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Abstract—This paper presents a technique for glitch power min-
imization in combinational circuits. The total number of glitches is
reduced by replacing some existing gates with functionally equiva-
lent ones (called F-Gates) that can be “frozen” by asserting a con-
trol signal. A frozen gate cannot propagate glitches to its output.
Algorithms for gate selection and clustering that maximize the per-
centage of filtered glitches and reduce the overhead for generating
the control signals are introduced. A power-efficient CMOS im-
plementation of F-Gates is also described. An important feature of
the proposed method is that it can be appliedin place directly to
layout-level descriptions; therefore, it guarantees very predictable
results and minimizes the impact of the transformation on circuit
size and speed.

Index Terms—CMOS digital integrated circuits, design automa-
tion, power optimization.

I. INTRODUCTION

SPURIOUS transitions (also calledglitches) in com-
binational CMOS logic are a well-known source of

unnecessary power dissipation [1]. Reducing glitch power is a
highly desirable target because in the vast majority of digital
CMOS circuits, only one signal transition per clock cycle is
functionally meaningful. Unfortunately, glitch power is heavily
dependent on the low-level implementation details, namely,
gate propagation delays and input transitions misalignments.
For this reason, glitch power estimation requires accurate
simulation tools with precise gate and transistor delay models.

In this paper, we propose an automatic circuit transformation
technique for glitch power reduction. Minimizing glitching at
the gate level is a complex task because it is difficult to esti-
mate the impact that circuit transformations can have on glitch
power. Two different approaches have been taken to solve this
problem. Networks can be designed using a glitch-free imple-
mentation style (such as Domino [2] or Shannon [3] circuits);
alternatively, a nonglitch-free implementation can be optimized
to reduce the number of glitches. The first solution has a major
limitation: glitches are eliminated, but the constraints imposed
by the design style may lead to circuits that are less power effi-
cient than those realized with standard static CMOS gates. The
second approach is hindered by the uncertainties in the estima-
tion of the cost function that drives the optimization procedure.
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In other words, it is difficult to estimate if the changes in the
network introduced to minimize glitching are useful or not be-
cause they may modify the delay distribution of the circuit in a
quite unpredictable fashion.

We present an incremental optimization technique that re-
duces glitching in standard static CMOS implementations, but
we overcome the predictability problem by posing tight con-
straints on the amount of network perturbation that can be in-
troduced by the glitch minimization procedure. More in detail,
we propose an optimization method that operatesin placeon a
layout-level description. We perform minor modifications of the
netlist that can be implemented on the placed and routed circuit
only by applying partial rewiring of a few signal nets. The cost
function that controls the optimization is very accurate because
glitch and total power estimation are carried out on a network
with back annotation of wiring loads.

The procedure for glitch minimization is based on a well-
known idea. Glitches are eliminated by adding some redun-
dant logic that prevents spurious transitions. This can be done
by inserting latches in a gate-level netlist and controlling the
latch-enablepins with redundant signals generatedad hoc. We
propose an alternative technique, calledgate freezing, that is
much less perturbative of the existing circuit structure. Gates
with high spurious activity are replaced with functionally equiv-
alent ones (calledF-Gates) that can be made insensitive to input
transitions by asserting a control signal (calledC-Signal). Al-
though this is functionally equivalent to latch insertion, it can
be implemented much more efficiently (area and power-wise)
and the modified gates can replace directly the original gates in
a placed and routed netlist.

The overhead of control-signal generation is reduced by se-
lecting only a subset of the gates in the original implementa-
tion for replacement withF-Gatesand by grouping theF-Gates
in clusters that share a commonC-Signal. We describe algo-
rithms for the selection and clustering of candidateF-Gatesthat
maximize power savings by maximally reducing glitches and
by minimizing the additional power consumed by the control
logic that generates theC-Signals. We also propose an efficient
implementation style for theF-Gates, and we experimentally
validate it through a number of low-level (i.e., Spice) simula-
tions. Finally, we describe a low-power implementation of the
C-Signaldrivers.

We have applied the gate freezing procedure to the full suite
of the ISCAS’85 benchmarks [4], as well as to some examples
taken from the MCNC’91 suite [5]. We have achieved an av-
erage glitch power reduction of 14.0%, resulting in an average
total power savings of 6.3%. Area is only marginally increased
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(2.8% in average), and speed is unchanged. Obviously, gate
freezing only targets circuits with high glitching; therefore, its
applicability is of limited interest in the cases where spurious
transitions have a negligible impact on the global power budget.

