*p) and stores
switch star_p { (*p="---) when the pointep is a variable.
case &a: In this section, the following assumptions are made. The
star_star p = a; break; pointer p is a variable. Its points-to set consists of a set of
case &b: variables (mapped to registers or wires). The optimizations pre-

star_star p = b; break;
}
tmp_star_p = star_star p + 1;
switch p { //Note: can be removed by
further analysis

sented here are only performed when the previous assumptions
hold. Their generalization to loads and stores from pointers
within an array or pointers pointing to array elements is beyond
the scope of this paper.

The goal of the optimizations presented here is to reduce the

case &ql: I number of live variablésbefore loads and stores. When vari-
star p = ql; /I ables are stored in registers, the number of registers used in a
break; I given program corresponds to the maximum number of vari-
case &Q2: I ables live at a clock boundary. The direct effect of our opti-
star_p = q2; / mizations is, therefore, to reduce the number of registers used
break; I in the design. Besides, synthesis tools may also take advantage
} 1 of having less live variables before loads and stores to improve
switch star_p { performance by more efficiently reusing registers.
case &a:
a = tmp_star_p; break; A. Optimization of Loads
case &b:

By definition, a load may read any variable of the points-to
set. It also uses the value of the pointer to select which variable
> is actually read. This implies that all variables of the points-to
set and the pointer variable are live before the load. However,

A better implementation can be obtained by removing unne%[‘!y one variable is really necessary: the variable the pointer
essary definitions. In the previous example, the tisindtich ~ POINtS to. . . .
statement redefiningtar_p  is not necessary and can be auto- Definition 2: For a pointer variable, we definestar_p
matically removed using compiler analysis techniques. as a variable whose value is equal to the value of the data the
Pointer to Functions: Pointers to functions are resolved in 220iNterp points to at any point in the program.

straightforward manner after pointer analysis. Aload (--- ="p) is then equivalent to an assignment from
Example 9: For a pointerp that may point to functions star_p . The number of live variables before a load can then

f1(int) or f2(int) (*p) (@ will simply be replaced be reduced by at most the number of variables in the points-to
by the following code segment: set as we can see in Example 10.
Example 10: In Fig. 4, the loadout = *p) , wherep may
pointtoa, b, orc, is replaced by an assignment fratar_p

b = tmp_star_p; break;

switch p {
case &fl: fl(a); break;
case &f2: f2(a); break; }.

1A variable islive at a particular point in a program if there is a path to the
exit along which its value may be used before it is redefined iked). It is
deadif there is no such a path [1], [34].
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/* original code */!/* code after optimization */ B. Optimization of Stores
a=in; la=in;

wait (); |// if (p_tag==0) // deadcode In this section, we try to apply the same idea of creating tem-
temp=a+b+c; //  star_p=a; // deadcode porary variables to reduce the number of life variables before
wait () ; [wait() ; stores.
=% : t =a+b+c; ,b,c 11 . B
out=tprtemp; lsi?icirp)riag/i & B.c tive Example 12:Let p be a pointer that may point ta, b, or
L define star_p C. Con_sider the storep = in , assuming that all variables of
| case 0: star_p=a; break; the points-to set are live after the store. As a result, we have
| case l: star_p=b; break; five variables p, in, a, b, ¢ } live before the store. Now
case 2: star_p=c; break; assume that, at runtime, points toa. Since the value o is

y

| wait () ; going to be redefined by the store there, it is not needed before

the store. As a result, the number of live variables before the
store could be reduced by one. Note that the same applies when
p points tob orc.
Fig. 5. Example of code segment before and after optimizing load. As we have seen in Example 12, the number of live variables
before a store can be reduced by at most one. The reason is that
The number of live variables before the load goes frbfa, trr:e store needs all ;]/ariab_leslofthe pqints—to set (trr:_at are live after
b, ¢, p }tol{star_p} ,assuming that none of these vari-t € store) except the variable t@pomtfs to. For this purpose,
. given a pointep and the size of its points-to spts_size ,

ables are live after the load. we define the following class of variables:

The issue is then to defirgar_p in such a way that the '
number of live variables is reduced. In our implementation, each _
load is replaced by assignments fratar_p . The variable _starN_p, for N-in {1, 2,
star_p itself is defined each tim@ or any variable in the (pts_size-1)}.
points-to set is modified. Dead-code elimination [1], [34] is then
performed to remove all unnecessary definitionstaf_p . (“_starN_p " stands for “notstar_p "), variables whose

However, the early definition aftar_p may also increase values are equal to the values of the variables in the points-to
the number of live variables. When all variables of the points-&tP, doesnot point to.
setare livestar_p is just a copy of one of these variables and Note thateachstarN_p can be defined in such a way that
is not necessary. Therefore, in order to minimize the numpi&may only store the value of either variables of a fixed pair as
of live variables,star_p is killed (i.e., redefined) when all Shown in Example 13.
variables of the points-to set are live. The following is an outline Example 13:1f p may point toa, b, or ¢, we create

of the complete algorithm for the optimization of loads. _starl_p and_star2_p and define them as the following
(note that other formulations may be used):

| out=star_p+temp;
I

1) Updatestar_p whenp or any variable of the points-to
set changes.

2) Do live variable analysis [1], [34] (implemented as back-Starl_p = (p!=&a)?a:b;
ward data-flow analysis). _star2_p = (p'=&b)?b:c;
3) Insert definition ofstar_p when all variables of the
points-to set are live. As aresult, the storgp = in , which leads to five live vari-
4) Do dead-code elimination. ables (cf. Example 12) can be replaced by the following code

Example 11: Let us take the code segment shown in Fig. §9ment, which uses only four variables, {_starl_p,
before and after optimization, where the poirenay pointto —Star2_p, in ).

a,b,orc.

