
Cell-based logic optimization

Giovanni De Micheli

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract. This chapter surveys techniques for library binding in semicustom tech-
nologies. Library binding is the back-end of logic synthesis, and constructs an in-
terconnection of cell instances from a given library, starting from a multi-level logic
network. Emphasis is placed on the algorithmic approach to library binding, with
particular reference to covering and matching techniques.

1 Introduction

Computer-aided logic synthesis involves several tasks, most of which covered
in reference [18]. Some techniques are considered to be classic, and probably
invariant with the improvement of semiconductor technology. On the other
hand, the trend toward using deep submicron technologies has renewed the
interest in those methods that interface logic design with physical design. For
this reason, this survey is centered on those techniques that leverage the use
of semicustom design libraries of cells in logic design.

Cell-library binding is the task of transforming a logic network, originally
described by a set of logic equations, into an interconnection of components
that are cell instances of a given library. Library binding allows us to retarget
logic designs to di�erent technologies and implementation styles. For this
reason, it is also often called technology mapping.

The library contains the set of logic primitives that are available in the
desired design style. Hence the binding process must exploit the features of
such a library, in the search for the best possible implementation. Typical
optimization objectives are either the minimization of the critical delay, or
the minimization of power consumption (or area) under delay constraints.

Practical approaches to library binding can be classi�ed into two major
groups: heuristic algorithms and rule-based approaches. In this survey we
consider the algorithmic approach and we refer the interested reader to [17,18]
for the latter approach.

2 Problem formulation and analysis

The objective of this section is to give a feel for the complexity of the problem
and the use of heuristics.



2 Giovanni De Micheli

Let us restrict our attention to libraries of combinational single-output
cells, each one characterized by its logic function and a single cost parame-
ter (e.g., area). Let us assume we want to determine a cell interconnection
yielding a logic network which minimizes the overall cost.

A typical framework for understanding the library binding problem in-
volves the solution to two major tasks.

� Matching is determining if a portion of the original logic network is re-
placeable by a logic cell.

� Covering is �nding a network interconnection of matching cells, whose
overall logic behavior is equivalent to that of the original network.

A cell matches a subnetwork when they are functionally equivalent. Thus
matching corresponds to solving a tautology problem, which belongs to the
Co-NP-complete complexity class [21]. Nevertheless, the usually small num-
ber of cell inputs allows us to solve the matching problem e�ciently.

The network covering problem is usually much more di�cult to solve [18].
Indeed covering entails the selection of an appropriate number of matches,
which minimizes the overall associated cost, with the additional requirement
that each cell input is connectable to some cell output (or primary input).
In other words, the selection of some matches implies the selection of other
matches. The covering problem can then be viewed as a binate covering prob-
lem [18], which is computationally intractable. Unfortunately, the large num-
ber of matches in usual networks, and the binate nature of the problem, make
it unlikely to be solvable exactly on present-day computers.

Example 1. Consider the simple library shown in Figure 1 (a) and the un-
bound network of Figure 1 (b) [18]. We consider the problem of �nding a
network cover that minimizes the total area cost associated with the chosen
cells.

There are several possibilities for covering this network. For example, a
trivial binding is shown in Figure 1 (c). A more interesting binding can be
found by considering the possible matches. Consider, for example, vertex v1
that can be bound to a two-input or gate (or2 ), and vertex v2 that can be
bound to a two-input and gate (and2 ). Moreover, the subnetwork consisting
of fv1; v2g can be bound to a complex gate (oa21 ). We can associate binary
variables to denote the matches. Variable m1 is true whenever the or2 gate
is bound to v1, variable m2 is true whenever the and2 gate is bound to
v2, and m4 represents the use of oa21 for covering the subnetwork fv1; v2g.
Similar considerations apply to vertex v3. We use variables m3 to denote the
choice of a two-input and gate (and2 ) for v3, and m5 to represent the choice
of oa21 for fv1; v3g respectively. The possible matches are shown in Figure
1 (d).

Therefore we can represent the requirement that v1 be covered by at least
one gate in the library by the unate clause (m1 +m4 +m5). Similarly, the



Cell-based logic optimization 3

AND2

OR2

Cost

5

4

4

Library

(a) (b)

m3

m1

m2
m4

m5
v

v

v

1

2

3

v

v

v

1

2

3

a

b

c

d

x

y

z

y = a x
z = x d

x = b + c

(c)

(d)

a

b

c

d

b

y

z

(e)

y

z

a

b

c

d

y

z

a

d

b

c

(f)

x

OA21

m1: {v1,OR2}

m2: {v2,AND2}
m3: {v3,AND2}
m4: {v1,v2,OA21}
m5: {v1,v3,OA21}

Fig. 1. (a) Simple library. (b) Unbound network. (c) Trivial binding. (d) Match
set. (e) Network cover. (f) Alternative bound network which is not a cover of the
unbound network shown in (b).



4 Giovanni De Micheli

covering requirements of v2 and v3 can be represented by clauses (m2 +m4)
and (m3 +m5) respectively.

In addition to these requirements, we must insure that the appropriate
inputs are available to each chosen cell. For instance, binding an and2 gate to
v2 requires that its inputs are available, which is the case only when an or2

gate is bound to v1. The former choice is represented by m2 and the latter
by m1. This implication can be expressed by m2 ! m1, or alternatively by
the binate clause (m0

2 +m1). Similarly, it can be shown that m3 ! m1, or
(m0

3 +m1). Therefore, the following overall clause must hold:

(m1 +m4 +m5)(m2 +m4)(m3 +m5)(m
0
2 +m1)(m

0
3 +m1) = 1

The clause is binate. An exact solution can be obtained by binate covering,
taking into account the cell costs. For each cube satisfying the clause, the
least-cost one denotes the desired binding. In this case, the optimum solution
is represented by cube m0

1m
0
2m

0
3m4m5, with a total cost of 10, corresponding

to the use of two oa21 gates. The optimal bound network is shown in Figure
1 (e).

The bound network obtained by covering depends on the initial decom-
position. For example, Figure 1 (f) shows another bound network, which is
equivalent to the network of Figure 1 (b), but not one of its covers.

3 Algorithms for library binding

Heuristic algorithms have been developed for the library binding problem,
due to the intrinsic di�culties of solving exactly even simple library binding
problem and to the practical nature of realistic binding problems, which
involve more complex library cells and cost models.

Algorithms for library binding were pioneered by Keutzer at AT&T Bell
Laboratories [25], who recognized the similarity between the library binding
problem and the code-generation task in a software compiler. In both cases,
a matching problem addresses the identi�cation of the possible substitutions,
and a covering problem the optimal selection of matches.

There are two major approaches to solving the matching problem, which
relate to the representation being used for the network and the library. In the
Boolean approach, the library cells and the portion of the network of interest
are described by Boolean functions and matching is formulated as solving
a tautology problem [32]. In the structural approach, graphs representing
algebraic decompositions of the Boolean functions are used instead. Matching
is thus reduced to a (sub-)isomorphism problem [19,25,38].

Typical objective and constraint functions in mapping are area, delay and
power. Computing the area cost of a mapped network is usually straightfor-
ward, because the area cost of the cell is the sum of the cell areas. Note that
precise area estimate should include inter-cell routing space. Delay computa-
tion is more involved, because the critical path(s) must be traced. Cell delays



Cell-based logic optimization 5

depend on the loading factor, and thus the impact of the choice of a cell on
the critical path delay needs estimation of the driven loads. When mapping
a network by traversing it from its primary inputs to its outputs, the cell
delay evaluation may require a look-ahead step. Moreover, accurate delay es-
timation requires the detection of false paths [18] and their elimination from
consideration.

Power estimation is even more involved. The cell's power consumption
depends on its output capacitive load, on the output switching activity [36]
and on the input patterns. In the presence of feedback (i.e., when binding the
combinational portion of a sequential network), spatio-temporal correlations
complicate the computation of the switching activities. Thus a variety of
methods [33,36] are used to estimate the power consumption tied to the
choice of a cell.

Because of the di�culty of estimating accurately the delay and power
cost functions, re-mapping techniques have been proposed that iteratively
improve a mapped network [11,14,27,37,44,45]. In re-mapping, the initial
network costs in terms of area, delay and power are known, and the im-
pact of physical design on these costs may also be known (by measuring the
wiring capacitances). Re-mapping techniques use a peephole approach that
highlights a portion of the network where the existing cell binding is altered
to improve the cost. The peephole is then moved over another part of the
network.

3.1 The classical approach to library binding

The major di�culty in solving the library binding problem lies in the network
covering problem, as mentioned before. To render the problem solvable and
tractable, most heuristic algorithms apply two pre-processing steps to the
network before covering: decomposition and partitioning.

Decomposition is required to guarantee a solution to the network covering
problem, by insuring that each vertex is covered by at least one match. The
goal of decomposition in this context is to express all local functions as simple
functions, such as two-input nors or nands , that are called base functions.
The library must include cells implementing the base functions, to insure the
existence of a solution. Indeed, a trivial binding can always be derived from
a network decomposed into base functions.

Di�erent heuristic decomposition algorithms can be used for this purpose,
but attention must be paid for because network decompositions into base
functions are not unique and a�ect the quality of the solution. Therefore
heuristics may be used to bias some features of decomposed networks. For
example, while searching for a minimal delay binding, a decomposition may
be chosen such that late inputs traverse fewer stages.

The second major pre-processing step in heuristic binding is partitioning,
that allows the covering algorithm to consider a collection of multiple-input
single-output networks in place of a multiple-input multiple-output network.



6 Giovanni De Micheli

The subnetworks that are obtained by partitioning the original network are
called subject graphs [25]. Subject graphs are then covered by library elements
one at a time. Networks are usually partitioned at multiple-fanout points.

Finally each subject graph is covered by an interconnection of library
cells, as described next.

Tree-covering. Tree-covering is based on a structural representation of the
cells and of the subject graph by means of trees. Usually, decomposition into
base functions leads to directed acyclic graph (dag) representations of cells
and subject graphs, which can be split to obtain trees where matching and
covering can be carried out more e�ciently.

Optimum tree covering can be computed by dynamic programming [3,25].
We describe here brie
y a minimum-area covering problem and solution.

Each cell has a tree pattern and an area cost. The tree covering algorithm
traverses the subject graph in a bottom-up fashion.

For all vertices of the subject tree, the covering algorithm determines the
matches of the locally rooted subtrees with the pattern trees. There are three
possibilities for any given pattern tree.

1. The pattern tree and the locally rooted subject subtree are isomorphic.
Then, the vertex is labeled with the corresponding cell cost.

2. The pattern tree is isomorphic to a subtree of the locally rooted subject
subtree with the same root and a set of leaves L. Then, the vertex is
labeled with the corresponding cell cost plus the labels of the vertices L.

