
Quantitative Comparison of Power Management Algorithms

Yung-Hsiang Lu, Eui-Young Chung, TajanaŠimuníc, †Luca Benini, Giovanni De Micheli
Computer Systems Laboratory, Stanford University, USA
{luyung, eychung, tajana, nanni}@stanford.edu

†Dip. Informatica, Elettronica, Sistemistica, Universit`a di Bologna, Italy
†lbenini@deis.unibo.it

Abstract

Dynamic power management saves power by shutting
down idle devices. Several management algorithms
have been proposed and demonstrated effective in cer-
tain applications. We quantitatively compare the power
saving and performance impact of these algorithms on
hard disks of a desktop and a notebook computers. This
paper has three contributions. First, we build a frame-
work in Windows NT to implement power managers
running realistic workloads and directly interacting with
users. Second, we define performance degradation that
reflects user perception. Finally, we compare power sav-
ing and performance of existing algorithms and analyze
the difference.

1. Introduction

Dynamic power management(DPM) is an effective ap-
proach to reduce power consumption without signifi-
cantly degrading performance [2]. DPM shuts down
devices when they are not being used and wakes them
up when necessary. When a device is not used, it is
called idle; otherwise, it is calledbusy. DPM algo-
rithms observe request patterns and predict the length
of idle periods. Idle periods can be defined in differ-
ent ways [8]. In this paper, we consider an idle period
as “time with no requests waiting for service”. The de-
vice is in aworkingstate when it can serve requests with
higher power consumption,Pw (Table 1 summaries all
symbols.). The device issleepingwhen it consumes less
power,Ps (Ps < Pw), and cannot serve requests. Shut-
ting down and waking up a device usually cause perfor-
mance degradation and require extra energy. Therefore,
DPM algorithms shut down a device only when an idle
period is long enough to justify performance degrada-
tion and state-transition energy.

This paper compares DPM algorithms for controlling
the power states of hard disk drives on a desktop and

shut down wake up

requests requests

time 
before shutdown

idle

shutdown delay

sleep time

working sleeping

wakeup delay

working

Figure 1: State Transitions

a notebook computers. Hard disks are of particular
interest for power management due to three reasons.
First, hard disks may consume up to 20% of total en-
ergy in a computer [7]. Recent studies find that hard
disks will remain major power consumers in the near
future [10] [12]. Second, hard disks have large perfor-
mance and power overhead because of mechanical in-
ertia. Spinning down or up disk plates takes several
seconds, equivalent to hundreds of millions of instruc-
tions in modern computers. Finally, hard disks are not
always needed when computers are running if the physi-
cal memory contains all the information needed; for ex-
ample, caching may avoid unnecessary spin-ups [5].

Our study has three major contributions: a framework
to implement power managers (PM), definition of user-
perceived performance, and quantitative comparison of
algorithms. In the past, DPM algorithms were eval-
uated mainly by simulation. In contrast, we build a
framework for comparing DPM algorithms running re-
alistic workloads on a commercial operating system,
Windows NT, and directly interacting with users. Con-
sequently, users can perceive performance degradation
while power is saved. Although some algorithms sup-
port multiple sleeping states, we use only one sleeping
state in the implementation as a common denominator
for fair comparison.



2. Foundation for Algorithm Comparison

2.1. Idle Periods

Figure 1 shows requests and the power states of a de-
vice. An idle period (Tidle[i]) occurs between two peri-
ods with requests, also called busy periods. The device
is shut down after it entersTidle[i]; it does not enter the
sleeping state immediately due to shutdown delay (Tsd).
Some DPM algorithms do not shut down a device imme-
diately after an idle period starts; instead, they wait until
they are confident thatTidle[i] is long enough to save
power. This waiting time is called “time before shut-
down” (Tbs). Later, when requests arrive, the device is
woken up and enters the working state after wakeup de-
lay (Twu). The energy consumed during the shutdown
and wakeup delay are denoted asEsd andEwu.

2.2. Break-Even Time

As we explained earlier, in order to compensate the
shutdown and wakeup overhead, a device has to stay
in the sleeping state long enough. We call this mini-
mum duration theminimum sleeping time(Tms). Since
Esd+Ewu+Ps ·Tms = Pw ·(Tms+Tsd+Twu), we can
find Tms in Equation 1. The minimum length of an idle
period to save energy is thebreak-even timefor idle pe-
riod (Tbe). It includes the shutdown and wakeup delay in
addition toTms, soTbe = Tms+Tsd+Twu. A shutdown
command saves power only ifTidle[i] > Tbs + Tbe.