We assume that none of the variables are live after the I8¥itch p: {
line. During the first pass, we replatg by star p andupdate case &a: a = in; b = _starl p;
star_p aftera = in .Then, because®¢mp = a + b + c = _star2_p; break;
c,a,b,andc are live atthe firsvait( ) statement. Afterlive ~case &b: a = _starl p ;b = in;
variable analysis, we add the case statements which define (i.e., c = _star2_p; break
kill) star_p . Finally, dead-code elimination will remove the Ccase &c: a = _starl p ;b = _star2 p;
first definition of star_p at the beginning of the code. The ¢ = in; break;

number of live variables before the load has been reduced frém
5{a, b, ¢, p, temp} to 2{star_p, temp}

This optimization can drastically decrease the number of live To optimize the number of live variables before stores, let us
variables before loads. Nevertheless, it increases the numfist consider an adaptation of the algorithm described in Sec-
of branching statements, which correspond to combinatioriadn V-A. Indeed, one could imagine an algorithm where the
steering logic to control the value sfar_p . Therefore, there _starN_p variables are used at each store and defined when
is a tradeoff here between the number of live variables (i.e., rqg-or any variable of the points-to set is modified. Since each
isters) and the amount of steering logic in the hardware implestarN_p variable can only store the value of one of two vari-
mentation. ables of the points-to set, they shouldKiléed each time one of
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the variables of the points-to set is live. For hardware synthesis non optimized load and store '

this creates a lot of logic to control their value, which turns out a I

not to be very practical. I

In our implementation, we take a conservative approach by I

optimizing stores only in the case of a load followed by a store. |

Such a case happens after inlining functions in which the pa |

rameters passed by reference are both read and written withi |
the function. 4 live

Example 14:Let us look at the example offf = *p+1), : |

wherep may point toa or b. Such a code may be generated |

after inlining the function calincr(p) , whereincr(int I

|

|

I

I

|

i

optimized load and store

3 live variables ]
_starl p | pl " "|'star_p

*) is defined as 1..4p|
splie[>

S Sl

pet

incr(int  *q) {*q = *q + 1; }.

The code corresponding tod = *p+1) after optimization
using_starl _p s the following:

Fig.6. CDFG for'p = *p+1 with p—{a, b }.
/I definition of star_p and _starl_p 9 orp = *p*l withp—{a, b}

if == 0
(r;ar p :) af 4) If for all loads in the list generated at Step 2 none of the
starl p =b; } variables in the points-to set are live:
else { * definestar_p and the_starN_p variables be-
star p = b; fore the loads and whep or any variable of the
starlp = a } points-to set changes between loads and stores;
e usestar_p and the starN_p variables to up-
star p = starp + 1; date the values of variables in the points-to set after
the stores.
/I assignements to a and b Even though this optimization reduces the number of live
ifp == 0) { variables before stores by at most one, it helps reduce the
a = star_p; number of registers. There is, however, a tradeoff between the
b = _starl p; } number of registers used and the amount of steering logic. This
else optimization can be performed while optimizing the loads, as
b = star_p; we will see in Section VII.
a = _starl p; }.

VI. ENCODING OF POINTERS

Fig. 6 shows the control data-flow graph (CDFG) before and In software, the pointers’ values represent addresses in
after optimization. The definition of the temporary variablememory. These values are used in loads and stores; they have
has been inserted before the load and the variables of thfixed size and can then be assigned< q) or compared
points-to set are updated after the store. We can verify that q). In hardware, we want to reduce the size of the storage
the number of live variables between the load and store hasd the complexity of the decoding logic in loads and stores.
been reduced from fouraf b, p, star p } to three In Section IV-A, we have seen that the encoding of a pointer

{star_p, _starl_p, p 1 consists of two field: a tag and an index. In this section, we are
For a pointep, the algorithm for reducing the number of livetrying to encode the tag part more efficiently. Other techniques
variables between loads and stores is the following. similar to the encoding of memory addresses [4], [36] could be

1) Listthe stores dominatety loads from the same pointerused to encode the index part, although they are not addressed
(implemented as a forward data-flow analysis [1], [34])in this paper.
2) List the loads postdominatedy stores from the same Definition 3: We define the size of a pointer as the bit width
pointer (implemented as a backward data-flow analysi its tag.
[1], [34]). When the size of the pointer is decreased, the number of bit
3) Do live variable analysis assuming that each store in thegisters used to store its value is also reduced. The decoding
list generated at Step 1 kills all variables in the points-t@gic for loads and stores is also simplified. We have seen that
set. a load can be implemented as a multiplexer controlled by the
2Instructiond dominates instructionin a flowgraph if every possible execu- pointers’ value (tqg par). Reducmg the pomterS,. size sImlefles
tion path from the entry node foincludesd [34]. also the complexity of the d_ecodmg logic for this multlplexer.
3Instructions post-dominates instructiofin a flowgraph if every possible HOWeVer, as we have seen in Example 6, when pointers are as-
execution path from thé to theexit (akasink) node includes [34]. signed or compared, we may have to adde statements to
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“translate” the values of the pointers by means of some combi- ri r2 r3 :;_‘:;Z}C’j

national circuit. We can use encoding techniques to minimize \ / \ / r3 — fc.d)

the size of these circuits. Our goal is twofold: 1) we want to en- ql q gl - {a,b,c)

code each pointer with the minimum number of bits in order to 92— [bc.d}

minimize the storage as well as the decoding logic for loads and G)) (b)

stores; and 2) we want to minimize the logic related to assiggg. 7. (a) Example of pointer-dependence graph. (b) Definitions of the
ment and comparison of pointers. points-to sets of each pointer.

We will first present the problem of pointers’ encoding. The
exact solution to this problem leads to what we cdbbe@al en- int tob dr3 . d. Th 1
codingin which two pointers that point to the same location s rgay pointtob orc, andr3 may point toc ord. Then,ql may

. . . . $ake the value ofl orr2 andg2 may take the value a2 or
may have different encodings. This problem is, however, har.

to solve and a heuristic is then introduced in which two pointeig BC((:)njreguentI)ql may pointtaa, b, orc andg2 may point

that point to the same location set share the same encoding].hiS leads to the pointer-depend hin Fig. 7
This gives aglobal encodingof the pointers’ value. In order X P pendence graph in Fig. 7(a).
to get closer to the exact solution corresponding to the local en—-.rhe encoding prob!em can be stated as follows. For each
coding, two optimizations are then presented caladtingand pointer we represent It.s points-to set asa set of ;ymbols cor-
folding,These optimizations can be seen as adding “locality” gspondmg to the location sets the pointer may point to. Thus_,
the gldbal encoding we have an ensemble of sets of symbols and the dependencies
' among the sets represented by pwnter-dependencgraph.