3. There is no match.

If we assume that the library contains the gates implementing the base
functions, then for any vertex there exists at least one cell for which one
of the �rst two cases applies, and we can label that vertex. Therefore, it is
possible to choose for each vertex in the subject graph the best labeling among
all possible matches. At the end of the tree traversal, the vertex labeling
corresponds to an optimum covering. Note that overall optimality is weakened
by the fact that the total area of a bound network depends also on the
partitioning and decomposition steps. The complexity of the algorithm is
linear in the size of the subject tree.

Example 2. Consider the network shown in Figure 2, its subject graph and
a library with cells finv ,nand2 ,and2 ,or2 g having area costs 2,3,4,5
respectively.

The bottom-up application of the tree-covering algorithm is shown in
Figure 3. At the �rst step, nodes s and u are matched with an inv and
nand2 respectively. Next, the algorithm attempts to match node t with an
inv and with an and2 . Such matches yield costs of 5 and 4 respectively,
and so node t is matched with an and2 . Last, the algorithm attempts to
match node r with a nand2 and an or2 . These matches yield costs of 9



Cell-based logic optimization 7

t1 t2 t3 t4r

s t

u

SUBJECT TREE PATTERN  TREES

cost = 2 cost = 3 cost = 4 cost = 5

INV NAND AND OR

NETWORK

Fig. 2. Network, subject tree, and pattern trees

r

s t

u

t4

t2

r

s t

u

r

s t

u

r

s t

u

r

s t

u

Match of s: t1
cost = 2

Match of u: t2
cost = 3

Match of t: t1
cost = 2+3=5 cost  = 4

Match of t: t3 Match  of  r: t2
cost = 3+2+4 =9

Match of r : t4
cost = 5+3=8

Fig. 3. Example of covering by dynamic programing



8 Giovanni De Micheli

and 8 respectively, and so the best area cover involves an or2 gate fed by a
nand2 .

Tree-covering can be extended to cope with delay minimization. If the gate
delay is constant, then it su�ces to compute the cost at each node as the sum
of the gate delay plus the largest cost of its children (i.e., largest input arrival
time). When gate delay is load-dependent, the algorithm can be modi�ed by
using binning techniques [18,38]. Most covering methods, targeting di�erent
cost functions and models, use a framework similar to Keutzer's algorithms.

3.2 Limitations and extensions of the classical approach

The classical approach of Section 3.1 has been the basis for several research
and commercial implementations. Improvements on the basic technique a�ect
how partitioning, decomposition and matching are done, and will be described
in the sequel. Such improvements extend the search space and thus allow the
algorithms to �nd higher-quality solutions. At the same time, they attempt
to provide better estimation of the cost functions of interest. For example, a
combined approach to solving cell binding and placement has been proposed
recently [31], where the overall area (due to cells and to routing) can be
estimated and optimized.

Avoiding partitioning. Circuit partitioning may provide sub-optimal so-
lutions, due to the discontinuity of mapping at the multiple-fanout points.
This problem was realized early on [19]. A simple but e�ective solution is to
avoid partitioning, and to start binding at a primary output, and continue
along the fanin cone until the algorithm reaches the primary inputs or the
outputs of a previously-bound cell. Since the overall solution depends on the
order in which the primary outputs are considered, heuristic rules can be
used, such as selecting �rst the most timing-critical outputs.

When considering mapping for minimum delay with a constant delay
model, an optimum solution can be found using an unpartitioned multiple-
output dag. In this case, a combinational network can be mapped as a whole,
but the �nal result still depends on the chosen decomposition. This result was
�rst shown by Cong and Ding [16] while considering libraries represented by
look-up tables (LUTs) with a bounded number of inputs, as in the case of
�eld-programmable gate arrays (FPGAs). Their method relied on a network
traversal in topological order, with an optimum vertex labeling which satis�es
the principle of optimality of dynamic programming. Later, Kukimoto et al.
[26] showed that this result is applicable to generic libraries, by using a similar
network traversal and an extended matching concept, which allows nodes to
be covered by more than one cell (i.e., by allowing duplication).



Cell-based logic optimization 9

Representing all possible decompositions. Lehman et al. [28] addressed
the problem of optimizing the mapped network over multiple algebraic de-
compositions. The network is modeled by amapping graph, which is a network
representation by means of and2 and inv base functions, with two modi�-
cations. First, choice nodes are introduced. They are \virtual multiplexers"
that can feed any newtork node with the output of two nodes representing al-
ternative decompositions of the corresponding function. Second, the mapping
graph can contain directed cycles. For example, a cycle consisting of two in-
verters and two choice nodes can indicate that a function f may be expressed
as the complement of a function g and vice versa (See Figure 4). Restrictions
are applied to the use of cycles, to insure uniqueness of the function assigned
to the network vertices.

Mapping graphs can be reduced by removing redundancies. In a reduced
mapping graph, there are no distinct choice nodes with logically-equivalent
outputs, and there are neither and2 nor inv nodes with identical inputs.

Example 3. Consider the two equivalent and2 / inv networks of Figure 4 (a)
[28]. They can be represented as a single mapping graph, by using a choice
node, as shown in Figure 4 (b). Next, the graph can be reduced, to remove
redundancies. First, nodes 6 and g are made input of a common choice node,
because they are logically equivalent. Then, 7 and h are merged because they
have an identical input. Next, 7, h and f are made inputs of a common choice
node, because they are are equivalent, creating a cycle. Finally, several nodes
are merged because they have identical inputs: 3 and c, 8 and i, 9 and j. The
cycle indicates that any even number of inverters may appear between f and
8,i, and that any odd number of inverters may appear between 6 and 8,i.

Lehman et al. proposed an algorithm for traversing the mapping graph
and matching cells to nodes of this graph, using a specialed graph matching
technique. The covering algorithm yields the best mapped network, among
those that can be derived from the decompositions encoded by the mapping
graph. Since the mapping graph does not represent all possible decomposi-
tions, the mapping graph is iteratively modi�ed during covering using as-
sociative, distributive and inverter (addition and removal of inverter pairs)
transformations [28]. The result of applying these transformations yields a
method that is at least as powerful as exhaustively applying algebraic de-
composition. While the interested reader is referred to [28] for details, it is
important to stress that the implementation of this method runs fast and is
widely applicable to both area and delay minimization.

Limitations of structural matching. Representations of logic functions
by algebraic decompositions into base functions are trees or dags. (For ex-
ample an exor2 function can be represented by a dag with nand2 and inv

base functions). While tree matching can be done e�ciently in liner time,



10 Giovanni De Micheli

(a)

(b)

(c)

ZB

A

C

D

1

2
4 5

6 7
8 9

3

A

B

D

C Z

a

b

c

d

e

f g h i j

x

B

A

C

D Z

1

2

3

4 5
6 7

8 9

a

b

c

d

e

f g h i j

B

A

C

D

Z

x

x

1

2
4 5

6

a

b

d

e

f

g

7,h

8,i 9,j

3,c

Fig. 4. (a) Two logically-equivalent network decompositions. (b) Mapping graph
showing how a choice node (marked by an X) encodes the two decompositions. (c)
Reduced mapping graph.



Cell-based logic optimization 11

there are some pitfalls in using algebraic representations and the correspond-
ing structural matching techniques. First, algebraic decompositions are not
canonical, and thus a possible match may be missed if a library cell has a
decomposition di�erent from that of the network portion to which it is com-
pared. This problem can be alleviated by using multiple decompositions, as
mentioned in the previous section. Second, cells that are represented by dags
(instead of trees) require more complex matching algorithms. Third, alge-
braic decompositions do not capture don't care conditions, which are useful
in determining lower-cost solutions.

For these reasons, Boolean matching techniques have been used to solve
the tautology problems, by leveraging Binary Decision Diagrams [9] which
are canonical representations for logic functions. Such techniques have been
shown to have run-times competitive with structural matching methods. Usu-
ally, Boolean matching is applied within a general framework where a network
is decomposed into base functions beforehand. As with structural covering,
the library is required to include the base functions. At each network node,
it is then possible to form clusters (by aggregating base functions) which are
characterized by cluster functions. Covering can then be performed bottom-
up, by applying Boolean matching to the cluster functions and by combining
the cost of the match with the cost of the covers of the subgraphs rooted at
the vertices providing the inputs to the matching cell. This procedure can be
used to minimize arbitrary objective functions. Boolean matching techniques
are extensively described in Section 4.

3.3 Re-mapping

The quality of bound networks (i.e., their area, delay and power consump-
tion) depends much on parameter estimation. A good (even an optimum)
algorithm is useless if the input data is inaccurate. When considering sub-
micron technologies, delay (but also area and power consumption) depends
mainly on the wiring among cells. Thus estimation of wiring delays is ex-
tremely important. Since wiring depends on the placement and on the cell
interconnections, two approaches are feasible: i) incorporating physical-design
estimators within logic synthesis and library binding tools; ii) performing
mapping after physical design. Whereas the latter approach is prone to many
far-fetched interpretations, we consider here the re-mapping approach, which
is already used in some design 
ows. In this case, a logic network is mapped
�rst and then cells are placed and wired. After delay extraction, re-mapping
is applied to improve the quality of the network.

Several algorithms have been developed that operate on a mapped netlist
and attempt to further optimize it [14,27,37,44]. Some re-mapping approaches [11]
focus on changing the connectivity of the netlist in such a way that some
gates either become redundant (and can be removed) or become sub-optimal
(and can be replaced). Re-mapping transformations based on changes of the
network connectivity are often called re-wiring.



12 Giovanni De Micheli

In re-mapping, delay (as well as power and area) estimation drives the
selection of the regions to be improved. A logic representation of these clus-
ters is extracted, and then clusters are re-mapped. The newly bound cluster
replaces the target region if an improvement is achieved for the cost functions
of interest. The process is iterated until the desired improvement is reached
or no improvement is possible.

Two techniques are important in re-mapping: forming the clusters and
their mapping. Since clusters may have multiple outputs, specialized match-
ing algorithms are required. We describe Boolean matching for multiple-
output clusters in Section 5.

The construction of the clusters may be guided by di�erent principles. One
approach [45] focuses on selecting multiple-fanout points, and re-mapping
a cluster around these points. Multiple-fanout points have usually higher
capacitive loads, and thus may be part of critical paths. Once a cluster is
chosen, a neighborhood around the cluster has to be determined as well.
The neighborhood encapsulates the part of the Boolean network, whose logic
behavior expresses the constraints and the degrees of freedom for matching
the cluster. Note that for multiple-output clusters, the degrees of freedom for
matching are expressed by Boolean relations [42], as shown in Section 5.