The outline of the paper is as follows. Section II summa-
rizes the existing previous work on glitch power minimization.
Section III outlines the optimization paradigm based on gate
freezing and provides details on howF-Gatesand C-Signals
can be efficiently realized. In Section IV, the algorithms and
heuristics we adopted to implement the various steps of the gate
freezing procedure are illustrated. Section V reports the exper-
imental results concerning the application of gate freezing to
a set of standard benchmarks, while Section VI collects Spice
simulation data for someF-Gatecells. Finally, Section VII con-
cludes the paper with some final remarks.

II. PREVIOUS WORK

The development of automatic techniques for glitch mini-
mization in logic circuits has been the subject of intensive re-
search in the past, since networks with limited spurious activity
are usually highly desirable. In some cases, the elimination of
glitches is required for correct circuit operation. For example,
in [6] the target was the elimination of critical races in asyn-
chronous circuits.

In this section, we briefly summarize a number of existing
approaches to glitch power reduction; some of them have been
developed for specific applications [7], [8], while others have
general-purpose [9]–[11]. We also discuss a technique, known
as guarded evaluation [12], that, although not explicitly tar-
geting glitch power minimization, has some affinity with the
gate freezing idea we present in this paper.

Special-purpose techniques have focused on arithmetic cir-
cuits. In [7], a self-timed method is employed to prevent the
propagation of spurious transitions to the outputs of a carry-
lookahead adder. Array multipliers are considered in [8]. The
authors observe that multipliers are generally very glitchy and
multiple spurious transitions are propagated within the array of
the partial products. The propagation of such glitches is reduced
by insertingtrasition-retaining barriers(i.e., sets of latches) in
the array. Latches are controlled with a self-timed signal that
is generated by additional logic. The power dissipated by such
logic is more than compensated by the power reduction obtained
by eliminating the glitches.

General-purpose techniques have, in general, wider appli-
cability; in addition, they are more suited for implementation
within computer-aided design tools. A retiming transformation
is proposed in [9]. First, the circuit is analyzed to detect gate out-
puts with multiple spurious transitions and high fanout. Then,
retiming is applied with the objective of moving the flip-flops
on the outputs of the target gates. Retiming moves are limited by
timing and area constraints. The main shortcoming of this tech-
nique is that it is applied before placement and routing. Since re-
timing is a quite “intrusive” transformation that implies changes
in the clock distribution, as well as in the number and position
of the flip-flops, it is difficult to apply it to a circuit in an incre-
mental fashion after placement and routing. As a consequence,

the estimated savings may diminish or get canceled after the
layout phase.

Gate resizing [11] has been applied to glitch power minimiza-
tion. This technique eliminates glitches by equalizing all path
delays in a combinational logic network. Path equalization is
obtained by downsizing gates that do not lie on critical paths,
thereby slowing down fast propagation paths, without changing
the worst case delay of the circuit. Effective path equalization
by resizing requires large technology libraries with many dif-
ferently sized functionally equivalent logic gates. In addition,
perfect equalization can be difficult to achieve if path delays are
distributed very unevenly. In fact, if the delay of a short path is
still smaller than that of the critical path when all gates on such
a short path have been scaled down to minimum size, spurious
activity remains possible (multipliers are typical examples of
circuits with widely different path delays). Finally, the resizing
approach presented in [11] is applied before physical design.
Therefore, the cost metric employed for driving the resizing pro-
cedure has limited accuracy.

Guarded evaluation [12], even though not explicitly targeted
toward glitch power minimization, exploits automatic latch in-
sertion to reduce power consumption. In this approach, the in-
ternal signals that are available in the combinational network are
used as latch-enable controls. The rationale in guarded evalua-
tion is that of preventing the switching of nonobservable sec-
tions of a combinational logic network by inserting latches con-
trolled by signals that imply nonobservability. The method has
produced promising results, but it suffers from the same draw-
back of the retiming technique, i.e., it is applied before physical
synthesis. Latch insertion significantly perturbs both cell count
and netlist connectivity; thus, postlayout results are not very pre-
dictable and optimization may be quite inaccurate.