L The problem consists of encoding the symbols in the sets. There
A. Definition of the Problem are two constraints on the encoding: 1) the supertufdghe

In this section, we present the problem of encoding the valggdes of the symbols in each set must have minimum size and
of the pointers. Our first goal is to minimize the size of the) the symbols that correspond to the same location set in two
pointers. Then, when a pointer is assigned or compared to gapendent sets must be encoded as close as possible. The rea-
other pointer, we want the corresponding tags to be equal (edbns for the first constraint are to minimize the number of bits
p_tag = g_tag ) or “as close as possible” to each other. lfp store and to reduce the decoding logic for loads and stores.
two tags have different bit width, one tag can be equal to a sufhe reason for the second constraint is to reduce the size of the

field of the other. Assignments would then be performed by cofombinational circuit implementing pointers’ assignments and
catenating or removing bits, whereas comparisons would od¥mparisons.

be executed on subfields of the two codes. This reduces the sizgxamp|e 16:In Example 15, the pointend , r2 , andr3

of the circuit that translates or compares the tags while keepiggy point to two different variables and andq2 may point to

the number of bits to a minimum. three different variables. As a result, we want to encode pointers
Definition 4: For two pointerg; andp;, the pointer depen- r1 | r2 , andr3 on 1 b and pointergl andg2 on 2 b.

dence relatiom(p;, p;) is one if and only if the two pointers are  Fig. 8(a) shows an example of a nonoptimal encoding. The

assigned or compared (otherwise it is zero). encoding technique used here is a straightforward minimum-
Definition 5: Thepointer-dependence graphan undirected |ength encoding in which the value “0” is assigned to the first

graph in which the nodes are the pointers and the edges are\igable in the points-to set, 1 is assigned to the second variable

relations between the pointers. An edge between two nodegfshe points-to set, etc. This encoding is not optimal; some logic

defined when the two corresponding pointers are assignedn@is to be added in the circuit to implement the assignnghts

compared. = r3 andgl = r2 , as shown in Fig. 8(a).
Example 15: Consider the following code segment: To find an optimal encoding, we look at the dependence be-
tween the pointers. Pointgd may take the value ofl orr2 .
int  *rl, *r2, *r3, *gl, *q2; Therefore, we want the codes df andr2 to be subfields of
e the code ofjl. Similarly, g2 may take the value a2 orr3.
if(i == 0) We want the codes o2 andr3 to be subfields of the code of
{rl =@&ar2 = &b r3 = &c; } g2. An optimal encoding verifying these properties is shown on
else Fig. 8(b).
{rl =g&b;r2 =&c r3 = &d;} Forrl , value O is assigned t@ and value 1 td. Forr2 , 0
will be assigned td and 1 toc. As aresultgl = r1 will be
if(j == 0) replaced bygl tag = {0, rl_tag} andql = r2 will
{qgl =11 g2 =r2;} bereplaced byl tag = {r2 tag, 1} (where{,} isthe
else concatenation operator).

{gl =12, 92 = 13;}
B. Problem Formulation

Let us considef pointersP = {p1, ps, ..., pr}. Foreach
In this example, we consider the pointerd { r2, r3, pointerp; € P, letIl; be its points-to set. The points-to déf

ql,. g2 }and the variables4, -b, c,d } The pointers are  4thesupercubef a set of cubes is the smallest cube containing all the cubes
defined as followsrl may point to the variablea or b, r2  in the set [10].
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..............

rl < g:(; : ql=r2 : where . .
""""""" N = N; = N; number of symbols in the points-to sets;
r2<g 1:::? @ perm() set of the permutation functions ofbits;
""""""" H(a, b Hamming distance.
P ‘C":(I) | iféf;:;‘i’f;il ; Note(ti;at)the two equal pointgs—to sets may have different encod-
ql ‘;3?)(1) : else_ . ings. ) . . .
¢ > 10 ' ql_tag="10"; ' In general, the points-to sets may differ and their encoding

b <> 00 may have different lengths. The computation of the distance
is then more complex. For example, the distance between two

sets whose encodings have different lengths can be computed
by padding the shorter codes with zeros or ones. Then, if the

<X 0 points-to setdl; andll, differ, we are only interested in the
s distance between the encoding of the symbols common to the
rn<g?o two points-to sets.
cerl Our goal is to minimize (1) and (2). There is a tradeoff be-
B<Idero tween the storage area (number of registers) and the amount of
a «» 00 logic used to translate the codes. For example, one may optimize
! ’C’:% the size of the pointers keeping the amount of logic minimum
b <> 0l by minimizing first (2) and then (1). In general, we can cast the

problem as the following:

=1

r
min </JZ dim(supercubgr;))

Fig. 8. Example of (a) nonoptimal and (b) optimal encoding. Codes that are
changed in the optimal encoding are shown in bold.

H(1 =8> D rlpi, pdist(E, Ey) | (4)

i=1 j=1

is a set of N; symbolsIl; = {s, s, ..., s% }, where each where/ is a coefficient between zero and one.

symbol is associated with a location set. We defirehe setof  Since this problem is computationally hard to solve, we use
the encoded symbols of the points-toHet The encoded values heuristics.

of the symbols in each set are notgd, 5, ..., ¢k }. -

Definition 6: Two setsll; andIl; are said to be dependent ifC. Simplified Problem
their associated pointers are dependent (Definition 4). 1) Formalism for a Global Solutionin the general formu-

Our first goal is to minimize the number of bit registers agtion of the problem presented in Section VI-B, different codes
well as the size of the decoders required to store and decefigy be associated with the symbols in each set. Therefore, the
the pointers’ values. We want to minimize the dimension of thencoding has to be fouridcally for each set. The problem can
supercube of the encoded symbols in each set. This minimuniis simplified by constraining all symbols associated with the
achieved when the sum of the dimensions of supercubes is alggne location set to share the same code. The encoding is then
minimized found globally for all the symbols that correspond to the same

r location set in the points-to sets. The final encoding values of
min <Z dim(supercub@i)> : (1) the pointers is then found by picking the relevant bits (i.e., the
=1 ) o bits that are not identical for the different encodings of the sym-

Example 17:1n the encoding presented in Fig. 8(a) and (blyis in the points-to set).
i1 dim(supercube(E;)) = 1+14+1+242 = T7Is  Example 18:Fig. 8(a) gives an example of local encoding. It
minimum. _ _ is a local encoding because the different variaklgls, ¢, and

When two pointers are assigned or compared, we also Wanire associated with different codes in each points-to set. For

to minimize the size of the circuit implementing the translatiogxammeb is associated with for r1 ando for r2 .
of the codes. For this purpose, the distance between encodeﬁig_ 8(b) gives an example of a better global encoding. The
symbols in two dependent sets has to be minimum encoding is global because the pointers initially share the same
r r encoding shown in Fig. 9. No circuit is necessary to translate
min Z Z r(pi, pj)dist(E;, Ey) (2) the values of the pointers in assignments and comparisons. The
size of each pointer can be reduced by selecting the relevant bits

wheredist() is the distance between the two encoded sets. WH@h €ach pointer. These relevant bits are found as the following.

the pointers have the same points-to set and the encoding ha$@i@terr2 may point tob or c. In the global encoding, value
same length, dist() is defined as 01 is assigned td and11 is assigned t@. The value of the