Tms =
Esd + Ewu − Pw · (Tsd + Twu)

Pw − Ps (1)

Tbe =
Esd + Ewu − Ps · (Tsd + Twu)

Pw − Ps (2)

2.3. Performance Metrics

DPM trades off between power and performance. Sev-
eral ways were proposed to quantify performance, such
as total or average waiting time; however, total or aver-
age waiting time can be misleading. Using these met-
rics, a system that causes a total of 50 seconds of wait-
ing in five hours is better than one that causes 60 sec-
onds of waiting in five hours. However, if the former
requires a user to wait for 40 seconds in a one-minute
period while the latter requires at most 10 seconds in
one minute, most users think the second system has bet-
ter performance. Traditional total waiting time does not
reflect this discrepancy. Studies in psychology show that
waiting time can affect user behavior [18]. In this paper,

Symbol Meaning

Tsd shutdown delay
Twu wakeup delay
Tbe break-even time for an idle period
Tms minimum sleeping time to save energy
Tbs time before shutdown
Tss average time in sleeping state
Tidle[i] current idle period,

candidate for shutdown
tidle[i] predicted value ofTidle[i]
Tbusy[i] busy period beforeTidle[i]
WS [i] starting time of a waiting period
WE [i] ending time of a waiting period
τ timeout value
Esd energy to shut down
Ewu energy to wake up
Ps power in sleeping state
Pw power in working state
Nsd number of shutdowns
Nwd number of wrong shutdowns

Table 1: Symbols and Meanings

d

time
wS1 wS3wS2 wS4wE1 wE2 wE3 wE4

Figure 2: Waiting due to Power Management

we use two objective performance metrics: long wait-
ing or repetitive waiting “within short time intervals” to
reflect the perception of performance degradation.

Figure 2 gives an example of four waiting periods. A
waiting period (W ) starts atWS and ends atWE . Our
first performance metric is the largest total waiting time
in a duration of lengthd calledWd. It is obtained by
finding the sum of waiting time in a sliding window of
sized. A window may contain multiple waiting periods,
such asW [3] andW [4] in the third window; a window
can also contain part of a waiting period, such asW [3]
by the second window. In general,Wd can be calculated
by Equation 3.

Wd = max
t

∑

i such that
WS [i]≥t
WE [i]≤t+d

(WE [i]−WS [i]) (3)

This equation finds all waiting periods inside a window
of sized and calculates the sum of these periods. By
adjustingt, the starting point of a window, it then finds
the window that contains the longest total waiting time.



If a waiting period is partially covered, we consider only
the part within the window; for simplicity, equation 3
does not include partially covered waiting periods.

The second performance metric is the longest shutdown
sequence in which the time between two adjacent shut-
downs is less than a thresholdth. This metrics measures
the number of consecutive waiting periods that are close
and cause delay repetitively. It is the largestm for which
there is a sequenceW [i],W [i + 1], . . .W [i +m] such
that the following conditions hold:

WS [k + 1] −WE [k] ≤ th
WS [i] −WE [i− 1] > th
WS [i+m+ 1] −WE [i+m] > th

(4)

wherek ∈ [i, i+m− 1]

3. Algorithms and Parameter Selection

We compare algorithms originally designed for various
applications, such as X-servers and hard disks; these
algorithms are listed in Table 2. They assume differ-
ent characteristics of applications. For example,Tsd
andTwu are fairly small for X-server but large for hard
disks due to mechanic inertia. We compare them in
the same environment and study the deviations from
their originally intended applications. In this section,
we briefly explain these algorithm and the parameters
recommended by their authors.

TIMEOUT: Timeout algorithms are simple and
widely used; they assume that if a device is idle longer
than τ , it will remain idle for a long time (Tidle >
τ ⇒ Tidle > τ + Tbe) with up to 95% confidence
level [8]. Timeout algorithms wait forτ before shut-
down, soTbs = τ . Microsoft Windows Control Panel
allows users to setτ as small as 60 seconds. We use a
filter device driver [14] and can choose anyτ value; we
use thirty seconds and two minutes in this study.

The first adaptive timeout (ATO1) algorithm adjustsτ
by considering the value ofTidle[i−1]Twu

[6]. When the
ratio is small,τ increases; when the ratio is large,τ
decreases. We start with 30 seconds forτ and use
(αm, βm, ρ) = (1.5, 0.5, 0.1) because they produced
better results. Golding suggests updatingτ asymmet-
rically: increasingτ by one second or decreasing by
half [8] (ATO2). In our experiments for [8],τ is lim-
ited to 1 to 120 seconds. Another approach adjustsτ
according toTbusy [i] [13] (ATO3). If Tbusy[i] is small,
τ decreases; ifTbusy[i] is large,τ increases. We use 120
seconds for the initial value ofτ with 1 Hz sampling and
2 seconds for the adjustment factor.