A number of register-transfer (RT) level transformations for
glitchpower optimization have been introduced in [10].Here, the
focus is on glitches generated by misaligned control signals that
have long propagation paths within the data path and cause siz-
able power consumption. The main objection to this approach is
that at the RT level only approximate timing information is avail-
able, and the glitch power reduction predicted at this level may
be an inaccurate estimate of the result achieved after logic syn-
thesis, tech mapping, placement, and routing. On the other hand,
akeyadvantageof themethod is that it performs local low-impact
transformationsoncontrol signals that fanout to large portions of
the data path. The authors show that RT-level transformations re-
duce glitching by a vast amount that is unlikely to be completely
canceled in the later phases of the synthesis flow.

In the next section, we describe a methodology for glitch
power minimization that works at a much later stage in the de-
sign process, i.e., it is applied to layout-level descriptions. Thus,
it produces much more predictable savings. On the other hand,
it might not be as effective as RT-level techniques, since it oper-
ates in a more constrained environment, where reduced degrees
of freedom are left for optimization.

III. GATE FREEZING

The flow of the gate freezing procedure starts from a placed
and routed combinational circuit (possibly contained in a larger
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design). We assume that wire loads have been extracted and
back annotated into the gate-level circuit model. Accurate
switch-level simulation of user-specified patterns is carried out
to obtain statistics of the glitching activity. Static gate-level
timing analysis is also performed, and arrival and required times
are computed for each node in the network. The information
on glitching and timing constraints is subsequently exploited
in the gate selection step.

A fraction of the gates in the netlist is selected. We choose
noncritical gates with high glitching and high fanout (the selec-
tion process is described in detail in Section IV). The selected
gates are then replaced with functionally equivalentF-Gates
with one additional control input. Whenever the control signal
is low, the gate is not sensitive to input transitions. Glitches on
the output of the gate can thus be eliminated by first keeping the
control signal low at the beginning of the clock cycle until the
input signals of the gate have stabilized to their final value and
then by raising it and keeping it high until the end of the clock
cycle. The cost of the generation of the control signals is amor-
tized byclusteringtheF-Gates. Gates in a cluster share a single
control signal. The last step in the gate freezing procedure is the
incremental modification of the layout. The selected gates are
replaced byF-Gates, the drivers for the control signals are in-
stantiated, and the control signals are routed.

A practical implementation of gate freezing, to be successful,
must satisfy two critical requirements. First, the overhead for
the generation of the control signals should be more than paid
off by the power saved with gate freezing. Second, the physical
implementation of the circuit should be minimally modified by
the transformation. Hence, we need low-overhead implementa-
tions forF-GatesandC-Signalgeneration circuitry; moreover,
we need effective algorithms for selecting target gates and for
grouping them into clusters that share a commonC-Signal. The
next two sections are dedicated to the description of efficient
implementations forF-GatesandC-Signals. The algorithms for
gate selection and clustering are described in Section IV.

A. F-Gates

Once a target cell in the tech-mapped circuit has been se-
lected, it is replaced by a modified library cell (theF-Gate)
whose output can be selectively “frozen” with the purpose of
reducing the amount of glitching.

The basic modification of a generic CMOS library cell is
shown in Fig. 1. It consists of the insertion of a n-type transistor
in series with the n network. The gate input of this n-type tran-
sistor is driven by thecontrol input .

The behavior of the modified gate is quite intuitive: When the
control input is high, the gate operates normally; on the other
hand, when is low, the gate output is disconnected from the
ground and, therefore, it can never be discharged to the logic
value 0.

In this configuration, the output of the gate is only partially
“frozen”; in fact, only the one–zero transition is actually for-
bidden, whereas the gate output can still exhibit the zero–one
transition. This may occur for any input configuration that is
supposed to force a one on the output. In other terms, a low
control input will never allow a gate output that is at the logic
value 1 to make a transition.

Fig. 1. Basic transformation of a library cell.

The discussion above implies that we do not guarantee to
completely filter out transitions on the gate output. One trivial
way to obtain a total filtering would be to mimic the structure of
dynamic gates, and symmetrically insert a p-type transistor be-
fore the supply connection, in series with the p network; in this
case, the gate terminal of this p transistor should be controlled
by the other phase, , of the control input .