N second bit in the encoding is then constant equalftr the two
dist(E;, E;) = min() <Z H(perm(el), e@) (3) encoded symbols in the points-to set®f. As a result, pointer
perm el

i=1 j=1

r2 does not need to store this bit and the sizedfcan be
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abcd
a +-» 00 1100}r1
b «-» 0] 01102 ¢ 3 d
c +-»]] A=10011{3 1 4 7
d <+ |0 1110|q1 :
0111q2 a 3 b

(a) (b) (@) ()

Fig.9. (a) Global encoding. (b) Selection of the relevant bits for each point&i9- 10- (@) Example of relation matrix. (b) Corresponding affinity graph.

reduced to 1 b. Similarly, the size of andr3 canbe alsobe 7<% § 29 ol PRy
reduced to 1 b. <2 be>0 cerl]
For a global encoding, minimizing (2) is then irrelevant be- ce>] be»0]

cause the distance between the codes of the symbols that corr,3 < 22(1) q2<E de 10

spond to the same location set in the different points-to sets i<

null (i.e.,dist(E;, E;) = 0) V (4, j) € {1, 2, ...,P}?). The @ (b)

complexity of the logic to perform assignments and, to SOM®y 11.  (a) Example of optimal encoding. (b) Corresponding representation

extent, comparison is then minimal. However, the size of tlrethe Boolean hyperspace.

pointers may vary and affect the size of the decoding circuit in

loads and stores. Our goal becomes to minimize (1) only. ~ A. The weightw; ; on the edge{s;, s;} is defined as the
For this simplified problem, it is convenient to consider thénllowing:

symbols (i.e., location sets) in the unifinof the points-to sets. r

These symbols will be denoteflt = {s;, so, ..., sx}. The w; = Z ap,i - ar,j - (1 + [LogyN| — [LogyaNi])  (5)
size of the problem is reduced. Instead of dealing WittP * k=1

N) symbols, we only deal wittV symbols{s;, so, ..., sy}, Where

whereN is the number of location sets. We use now aformalism £ humber of pointers;
that has been used to solve other encoding problems [11], [48]&Y  total number of symbols;
Definition 7: The relation matrixA is defined as the matrix V& number of symbols in the sél;;
in which the rows represent the points-to sets and the columngii,; €lement of the relation matrix.
represent the symbols. Entry;_; of Ais one if and only if the ~ The weightw; ; in the affinity graph increases with the
symbols; is in the sefll,. number of sets that contain bathands;. When two location
Example 19: Let us take the case of Example 15, wheke Sets are in many points-to sets, we want their codes to be
may point to the variables or b, r2 may point tob or ¢, and close. This is even more important for small points-to sets.
r3 may point toc or d, etc. We can construct the followingFor example, if we havev,, = 2 symbols in the points-to set

relation matrix: Iz, their codes must be next to each other to minimize the
a b ¢ d dimension of the supercube of the encoded l5gt Whereas
1 1 0 071 if we have N;, = 10 symbols in the points-to sdil, the
A 0 1 1 0] 7r2 Hamming distance between the encoding of the symbols in the
T ]0 0 1 1737 points-to set can be as much Hsoga(Ny )] = 4. Therefore,
1 1 1 0| q1 the weightw; ; is the sum of the contributions of the points-to
0 1 1 11 ¢2 sets that contain botly ands;, where the contribution of each
For example, the first row of the matrix shows thhtmay point points-to sell, is (1 4+ [Log2N] — [LogaNy]).
toaorb. The pointer encoding problem can be solved as an embedding

We search for an encoding mati#x Namely, each row it of the affinity graph in the Boolean hypercube as done in [3],
corresponds to a points-to set. For each soaf A4, we want the [21], [35], and [38].
supercubes of the rows & corresponding to the ones into Example 20: The relation matrix presented in Example 19
have minimum size. This correspondsto the constraint expresfefd Fig. 10(a)] can be used to generate the affinity graph in
in (1). This problem corresponds to the input encoding problelrig. 10(b).
[10], [11], [48] if the zeros in matrixA are replaced bgo not Let us look atw, 5, the weight on the edgea{ b }. The
cares(i.e., x). In other words, our problem is a simpler instanceariablesa andb are both in the points-to sets of andql.
of the general input encoding problem. The weightw,_, is 3, sum of 2, contribution froml , and 1,
2) Global Encoding Algorithm:The problem of input contribution from q1.
encoding has been extensively studied [3], [11], [15], [35], After graph embedding, the encoding presented in Fig. 11 can
[38]-[40], [48]. We use an approach reminiscent aiB [3] be found. The graph embedding will try to put the encoding of
and MUSTANG [35]. the symbols that are adjacent to the edge of higher weight next
Definition 8: An affinity graph is an undirected to each other. As a result, the encodingoof next to the en-
weighted graph in which the nodes are the symbotoding ofc (edge, c }hasaweight of four). The encodings
II = {s1,s2,...,sy} and the edges are the relation®f symbolsa andb are also next to each other and so are the en-
between the symbols iH, represented by the relation matrixcodings ofc andd.



226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2001

rl = {a,b,c} abede

rl r2 r3 r§-—>{b,2.d} L 1odl

\ / \ / rl—’ic,b,e}d} 011102
qi-»{a,0,C,

2 =

“ * q2— (bcde} A 001113

11110{q1

o ®) 01111]q2

Fig. 12. (a) Pointer-dependence graph. (b) Definitions of the points-to sets. @) (b)

] . ] . Fjg. 13. (a) Relation matrix. (b) Corresponding affinity graph before folding.
Note that the aforementioned algorithms are solving a simpli-

fied problem (global encoding) in which all points-to sets share Sbed P o~ §
the same encoding. In order to better approximate the exact so- 1110], A
lution, two optimizations are presented in the next sections. In 0111|2 b d
the exact solution (local encoding), two symbols can sharethe 4=, 3 6 %
same code. We use this property in Section VI-D in a technique 111 1g1
calledfolding. One symbol can also have multiple codes. The 111 1 ae
notion of splitting presented in Section VI-E is based on this @) (b)
property.
Fig. 14. (a) Relation matrix. (b) Corresponding affinity graph after folding

D. Encoding with Folding ande.

In the local encoding problem, two symbols can share the a «» 00 razr3 4 oa
same the code. b ol aLq2 ~_ ‘

Definition 9: We define as folding the action of assigning the f, : ff) \ A j
same code to two different symbols. € < 00 N L7