Fig. 5. Building the neighborhood of a cluster

Example 4. We show on Figure 5 a method for constructing a neighborhood
[45]. The picture represents a portion of a logic network, the nodes being logic
gates and the arrows the connections between them. We start from a two-
node cluster, marked in black in the top left part of the Figure 5. To build
the neighborhood, we �rst select the reconvergent nodes in the transitive
fanout and fanin of the clusters (with depth 2) from the cluster. These nodes
are marked in black on the top right. The nodes on paths connecting the
cluster with reconvergent nodes are marked in black on the bottom left.



Cell-based logic optimization 13

Finally, we take the \envelope" of these nodes to get the neighborhood. The
neighborhood is the set of nodes marked in black in the bottom right part of
Figure 5.

Overall the advantages of re-mapping are: i) it merges seamlessly with
pre-existing tools and design 
ows, ii) it allows us to put more e�ort in
local optimizations. The main drawback is that re-mapping performs only
incremental improvements, thus, if the starting point is a local optimum very
far from the global optimum, we may not be able to move out of it.

4 Boolean matching

Whereas tree-based matching is a subject broadly described in textbooks
[1], information on Boolean matching is scattered in the technical literature.
Because of the increasing application of Boolean matching techniques in li-
brary binding tools, we dedicate the next two sections to a detailed survey
of Boolean matching.

We consider �rst Boolean matching for single-output cluster functions.
Matching incompletely-speci�ed functions will be described in Section 4.3
and matching multiple-output cluster functions in Section 5.

4.1 Preliminaries

We model combinational clusters and library cells by cluster functions and
pattern functions respectively. For now, we assume both functions to have
multiple inputs and a single output. We denote vectors and matrices in bold-
face, and the vector whose entries are 1 by 1.

Let us consider a cluster function f(x), with n input variables which are
entries of vector x. Let us consider also a pattern function g(y), where the
variables in y are the m cell inputs. For the sake of simplicity, we assume
that n = m unless speci�ed otherwise. We shall remove this assumption in
Section 4.4. Note that when the cell has more inputs than the cardinality
of the support of the cluster function, i.e., m > n, then a match requires
bridging or sticking-at a constant value some inputs. Conversely, when the
cell has fewer inputs than n, a match is possible only if some variable in x

is redundant. This can be detected while matching the cluster function and
considering don't care conditions.

Matching involves comparing two functions and �nding an assignment of
the cluster variables to the patterns variables. For the sake of explanation, we
separate the two issues and we describe �rst matching two functions de�ned
over the same set of variables. Then we remove this restriction and formulate
the complete Boolean matching problem.



14 Giovanni De Micheli

Input permutation. Consider two functions, f and g, de�ned over the same
variable set x. The two functions are equivalent if f(x) � g(x) is a tautology.
If the functions are expressed by reduced ordered binary decision diagrams
(ROBDDs), such a test can be done in constant time [6].

In general, we are interested in exploring the possible permutations of
input variables that yield equivalent behavior. Thus we say that f and g are
P-equivalent if there exists a permutation operator P such that f(x)�g(P x)
is a tautology.

The most simplistic approach to detect a match is to perform n! tau-
tology checks. (Note that n = m is usually small and that cells with more
than 6 inputs are rare). Mailhot [32] was the �rst to propose a method for
Boolean matching. He detected tautology by comparing ordered BDDs, and
he renounced the canonicity of ROBDDs to save the computing time of reduc-
ing the OBDDs of the cluster functions. (Historically, his method preceded
the development of e�cient ROBDD manipulation tools [6].) To expedite
P-equivalence checks, he used �lters to prune unnecessary tautology checks
(See Section 4.2.) The method can be perfected by associating each library
element with a multi-rooted ROBDD representing all variable permutations.

Input and output polarity assignment. It is often the case that the
polarity (also called phase) of the inputs and outputs of a combinational
network can be altered, because I/Os originate and terminate on registers or
I/O pads yielding signals and their complements. Thus it is useful to search
for matches with arbitrary polarity assignments, when these reduce the cost
of the objective function of interest.

The polarity assignment problem can be explained with the help of a
formalism used to classify Boolean functions. Consider all scalar Boolean
functions over the same support set of n variables. Two functions f and g
belong to the same NPN class, and are said NPN -equivalent if there is a
permutation operator P and complementation operators Ni;No, such that
f(x) � Nog(P Ni x) is a tautology [24]. The complementation operators
specify the possible negation of some of their arguments. Similarly, two func-
tions f and g are said to be N -equivalent (or polarity-related or phase-related)
if there exist a complementation operator Ni such that f(x) � g(Ni x) is a
tautology. PN -equivalence is de�ned in a similar way.

Boolean matching is often de�ned in terms of N , or PN , or NPN -
equivalence. In principle, N , PN , and NPN -equivalence can be reduced
to 2n, 2nn! and 2n+1n! tautology checks. In practice, �lters can be used
to reduce drastically the number of tries, and early approaches to Boolean
matching were relying heavily on �ltering [32]. Moreover, canonical forms can
be used to check for equivalence in constant time.

Variable assignment and Boolean matching. In practice, a cluster func-
tion is de�ned over some network variables x and a pattern function is de�ned



Cell-based logic optimization 15

over some other variables y. A matching requires an assignment of cluster
variables to pattern variables, representing the connections between the clus-
ter and the cell. We denote a generic assignment by the characteristic equation
A(x;y) = 1 of a variable mapping function that maps the variables x into y.

Example 5. Consider an assignment which maps each entry in x into the
corresponding entry of y. Then the characteristic equation is x � y = 1.
Equivalently we can express A(x;y) in scalar form as:

Qn

i=1(xi � yi) = 1.
With input permutation, the characteristic equation can be expressed as:

A(x;y) = y � Px = 1, where P is a permutation matrix.
With input permutation and complementation, then y � PN � x = 1,

where N is a diagonal Boolean matrix.

The pattern function g under the variable assignment represented by A
is [39]:

gA(x) = 9yA(x;y)g(y) (1)

Example 6. Consider a two-dimensional input space, where: x = [x1; x2]
T

and y = [y1; y2]
T . The NPN transformation that maps x1 to y

0
2 and x2 to y1

has the following characteristic equation A(x1; x2; y1; y2) = (x1�y2)(x2 � y1)
= x1x2y1y

0
2 + x1x

0
2y

0
1y

0
2 + x01x2y1y2 + x01x

0
2y

0
1y2 = 1.

Consider pattern function g = y1y2 with the previous assignment. The
pattern function under the variable assignment is 9y1;y2Ag = 9y1;y2(x1 �
y2)(x2�y1)y1y2 = x2x

0
1. (Figure 6.)

x

x 1 y1

2 y2

CLUSTER CELL

&

Fig. 6. Input assignment in matching

Let us considerPN -equivalence, being the extension toNPN -equivalence
straightforward. A condition for matching is that f(x) � gA(x)is a tautology,
or equivalently: f(x) � 9yA(x;y)g(y) = 1 for any value of x. Therefore there
is a Boolean matching if and only if the following formula evaluates to true.

8x(f(x) � 9y(A(x;y)g(y))) (2)



16 Giovanni De Micheli

4.2 Boolean matching algorithms

As outlined in the previous section, �nding the correct input permutation and
polarity assignment that matches a cluster function with a pattern function
may require a large number of tautology tests. Numerous approaches have
been proposed to eliminate or reduce the need for iterative tautology check.

Canonical forms. Burch and Long introduced a canonical form for repre-
senting functions modulo input-polarity assignments [10]. This allows us to
check for N -equivalence in constant time. This form can be used to check for
PN -equivalence (and NPN -equivalence) by testing under all input permu-
tations and output complementation in a straightforward way.

The canonical form for N -equivalence relies on a ROBDD representation
and can be seen as an operator (i.e., a Boolean function) whose argument is
a Boolean function. Burch and Long named it CN and de�ned it as follows.
For all scalar Boolean functions f and g, then f is N -equivalent to CN (f).
Moreover, if f is N -equivalent to g, then CN (f) = CN (g).

Given a function f , its canonical form CN (f) can be constructed in poly-
nomial time by performing a recursive expansion about its support variables.
The structure of the algorithm for forming CN is similar to the ITE algorithm
[6,18]. A description is reported in [10].

Let us consider now matching using the CN operator. The Boolean func-
tions representing a library can be put in the canonical form CN as a prepro-
cessing step, done once for all for each library. These canonical forms can be
stored in a hash table. For each cluster function f of interest, its canonical
form CN (f) must then be computed and checked against the library hash
table. This check can be done in constant time.

Canonical forms for representing functions modulo input permutation can
be de�ned in a similar way. For computational speed reasons, Burch and
Long [10] proposed the use semi-canonical forms for representing permuta-
tions. With these forms, which are not unique, P-equivalence can be tested
as follows. For each pattern cell in the library, the (small) set of all its semi-
canonical forms is generated and stored once for all in a hash table. The
cluster function is matched by constructing one of its semi-canonical forms
and checking for its presence in the library's hash table.

Extensions to cope with PN -equivalence are straightforward, by having
the library hash table store the permutation semi-canonical forms in polarity
canonical form. Finally, checking for NPN -equivalence is usually done by
checking also for PN -equivalence of the complement of f .

Boolean signatures. A signature of a Boolean function is a compact rep-
resentation that characterizes some of the properties of the function itself.
Each Boolean function has a unique signature. On the other hand, a signa-
ture may be related to two or more functions. This problem, called aliasing,
distinguishes signatures from canonical forms.



Cell-based logic optimization 17

A necessary condition for a Boolean match is that the corresponding
signatures are equal. When signatures are compact, comparing them is an ef-
�cient method to determine when two functions do not match, and therefore
to reduce the search space for a match. Because of aliasing errors, signa-
tures do not represent su�cient conditions to infer matching. Thus, they are
inherently less powerful than canonical forms. Signatures have been used be-
fore the introduction of canonical forms, and subsequently in the cases where
canonical forms are expensive to compute or their size is too large [34].

Signatures can be based on some properties of the representation of a
Boolean function, such as symmetries, unateness, size of co-factors, etc. Some
signatures are based on Boolean spectra and they are reviewed in Section 4.2.

Mailhot [32] used signatures to reduce the number of tautology checks
needed to determine both P-equivalence and NPN -equivalence. The signa-
tures that he introduced are based on the following facts:

� Any variable assignment must associate a unate (binate) variable in the
cluster function with a unate (binate) variable in the pattern function.

� Variables or groups of variables that are interchangeable in the cluster
function must be interchangeable in the pattern function.

The �rst condition implies that the cluster and pattern functions must
have the same number of unate (binate) variables to have a match. If we
denote by b the number of binate variables, then b is a signature of the
function. Obviously also the number of unate variables (n� b) is a signature.
Moreover at most b! � (n� b)! variable permutations need to be considered in
the search for a match in the worst case.