This solution would suppress any transition on the gate
output, and solve the limitation of the single n-transistor
solution. However, there are some considerations that make the
introduction of the p transistor undesirable.

• The load on the signal is doubled for any gate such
signal must drive.

• Both phases of signal are required.
• The area of the modified gate is sensibly larger than in the

case of the single n transistor; this is because, to guarantee
the proper output signal levels, the p transistor must be
larger than the n transistor.

The single n-transistor solution is less intrusive with respect
to the size of the library cell and its speed; therefore, it is prefer-
able to the complementary one. Nevertheless, the single n-tran-
sistor configuration will obviously be slightly larger and slower
than the original cell.

An additional signal integrity issue must be mentioned. Con-
sider the situation where signal is zero and the configuration
at the gate’s inputs is such that the output is expected to be zero.
Since there is no path to ground, the gate output is actually in a
floating state. If, for some reason, signalstays low for a rela-
tively long time, the floating (high-impedance) value at the gate
output may deteriorate because of parasitic coupling or junction
leakage current. When the nodal voltage reaches an intermediate
value between the power supply and ground, it could create a
conducting path from supply to ground in fanout gates, causing
static power consumption.

During normal operation, the situation mentioned above does
not occur, since signal is guaranteed to be driven high for at
least a fraction of each clock cycle. However, in some archi-
tectural schemes, where the clock is “controlled” by internal
signals (e.g., gated-clock configurations [13]), the clock may
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actually be shut down for a relatively long time. In these archi-
tectures, the control input of theF-Gaterequires one extra con-
dition, that is, must be one whenever the conditions for clock
gating are satisfied.

B. C-Signal Generation

As described at the beginning of this section, static timing
analysis is carried out on the initial mapped circuit in a prepro-
cessing phase. For each gate, arrival time AT , required time
RT , and slack are available.

Once the nodes in the network have been ranked according
to their suitability using the criteria described in Section IV-A,
we must restrict the choice for the replacement with a modified
cell only to gates that are not on the critical path (i.e., gates
with nonnull slack). This is because, even though the modified
cells are only slightly slower than the standard ones, replacing a
critical gate will cause the cycle time of the circuit to increase.

We now derive the timing and functional conditions that de-
fine the behavior of the control signal for a candidate gate
. In the following, let denote the clock period, the can-

didate gate, and AT its arrival time. Moreover, let
denote the inputs of, and AT RT

their corresponding arrival and required times.
We should observe first that all transitions occurring prior to

the arrival time are glitches, and can thus be suppressed. This
implies that , the control signal of the modified gate that will
replace , can be held at zero in the time interval between the
beginning of the clock cycle and the timethat equals the latest
arrival time of the inputs of . In symbols

AT (1)

At time , gate will have all of its inputs “ready” and will
be ready to propagate its final value; this implies that signal
should go high at time in order to allow gate to exhibit
a correct temporal behavior.

However, the control signal does not actually need to go
high exactly at . As a matter of fact, if is noncritical, all
of its inputs will be noncritical as well. Therefore, all the inputs
of will have some slack. What we must then guarantee is that

goes to one (i.e., is free to evaluate)beforethe time which
is the earliestrequiredtime of all inputs of . In symbols

RT

This provides a safety margin to the transition of the control
signal because we have adon’t careregion between and

where we can decide whether to raise signalor not.
In summary, signal should have a timing behavior as the

one depicted in Fig. 2. can be thought of as a delayed copy of
the clock, yet with a different duty cycle .
In the picture, the shaded area shows the slack for the zero–one
transition on . With such signal, we can guarantee that all the
glitches before the latest arrival time of the gate’s inputs are fil-
tered out; the only spurious transition that can propagate through
a gate is the zero–one transition mentioned in Section III-A. The
shaded area in the figure shows this glitch-free portion of a clock
cycle.

Fig. 2. Relation between signalC and the clock.

Signal can be derived by proper filtering of the clock signal,
ck. As mentioned above, in the design of the circuit for the gen-
eration of the control signals, we limit ourselves to considering
the ’s, and use the slack of the control signal only as a
safety margin.