Proposition 1: Two symbols can be folded if and only if they

. ; ) (@ (b)
are not both in the same points-to set and not in any two dep%n— 15. (2) Encoding after foldi de. (b) C i ati
H 1g. . a) Encoaing arter rolding anae. orresponding representation
dent pomt.s-to sets. . . . . . inthe Boolean hyperspace.
The rationale for this proposition is that we want to distin-

guish each symbol inside a points-to set and, in the case of e symbola is in the points-to set ofl andql, whereas
comparison, we want to distinguish the symbols in the two dﬁie symbole is in the points-to set of3 andg2. A,ccording

pendent points-to sets. . : o i
In the relation matrixA, folding the symbolss; ands; are to the pointer-dependence gra_lph, the_se points-to sets are not de
equivalent to replacing columrisand 7 by one columm: such pendent. The symbols associated vatlande can be folded.
thqat P 9 J oy After folding, we end up with the graph in Fig. 14. This leads to
an encoding that requires only 2 b (see Fig.15).

i =a; (Va,; forlin{1,2,..., N} 6 . . -
Uk, 1 = @i, 1V 1 { } © E. Encoding with Splitting

In the affinity graph, folding is done by merging (or fusing |, the |ocal encoding problem, one symbol can also have dif-
) the nodes corresponding to the symbalss; into one New arent codes in the different points-to sets.
node corresponding .. The weights on the edges incident {0 pefinition 10: We define splitting the action of assigning two
this new node corresponding g are then defined as or more codes to one symbol (or location set).

Wi = w1+ wj for [in{l,2, ..., N}. (7) _In Sect_ions VI-C and VI-D, each location set was associated
with a unique symbol that was encoded. After splitting, one lo-

Graph-embedding techniques can be modified to incorporaigion set may be associated with more than one symbol: split-
folding. In Section VI-F, we present a column-based encoditigpg a symbok; is equivalent to creating a new symisplwhich
algorithm with folding. corresponds to the same location set. The original symlaoid

Example 21: Let us consider the pointer-dependence graghe newly created, are then encoded inte; and ¢}, respec-
in Fig. 12, wherel ,r2 , andr3 point respectively tod, b, tively.
ch{b, ¢c,d },and{c, d, e }. Proposition 2: A points-to sefll;, that contains a symbal,

The relation matrix and the associated affinity graph are remay, after splittings;, contain the newly created symbsgjl if
resented in Fig. 13. The number of variables (i.e., location sef)d only if there is no code equal¢bin the encoded sef;, or
in each points-to set is either three (far, r2 , andr3 ) or four in any encoded set dependentlbf.
(for g1 andqg2). Therefore, we want to code the symbols as- Example 22: Let us consider the pointer-dependence graph
sociated with the variables on 2 b. However, since we have fireFig. 16, whererl , r2 , andr3 may, respectively, point to
symbols, an encoding with less tha b cannot be found without {a, b }, {b, ¢ }, and {a, ¢ }. The relation matrix and the
folding. corresponding affinity graph are presented in Fig. 17.

. _ _ _ R We would like to encodel , r2 , andr3 with 1 b andg with

A pair of verticesa, b in a graph are said to fased(merged or identified)

if the two vertices are replaced by a single vertex such that every edge that \Zag' We also want the codes df , r2 , andr3 to be subfields
incident on either or b or on both is incident on the new vertex [13]. of the code of.
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ri{a,b}
rl r2 r3 r2—{b,c}

\CL/ r3-—{a,c}

g —f{a,b,c}
() (b)

Fig. 16. (a) Pointer-dependence graph. (b) Definitions of the points-to sets.
Fig. 20. Result of the encoding after splitting symbol

abc a
4o |LEO I 3ii3 where
011 r2 /e Al ) / o
101l 13 b E'iseither{e;}, {e.} or {e;, e} }. (8)
111 ¢ In order to minimize (1), for every séf;, that may contairs;
@ (b) or s}, we want to minimize
Fig. 17. (a) Relation matrix. (b) Corresponding affinity graph before splitting. dim(SUpercub(EE;)) 9
which corresponds to
a +«+00
b 01 min(dim(supercubf(Ey, = {e;}) U £')))
c¢»]] E
where
@ E'is either{e;}, {e.} or {e;, ¢} }. (10)
a,
Fig. 18. (a) Encoding without splitting. (b) Corresponding representation in Inlﬂl.e retlatllonFmatrm? Spllttlng is done bgj/. adcilng a C.OIturrtm
the Boolean hyperspace. " relative tos;. For each rows corresponding to a points-to
setll, such thats; € Il, the pair of entriega},, a}, ) is set
aabc to (0, 1), (1, 0), or (1, 1) according to (10). If (10) achieves its
101 0| a 3 b minimum for the three valueg;, ¢}, {¢;}, and{¢}}, then we
A=10011r2 1 3 selec{e;, ¢, }. Example 23 illustrates the reason for this choice.
01013 @ 53¢ The new affinity graph can then be recomputed from the re-
111149 lation matrix. Splitting as well as folding can be incorporated in
(@) (b) our graph-embedding algorithm as presented in Section VI-F.
Fig. 19. (a) Relation matrix. (b) Corresponding affinity graph after spliting EXample 23:In Example 22 for the points-to set & , (10)
symbola. is minimum forE’ ={a’} ;the dimension of the supercube of

the encoded symbols in the new points-to set is minimum equal

Using the encoding technique without splitting symbols, w® one when it containa’ only. As a result, in the relation matrix
can find the encoding in Fig. 18. In this cas&, andr2 are in Fig. 19, the entry: is set to zero and? is set to one. For
encoded on 1 b but the encodingr8f requires 2 b. the points-to set ofj, (10) is minimum (equal to two) whes’

After splitting the symboé&, we end up with the two symbols s either {a}, { a’}, or {a, a’}. E'{a, a '} is then selected and
aanda’. The new encoding problem is presented in Fig. 19. WRe new points-to set af contains botta anda’. Consequently,
can find the encoding in Fig. 20, where the symaas in the  the entries:} anda? are both set to one. Sineeis in the new
points-to set of1 , r2 , andq, anda’ in the points-to set af3  points-to set of1 anda’ in the new point-to set of3 , this

andg. allows us to implement both = r3 andq = rl trivially.
The encoding in Fig. 20 is optimall , r2 , andr3 are en-
coded o 1 b and the assignmentsda(q = rl, q = r2, F. Encoding Algorithm
q = r3) do not require any additional logic. We propose a column-based approach such that the encoding

As described in Section VI-B, the symbols in each set cafatrix can be found column by column [10], [11], [14]. Our
have different codes. Therefore, to minimize the dimension gfyorithm without folding and splitting is similar to the one used

the supercube of the encoded symbols in a points-to set [i;5.pow3 [3]. The pseudocode of the algorithm with folding and
(1)], we can create new symbols associated with the same '0§6ritting is presented in Fig. 21.