Example 7. Consider the following pattern function from a library: g =
s1s2a + s1s

0
2b+ s01s3c + s01s

0
3d with n = 7 variables. Function g has 4 unate

variables and 3 binate variables.
Consider a cluster function f with n = 7 variables. First, a necessary

condition for f to match g is to have also 4 unate variables and 3 binate
variables. If this is the case, only 3! 4! = 144 variable orders and corresponding
OBDDs need to be considered in the worst case. (A match can be detected
before all 144 variable orders are considered). This number must be compared
to the overall number of permutations, 7! = 5040, which is much larger.

The second condition allows us to exploit symmetry properties to simplify
the search for a match [32,35]. Consider the support set of a function f(x). A
symmetry set is a set of variables that are pairwise interchangeable without
a�ecting the logic functionality. A symmetry class is an ensemble of symmetry
sets with the same cardinality. We denote a symmetry class by Ci when its
elements have cardinality i, i = 1; 2; : : : ; n. Obviously classes can be void.
The symmetry classes of the pattern functions can be computed beforehand,
and they provide a signature for the patterns themselves. Indeed a necessary
condition for matching is to have symmetry classes of the same cardinality
for each i = 1; 2; : : : ; n.



18 Giovanni De Micheli

Example 8. Consider the function f = x1x2x3 + x4x5 + x6x7. The support
variables of f(x) can be partitioned into three symmetry sets: fx1x2x3g;
fx4x5g; and fx6x7g. There are two non-void symmetry classes, namely: C2 =
ffx4; x5g; fx6; x7gg and C3 = ffx1; x2; x3gg. Thus a signature is [0; 2; 1; 0; 0; 0; 0].

Consider now library cells g1 = y1 + y2y3 + y4y5 + y6y7 and g2 = (y01 +
y02)(y3+y4)(y5+y6+y7). The signatures of the cells are respectively [1; 3; 0; 0; 0; 0; 0]
and [0; 2; 1; 0; 0; 0; 0]. The signatures of f and g2 are equal and indeed g2 is
NPN -equivalent to f . Notice however that in general signature matching is
only a necessary condition for Boolean matching.

Other signatures can be obtained by considering the satisfy count of a
function, which is the number of its minterms. The satisfy count for f is de-
noted by jf j. The satisfy count can be computed quickly when using ROBDD
representations [9]. The satisfy count is an invariant for input permutation
and complementation. Thus, it can be used as a signature for determining P-
equivalence and PN -equivalence. Note that output complementation changes
the satisfy count of a n-input function f from jf j to 2n � jf j.

Mohnke and Malik [34] suggested to consider the satisfy counts of the co-
factors of a function with respect to its variables for determining P-equivalence
and PN -equivalence. Let us consider P-equivalence �rst. The signature is a
vector whose entries are the satisfy counts of the co-factors with respect to
the uncomplemented variables. Again, such counts can be computed quickly
when using ROBDD representations [9]. Then, a necessary condition for P-
equivalence for two functions f and g is that each element of the signature
for f has one corresponding and equal element in the signature for g. This
can be easily tested by sorting the entries and comparing the sorted signa-
tures. Aliasing may occur when the satisfying count for two or more co-factors
are the same. Mohnke and Malik [34] considered breakup signatures in these
cases, that are based on the distance of minterms from an arbitrary point of
the Boolean space. Details are reported in reference [34].

When considering the N -equivalence problems, the satisfy counts of the
co-factors of f with respect to both complemented and uncomplemented vari-
ables must be considered. These integer pairs can be arranged in a matrix
(with as many rows as the input variables) representing the signature. A
necessary condition for N -equivalence of two functions f and g is that each
row of the signature for f has the same elements (possibly permuted) as the
corresponding row for g. Aliasing occurs when a row has identical elements.
To overcome this problem, other signature can be considered that are based
on satisfy counts of cofactors with respect to two variables. They are called
component signatures [34]. Eventually, when considering the PN -equivalence
problems, cofactor signatures can still be used in a straightforward way, but
the use of breakup and component signatures is limited.

A similar approach has been independently proposed by Lai, Sastry and
Pedram [30], who introduced a general method for evaluating the quality of
signatures, called e�ect/cost ratio. The e�ect of a signature is the reciprocal



Cell-based logic optimization 19

of its aliasing probability, while the cost depends on the algorithm used for its
computation. (For ROBDD-based algorithms, the cost is usually a low-order
polynomial function in the number of nodes). Clearly, signatures with high
e�ect/cost ratio should be used. Since exact computation of the e�ect of a
signature is sometimes di�cult, it can be approximated by the number of
di�erent values that the signature may take.

Wang, Hwang and Chen [47] considered the equivalence signatures de�ned
over a bipartition � = fxl;xrg of the support variables of f . The Boolean
space spanned by the xl variables can be divided into equivalent classes, so
that f(xal ;xr) = f(xbl ;xr) for any pair fxal ;x

b
lg in the same class. The num-

ber k of such classes is called communication complexity of function f w.r.t. �.
Then, given a function f and a variable bipartition �, the equivalence signa-
ture is the set of k pairs, each de�ned by: i) the satisfy count of an equivalence
class and ii) the co-factor of f w.r.t. the equivalence classes (i.e., the result
of partially evaluating f for xl corresponding to the class). It was shown [47]
that equivalence signatures are a generalization of other signatures, and more
powerful in screening candidates for matching, because di�erent bipartitions
� = fxl;xrg (with xr of increasing size) can be tried. Moreover, equivalence
signatures can be computed e�ciently from ROBDD representations with
variable orders consistent with the bipartition. This method has applications
in veri�cation, other than in library binding, because it can handle functions
with more variables (e.g., 10-100) than other methods.

Schlichtmann, Brglez and Herrmann [40] proposed the use of di�erent
signatures, including single-fault propagation signatures. These signatures as-
sociate with each variable of a function a triple counting the patterns that
sensitize a fault (that can be propagated to the output on path with even or
odd parity) and those patterns that inhibit the fault sensitization. Cheng and
Marek-Sadowska [13] used signatures based on partner patterns and cofactor
statistics, which can be reconduced to single-fault propagation signatures by
scaling and by modifying the format.

Finally, Tsai and Marek-Sadowska [43] have proposed a new set of sig-
natures, which have been proved to be e�ective when checking for PN -
equivalence. Such signatures are based on the generalized Reed-Muller form
(GRM form) of Boolean functions. GRM forms are useful because they can
reveal complex symmetries of input variables and are e�ciently constructed
with procedures similar to those used for BDDs.

Spectral methods. There are several spectral representation of Boolean
functions [24]. We consider here the Hadamard transform, because it can be
e�ciently implemented. Consider a n-input Boolean function f . Let z be a
Boolean vector of length 2n whose ith entry is f(bool(i)); i = 1; 2; : : : ; 2n,
being bool() a function returning the binary encoding of an integer. One can
view z as the truth table of f . We then recode the Boolean constants so that
they take values f1;�1g. Namely we de�ne y = 1� 2 � z.



20 Giovanni De Micheli

The spectrum s of a function f is a vector with 2n elements, calculated
as: s = Tn �y, where the Hadamard matrix Tk of size k is de�ned recursively
as follows:

T 0 � 1

T k �

�
T k�1 T k�1

T k�1 �T k�1

�
Since Tn is symmetric and has orthogonal columns, its inverse is 1=2n�Tn.

Thus a function can be recovered from its spectrum s by computing: y =
1=2n �Tn � s and z = 1=2 � (1� y).

Each entry in the spectrum gives some global information about the
Boolean function. For example, the �rst entry is s0 = 2n � 2jf j and is called
0th-order coe�cient. The following n entries are named �rst order coe�cients
and show the correlation of f with its input variables. The remaining coe�-
cients show the correlation of f with the exclusive or of some input variables.
In particular, jth-order coe�cients show the correlation of f with the exclu-
sive or of j input variables.

Example 9. Consider f(x1; x2; x3) = x1x2 + x03 (n = 3). Its Hadamard spec-
trum is:
[s0; s1; s2; s12; s3; s13; s23; s123]

T
= [�2; 2; 2;�6;�2;�2;�2; 0]T . The 0th or-

der coe�cient is s0 = 23 � 2 � 5 = �2. (In this case jf j = 5). The �rst
order coe�cient is s1 = 5 � 3 = 2. Notice that s1 is equal to the num-
ber of agreements between f and x1 minus the number of disagreements.
A second-order coe�cient is s12 = 3 � 5 = �2, representing the number of
agreements between f and x1 � x2 minus the number of disagreements. The
third-order coe�cient s123 = 0 measures the number of agreements between
f and x1 � x2 � x3 minus the number of disagreements.

A spectrum uniquely identi�es a function. Unfortunately using spectra
for equivalence checking is not convenient, due to the exponential size of the
spectra themselves.

Some operators applied to Boolean functions have speci�c local e�ects on
the elements of its spectrum vector. In particular, complementing a function
corresponds to changing sign to its spectrum. Input complementation corre-
spond to changing the sign of the spectral coe�cients related to the comple-
mented variables and input permutation corresponds to permuting spectral
entries of the same order. Moreover, substituting the input and/or output
of a function with a linear combination (i.e., exclusive or) of some inputs
corresponds to swapping spectral elements of di�erent orders. By using these
transformations we can group Boolean functions into disjoint translation-
ally equivalent classes [20], that are classes (of functions) closed under these
transformations, called here XNPNbecause extension of the NPN concept.



Cell-based logic optimization 21

As a result of the aforementioned properties, XNPN equivalence can be
checked by comparing spectra after the signs have been removed and their
elements sorted. Whereas XNPN -equivalence is important for the classi�-
cation of Boolean functions, it is less relevant for matching. Indeed, replacing
a cluster with a XNPN -equivalent cell may require the use of additional
EXOR cells, thus increasing the cost of a match.

Boolean spectra can be of practical use to matching in two ways. First,
they can be used for matching by noticing that two functions are NPN -
equivalent if the corresponding spectra are equal modulo complementation
and permutation of the coe�cients within the same order. Yang [49] proposed
a Boolean matching algorithm where complementations and constrained per-
mutations of the elements of a spectrum are attempted, to make it equal to
another one. Permutations are restricted to be swaps of coe�cients of the
same order. If and only if this process is successful, then the corresponding
functions are NPN -equivalent. While the algorithm is generally e�cient in
early ruling out unfeasible matching, its worst-case performance is exponen-
tial.