We can derive the following relations between the clock
signal ck and the control signal . If the time is smaller
than the fraction of the clock period with ck can be
obtained as: ck ck , where ck is the inverse of the
clock signal, and ck is the clock signal delayed by an amount
of . Conversely, if is greater than the fraction of the clock
period with ck is computed as: ck ck . The
above relations are shown by means of timing diagrams in
Fig. 3(a) and (b), respectively.

Generating requires a delayed version, ck, of the clock
signal. The trivial implementation of a delay element is a chain
of an even number of suitably sized inverters. This solution is
highly power and area demanding when the delay is much larger
than that of a single inverter. More efficient implementations
have thus been proposed [14], [15]. We adopted the one of [15]
(see Fig. 4), whose power dissipation is approximately three
times that of a single inverter and the area is around four times
larger (when the delay is approximately 16 times that of a single
inverter).

The signals are distributed through a dedicated network
(made of tapered buffers and delay elements) that stems from the
clock tree in a single point. Since the tap point is a minimum-size
buffer, the additional load on the clock tree is usually negligible.

IV. GATE SELECTION AND CLUSTERING

The basic version of the gate freezing algorithm is shown in
Fig. 5. The procedure takes a placed and routed circuit, a li-
brary , containing both ordinary cells and the corresponding
F-Gates, and the maximum number of gates to be selected
for replacement withF-Gates. Static timing analysis (Line 1)
and power estimation (Line 2) are first performed; then, candi-
date cells for replacement withF-Gatesare selected (Line 3).
Finally, each selected gateis replaced with the corresponding
F-Gate(Line 4), the timing for the control signal of such a gate
is computed (Line 5), and the circuitry for generating it is in-
stantiated (Line 6). We first analyze procedureSelectCan-
didates (Section IV-A), which returns the set of gates to be
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Fig. 3. Timing diagrams of control signal generation.

Fig. 4. Low-overhead implementation of a delay element.

Fig. 5. Gate freezing algorithm.

replaced byF-Gates. Then, we focus our attention on gate clus-
tering (Sections IV-B and C), a key step that is required to make
gate freezing applicable in practice.

A. Selection of the Target Cells

The selection of the cells to be replaced withF-Gates is
mainly driven by the amount of glitching observed at the
output of each cell. Additionally, we account for the capacitive
load of the nodes. Therefore, our procedure for cell selection
is to sort the network nodes in decreasing order of glitching
activity weighted by load capacitance (we call this metric

Fig. 6. Clustered gate freezing algorithm.

glitching-capacitance product, gc for brevity) and to select the
first gates of the sorted list.

Glitching is measured by counting the number of transitions
at the output of each gate obtained by real delay simulation and
by subtracting from this amount the number of transitions ob-
tained through zero-delay simulation. The latter values must ei-
ther be one or zero, depending on whether there is a transition
or not. This difference represents the spurious transitions prop-
agating through a gate.

Nodes with slack smaller than the delay increase caused
by the replacement of a standard gate with aF-gate cannot
be selected because replacing them withF-Gateswould slow
down the circuit; consequently, node selection is applied only
to gates with nonzero slack (more precisely, slack larger than
the delay increase caused byF-gates). In addition, we observed
that picking new gates in the recursive fanout of already
chosen gates may be disadvantageous. In fact, the presence
of an F-Gate in the fanin cone of a gate tends to reduce the
glitching activity of the gate itself. This effect could be taken
into account by performing power analysis after selecting each
node; however, this could make the optimization slow in case
of large circuits.
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Fig. 7. Experimental environment.

TABLE I
EXPERIMENTAL RESULTS

We have adopted an enhanced selection procedure that ap-
proximately takes into account previous selections. Initially, all
nodes are marked with an integer label, which is set equal to
zero. Then, the node with highest glitching-capacitance product
is selected. If two or more nodes have the same gc value (with
a 10% tolerance margin), we use the total capacitive load of the
transitive fanout as a tie breaker. The gate with highest total ca-
pacitive load of the transitive fanout is chosen first. The label
of all the nodes in the transitive fanout of the selected node is
then incremented. Node labels are used as tie breaker for suc-
cessive selections. If two or more nodes have the same gc value
(with the usual 10% tolerance margin), we select the one with
smallest label. If this rule is not sufficient to break all the ties,
the total capacitive load of the transitive fanout is used. If some

ties persist, we choose randomly. The process is stopped after
nodes have been selected.