tion sets for this points-to set. Note that if we split the symbols e algorithm encodes the pointers withb, wheren >
for each points-to set, we end up with a local encoding sche 8g,(V)]. We consider one bit of the code at a time. For a
close to the one presented in Section VI-B. The only differeng?mbmsi associated with the code, we consider the bitsﬁ“
is that one symbol may have multiple encodings within the samg . — {1, 2, ..., n}. Ateach iteratiork, we construct théth
points-to set. However, to limit the increase in complexity, Wgo|umn of the encoding matri& by assigning bit* to all sym-
are trying to split as few symbols as possible and only whegyis for; = {1, 2, ..., N}. We ultimately want to distinguish
useful to reduce the cost function. _ all symbols. Therefore, in our algorithm, we have to make sure

When a symbok; is split, a new symbok; is created. FOr nat at each iteratioh, we have less thar’2* symbols asso-
each points-to sdil, such thas; < II, we decide whether the ¢jated with the same code. For example, foe (n — 1), we
new points-to sell, containss;, s; or boths; ands;. The new  cannot have more than two symbols with the same code.
set of encoded symbols;; can be defined as Definition 11: There is a class violation at iteratiégnwhen

E, = ((Ey — {e;}) UE") more than 2~* symbols have the same code so far.
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encode pointer(n) {
/* construct matrix E one column at a time */
for k=1 to n
assign_code (k) ;

}

assign_code(k) {
sort edges by weight in decreasing order;
foreach edge {si,sj) {

k
and e.

j not assigned) {

if(ef
- k -

e = e; =

if(class violation) {
ok=try_fold(s”;

if (lok) try_fold(sj); }

select_bit(si,sj);

}

else 1f(s; or §; not assigned) ({

J
Sh=unassigned(si,sj);S,zassigned(si,S«);

J
ko k
eh = el H

if (class violation)
try_fold(sy);
}
if(e: !:ef)
/* s; and s; already assigned or folding failed*/
violated_edges->add((si,Sj})
}

sort violated edges by weight in decreasing order;
foreach violated edge {Si,sj} {

sh=symbol whose sum of the weights on incident
edges is higher
s;=the other
ok=try_split(s,);
if (lok) try_split(s,h
}
}
bool try split(s;) {
create s,
e/ =¢;xor (1<<k);

if(class violation)
return try fold(s;);

return false;
}
bool try_fold(si) {
if(asjs.t. Proposition 1 verified and e;==¢;){
fold(s,-,sj):
remove §;;
return true;

}
return false;

}

Fig. 21. Graph embedding algorithm with splitting and folding.

Note that at iteratiok, we are only considering thefirst bits
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rl »{ab}
rl r2 r3 r4 rs r2 »f{ac}
VANV
gl g2 r4 —»{b.d}
r5_¢{ad}
@ (b)
Fig. 22. (a) Pointer-dependence graph. (b) Definitions of the points-to sets.
abcd 3 5.3
1100]r1 a<>d
1010|r2 3 P 3
0110|r3 (b)
A=10101|rs
0011|r5 6 < 6
011142 6 %
(@ b
(©
Fig. 23. (a) Relation matrix. (b) Affinity graph at the beginning of iteration 1.

(c) Affinity graph at the beginning of iteration 2.

whereH (e;, e;) is the Hamming distance between the partially
assigned codes of symbalsands;.

For the symbols incident to the edggs, s;}, we try to as-
sign the same value to both ande. However, this may not be
possible in two cases. First, at each iteratiork ofthe number
of symbols having the same code is limited to prevent class vi-
olations (cf. Definition 11). Moreover, if the symbadg ands;
are also incident to other edges whose weights are higher than
w; ;, they may already have been assigned two different values
¥ andej?‘. These two conditions are expressed below in Propo-
sition 3.

Definition 12: An edge{s;, s,} is said to be violated at it-
erationk if the bitsc} andck associated with the two symbols
incident to the edge have different values.

Proposition 3: An {s;, s,} is violated at iteratiort if either
one of the following conditions apply.

« There is class violation (and thereforg,and¢} need to
have different values).

« Different valuesck andeé? have already been assigned to
the two symbols.

In the case of a class violation, we try to fold one of the sym-
bols on the edggs;, s;} with any of the previously assigned
symbols. At this stage, two symbols are folded if Proposition 1
holds and if they have the same partial code so far.

If the edge{s;, s;} is still violated (i.e. e} # ¢¥), we try to
split the symbols incident to the edge. One symbol can be split
if the newly created symbol does not cause any class violation
or can be folded with another symbol. In our algorithm, for a
symbols;, we create a new symbs)] associated with a cod
such that’! = ¢l for I < k ande’} = ek @ 1.In case of a class
violation, we try to fold this new symbol. If folding cannot be

of the codes since the other ones have not been assigned y&ione, the symbo¥; is not split.

At each iteratiork, ¢¥ is defined for every symbal;. The as-

Example 24: Consider the problem presented in Fig. 22. The

signment is done by considering the symbols on every edge eagsociated relation matrix and affinity graph are presented in
points starting with the edges with highest weights. The weigtftsg. 23 in which pointegl may take the value afl , r2 , or
at each iteration are adjusted using the following formula [3]:r3 andqg2 may take the value a3 , r4 , orr5 .

wp' G =wi ;- (H(ei, ;) +1)

%7

(11)

Since we have four symbols, we want to encode them en
2 b. The encoding is computed in two iterations. After the first
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iteration, at most, two symbols can have the same encoding to

prevent class violations. Z : :(1)2)
At iteration k = 1, we first take the edge with the highest ¢ ¢30]

weight {b, ¢ } and assign the value 0 tb andc. Since we desl-

want the code to be 2-b long, we can have at most two sym-

bols with the same code after the first iteration. The vdlus, (@)

therefore’ assigned wandd and all edges be_S|d®{ c }are Fig. 24. (a) Encoding after splitting and folding (where “-” isl@ not care
violated. We then try to fold the symbols. Folding cannot be pegy corresponding representation in the Boolean hyperspace.

formed. For example, for the edga,{ b }, a cannot be folded
with b because both symbols are in the points-to sefoénd

C function
gl. Symbola cannot be folded witke either because both sym-
bols are in the points-to set 62 andql. The violated edges
aref{a, b}, {a, c} {d, c} and{d, b}. We then try to

split the symbols on these edges. Splitting cannot be performed
either. For example, when we try to split variakblewe create

a new variable’ with code 0 and the following relation matrix

is computed:

/

Q

1
-]
—_

12)

Behavioral |
Compiler

SO OO oo
= O OO

Netlist

R, O R, RO o
=== Ok~ OO0
R OREFEOOOQ,
-
w

L0 0
We have three variablesa{, b, ¢ } with the same code 0,
which creates a class violation. We then try to faldwith b

or c. This cannot be done becauseandb are in the points-to . L .
sets ofrl andqgl anda’ andc are both in the points-to setSThe variabled (which is now mapped to a symbol representing

of r2 andql. As a result, the encoding after the first iteratio?thd @nda’) can also be split and the new symhbican be
is 0 for b andc and1 for a andd. At iterationk = 2, we folded witha. The final relation matrix is then

L
)
[\)

Fig. 25. Toolflow for the synthesis of pointer .