Second, Boolean spectra can be used as signatures. (Fragments of spec-
tra can also be used: for example the 0th-order coe�cient is equivalent to
the satisfy count). When considering P , PN , or NPN -equivalent matching,
aliasing may arise because the spectrum of a cluster function f may match
the spectrum of a pattern function g, being f and g just XNPN equivalent
but not NPN equivalent. Nevertheless mismatches in Boolean spectra (or in
portions thereof) may be used to rule out equivalence of the corresponding
Boolean functions. Clarke et al. [15] proposed BDD-based methods for the
computation of the spectrum. The main advantage of this approach lies in
the high average e�ciency of BDD-based manipulation, although the worst
case computational complexity is still exponential. Moreover, this group [15]
applied spectral �lters to speed-up matching, and gave experimental evidence
on the high e�ect/cost ratio of such �lters.

4.3 Boolean matching with don't care conditions

Multiple-level logic networks have often several don't care conditions, that are
induced by the interconnection of the network itself. Some of these don't care
conditions are due to the structuring of the network prior to library binding,
while others are due to the binding process itself. When considering don't
care conditions associated with a cluster function, then multiple matching
cells can be found. It is therefore convenient to use don't care conditions in
the search for the most desirable matching cell.

We consider here both controllability and observability don't care con-
ditions associated with the cluster function f and represented jointly as
fDC . We refer the reader to [18] for the computation of fDC . We say that

a pattern function g matches a cluster function f , if g matches ef where
f � f 0DC � ef � f + fDC .



22 Giovanni De Micheli

Compatibility graph. Matching can be de�ned in terms of P , NP , or
NPN -equivalence. The �rst algorithm for detecting NPN -equivalence using
don't care conditions was proposed by Mailhot [32]. His approach was limited
to functions with four or less support variables (n � 4). Mailhot made use of
a matching compatibility graph, which is a directed graph whose vertex set is
in one to one correspondence with the NPN -equivalent classes of functions.
There are 222 such classes for functions of four variables, but 616126 classes
for function of �ve variables and this explains the limitation to four variables.

Each vertex of the graph is labeled by a representative function of the
class. Two vertices are joined by an edge if the corresponding representative
functions di�er in one minterm. Thus a path between two vertices can be
associated with a set of minterms, or equivalently with a Boolean function
measuring the di�erence between the representative functions. We call such
function the error function.

The vertices are annotated by library elements and their costs, when the
pattern functions are in the corresponding NPN class. Given a cluster func-
tion f , an NPN -equivalence check can map the cluster function to a vertex
v 2 V . Such vertex always exists, because all NPN classes are represented by
the graph. On the other hand, the vertex may correspond or not to a library
element. In either cases, matching consists of �nding the vertex u 2 V associ-
ated with the least-cost cell that is compatible with the cluster function. The
compatibility test reduces to checking whether the error function associated
with the path from v to u is included in the don't care function fDC , which
represents the tolerance on the error. In Mailhot's algorithm, the annotated
matching compatibility graph and the paths are computed once for all for any
given library and stored. Thus matching with don't care conditions requires
just an additional inclusion test. Even though most libraries have few cells
with more than four inputs, the drawback of this approach is that it does not
scale with n due to the size of the graph.

Example 10. Consider the matching compatibility graph of Figure 7, where
the darker cubes denote vertices corresponding to a hypothetical library. Let
the cluster function be f = xy + xz and the don't care be fDC = x0z0. The
vertex matched to f is v5 corresponds to a library element. The representative
function assigned to v5, i.e., a

0c+ bc, is in the same NPN class as f . (Assign
a0 to y, b to z and c to x.)

The vertices reachable from v5 are fv9; v10; v6g, because the correspond-
ing paths have minterm sets included in the don't care set. Indeed the errors
of using of v9, v10, and v6 instead of v5 are a0b0c0, ab0c0, and b0c0 respec-
tively, which are all included in fA DC = b0c0 with the variable assignment
mentioned above. (Note that the error between v5 and v6 is b

0c0 because we
complement the representative function of v6 and rotate the cube around the
a axis.) Only vertex v9 is annotated with a library element. It corresponds to
the multiplexer gate, because the representative function a0b0 + bc is in the
same NPN class as ab+ b0c.



Cell-based logic optimization 23

1

2 3 4

5 6 7

8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

abc

bc

c

ab’c’ + abc

a’b’c’ + abc

a’c + bc

ab’c’ + bc

a’b’c + ab’c’ + abc

a’b’ + bc

ab’c’ + a’c + bc

a’b + a’c + bc
b’c’ + bc

ab’c’ + a’bc’ + a’b’c + abc

a

bc

Fig. 7. Matching compatibility graph with library annotation.



24 Giovanni De Micheli

A formula for Boolean matching with don't care conditions. Savoj
et. al [39] presented a Boolean condition for matching with don't care condi-
tions. Consider a cluster function f(x) and don't care set fDC(x) and pattern
function g(y). An expression for determining a matching with don't care con-
ditions can be derived by extending expression (2) as follows:

8x(fDC(x) + f(x) � 9y(A(x;y)g(y))) (3)

which can be rewritten as:

8x(9y(A(x;y)(fDC(x) + f(x) � g(y)))) (4)

Formula (3) has an immediate meaning: for all the values of the input
variables x either the pattern function g with input assignment A must be
equal to f or fDC is true. Formula (4) is easily derived from (3).

Example 11. Consider the cluster function f = x1 � x2 with fDC = x01x2,
and pattern function g = y1 + y2. A variable assignment that assigns x01
to y1 and x2 to y2 yields a match. We verify that with Formula (4). The
input assignment function is A(x;y) = (y1 � x1)(y2�x2). Formula (4) is
therefore 8x(9y((y1�x1)(y2�x2)(x01x2+(x1 � x2)�(y1+y2)))). Computing
the smoothing we obtain 8x(x01x2 + x1x2 + x01x

0
2 + x1x

0
2), that is tautology,

thus (4) is satis�ed. (Figure 8).

x

x 1 y1

2 y2

CLUSTER CELL

1 2

f = x     x1 2
DCf     = x’  x &

Fig. 8. Input assignment in matching with don't care conditions

The main problem in using Formulae (3) and (4) is to �nd the variable
assignment. Savoj et. al ([39]) proposed an algorithm based upon a search
for a variable assignment that satis�es condition (4). To expedite the search,
Savoj introduced a class of �lters that are valid even for incompletely speci�ed
functions. The �lters are based on the satisfy count of the function and its
cofactors. For example, if jf � f 0DC j > jgj no matching is obviously possible.
The interested reader is referred to [39] for details.



Cell-based logic optimization 25

Boolean uni�cation. Boolean uni�cation is the process of �nding a solu-
tion of a Boolean equation [8]. A method for �nding Boolean matching with
don't care conditions based on Boolean uni�cation was proposed by Chen [12].
A matching is searched for by solving a Boolean equation in which the un-
knowns are the variable matching functions representing input assignments.
Note that these functions have been represented implicitly up to now by the
characteristic equation A(x;y) = 1. Given f(x), fDC(x) and g(y), we �rst
enforce the matching condition:

f(x)�g(y) + fDC(x) = 1 (5)

which must hold for every x.
The unknowns in this equation are y = �(x; r), where r is an array

of arbitrary functions on x. Solving for the unknowns yields the variable
matching, if one exists. The solution method [12] uses a recursive algorithm
reminiscent of the binary branching procedure for Shannon expansion.

If we restrict ourselves to checking for PN equivalence, we must limit the
generality of the solutions: we allow only functions of the form y = PN�x for
some permutation matrix P and diagonal complementation Boolean matrix
N. Unfortunately, this constraint is not enforced by Equation (5). Similar
considerations apply to P-, N -, and NPN -equivalence checking. In order to
guarantee that solutions are in the desired form, a branch-and-bound algo-
rithm has been proposed [12] that may degenerate in the worst case to exhaus-
tive enumeration of input permutations and polarity assignments. Although
Boolean uni�cation is a general and interesting framework for the descrip-
tion of matching problems, the Boolean uni�cation algorithm [12] does not
represent a signi�cant improvement upon enumerative procedures enhanced
by e�cient �lters.

Matching using multi-valued functions. One recent approach to Boolean
matching with don't care [46] exploits multi-valued functions. A multi-valued
function is a mapping from a n-dimensional space to the Boolean space. The
input variables can assume a �nite number of values ranging from 1 to n. In
symbols, a multi-valued function F is F : Nn ! B, where N = f1; 2; :::; ng
and B = f1; 0g. The key idea is to represent admissible input assignments
with literals of a multi-valued function, and consequently, sets of admissible
input assignments with multi-valued cubes.

Example 12. The cluster function is f(x1; x2; x3) and the pattern function
is g(y1; y2; y3). We consider only input permutations for the sake of simplic-
ity. Assume that admissible input assignments are (x1; y2), (x2; y1), (x2; y2),
(x3; y1), and (x3; y3). This set of admissible input assignments can be repre-

sented by the multi-valued cube x
f2g
1 x

f1;2g
2 x

f1;3g
3 .

The cubes of the multi-valued function representing possible input assign-
ments are generated iteratively starting from sum of products representations



26 Giovanni De Micheli

of the pattern function g, the cluster function f and its don't care function
fDC . In the following description we consider only input permutations for
simplicity. The procedure has three steps.

First, the functions representing the o�-set and on-set of f are obtained:
fOFF = f 0 � f 0DC and fON = f � f 0DC and cast in sum of product form. Then,
the pattern functions are complemented, and stored also in sum of product
form. We consider a cluster function f matching with one cell represented by
g and g0.

Second, for each cube p of fON and for each cube q of g0, a multi-valued
function MvCube(p; q) is obtained. MvCube(p; q) expresses the constraint
that the only acceptable variable assignments are those that make the two
cubes disjoint. This is true if at least one of the variables appearing in p
with one polarity is associated with one of the variables appearing in q with
opposite polarity. The same procedure is repeated for each cube of fOFF and
each cube of g. The intersection of all expressionsMvCube(p; q) so generated
represents implicitly the set of all possible input assignments that yield a
match.

As a last step, feasible input assignments are extracted from the multi-
valued representation, by solving a matching problem on a bipartite graph.
For details, refer to [46].

Example 13. Assume that a cube in fON is p = x1x
0
2 and a cube in g0 is q =

y01y2y3. The multi-valued function extracted by p and q is MvCube(p; q) =

x
f1g
1 +x

f2;3g
2 . The function expresses the constraint that, in order for the two

cubes to be disjoint, x1 can be associated with y1, or x2 can be associated
with either y2 or y3.