B. Clustering

In the algorithm of Fig. 5, one control signal for each selected
gate needs to be generated. Although the number of gates re-
placed is usually a small fraction of the cells that are present
in the circuit implementation (less than 5%), the generation of
a control signal for eachF-Gateis still quite impractical, since
each signal has generally a duty cycle value different from any
other, and there is then little chance of exploiting some sharing.

To reduce both the area of the control circuitry implementa-
tion and the routing of the control signals, we need to limit the
number of such signals as much as possible. One way of doing
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Fig. 8. Response to a rising input transition.

this is toclustertheF-Gatesaccording to the values of their ar-
rival times ’s, as defined in (1).

The clustering problem can be stated as follows. Given
a set of gates and their arrival times

, find a partition of the ’s
such that the partition is balanced, the variance of thetimes
within each block of the partition is minimized, and the
number of blocks is small.

The partition on the arrival times induces a partition on the
set of selected gates .

The requirement of the minimum variance is related to the
error that this approximation introduces. In fact, all the gates
belonging to the same block will be fed by the same control
signal, whose delay, with respect to the clock, is determined by
the earliest of their times. More formally, the delay for
all the control signals of the gates in is given by

(2)

where is defined as in (1).
The approximation introduced by clustering some of the con-

trol signals together arises from the fact that all the gatesin
having larger than the will allow the propagation

of the glitches occurring in the time interval ,
where is the gate in that determines the bound of (2).

Fig. 6 shows the pseudocode of the clustering-based gate
freezing algorithm.

The flow of this algorithm is similar to that of Fig. 5. The
main difference stands in Lines 4–8, where a proper partition

of the candidate gates is first built (Line 4) (the details on the
clustering procedure are described in Section IV-C). Procedure
Clustering returns a partition of the

times and the corresponding partition of the selected gates
. Then, the algorithm iterates over the

blocks of , and derives, for each cluster , the values of ,
as defined by (2) (Line 5). Each gate is then replaced by
the correspondingF-Gate(Line 6). After all the gates in have
been replaced, the circuitry for generating the shared control
signal is determined (Line 7) and incrementally added to the
circuit layout (Line 8).

C. Clustering Heuristics

The clustering problem, as stated in Section IV-B, is too gen-
eral. In fact, the optimal solution may require a number of clus-
ters, , which may be too large. For particular distributions of
the values, the optimal solution can degenerate into the case
of clusters of size 1. Therefore, we actually solve a con-
strained problem, where is upper bounded by a user-specified
value.

We have implemented two heuristics that solve the clustering
problem when is upper bounded by a user-specified value.
Experiments have shown that the first one, based on clusters
growth, works better on clusters of small cardinality (and
thus on small circuits), while the second heuristics, based on
matching, best performs on mid- to large-sized clusters (and
thus on mid to large circuits).

In both cases, the cost function we have used to drive
the clustering procedure is the average cluster variance (i.e.,
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Fig. 9. Response to a falling input transition.

the average of the gates in ), whose formal definition
is the following [we assume to have a total of clusters,

]:

where

is the variance of the values in cluster .
Obviously, lower values of identify better solutions.
1) Cluster Growth Heuristics:The first clustering heuris-

tics, that we callcluster growth, is based on a greedy algorithm
that starts with a nonpartitioned set of nodes, and places them
into a given number of clusters according to some affinity mea-
sure.

The algorithm consists of two phases: The first step is the se-
lection of theseednodes for each cluster, that is, the nodes that
are placed first in each cluster. Seed selection affects the quality
of the final solution, and several heuristic choices are possible.
In our implementation, we select as seed the node having a
value closest to the averageof the nodes still to be assigned.
Intuitively, this choice selects the node that attracts nodes to it-
self with a minimum error. The second step is the assignment of
the nodes to clusters, which is carried out by selecting the nodes
with minimum “distance” from the nodes already belonging

to a cluster. For a generic unassigned node n, we define its close-
ness to a cluster as follows ( are the nodes in ):

Notice that, in our implementation, the clusters are built
sequentially one at a time. The procedure terminates when all
the nodes have been assigned and may leave the last cluster with
less nodes than the value of the bound.

