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We propose a technique for synthesizing low-power systems from behavioral specifications. We
analyze the control flow of the specification model to detect mutually exclusive sections of the
computation. A selectively-clocked interconnection of interacting FSMs is automatically gener-
ated and optimized, where each FSM controls the execution of one section of computation.
Only one of the interacting FSMs is active for a high fraction of the operation time, while the
others are idle and their clocks are stopped. Periodically, the active machine releases the
control of the system to another FSM and stops. Our interacting FSM implementation
achieves consistently lower power dissipation than the functionally equivalent monolithic
implementation. On average, 37% power savings and 12% speedup are obtained, despite a 30%
area overhead.

Categories and Subject Descriptors: B.1.2 [Control Structures and Microprogramming]:
Control Structure Performance Analysis and Design Aids—Automatic synthesis

General Terms: Algorithms, Design
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1. INTRODUCTION
With the proliferation of portable devices, power dissipation has become an
important design constraint. Numerous techniques for automatic synthesis
and analysis of low-power circuits have been proposed in the academic and
commercial environments [Rabaey and Pedram 1996]. In this paper we
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introduce a behavioral-level technique that achieves sizable power reduc-
tions by exploiting the mutual exclusiveness of sections of the computations
that have been defined in the literature as basic blocks [De Micheli 1994].
We use information at the behavioral level about basic blocks in the
representation of a computation. We detect basic blocks that can never
execute simultaneously and we generate a controller structure based on
interacting finite state machines (FSMs). The interacting FSMs are then
selectively clocked: only the part of the controller needed for the execution
of the active basic block receives the clock signal. One important strength
of our behavioral power reduction approach is that it exploits a careful
analysis of the control flow to detect opportunities for power savings that
are not apparent at lower levels of abstraction.

We consider single-process specifications based on procedural HDLs with
imperative semantics (e.g. Verilog HDL, VHDL). We assume that the
specification language contains the following kinds of statements: (i) as-
signments, (ii) conditional statements, (iii) loops, and (iv) procedure calls.
Our tool for low-power controller synthesis exploits the features of the
environment for the automatic synthesis of control-dominated hardware
from system-level specifications presented in Ku and De Micheli [1992].
However, it can be adapted to other behavioral synthesis methodologies.
We have tested our approach on benchmark behavioral specifications,
obtaining in average 37% reduction in power dissipation in the controller.

1.1 Computation Model

Conditionals, loops, procedure calls, and exception-handling express con-
trol-flow information. We use a model similar to the sequencing graph [De
Micheli 1994] abstraction to represent control/data-flow information. The
sequencing graph is a hierarchical graph where data-flow and serialization
dependencies are modeled by graphs and control-flow primitives are mod-
eled through the hierarchy [De Micheli 1994; Ku and De Micheli 1992].
Therefore, the sequencing graph has two kinds of vertices: operations and
links, the latter linking other sequencing graph entities in the hierarchy.

Vertices in the sequencing graph that are links to lower levels of the
hierarchy correspond to control-flow statements. Sequencing graph entities
that are leaves of the hierarchy can be basic blocks, exception-handling
operations or assignments that were moved to the control flow. The basic
blocks are groups of operations and represent pure data-flow information.
Intuitively, referring to the HDL specification, a basic block is the straight-
line code (sequence of assignments) within loops and conditionals. An
example of HDL specification and its sequencing graph are shown in Figure
1(a) and (b).

1.2 Detecting Mutual Exclusion

The key contribution in our approach is based on the following observa-
tions:
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(1) A controller FSM of a behavioral specification consists of states and
edges. Basic blocks are mapped into sets of states and control flow is
mapped into the edges connecting the groups of states representing the
basic blocks.

(2) The basic blocks of the model are disjoint, since concurrency is only
allowed at the operation level, i.e., inside basic blocks.

At any given level of the hierarchy, if there is a path in the sequencing
graph connecting two link vertices, the sequencing graph instances associ-
ated with the link vertices represent mutually exclusive computations. A
path between two vertices in a sequencing graph implies a (transitive)
functional dependency, therefore the two computations associated with the
vertices cannot be executed concurrently. Moreover, in case of conditional
statements, all alternative branching bodies are mutually exclusive. Using
these rules we construct a mutual exclusiveness relation between basic
blocks. It can be represented by a conflict graph whose vertices are basic
blocks and the edges represent mutual exclusion constraints.