1

10

100

1000

10000

0 10 20 30 40 50 60

busy period (sec)

id
le

pe
rio

d
(s

ec
)

Tbe

Figure 3:Tbusy[i] vs. Tidle[i] of two different users in
our experiments.

Algorithm Features Applications

[6] (ATO1) adaptive timeout hard disk
[8] (ATO2) adaptive timeout hard disk
[13] (ATO3) adaptive timeout hard disk
[17] (LS) L-shape X-server
[9] (EA) exponential average telnet
[15] (DM) discrete-time Markov hard disk
[3] (SW) sliding windows hard disk
[16] (CM) continuous time Markov real-time inputs
[20] (SM) time-index semi-Markov hard disk
[11] (CA) competitive spin-block
[4] (LT) learning tree hard disk

Table 2: DPM Algorithms Compared

L-SHAPE: If a short busy period is frequently fol-
lowed by a long idle period, their scatter plot will form
an “L-shape” (LS) as shown in Figure 3. If a busy pe-
riod is short enough, the following idle period is likely
to be long (Tidle[i] ≥ Tbe ⇔ Tbusy [i] ≤ Tthreshold).
Consequently, when request patterns form an L-shape,
the device should be shut down after a short busy pe-
riod [17].

EXPONENTIAL AVERAGE: Hwang and Wu use
the predicted and the actual lengths of the previous idle
period to predict the length of the current idle period [9].
They use exponential average (EA) for predictingTidle
by tidle[i] = a ·Tidle[i−1]+ (1−a) · tidle[i−1], which
is equivalent to

tidle[i] = (1− a)i+1tidle[0] +
i∑

k=0

a(1− a)kTidle[i− k]

wheretidle[i] is the prediction ofTidle[i]. It is an aver-
age of previous idle periods with exponential weights. If
tidle[i] > Tbe, the device is shut down. This algorithm
limits tidle[i] such that it cannot exceedc · tidle[i − 1]
wherec is a constant greater than one. We use 0.5 for
a and 2 forc; we ignore allTidle[i − 1] < 0.1 second



so thattidle are not affected by short idle periods. This
is an on-line filtering becauseTidle[i − 1] is known be-
fore computingtidle[i]. We use 0.1 second so that our
implementation has only negligible difference from the
original algorithm.

STOCHASTIC MODEL: Power management can
be solved as an optimization problem when devices and
requests are modeled as stochastic processes. This ap-
proach formulates power management as a constrained
optimization problem; it provides the flexibility to trade
off between power and performance. For example,
power management can be modeled as a discrete-time
Markov decision process (DM) [15]. The algorithm as-
sumes stationary geometric distribution of request ar-
rivals. It is extended to handle non-stationary requests
in [3]. Non-stationarity is captured by sliding windows
(SW); the algorithm interpolates pre-optimized look-up
tables for shutdown decisions. The shutdown decision
is evaluated each period, even when the device is in the
sleeping state, thus causing computation overhead. For
example, for a 10 W processor, SW could waste as much
as 1800 J of energy during a 30-minute idle period just
due to reevaluating shutdown decisions.

By modeling a device as a continuous-time Markov pro-
cess, PM can change power states upon event occur-
rences, such as “request queue empty” events, instead
of at discrete time intervals [16] (CM). State transitions
are assumed to follow exponential distributions. This
approach makes a decision as soon as certain events hap-
pen. Our measurements show no significant power sav-
ing since the algorithm tends to shut down too soon, thus
incurring large wakeup costs and sometimes even miss-
ing shutting down on long idle periods.

Both discrete and continuous-time approaches model re-
quest arrivals and the power state transitions using mem-
oryless distributions, which is not accurate in real situ-
ations. Semi-Markov approach [19] models transition
times between power states with uniform distributions.
As the request arrivals are better modeled using Pareto
distribution, the semi-Markov approach is further gen-
eralized with time-indexed semi-Markov models in [20]
(SM). Optimal power saving based on this model reeval-
uates the decisions during idle periods until either an re-
quest occurs or the device is shut down. When the device
is sleeping, no decision evaluation is needed. Therefore,
this algorithm has low computation overhead and shows
the largest power saving in our study.