This algorithm has a complexity, but it generally pro-
duces suboptimal results, especially when the distribution of the
values increases, since the affinity measure of a node is com-
puted only with respect to nodes already assigned to the clus-
ters. Better solutions, yet with an increased complexity, can be
obtained by either evaluating the affinity measure of a node also
with respect to not yet assigned nodes, or by collapsing clustered
nodes into a supernode and considering the supernodes as single
objects in the next clustering steps (hierarchicalclustering).

2) Matching Heuristics:The second heuristics we introduce
exploits existing graph algorithms to solve the node clustering
problem.

Given the set of candidate nodes in the circuit
, and the set of their corresponding ar-

rival times , we build a complete weighted
graph , where is the set of vertices,

is the set of edges, and is the set of
edge weights, defined as .
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Fig. 10. Response to some input glitches.

The edge weights represent the skew in the values offor
each gate pair. Intuitively, we want to grow clusters with the
smallest overall variance of . An interesting result from graph
theory [16] shows that this process can be accomplished by it-
eratively clusteringpairs of nodes.

The clustering problem for a bound size of two is equivalent
to amaximum weighted matching[17]. In [16], it is shown that it
is possible to solve, with bounded error, the clustering problem
for a generic cluster size limit , as follows.

• Find a maximum weighted matching on the graph.
• Pick edges at a time from the matching (in any order)

to form a cluster of size .

Adapting this algorithm to our clustering problem requires
some minor modifications. First, given that the edge weights
represent a differential quantity, we must replace the maximum
weighted matching with aminimumweighted matching. The
underlying algorithm we have used is the one of [18], which
has a complexity of .

Second, in our case, the order of edge selection from the
matching is not irrelevant. In fact, once we have identified pairs
with smallest difference in , we must group matched pairs that
have closeabsolute values.

To achieve such selective clustering, we simply need to sort
the edges in the matching in increasing (or decreasing) order
of their average and sequentially pick pairs according to the
resulting order. The of a node pair is simply defined as the
average of the ’s of the corresponding nodes. This additional

sorting step does not increase the complexity of the algorithm,
since the cost of the matching still dominates.

V. EXPERIMENTAL RESULTS

We have implemented the clustered gate freezing procedure
using SIS [19] as gate-level front–end. The experimental envi-
ronment we employed is depicted in Fig. 7.

The initial circuits were optimized usingscript.delay ,
and mapped usingmap-n1-AFG onto a gate library consisting
of two- and three-input Nand and Nor gates and Inv and Buf
gates with three different driving capabilities. Placement and
routing of the tech-mapped circuits onto a 0.6-m static CMOS
physical-level library was done using Alliance [20]. Gate- and
switch-level netlists were extracted from the layout using an
in-house tool; such netlists were used for gate-level timing
analysis (using SIS) and for switch-level power simulation
(using Irsim [21]). After applying clustered gate freezing,
the layouts were incrementally modified using Alliance, and
the power dissipated by the optimized circuits was estimated
(using Irsim) on the switch-level netlists extracted from the
final layouts. Timing verification was also performed using SIS
on the gate-level netlist derived from the final layout.

The circuits we considered for the experiments are the
Iscas’85 benchmarks [4]; results for some of the largest
Mcnc’91 multilevel networks are also reported [5].

Table I summarizes the data. In particular, columnsPI, PO,
andGatesreport the structural characteristics of the examples.
ColumnsGP, TP, andAreagive the glitch power (in milliwatts),



296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

Fig. 11. Response of an inverter on the output of theF-Nand.

the total power (in milliwatts), and the layout area (in) be-
fore (columnsOriginal) and after (columnsOptimized) opti-
mization. Columns% give the percentages of power and area
variation. The three right-most columns indicate the clustering
heuristics, the number of clusters , and the number of frozen
gates that have been chosen for each experiment.

Results are promising. In fact, an average glitch power re-
duction of 14.0%, yielding in an average reduction of the total
power of 6.3% has been achieved at the cost of a negligible area
increase (2.8% on average). Obviously, the speed of the circuits
has not changed, since only noncritical gates have been replaced
with F-Gates.

Clearly, gate freezing exclusively targets glitch power reduc-
tion. Therefore, the quality of the results would only be margin-
ally affected by gate-level optimization techniques (e.g., POSE
[22]) that minimize zero-delay power.