Our procedure generates a controller FSM and a marking of the states. A
marking for a state is a set of basic block identifiers. It contains all basic
blocks for which the state is a control step. Obviously, it is never the case
that two mutually exclusive basic blocks appear in the marking of a state.
The state transition graph of the controller for the sequencing graph of
Figure 1(b) is shown in Figure 1(c). Notice the marking of the states.

2. CONTROL-FLOW-BASED STATE PARTITIONING

Our enhanced controller-generation procedure produces the state table of
the controller FSM with state set S, the conflict graph C of the mutual
exclusiveness relation, and a state marking M. The initial FSM is called
monolithic implementation.

In this section we describe a two-step procedure that (i) creates a
partition of the states of the monolithic implementation and (ii) clusters
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Fig. 1. Hierarchical sequencing graph of a HDL specification.

Synthesis of Low-Power Selectively-Clocked Systems • 313

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.



blocks of the partition until a user-specified granularity is reached. The
procedure is the key operation required to generate the low-power interact-
ing FSM architecture that is our final target.

2.1 Building the Initial Partition

The partitioning algorithm takes as inputs the state set, the state marking,
and the conflict graph as inputs and produces a state partition as output.
Formally, a partition is defined as a collection of k sets (i.e., a set of sets)

V~S! 5 $P1, P2, . . . , Pk% such that Pi ù Pj 5 À for i Þ j, and ø
i51

k

Pi 5 S.

Starting from any state s , the algorithm inserts in set root all states
that are connected to s and whose marking is not mutually exclusive with
any marking of states already in root (two markings are mutually exclu-
sive when there is at least one basic block in the first that is mutually
exclusive with one basic block in the second, and vice versa). When set
root cannot be expanded due to mutual exclusion conflicts with all states
reachable from states in root , it is inserted in the collection of sets v~S!.
Then a new state is selected among those never included in any root and
the process is repeated. The algorithm terminates when all states have
been inserted in one of the root sets. The complexity of the algorithm is
O~ns

2! where ns is the number of states in the monolithic FSM.

Example 1. Referring to Figure 1(c), assume that initially root 5 S12.
Its neighbor states are S11 and S13. The marking of S11 ($B0%) is
mutually exclusive with the marking of S12 ($B1%), therefore S11 is not
included in root . On the other hand, S13 is compatible with S11, and it is
included in root . The inner loop of the algorithm inserts S14 and S15 in
root and terminates, since no more compatible states can be reached.
Then, one of the remaining states (S11, S21, S22, and S23) is selected
and the outermost loop continues. The partitioning algorithm produces a
partition V with four sets. V~S! 5 $$S12, S13, S14, S15%, $S11%,
$S21%, $S22, S23%%.

2.2 Clustering

There are strong practical reasons for obtaining a coarse-grain partition:
decomposition involves some tradeoff between size of the components and
overhead due to the interaction between components. The larger the
number of components, the larger the overhead for interfacing them. The
procedure described in the previous section may generate an excessively
fine-grained partition V. We present a procedure that clusters sets in the
partition until a specified granularity is achieved. We attempt to produce a
partition with the following two characteristics: (i) the partition blocks
should be as balanced as possible and (ii) the probability of having a
transition between partitions is minimized. The reason for these choices
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will become clear in Section 3, when the FSM decomposition technique and
its power saving will be analyzed in detail.

Given V~S! 5 $P1, P2, ..., Pk% and the desired number of partition
blocks n , k, we order the blocks Pi for decreasing cardinality. The first n
blocks are selected as attractors. The name stems from the fact that the
attractors will attract smaller blocks and merge with them, until only
attractors remain. After the attractors have been chosen, smaller blocks
are considered, starting from the smallest one, say Pl. Block Pl is merged to
one of its neighbor attractors (i.e., attractors containing at least one state
connected to one of the states of Pl). The choice among the attractors is
done using the following affinity function !:

! 5 KAvgattr / ~?Pq? 1 ?Pj?! 1 Prob~Pl 3 Pq ? Pq 3 Pl! (1)

where ?Pq? is the cardinality of attractor q, ?Pj? is the cardinality of block j,
Avgattr is the average cardinality of the attractors, and Prob~Pl 3 Pq ?
Pq 3 Pl! is the probability of a transition between a state in Pl and a state
in Pq,, or vice versa. K is a constant for controlling the relative weight of
the two contributions. The edge probabilities can be computed by simply
simulating the FSM and measuring the frequency of state transitions. If
neither simulation patterns nor input probabilities are available, all edges
can be assumed to be equiprobable.