4 !
assign the value 0 to, 1 toc, O toa, and 1 tad. Note that other d ; b
values could be assigned depending on the order in which edges f 0 1 % "
of equal weight are taken in the implementation. All edges are 010 1lm
violated. Among the edges with maximum weight age {c } . )
: A= 10 0 1 1| 3. (15)

and {b, d }. We try to splita on the edge ¢, ¢ } and create 101 0l ra
the new symbo&’. The resulting relation matrix is 010 1|5

_aa’bcd_) 1111(]1

101007)1 10101 1] ¢

8 (1) (1) 1 8 7§ We end up with the encoding in Fig. 24 in which all constraints

r L
= are satisfied.
A 0 01 0 1| r4° (13)

000 1 175 VII. | MPLEMENTATION

1 11 1 0|4l

[0 0 1 1 1] ¢2 We have implemented the different algorithms using the SUIF

Variablea’ can be folded witll because Proposition 1 holds:€nvironment [52], [66]. The toolflow is presented in Fig. 25. Our
a’ andd have the same code at the previous iteration and are HgPlementation takes a function with pointersGhand gener-

elements of dependent points-to sets. After folding, we end @S @ module in Verilog. This module can then be synthesized
with the following relation matrix: using the behavioral compiler [67]. For hardware synthesis, the

timing information is expressed in thé model:wait() in

~

a ; b e C will be translated into @josedge clk ) in Verilog. The

1 0 1 01 1 ports and the data types are defined in a separate header file. The
01 0 1| translation fromC' to Verilog consists of different passes. After

A=10 0 1 1! 3. (14) the front end, we inline the functions and perform the pointer

01 1 0| r4 analysis [50]. Then the points-to information is used to remove
01 0 1|5 and optimize pointers in the following order:
111 1]q — define the points-to set of each pointer;

L0 1 1 1] ¢2 — replace the loads and stores (instar p andtmp_p);
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— optimize load 1: definstar_p whenp or any variable TABLE |
of the points-to set change' RESULT OF THESYNTHESIS OF THEIDCT RUNNING AT 20 MHz USING

.. TARGET LIBRARY Isi_10k (AREA IN LIBRARY UNITS)
— optimize loads followed by stores: create thstarN_p

cpu (b C | Venloo
time | ptr lines
6| 176

points-to set are live;

— optimize load 2: killstar_p when all variables of the | test i

— encode pointers’ value; idet | 7.8s 21| 38,172 12,910 6
— dead-code elimination. apha
The intermediate code without pointers is then translated ir yeqder | 1025 2 | 119 189 | 123,750 149.350 8
Verilog using Csuif2Verilog.
We have recently ported our research to the Synopsys Cocen-
tric Sys_temC co_mpiler [68_] to synthesize models into hard- — |
ware directly, without having to translate into HDL. In ad- . Steering Logic & Memory,
dition, we have also developed a tool to implement dynamic r y Y
memory allocation in hardware [44]. * +- Al |G e B [9] control
VIIl. RESULTS in_table buf_table oul_table
We first show the results for the resolution of pointers in rel- 7
atively large examples. Then we illustrate the effect of pointers’

encoding and of the optimization of loads and stores on selected .
examples. Fig. 26. Architecture of the 2-D IDCT.

Since there are no synthesis benchmarks writte€¥ with
pointers, the objective of this section is to show the technical Note that in this specific example, pointers are not only used
feasibility of mapping” descriptions to logic gates. In order toto access memories, but they are also used for sharing resources.
test our tool on real examples, we present the implementationiothis example, only ongd_idct is synthesized. Since func-
two algorithm: a two-dimensional inverse discrete cosine trarntiens are inlined in our framework, a more standard implemen-
form (2-D IDCT) [31] and an alpha blender written @ The tation of the 2-D IDCT algorithm, in which thid_idct ~ func-
2-D IDCT is widely used in image compression standards sugbn is called twice, would lead to two 1-D IDCT blocks. Such a
as JPEG, MPEG, and H263. The 2-D IDCT implemented cofiesign would typically be larger and more difficult to efficiently
sists of two one-dimensional inverse discrete cosine transforgymthesize. Using pointers here provides a convenient and effi-
(1-D IDCTSs). For this purpose, we use three different memorigg§ent way of performing resource sharing.
the input buffer(n._table ), the intermediate buffer that stores The second example corresponds to an alpha blender. Alpha
the result of the first 1-D IDCTHuf_table ), and the output pjenders are used in video and signal processing to superimpose
buffer (out_table ). These memories are accessed throughtiple images. Our implementation takes three images and
pointers and pomterarlthm_etlc. Pointers are also used in the ]éBha planes of size 8 8. The alpha plane defines the degree
IDCT to reference_ tV\.'O register ba””wl andbuff2 ). of opacity for each pixel in the image. The order in which the

The 2-D .IDCT IS |mplementeq using only one call to ;'Qmages are placed with respect to each other (e.g., front, middle,
IDCT (function1d_idct ), which is inlined before synthesis back) is defined by a layer number associated with each image.

The different images and alpha planes are stored in separate

Zd.—id(.:t 0 { . ] arrays (mapped to separate memories) in order to access them
:cnt L _* OP_' n, ; p_out in parallel. Pointers are used to access the different arrays.
or(i =00 <200 44) | The results after synthesis are presented on Table I. The cen-

'f('// f :t:'t 0) t'{ tral processing unit (CPU) time for translating fienodel into
plr?n ' Eiailr?ntable' Verilog was cal_culated on SunUItrgZ. Th_e Verilog mo_dules were
/I p_in N _input ,buffer synthesized with Behavior Compiler without unrolling loops.
- The architecture of the IDCT is presented in Fig. 26. The design

p_out = buf table; . . o . >
/I 'p_out — intermediate buffer consists of five multipliers, four adders, and two arithemetic

) else | and logic units (ALUs). Other implementations can be found
" J/ second iteration by changing the timing and resource constraints.
p_in = buf table; We have written several models to study the effects of the dif-
// p__in _, intermediate buffer ferent optimizations presented in Sections V and VI. These op-
p_out = out_table; timizations consist of encoding the pointers’ value and reducing
/Il p_out — output_buffer the number of live variables before loads and between loads and
1 stores.
1d_idct(p_in, p_out); The first set of results illustrates the effects of each feature of
/I unique call to 1D IDCT the optimizer. Tables Il and Il show the examples with the area
1 and cumulative timing after pointer resolution with and without

}. optimization.