VI. I MPLEMENTATION OF F-GATES

The savings in glitch power we have presented in Section V
are promising, and they have been measured through switch-
level simulation of the transistor netlist extracted from the final
circuit layout. However, in the experiments it was optimistically
assumed thatF-Gatescan be implemented with marginal per-
formance degradation with respect to standard CMOS gates. In
a realistic design environment, this assumption should be val-
idated by an accurate analysis of the impact thatF-Gatesmay
have on the circuit performance and reliability.

In this section, we carry out a detailed experimental investi-
gation of the characteristics ofF-Gates. More specifically, we
have designed and generated the layout of someF-Gates, and
we have studied how the behavior of such cells differs from that
of the corresponding cells of a standard CMOS library. In the
following, we present the results referred to a two-input Nand
gate.

The F-Gateshave been generated using the layout editor
available in Alliance, and the simulation results have been
collected through Spice-3f4 [23].

Our target during the realization of the two-inputF-Nandcell
was to guarantee, when the gate operates normally, an increase
in the worst case delay below 20% of the value of the corre-
sponding CMOS gate. This has been obtained by enlarging the
size of the n transistors by approximately a factor of 1.5 with
respect to the standard CMOS cell. The total gate area of the
F-Nandamounts to , against an area of of the tra-
ditional CMOS implementation. The area increase is thus rele-
vant. Notice, however, that such increase is mainly due to the
accommodation of the control input at the boundaries of the
F-Gate, rather than to the insertion of the additional pull-down
transistor or to the upsizing of the existing n transistors. The in-
crease in active area is in fact limited, and all confined into the
n network (from to ).

Figs. 8 and 9 present the output response of a traditional
CMOS gate and that of theF-Nand(in normal operation mode)
to a rising and a falling transition, respectively, occurring on
the slowest of the inputs. From the diagrams it can be easily
observed how theF-Gateis more penalized, in terms of delay,



BENINI et al.: GLITCH POWER MINIMIZATION BY SELECTIVE GATE FREEZING 297

when the one–zero transition occurs on the output (from 239
to 287 ps) than in the opposite situation (from 285 to 300 ps).
This was expected because the path that connects the output to
ground (chain of n transistors) is longer than the one which goes
from the output to the (p network).

We now consider the situation in which theC-Signalis active.
In the ideal case, any one–zero transition would be prohibited
on the output of theF-Gate. Unfortunately, in reality, when the
gate is frozen and the pull-up transistors are off, the output node
is floating (i.e., it is in the high-impedance state); therefore, it
is prone to capacitive coupling that may generate some small
“bumps” under or over the logic 0 or 1 values. This undesirable
behavior is illustrated in Fig. 10, where the response of the two-
input F-Nand to a series of glitches occurring on the slowest
input is plotted. Obviously, the larger the load theF-Gatemust
drive, the smaller the bumps.

Fortunately, the bumps appearing at the output of theF-Nand
are not strong enough to propagate through gates in the cell’s
fanout. In other words, the nominal voltage levels are restored
as soon as the output signal of theF-Gate travels through the
loading gates. This situation is experimentally shown in the dia-
gram of Fig. 11, where the response of an inverter placed at the
output of theF-Nandis plotted.

We have designed and simulated approximately 20F-Gates
implementing different functions, having an increasing number
of inputs and different driving strengths. We have observed that
Nor-like gates usually behave better than Nand-like cells, in
terms of both output response in normal conditions and pres-
ence of over/under voltage levels in response to glitches when
the C-Signalis active. This is due to the fact that the chain of
n transistors is shorter for this kind of gate than for Nand-like
cells.

In conclusion, we can state thatF-Gatescan be used in prac-
tice as glitch filtering devices. In fact, delay increase can be kept
under control by properly resizing the transistors of the n net,
and the area overhead, although noticeable, does not hamper the
applicability of the method because only a fewF-Gates(less
than 5% of the total) are inserted in the layout for optimization
purposes.

VII. CONCLUSION

We have proposed a technique for glitch power minimization
in CMOS circuits. The method consists of replacing some high-
glitching gates with devices that are able to filter out spurious
transitions whenever a proper control signal is activated. The
technique has the distinctive feature of being applicable after
layout, since it performsin-placeoptimization on the placed and
routed description, and it only requires incremental rewiring.
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