The affinity function expresses the tradeoff between balancing the size of
the attractors and minimizing the probability of a transition between two
partitions. The first term in Eq. (1) decreases with the size of the attractor
(larger attractors are penalized). The second term increases with the
probability of a transition between the attractor and Pl (i.e., blocks with
high transition probability have higher affinity).

Given Pl and its attractors, Pl is merged with the attractor that the has
highest affinity. Ties are broken by random choice. The process terminates
when only attractors remain in the partition. The final partition, P~S!, is
guaranteed to have n blocks. We clarify the clustering procedure through
an example.

Example 2. The clustering algorithm is applied to the FSM of Figure
1(c). First, n 5 2 is specified. The initial partition is V~S! 5 $$S12, S13,
S14, S15%, $S11%, $S21%, $S22, S23%%. The two larger blocks become at-
tractors. They are shown in Figure 2(a). Then one of the two smaller blocks
is chosen (randomly, since they have the same size). Suppose that $S21% is
chosen first. It has only one neighbor attractor, $S22, S23%, and it is
merged with it.

Then, $S11% is considered. It has 2 attractors, as shown in Figure 2(b).
Assume that Prob~S11 3 S21! 5 .01, Prob~S11 3 S12! 5 .1 and K
5 .1. The affinity of $S11% with the larger attractor is !1 5 .1~7 / 2! / ~4 1 1!
1 .1 5 .17. The affinity with the smaller attractor is !2 5 .1~7 / 2! / ~3 1 1!
1 .01 5 .0975. Since !1 . !2, $S11% is merged with the largest attractor.
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The final partition is shown in Figure 2(c): P~S! 5 $$S11, S12, S13,
S14, S15%, $S21, S22, S23%%.

For structured HDL specifications, the initial partition V~S! enjoys an
important property. Given a partition block Pi, all transition in the FSM
from states in blocks Pj Þ Pi reach one single destination state sentry [ Pi.
We call this distinctive characteristic single entry point property (SEPP, for
brevity) and the unique destination state is called entry state. SEPP is key
for obtaining a low-power decomposition of the controller. The basic cluster-
ing algorithm does not ensure preservation of the SEPP, but it can be
modified to do so. Due to space limitations we do not provide details on the
extended algorithm.

3. CONTROL STRUCTURE BASED ON COMMUNICATING FSMS

We implement the controller as a network of communicating FSMs, one for
each set of states in P~S!. The decomposed FSM F is a set of n FSMs F
5 $F1, F2, . . . , Fn%. We call submachines the FSMs Fi [ F. Submachines
communicate through additional control signals, called go signals. For each
submachine, a new reset state is defined.

A submachine can exit the reset state only upon assertion of a go signal
by another submachine. At any given clock cycle, only two situations are
possible: (i) one submachine is performing state transitions and all other
submachines are in reset state and (ii) one submachine is transitioning
toward its reset state, while another one is leaving it.
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Fig. 2. Partitioning the FSM controller.
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Note that the go signals are additional inputs and outputs. All inputs
and outputs of the monolithic FSM are unchanged in the submachines. If
an edge s 3 t of the monolithic machine has head and tail state included
in submachine Fi, the edge is replicated in Fi, with the same input and
output fields. Edges in the global FSM-connecting states that belong to
different partitions are associated with edges representing transitions to
and from the reset states of the corresponding subFSMs. These transitions
are labeled as follows: (i) edges toward reset have the same input field as
the original edge, an additional output go (set to 1) and all original outputs
set to 0); ii) transitions leaving reset have only one specified input go and
the same output field as in the original transition edge of the monolithic
FSM. The outputs of a submachine blocked in reset state are zero.