The computational complexity of the procedure is of the order of the prod-
uct of the cardinalities of the sum of products under consideration. This is usu-
ally not a serious limitation in library binding, because most functions (that
may match usual cells) have a manageable sum of product representation,
and very e�ective tools exist for two-level logic minimization [7]. Moreover,
for most libraries, the sum of cubes representations of the pattern functions
are usually very small and seldom larger than ten cubes. On the other hand,
when this method is used for veri�cation purposes, the larger number of in-
puts can lead to situations where the size of the sum of products forms are
too large for the method to be practical. Another factor a�ecting the compu-
tational complexity is that the intersection of the functions MvCube(p; q) is
a product of sums form, which may require an exponential number of prod-
ucts to be computed. Wang and Hwang [46] proposed a heuristic that orders
the selection of cubes trying to keep the size of the intersection as small as
possible. Extensions of the algorithm to deal with NPNmatching with don't
cares are straightforward and do not sensibly change the overall complexity.



Cell-based logic optimization 27

y

y

y

1

2

3

x 1

x2

x 3

f

g

y

y

y

1

2

3

C0 C1C2

M1

M2

M3

x 1
x2
x 3

Gg

C C C C C C3 4 5 6 7 8

Fig. 9. Transformation of the pattern function g into G for matching with cluster
function f . The �rst two control variables of each multiplexer are for permutation
control, the last one is for polarity control.

4.4 Library matching

We generalize now the concept of Boolean matching, with the goal of being
able to compare a cluster function with a data structure representing all libray
cells and allowing for any pin assignment and complementation. Therefore
we will extend the concept of matching step by step in this section.

First, we generalize the matching problem in two directions: i) the cluster
function is not required to have the same number of inputs as the pattern
function (i.e., n is not necessarily equal to m), and ii) the variable assignment
is not required to be a permutation with possible polarity change (e.g., two
or more inputs may be bridged together).

A physical interpretation of the matching setup is given by providing each
cell input with a polarity control bit (i.e., an exor gate) and with a multi-
plexer. The polarity and multiplexer controls are independent for each input
and are binary encoded. Namely, the �rst dlog2 ne variables control which
of the external n inputs is multiplexed on the input of g. The last control
variable controls the polarity of the selected external input. An example is
given in Figure 9.

Example 14. Consider box M1 in Figure 9, performing controlled comple-
mentation and multiplexing. If the control variables are c0 = 0 and c1 = 0,
the input x1 is connected with y1. When c0 = 0 and c1 = 1, x2 is connected
with y1. When c0 = 1 and c1 = 0, x3 is connected with y1. The last con�g-
uration of control variables (c0 = 1, c1 = 1) is unused, and can be assumed



28 Giovanni De Micheli

to be equivalent to any one of the others. For instance, we assume that when
c0 = 1 and c1 = 1 x3 is again connected with y1.

The last control variable, c2 de�nes the polarity of the connection. If the
polarity control variable c2 is 1, the connection with y1 will be inverting, thus
either x01, or x

0
2, or x

0
3 will be seen on y1.

From our construction it is clear that the number of control variables
needed is Nc = m(dlog2 ne + 1). The key observation is that the control
variables c can be selected in such a way that all PN -equivalent functions of
g can be generated. (The inversion of the output can be obtained with one
more control variable for the output polarity. We restrict our attention to
PN for the sake of simplicity).

In general, the class of functions generated by assignments to c is larger
than the class representative of all input permutations and polarity changes.
It includes the cases where two or more of the inputs of g are bridged and
connected to the same cluster input with arbitrary polarity. We call the set of
functions that a cell can implement with this connection extended-PN (EPN )
class. The generalization to ENPN is straightforward.

From an algebraic viewpoint, the enhanced cell is modeled by a new
Boolean function G(c;x). We de�ne an EPN equivalence relation over the
set S of all the Boolean functions with n inputs: EPN -equivalence partitions
S into equivalence classes. The set of equivalence classes de�ned by an equiva-
lence relation is called quotient set. We call G(c;x) quotient function because
it implicitly represents an equivalence class (i.e., an element of the quotient
set). Indeed all possible assignments of the c variables individuate all possible
functions of x that belong to the same class as the original pattern function
g.

Boolean matching is easily formulated using the quotient function G(c;x).
We introduce a Boolean formula that has at least one satisfying assignment
if and only if the quotient function G(c;x) (corresponding to the pattern
function g) is EPN -equivalent to f . Intuitively, the formula can be explained
by observing that there is an EPNmatching if and only if there exists an as-
signment c� to the control variables c of G(c;x) such that G(c�;x) is equal to
f(x) for all possible values of x. In other words, the variable assignment rep-
resented implicitly by A(x;y) can be cast in explicit form using G(c;x), and
G(c;x) can replace gA(x) in Equation (1). Therefore, the Boolean matching
condition is represented by:

M(c) = 8x [G(c;x)�f(x)] (6)

The application of the universal quanti�er produces a function of the con-
trol variables c. We shall call it matching function,M(c). Recall that our pro-
cedure �nds all possible matchings given f(x) and g(y), not just a particular
one. A minterm of M corresponds to a single EPN transformation for which
g matches f . The ON-set ofM represents all matching EPN transformations.



Cell-based logic optimization 29

&

  z

w

f &

x

y

z

w

a

b

G
1

0

1

0

c

d

Fig. 10. Pattern function f and quotient function G of Example 3.

Example 15. Let the pattern function be g = x0y and the cluster function be
f = wz0. Figure 10 models G(a; b; c; d; w; z) = (c�(za+wa0))0(d�(zb+wb0)),
where a; c and b; d are the control variables. We equate f to G:

f�G = (wz0)�((c� (za+ wa0))0(d� (zb+ wb0)))

Then we take the consensus of the resulting expression with respect to w
and z (the order does not matter), to get M(a; b; c; d) = ab0c0d0 + a0bcd. The
two minterms of M(a; b; c; d) describe the two possible variable assignments.
Minterm ab0c0d0 corresponds to assigning z to x and w to y without any
polarity change. Minterm a0bcd corresponds to assigning z to y and w to
x while changing both polarities. The correctness and completeness of the
solution set represented by M can be veri�ed by inspection.

From an implementation standpoint, the matching algorithm operates as
follows. First the quotient functions are constructed from the pattern func-
tions and stored as ROBDDs. Next, given the ROBDD of f , the ROBDD
of G(c;x)�f(x) is constructed. The last step is the computation of the con-
sensus over all variables in x that yields M(c). Observe that, thanks to the
binary encoding of the control variables, the size of c is O(mlog2 n). This is
an important property, because we want to keep the number of variables in
the ROBDD representation of G as small as possible for e�ciency reasons.

When the cluster function is completely speci�ed, traditional matching
procedures enhanced with �lters appear to be more e�cient than using the
quotient function, because the tautology check is fast and the number of
checks is reduced to one (or few) in most practical cases [41]. However, our
approach is applicable to much more general Boolean matching problems,
where traditional techniques cannot be applied. We shall now extend the
basic matching procedure to progressively more general matching problems.

The �rst and most straightforward extension is Boolean matching with
don't care conditions. Given a cluster function f(x) with don't cares repre-
sented by fDC(x), there exists a match if there is a satisfying assignment to
the following formula:

M(c) = 8x [G(c;x)�f(x) + fDC(x)] (7)



30 Giovanni De Micheli

x 1
x2
x 3

M1

M2

M3

g

gC0C1C2 C3C4C5 C6C7C8

C9 C10

1

2

g3

Mout

C11

L

Fig. 11. Quotient function for cell selection and matching

The result of the consensus is again the matching function M(c) rep-
resenting all possible assignments of the control variables that satisfy the
matching condition. Observing the formula, two points are of interest. First,
when fDC = 0, Equation (7) degenerates to Equation (6). Second, �nding
a match with or without don't care conditions is done by computing a sim-
ple Boolean formula, and the computational burden is the same. Moreover,
our procedure can be applied to pattern and cluster functions with di�erent
number of inputs. We can �nd a match even when the minimum cost library
element g compatible with f has fewer or more inputs than f .

We describe now a further extension of the matching formulation, that
allows us to combine matching and cell selection in a single step. We call
it library matching. This extension is important because the generalized for-
mula denotes all cells and corresponding variable assignments which match
a cluster. Given their costs in some metric, the locally-best replacement for
the cluster can be chosen in a single step. This contrasts traditional methods
requiring an iterative inspection of all (matching) cells.

Library matching is captured by an extended quotient function, repre-
senting the entire library, as shown by the following example.

Example 16. The extended quotient function is shown pictorially for a simple
3-cell library in Figure 11. In addition to input multiplexing and complemen-
tation, also the cell outputs are multiplexed and (possibly) complemented.
Multiplexer Mout has three control variables: c9 and c10 are used to select
which library cell is connected to the outpus, c11 selects the polarity of the
connection.



Cell-based logic optimization 31

x

i o

z
p(x)

q(o,x)

f(i)

h(x)

Fig. 12. A multi-output cluster function embedded in its environment

The extended quotient function L(c;x) has dlog2Nlibe+1 additional con-
trol variables for cell selection, where Nlib is the number of cells in the library.
When M(c) is computed using Equation (6) or (7), one minterm of M(c)
not only identi�es an input permutation and polarity assignment, but it also
speci�es for which library cell the input assignment leads to matching.

Since library cells have in general di�erent numbers of inputs, to construct
the quotient function for a library we need as many input-control multiplexers
as the maximum number of inputs of any cell in the library mmax. Hence,
the number of control variables needed for the construction of the quotient
function is dlog2(Nlib)e+ 1 +mmaxdlog2(n)e+mmax.

Example 17. Consider a simple library containing three cells g1, g2 and g3.
The quotient function for matching and cell selection is shown in Figure 11.
The output multiplexer function is represented by block Mout with three
control variables, c9, c10 and c11. If c9 = 0 and c10 = 0, cell g1 is selected. Cell
g2 and g3 are selected with c9 = 1; c10 = 0 and c9 = 1; c10 = 1, respectively.
Control variable c11 selects the polarity of the connection: inverting if c11 = 1,
non-inverting otherwise. In the construction of L(c;x), we need three input
multiplexers because mmax = 3. Gate g3 has only two inputs, hence it is
connected to only two input multiplexers.

Consider a con�guration of control variables c� = [0; 0; 0; 1; 0; 0; 1; 1; 0; 0; 0; 0].
Con�guration c� corresponds to selecting cell g1 (with no output inversion)
with input x1 connected to its �rst (topmost, in Figure 11) input, x2 con-
nected to its second input and x3 connected to its third input. No input is
inverted.



32 Giovanni De Micheli

5 Generalized matching

We remove now the restriction of dealing with single-output clusters and
cells. We extend our approach to cope with matching concurrently the multi-
ple outputs of a cluster, and we call it generalized matching. We describe the
approach of Benini, Vuillod et al. [44,45] who tackled this problem �rst. Gen-
eralized matching can achieve two practical goals. First, concurrent matching
can yield a binding with a lower cost as compared to matching each cluster
output independently. Second, we can attempt to match multiple-output cells
to multiple-output clusters.