SEMERIA AND DE MICHELI: RESOLUTION, OPTIMIZATION, AND ENCODING OF POINTER VARIABLES FROMY 231

TABLE I TABLE IV
AREA AFTER SYNTHESIS AND OPTIMIZATION USING TARGET LIBRARY Isi_10k AREA AFTER SYNTHESIS AND OPTIMIZATION USING tsmc.35 UBRARY (IN
(AREA IN LIBRARY UNITS) LIBRARY UNITS). FOR EACH EXAMPLE, P REPRESENTS THENUMBER OF

POINTERS AND NV THE NUMBER OF VARIABLES

arca

example

Wik optmiaions global 5,512 1,231 11,631 | 18374
3861 3599 :
mple-al 3,307 793 9,768 13,868
foad | 43 (1527/2334) (2076/1523) est] o 08

lit&fold 2,756 712 8,456 11,924

oad) i3 6746 6366 Gr5) | P
oad/store (5319/1427) (5324/1042) min-length 2,756 1,134 8,391 12,281
_ 1106 996 1-hot 4685 | 1474 7,354 13,513

encoding 58
(272/834) (162/834) global 3,582 1,020 14,256 18,858
simple-alg 3,047 988 14,591 18,626
TABLE Il test2 1 litkfold | 2,480 842 12976 | 16,298
TIMING AFTER SYNTHESIS AND OPTIMIZATION USING TARGET (714)
LIBRARY Isi_10k (N ns) min-length 2,480 1,020 13,041 16,541
1-hot 4,409 1,490 12,668 18,567
global 7,716 2,705 30,731 41,152
lines with optimizations simple-alg | 5,236 2,203 28479 | 35918

load 43 46 ns 51 ns :‘;jf,:; split&fold | 4,961 2.122 28220 | 35303
load/store 48 86 ns 88 ns min-length 4,961 3,240 28,042 36,243
encoding 58 7.5ns 5.9ns 1-hot 8,543 5,686 25,579 39,808

The first modelfpad ) tests the optimization of loads. It con-  First, we present the results for a global encodmigifal )
tains one pointer that may point to three integers stored in reg-which we associate the same code with all symbols asso-
isters. After the definition of the pointer, we have two paths ardated to the same variable in the different points-to sets. In
then a load. In one path, none of the variables of the pointsttds case, assignments or comparisons of pointers can be per-
set are used. In the other path, all variables of the points-to @imed without translating the values of the pointers. However,
become live. Without any optimization, we have five 32 b regishe number of bits used for the encoding is not minimal, which
ters (i.e., 2334 units of noncombinational area). After optimizéeads to larger decoding circuits (cf. bdttad/store and
tion, the number of registers is reduced to three (i.e., 1523 urdissignment ) and more registers (cftorage ).
of noncombinational area). This reduction of the storage goesThe second schemsifnple-alg ) isthe implementation of
with an increase of the combinational area and of the cumutae heuristic algorithm presented in Section VI without splitting
tive timing caused by adding steering logic to update the valaed folding. The size of the pointer is then reduced but is still
of star_p . Thereis atradeoff between the number of registem®t always minimal. The results for the algorithm with folding
and the size of the steering logic. and splitting éplit&fold ) are given. The length of the codes

In the second exampléo@d/store ), we have a pointer is then close to the minimum and the size of the combinational
that may point to two integer variables stored in registers. Ttegcuit for bothassignment andload/store is reduced,
pointer is used as a parameter in a function call. After inlininghich gives better results.
the function, we end up with a load followed by a store. Here Results for minimum-length encodingmin-length )
the optimization saves one register with a little increase of tlage also given. In this suboptimal encoding (similar to the
amount of steering logic. nonoptimal encoding used in Example 16), each variable in

Finally, the last examplesficoding ) implements the model each points-to set is simply associated with a number (zero
described in Example 15 with the two encodings presentedfor the first variable, one for the second variable, etc. ...). The
Example 16. Here the encoding of the pointers value redugasmber of bits used to encode each tag is then minimum but
the combinational logic by 40%. Since the design is simplehe size of the circuit that translates the values of the pointers
the circuit is also faster. is not. Finally, one-hotX-hot ) encoding gives larger codes.

The second set of examples compares our encoding algorithimwever, the specific proprieties of the resulting codes can be
to other encoding schemes. The results are presented in TableiBéd to simplify the decoding logic, especially in loads and
They have been obtained as follows. Pointers’ encoding has gores.
fect on three components of the design: the number of registersn this section, we have shown ha@wcode with pointer vari-
necessary to store the pointers’ valstofage ), the logic nec- ables can be synthesized by removing the pointers and using
essary to assign and compare pointassignment ), and the high-level synthesis. Moreover, variations on the implementa-
implementation of loads and stordegd/store ). Each of tion may be explored using the optimizations presented in Sec-
these components is synthesized using Synopsys design ctoms V and VI. Even though the effect of these optimizations
piler. We present the results for five different schemes. may be limited in general, they can be used to reduce the storage
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areas and/or the steering logic. In particular, optimization of [9]
loads and stores can be used to reduce the number of registers
with an increase on the amount of steering logic. Encoding, ofy g
the other hand, can be used to reduce both the size of the pointers
and the logic necessary to translate and decode the pointellél]

value, leading to better performances.
(12]

IX. CONCLUSION [13]

We have presented ho@ code with pointers can be effi- [14)]
ciently mapped to hardware. With our methodology, memory is
partitioned into location sets and pointer analysis is used to defis
fine where locations are accessed in the program. Pointers can
then be synthesized by encoding their values and by generatig%]
circuits to dynamically access the different locations they ma
reference.

Our toolflow fits into current methodology and supports the[17]
mapping of data to multiple memories, registers, or wires. Com-
piler techniques are used to reduce the storage before pointépl
loads and stores. Heuristics are used to efficiently encode tq@g]
values of pointers by reducing their size and by optimizing the
circuits implementing assignments and comparisons of pointer&0l

The synthesis of pointers raises the level of abstraction at the
input of high-level synthesis. Models can be described at thee1]
behavioral level using the notions of a single address space and
of indirect memory references found in many programming langoz;
guages. The techniques and optimizations presented here can be
generalized to support more of ti&/C++ syntax as well as 23]
other programming languages, facilitating the mapping of func-
tions and complex data structures including object-oriented fed24]
tures into hardware. [25]
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