Example 3. Consider the monolithic controller of Figure 1(c). Its decom-
position in interacting FSMs induced by the clustered graph of Figure 2(c)
is shown in Figure 3. For the sake of clarity, we do not show the complete
input and output fields of the FSMs. The transition from S11 to S12 is
taken only if a . 0. If the transition is taken, the additional output go1, 2 is
asserted. The signal go1, 2 is an input for the F2 that exits from S02 upon
its assertion. The figure shows other activation signals for interfacing with
subFSMs 0 and 3 (not shown).

Since we assumed that the single entry point property holds, the number
of incoming go signals for each subFSM is reduced to the number of
subFSMs connected to it. Thus the number of go signals is bounded from
above by n~n 2 1!, but is usually much smaller than that. The rationale
behind this important property is that if there is an edge between subma-
chines Fi and Fj, and Fj has a single entry point, it does not matter from
which particular state of Fi the go signal was issued (because the starting
state for the operation of Fj is always the same).
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Fig. 3. Interacting FSMs implementation.
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When the SEPP does not hold, the overhead for decomposing the mono-
lithic controller may drastically increase. In the worst case, we may need as
many go signals as there are edges between states belonging to different
partition blocks. Hence, the quality of the decomposed implementation may
be notceably reduced.

3.1 Clock-Gating

In the interacting FSM system, most of the machines Fi remain in state s0, i

during a significant number of cycles. If we stop their clocks while they
stay in reset state, we save power (in the clock line and in the FSM
combinational logic) because only a part of the system is active and has
significant switching activity. If clock-gating is not allowed in the design
flow, less aggressive techniques such as those in Chow et al. [1996] can be
used. To be able to stop the clock, we need to observe the following
conditions:

—The condition under which Fi is idle. It is true that when Fi reaches the
state s0, i we use the Boolean function is_in_reseti that is, 1 if Fi is in
state s0, i, 0 otherwise.

—The condition under which we need to resume clocking, even if the
subFSM is in reset state. This happens when the subFSM receives a go
signal and must perform a transition from s0i to any other state.

We can derive the following activation function (in negative logic), Fai. The
clock is stopped when Fai 5 1.

Fai 5 is2in2reseti ∧ ~ ~
Fi, Fj, FiÞFj

goj, i! (2)

The first term is_in_reseti stops the clock when the machine reaches s0, i.
The second term ensures that clocking resumes when one of the goj, i is
asserted and the subFSM must exit the reset state. The disjunction is
extended over all subFSMs that have at least a transition to Fi. This
activation function allows the newly activated subFSM to have its first
active cycle during the last cycle of the previously active FSM. The two
subFSMs make a transition in the same clock cycle: one is transitioning to
its idle state and the other from its idle state. The local clocks of Fi and Fj

are both active. We call transitions of control the cycles when a subFSMs
shuts down and another activates. Each local clock of the FSMs Fi is
controlled by a clock-gating block, taken from Benini and De Micheli
[1996].

Power savings depend on the choice of the state partition P~S!. A good
partition minimizes the probability of transitions of control (during which
two machines are clocked and dissipate power) and has a reduced interface
overhead (i.e, a small number of interface signals). Preserving SEPP is
useful in reducing the number of interface signals.
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Example 4. The gated-clock implementation of the interacting FSMs of
Figure 3 is shown in Figure 4. Notice how the external output is obtained
by OR-ing the outputs of the subFSMs. This can be done because we
specified that when a subFSM is in reset state, all its output signals are
zero, thus the only possible source of controlling 1 values for the outputs is
the active subFSM.

Figure 4 also shows the clock waveforms, the in_reset signals, and the
go signals. Note that there is a clock cycle for which both local clocks are
enabled. The waveforms show how subFSM 1 is deactivated and subFSM 2
activates, thanks to the assertion of the go1, 2 signal.

4. IMPLEMENTATION AND RESULTS

We tested our decomposition procedure on a set of control-dominated
benchmarks. All these designs were originally specified in C or Verilog.
XFE, XF, and XB are the controllers of the transmission unit of an
Ethernet coprocessor. These controllers are, respectively, the frame trans-
mitter with exception handling (XFE), without exception handling (XF),
and the bit transmitter (XB). DRAM is the controller for a PCI bus protocol
conversion to a DRAM protocol. We show the results for DRAM with two
and four partitions. The remaining two benchmarks consist of a FIFO
queue controller and the speed control unit for an automobile (SPDCNT).