We address concurrent matching �rst. Consider the Boolean network
shown in Figure 12. We have a multi-output cluster function f(i) embed-
ded in a larger Boolean network. If we were to use a traditional matching
algorithm, we would match the cluster outputs (i.e., the components of f)
one at a time (possibly considering don't cares conditions). Note that general-
ized matching is not equivalent to a sequence of single-output matching with
don't cares. There are solutions that can be found only if we concurrently
match the multiple-output cluster function to two or more pattern functions.
Thus generalized matching may lead to an overall lower-cost binding.

Generalized matching requires to �nd a group of single-output pattern
functions that satisfy a constraint expressed as a Boolean relation [42]. In
the following, we adopt a formalism similar to that used by Watanabe et
al. [48] in their work on multi-output Boolean minimization. Indeed, our
approach can be seen as an extension of similar ideas to the realm of library
binding. We call x and z the arrays of Boolean variables at the inputs and the
outputs of the network that embeds the cluster function f . The functionality
of such network is represented by the Boolean function h(x). The inputs of
the cluster function can be seen as a function p(x) of the inputs x. The
function q(o;x) describes the behavior of the outputs z when the outputs of
the cluster functions are seen as additional primary inputs.

From h, p and q we obtain three characteristic functions H , P and Q,
de�ned as follows:

H(x; z) =
Y
j

hj(x)�zj (8)

P (x; i) =
Y
j

pj(x)�ij (9)

Q(o;x; z) =
Y
j

qj(o;x)�zj (10)

The characteristic functions fully describe the environment around the
multi-output function f . In particular, they enable the computation of a
Boolean relation representing the complete set of compatible functions of
f , i.e., functions that can implement f without changing the input-output



Cell-based logic optimization 33

&

&

+

&

X1

X

X

X

X

2

3

4

5

1I

I 2

I 3
O2

1O

Z1

Fig. 13. A two-output cluster function embedded in a Boolean network

behavior of h. Watanabe et al. showed that the characteristic function F of
the Boolean relation can be obtained by the following formula [48]:

F(i;o) = 8x;z[(P (x; i) �Q(o;x; z))) H(z;x)] (11)

In words, F represents the set of values of i and o such that if Q is true
and P is true, then H is true for all possible values of x and z. Formula
(11) allows us to �nd all functions f that, when composed with p and q,
produce exactly function h. There are generally many functions with this
property. These functions are represented by a Boolean relation, and F is
the characteristic function of such relation.

Example 18. Consider the Boolean network shown in Figure 13. The dashed
rectangle encloses the multi-output cluster function f = [f1; f2]

T , f1 = (i1i2)
0,

f2 = i2+ i3. Function h has a single output h1 = x5(x4+x02+x03)(x
0
1+x2x3).

Function q has three inputs and one output: q1 = x5o1o2. Function p =
[p1; p2; p3]

T has four inputs and three outputs: p1 = x1, p2 = (x2x3)
0 and

p3 = x4.

Applying Equation (11) we obtain the Boolean relation representing all
degrees of freedom in the implementation of f . For ease of understanding, it
is given in tabular form:

i1i2i3 o1o2
000 f10; 01; 00g
001 f11g
010 f11g
011 f11g
100 f10; 01; 00g
101 f11g
110 f10; 01; 00g
111 f10; 01; 00g



34 Giovanni De Micheli

The characteristic function of the Boolean relation is F(i1; i2; i3; o1; o2) =
(o01 + o02)(i1i2 + i02i

0
3) + o1o2(i

0
1i2 + i02i3).

Once F has been computed by Formula (11), we can derive the gener-
alized matching equation. Assume that the multi-output cluster function f

has no outputs. We call Lk the characteristic functions of no quotient func-
tions, one for each output of the multi-output cluster function f . Namely
Lk(ck; i; ok) � L(ck; i)�ok; k = 1; 2; : : : ; no. Generalized matching is de-
scribed by the following formula:

M(c) = 8i9o

 
F(i;o) �

noY
k=1

Lk(ck; i; ok)

!
(12)

To understand the formula, observe that the conjunction between F
and all Lk; k = 1; 2; : : : ; no, followed by existential quanti�cation of the
output variables, is equivalent to the condition that for any output vector
o� = [o�1; o

�
2; :::; o

�
no
]T , the quotient functions associated with each component

assume a consistent value: L1 � o�1; L2 � o�2; :::; Lno � o�no . The universal
quanti�er on the inputs i enforces the condition for all possible input values.

Notice that the quotient functions L(ck; i) have distinct control variables.
In other words, the complete vector of control variables c on the left-hand
side of Equation (12) is the concatenation of the control variables of all no
quotient functions: c = [c1; c2; :::; cno ]

T . The ON-set of M(c) includes all
con�guration of control variables representing the ways in which the library
cells can be connected so as to obtain a �nal implementation of f contained
in relation F .

Example 19. Consider the two-output, three inputs cluster function f intro-
duced in Example 18, and the three-cell library of Example 17 with the
corresponding quotient function L(c; i). To perform generalized matching,
we need to instantiate two quotient functions L1(i1; i2; i3; c0; :::; c10; c11) and
L2(i1; i2; i3; c12; :::; c23). Notice that L1 and L2 have di�erent support, but are
otherwise identical. The characteristic functions of the quotient functions are:
L1(i1; i2; i3; o1; c0; :::; c11) = L1�o1 and L2(i1; i2; i3; o2; c12; :::; c23) = L2�o2.

The generalized matching equation is:
M(c0; :::; c21) = 8i1;i2;i39o1;o2(F(i1; i2; i3; o1; o2) � L1(i1; i2; i3; o1; c0; :::; c11)�
L2(i1; i2; i3; o2; c12; :::; c23)) where F(i1; i2; i3; o1; o2) is the characteristic func-
tion of the Boolean relation for f computed in Example 18. A minterm c� of
M uniquely identi�es two library cells and an input assignment.

Generalized matching is performed by directly implementing Equation
(12) using standard BDD operators. The number of control variables in Equa-
tion (12) increases with no. More precisely, the number of control variables is
Nc = no(dlog2(Nlib)e+1+mmaxdlog2(n)e+mmax), where Nlib is the number
of cells in the library, n is the number of inputs of f and mmax is the max-
imum number of inputs of a library cell. The term multiplied by no is the



Cell-based logic optimization 35

x1
x2

x3

1

x1

x2

x3

f

f

2f

(a) (b)

f

&

&+
+ +

Fig. 14. An example of the e�ectiveness of generalized matching.

number of control variables contributed by each quotient function. The �rst
logarithmic contribution accounts for the control variables for cell selection,
the constant \1" is for output polarity assignment, the log-linear contribu-
tion is for input permutation, the linear contribution is for input polarity
assignment.

Example 20. Referring to the multi-output target function introduced in the
previous example, F has two output (no = 2) and three inputs (n = 3).
Assume that the library has 75 cells (Nlib = 75) and that the cell with the
largest support in the library has 5 inputs (mmax = 5). The computation of
the matching function M for Boolean relation F requires Nc = 2(dlog275e+
1 + 5dlog23e+ 5) = 2(7 + 1 + 10 + 5) = 46 control variables.

From a practical standpoint, the complexity of generalized matching in-
creases rapidly with the number of outputs of f . The number of control
variables can be drastically reduced if symmetry is considered for input as-
signments and �lters are applied to reduce the number of candidate library
cells in the construction of the quotient function. In this overview, we do not
focus on implementation details and e�ciency issues. Results are reported
in References [44,45]. The enhanced power of generalized matching will be
clari�ed through an example.

Example 21. Assume that we have a simple library containing 4 cells: two-
input XOR (Cost = 2), two-input AND (Cost = 2), inverter NOT (Cost =
1), two-input AND1 (logic function g = in01in2, Cost = 3). An implicit cell



36 Giovanni De Micheli

is the \WIRE" (cost zero). We want to optimize the mapped network of
Figure 14 (a). Notice that the binding cannot be improved with Boolean
methods using don't cares because the external don't care set is empty and
the XOR on the output does not introduce any ODC on its fan-ins.

We apply generalized matching to the multi-output cluster function con-
sisting of the �rst XOR and the AND (enclosed in the dashed box f). The
number of control variables needed is Nc = 2(dlog24e+1+2dlog23e+2) = 18.
Applying generalized matching and examining the cost of the solutions (i.e.,
the ON-set of M(c)), we �nd that WIRE on output 1 and AND1 on output
2 is a correct replacement. The �nal solution is shown in Figure 14 (b). The
reader can verify its correctness by inspection. The optimized network has a
lower cost and is fan-out free. Notice that this replacement could not have
been found with traditional matching, even with don't cares, unless resorting
to technology-independent optimizations.

We consider next the application of generalized matching to binding
multiple-output cells, which are common in many semicustom libraries (e.g.,
full adders, decoders). Multiple-output cells implement multiple-output pat-
tern functions over the same set of inputs. As a result, the variable assignment
used in matching must be the same for all components of the pattern func-
tion. This constraint has a bene�cial e�ect in reducing the number of control
variables. Namely: Nc = no(dlog2NlibOute+ 1) +mmaxdlog2ne+mmax. The
�rst term accounts for the no output multiplexer functions (with output po-
larity assignment). NlibOut is the total number of outputs of all multi-output
library cells. The second and third term account for the input permutations
and polarity assignments.

Example 22. Consider a multi-output cell implementing a single-bit full adder.
The cell has three inputs: a, b and cin and two outputs sum and cout. The quo-
tient function for the full adder is shown as a block diagram in Figure 15 (a).
Notice that there is one multiplexer for each input variable and one for each
outputs (NlibOut = 2). The control variables are not shown for simplicity.

On the other hand, if we were to consider the two single-output pattern
functions representing the full-adder, we would need two quotient functions
(one for each output we want to match) with disjoint control variables. This is
shown in Figure 15 (b). Generalized matching of multi-output cluster function
using multi-output cells involves a much smaller number of control variables.

It is a well-known fact that multi-output cells can be bene�cial for area,
power and performance [5]. Unfortunately multi-output cells have seldom
been used in synthesis-based design 
ows because commercial tools do not
exploit them e�ectively. Generalized matching may obviate to this de�ciency,
because it detects the use of multiple-output cells whenever they can be used.
Moreover, it is more e�ective than ad hoc techniques that merge cells matched
by traditional algorithms, because it takes into account the degrees of freedom



Cell-based logic optimization 37

M1

M2

M3

a

b

cin s

cout Mo1

Mo2

a
b
cin

a
b
cin

cout

s

a
b
cin

a
b
cin

cout

s

(a) (b)

M11

M12

M13

Mo1

M21

M22

M23

Mo2

Fig. 15. (a)Generalized matching of a multi-output cell (b) Generalized matching
of multiple single-output cells.

available for multi-output optimization. Overall, generalized matching �nds
its best application with the frame of re-mapping algorithms.

6 Conclusion

Library binding is an important task in logic synthesis, and it provides the
bridge between technologically-independent logic networks and netlists of
cells to be placed and wired. Whereas rule-based systems played a role in
the early development of tools for library binding, most recent approaches
exploit algorithms. Despite the fact that some subproblems can be solved ex-
actly and e�ciently, heuristics are used to guide the overall mapping process.

Optimization of delay, power consumption and area is performed concur-
rently with library binding, because the selection of each cell a�ects the over-
all quality of the network. With the advent of deep sub-micron technologies,
where interconnect delay dominates, the quality of these optimizations de-
pends critically on interconnect estimation. For this reason, future trends will
involve both the iteration of binding and physical design (e.g., re-mapping)
as well as the merging of these two design phases.



38 Giovanni De Micheli

Acknowledgments

The Author acknowledges the scienti�c contribution of Dr. Luca Benini and
Dr. Patrick Vuillod in formalizing generalized matching and in applying it to
library binding. The Author acknowledges support from NSF, under grant
MIP-9421129.

References

1. A.Aho, R.Sethi and J. Ullman, \Compilers: Principles, Techniques and Tools,"
Addison-Wesley, Reading, MA , 1986.

2. A.Aho and M.Corasick, \E�cient String Matching: An Aid to Bibliographic
Search," Communications of ACM, Vol 18, No.6, June 1975, pp.333-340.

3. A.Aho and S.Johnson, \Optimal Code Generation for Expression Trees," Jour-
nal of ACM, Vol 23, No.3, June 1976, pp. 488-501.

4. L. Benini, M. Favalli and G. De Micheli, \Generalized matching, a new ap-
proach to concurrent logic optimization and library binding," in International
Workshop on Logic Synthesis, May 1995.

5. C. Bolchini, G. Buonanno et al., \A new switching-level approach to multiple-
output function synthesis," in Proceedings of the International Conference on
VLSI Design, pp. 125-129, January 1995.

6. K. Brace, R. Rudell and R. Bryant, \E�cient implementation of a BDD pack-
age," in DAC, Proceedings of the Design Automation Conference, pp. 40{45,
June 1993.

7. R. Brayton, G. Hachtel, C. McMullen and A. Sangiovanni-Vincentelli, Logic
minimization algorithms for VLSI synthesis, Kluwer, 1984.

8. F. Brown. Boolean reasoning. Kluwer Academic Publishers, 1990.
9. R. Bryant, \Graph-Based Algorithms for Boolean function manipulation,"

IEEE Transactions on Computers, Vol. C-35, No. 8, August 1986, pp. 677-691.
10. J. R. Burch and D. E. Long, \E�cient Boolean function matching," in IC-

CAD, Proceedings of the International Conference on Computer-Aided Design,
pp. 408{411, Nov. 1992.

11. S. Chang, L. Van Ginneken and M. Marek-Sadowska, \Fast Boolean optimiza-
tion by rewiring," in Proceedings of the International Conference on Computer-
Aided Design, pp. 262{269, Nov. 1996.

12. K.-C. Chen, \Boolean matching based on Boolean uni�cation," in ICCAD, Pro-
ceedings of the International Conference on Computer-Aided Design, pp. 346{
351, Nov, 1993.

13. D. I. Cheng and M. Marek-Sadowska, \Verifying equivalence of functions with
unknown input correspondence," in EDAC, Proceedings of the European Design
Automation Conference, pp. 81{85, March 1993.

14. K. Cheng and L. Entrena, \Multi-level logic optimization by redundancy addi-
tion and removal," in European Conference on Design Automation, pp. 373{377,
Feb. 1993.

15. E. M. Clarke, K. L. McMillan, X.Zhao, M. Fujita and J. Yang, \Spectral trans-
forms for large Boolean functions with application to technology mapping," in
DAC, Proceedings of the Design Automation Conference, pp. 54{60, June 1993.



Cell-based logic optimization 39

16. J. Cong and Y. Ding, \An optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs," ICCAD, Proceedings of
the International Conference on Computer Aided Design, 1992, pp. 48-53.

17. J. Darringer, W. Joyner, L.Berman and L. Trevillyan, \LSS: Logic synthesis
through local transformations," IBM Journal of Research and Development,
Vol 25, No 4, pp. 272-280, July 1981.

18. G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill,
1994.

19. E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni and A. Wang, \Technology
mapping in MIS," in ICCAD, Proceedings of the International Conference on
Computer-Aided Design, pp. 116{119, Nov. 1987.

20. C. Edwards, \Applications of Rademacher-Walsh transform to Boolean func-
tion classi�cation and threshold logic synthesis", IEEE Transactions on Com-
puters, pp. 48-62, January 1975.

21. M. Garey and D. Johnson, Computers and intractability, W.Freeman, New
York, 1979.

22. D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel, \Socrates: A System for
Automatically synthesizing and optimizing combinational logic," DAC, Pro-
ceedings of the Design Automation Conference, pp. 79-85, 1986.

23. G.Hachtel, R.Jacobi, K.Keutzer and C.Morrison, \On Properties of Algebraic
Transformations and the Synthesis of Multi-fault Irredundant Circuits," IEEE
Transactions on CAD/ICAS , Vol. 11, No. 3, March 1992, pp.313-321.

24. S. Hurst, D. Miller and J. Muzio, Spectral techniques in digital logic, Academic
Press, London, United Kingdom, 1985.

25. K. Keutzer, \DAGON: technology binding and local optimization by DAG
matching," in DAC, Proceedings of the Design Automation Conference,
pp. 341{347, June 1987.

26. Y. Kukimoto, R. Brayton, P.Sawkar. \Delay Optimal Technology Mapping by
DAG Covering," DAC, Proceedings of the Design Automation Conference, 1998,
pp. 348-351.

27. W. Kunz and P. Menon, \Multi-level logic optimization by implication analy-
sis," in Proceeding of the International Conference on Computer-Aided Design,
pp. 6{13, Nov. 1994.

28. E. Lehman, Y. Watanabe, J. Grodstein and H. Harkness, \Logic Decomposition
During Technology Mapping,\ IEEE Transactions on CAD/ICAS , Vol. 16,
No. 8, August 1997, pp. 813-834.

29. S. Krishnamoorthy and F. Mailhot, \Boolean matching of sequential elements",
DAC, Proceedings of the Design Automation Conference, pp.691-697, 1994.

30. Y. T. Lai, S. Sastry and M. Pedram, \Boolean matching using binary deci-
sion diagrams with applications to logic synthesis and veri�cation," in ICCD,
Proceedings of the International Conference on Computer Design, pp. 452{458,
Oct. 1992.

31. J. Lou, A. Salek and M. Pedram, \An Exact Solution to Simultaneous Tech-
nology Mapping and Linear Placement Problem," ICCAD, Proceedings of the
International Conference on Computer Aided Design , 1997, pp. 671-675.

32. F. Mailhot and G. De Micheli, \Algorithms for technology mapping based on
binary decision diagrams and on Boolean operations," IEEE Transactions on
CAD/ICAS, Vol. 12, No. 5, May 1993, pp.599-620.



40 Giovanni De Micheli

33. R. Marculescu, D. Marculescu and M. Pedram, \Logic level power estimation
considering spatiotemporal correlations," in Proceedings of the International
Conference on Computer Aided Design, pp. 294{299, 1994.

34. J. Mohnke and S. Malik, \Permutation and phase independent Boolean com-
parison," Integration, The VLSI Journal, pp. 109{129, Dec. 1993.

35. C. R. Morrison, R. M. Jacoby, and G. D. Hachtel, \Techmap: technology map-
ping with delay and area optimization", in G. Saucier and P. M. McLellan, edi-
tors, Logic and Architecture Synthesis for Silicon Compilers, pp. 53{64. North-
Holland, Amsterdam, The Netherlands, 1989.

36. J. Rabaey and M. Pedram (Editors), Low-Power Design Methodologies, Kluwer
Academic Publishers, Boston, MA , 1996.

37. B. Roh
eisch, B. Wurth and K. Antreich, \Logic clause analysis for delay opti-
mization," in DAC, Proceedings of the Design Automation Conference, pp. 668{
672, June 1995.

38. R. Rudell, Logic Synthesis for VLSI Design, Memorandum UCB/ERL M89/49,
PhD thesis, U. C. Berkeley, April 1989.

39. H. Savoj, M. J. Silva, R. Brayton and A. Sangiovanni, \Boolean matching in
logic synthesis," in EURO-DAC, Proceedings of the European Design Automa-
tion Conference, pp. 168{174, Sep. 1992.

40. U. Schlichtmann, F. Brglez and M.Herrmann, \Characterization of Boolean
functions for rapid matching in EPGA technology mapping," in DAC, Proceed-
ings of the Design Automation Conference, pp. 374-379, June 1992.

41. U. Schlichtmann, F. Brglez and P. Schneider, \E�cient Boolean matching based
on unique variable ordering," in International Workshop on Logic Synthesis,
May 1993.

42. F. Somenzi and R. K. Brayton, \Minimization of Boolean relations," in IEEE,
Proceedings of the International Symposium on Circuits and Systems, pp. 738{
473, May 1989.

43. C.-C. Tsai and M. Marek-Sadowska, \Boolean matching using generalized
Reed-Muller forms," in DAC, Proceedings of the Design Automation Confer-
ence, pp. 339{344, June 1994.

44. P. Vuillod, L. Benini and G. De Micheli, \Re-mapping for Low Power under
Timing Constraints," ISLPED, IEEE Symposium on Low Power Electronics
and Design, 1997, pp. 287-292.

45. P. Vuillod, L. Benini, G. De Micheli, \Generalized Matching from Theory to
Application," ICCAD, Proceedings of the International Conference on Com-
puter Aided Design , pp. 13-20, 1997.

46. K.-H. Wang and T.-T. Hwang, \Boolean matching for incompletely speci�ed
Functions," in DAC, Proceedings of the Design Automation Conference, pp. 48-
53, June 1995.

47. K.-H. Wang, T.-T. Hwang and C.Chen, \Exploiting communication complexity
in Boolean matching," IEEE Transactions on CAD/ICAS Vol. 15, N0. 10, pp.
1249-1256, October 1996. pp. 48-53, June 1995.

48. Y. Watanabe, L. M. Guerra and R. K. Brayton, \Permissible functions for mul-
tioutput components in combinational logic optimization," IEEE transactions
on CAD/ICAS Vol. 15, no. 7, pp. 734{744, July 1996.

49. J. Yang and G. De Micheli, \Spectral techniques for technology mapping," CSL
Report, CSL-TR-91-498, 1991.