We performed power estimates with PPP [Bogliolo et al. 1996] (an
accurate gate-level power simulator). We compared the circuit obtained
from the original specification implemented as a single FSM and from the
interacting FSMs with clock-gating. We applied a large number of ran-
domly generated vectors for power simulation. Since we simulated the
controller in isolation, we used the uniform signal probability of 50% for all
input signals.

The results are shown in Table I. We display the original number of
states, the number of partitions, the power consumption with the original
system and the communicating system. The “ratio” column gives the ratio
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Fig. 4. Gated-clock implementation of the interacting FSMs.

Synthesis of Low-Power Selectively-Clocked Systems • 319

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.



of power consumption with the original description and the gated descrip-
tion. We obtained 37% reduction of power consumption on average, much
higher power reductions for systems with high locality (i.e., systems where
one of the interacting FSMs is running most of the time).

We measured the critical path for the monolithic and the decomposed
implementation. Interestingly, the critical path decreases on average by
12% in the decomposed implementation. Our tool does not optimize for
speed, hence such speedup is somewhat unexpected. An intuitive explana-
tion for this phenomenon is that our decomposition can be seen as a form of
state assignment based on a wide encoding that requires a number of
flip-flops larger than the minimum one. Wide encodings are often used to
increase the speed of controllers, with a price in area.

The last three columns of the table reflect the area overhead. The figures
are the ratio of the communicating FSMs area over the monolithic FSM
area, in terms of mapped cells. We emphasize the combinational area and
the sequential area. The area overhead in combinational logic is mainly due
the additional logic on the outputs (OR gates) and the activation functions.
The area of the combinational logic can even be reduced, thanks to the
simplification introduced by the partition. The SPDCNT area decreases by
15%. This combinational overhead is approximatively 20% on average.

The sequential overhead comes from the duplication of the state informa-
tion. This overhead is significant, but it depends on the number of parti-
tions. For a 4-partition, the area of the sequential part is increased by more
than a factor of 2. For a 2-partition, the sequential overhead is around 1.6.
Note, however, that we use minimum-length state encoding for all FSMs.
For different encoding styles (such as one-hot encoding) the sequential
overhead is substantially reduced. The total area increase is on average
around 30%.

The computation time is dominated by the FSM synthesis step. This
result is quite expected, since our decomposition and clustering algorithms
have polynomial complexity in the number of states, and in a few seconds
complete all FSMs in our experiments, while FSM synthesis with commer-
cial tools can take a few hours. Interestingly enough, for our largest
examples, the synthesis of all interactive FSMs is faster than the synthesis
of the single FSM implementation, even considering the overhead for
generating the partitions.

Table I. Results on HLS Benchmarks

Avg pow ~mW! Area ratio

Bench NS NP orig inter ratio seq comb tot

XFE 177 5 2558 1700 0.66 3.5 1.49 1.64
SPDCNT 56 4 3075 1211 0.39 2.83 0.85 1.02

DRAM 34 4 1562 770 0.49 2.5 1.09 1.28
DRAM 34 2 1562 943 0.60 1.67 1.01 1.09

XF 27 2 811 516 0.63 1.6 1.16 1.26
fifo 24 2 1517 1337 0.88 1.60 1.44 1.46
XB 20 3 875 598 0.68 2 1.35 1.47
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5. CONCLUSIONS

We propose an approach to power minimization at the behavioral level on
the basis of an interacting FSM implementation with selective shutdown.
Selective shutdown is obtained by gating the clock of the state registers for
inactive subFSMs. On average we achieved a 37% power reduction and 12%
speedup, despite a 30% increase in area. The run-time of the decomposition
algorithm is negligible with respect to the time spent on logic synthesis and
optimization. We obtained sizable improvements at a low computational
cost because power minimization is targeted in the early stages of the
design process. Power optimizations techniques at the FSM level (such as
state assignment) and at the gate level can be plugged in during this
process to get even better results.
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