COMPETITIVE ALGORITHM: A “c-competitive”
on-line algorithm (CA) can find a solution with cost less
than c times the cost generated by an optimal off-line
algorithm. It can be proven that 2-competitive power

saving is achievable ifτ = Tbe [11]. In other words, this
algorithm consumes at most twice the minimum power
consumed by an off-line PM.

LEARNING TREE: Adaptive learning trees (LT)
transform sequences of idle periods into discrete events
and store them into tree nodes [4]. This algorithm pre-
dicts idle periods using finite-state machines similar to
branch prediction used in microprocessors and selects a
path which resembles previous idle periods. At the be-
ginning of an idle period, it determines an appropriate
sleeping state; this algorithm is capable of controlling
multiple sleeping states.

4. Experiment Results

4.1. Experiment Environment

We use an environment built specifically for implement-
ing and evaluating DPM algorithms [14]. It consists of
two ACPI-compliant [1] computers. The first is a Pen-
tium II desktop computer with an IBM DTTA 350640
hard disk; the other is a Pentium II notebook computer
with a Fujitsu MHF 2043AT hard disk. Both are running
a beta version of Microsoft Windows NT V5. We im-
plemented filter drivers for each algorithm to control the
power states of the hard disks, to record disk accesses
and to analyze the performance impact and the power
management overhead of each algorithm. Table 3 shows
the parameters of the disks.Tbe is 17.6 and 5.43 second
for the IBM and Fujitsu disks respectively.

4.2. PM Overhead and Power Consumption

We recorded disk accesses for two users, one developing
C programs and the other making presentation slides.
These traces include disk accesses from user requests
and operating system activities. Then the traces are
replayed taking approximately 11 hours for each algo-
rithm. We find that all algorithms spend less than 1%
of computation time on power managers; hence, power
management pays off when it is able to effectively re-
duce power consumption. These algorithms are com-
pared by five figures:

• Power consumption (P ), unit: Watt.

Model Ps Pw Tsd Esd Twu Ewu
Watt Watt sec J sec J

IBM 0.75 3.48 0.51 1.08 6.97 52.5
Fujitsu 0.13 0.95 0.67 0.36 1.61 4.39

Table 3: Disk Parameters



Algorithm P Nsd Nwd Tss Tbs
desktop

off-line 1.64 164 0 166 0
SM 1.92 156 25 147 18.2
CA 1.94 160 15 142 17.6
SW 1.97 168 26 134 18.7
τ = 30 2.05 147 18 142 30.0

LT 2.07 379 232 62 5.7
ATO3 2.09 147 26 138 29.9
ATO1 2.19 141 37 135 27.6
ATO2 2.22 595 430 41 4.1
τ = 120 2.52 55 3 238 120.0

DM 2.60 105 39 130 48.9
EA 2.99 595 503 30 7.6

always-on 3.48 - - - -

notebook
off-line 0.33 250 0 118 0

SM 0.40 326 76 81 8.0
SW 0.43 191 28 127 13.4
CA 0.44 323 64 79 5.4
LT 0.46 437 217 56 6.1

ATO1 0.47 273 73 88 12.4
EA 0.50 623 427 37 3.0
τ = 30 0.51 139 7 157 30.0
ATO3 0.52 196 48 109 24.5
DM 0.62 173 54 102 35.2

ATO2 0.64 881 644 19 2.3
τ = 120 0.67 55 0 255 120.0

always-on 0.95 - - - -

Table 4: Algorithm Comparison

• Number of shutdowns (Nsd).
• Number of wrong shutdowns (Nwd) that have sleep-

ing time shorter thanTms and actually waste energy.
• Average time in sleeping state (Tss), unit: second
• Average time before shutdown (Tbs), unit: second

Table 4 orders the algorithms by power consumption. In
this table, smaller values are better exceptTss. The first
row contains the minimum power consumption with-
out performance degradation; it is generated off-line
with full knowledge about future requests. The last row
shows the power consumption if no power management
is applied. This table shows that SM, CA and SW can
save nearly 50% of power on both platforms. Even
though they have close power consumption on the mo-
bile disk, they differ significantly in performance. CA
and SM have more than twice wrong shutdowns (Nwd)
compared with SW. For algorithms with similar power
consumption, performance is an important factor for
evaluation. The total waiting time is approximately pro-
portional to the total number of shutdowns (Nsd). Users

may notice substantially different performance degrada-
tion even for two algorithms that have similar values of
Nsd if some wrong shutdowns occur repetitively within
a short time interval.

4.3. Performance Measurement

Figure 4 (next page) draws the worst waiting time (Wd)
for d between one to ten minutes. It shows that, in
the worst case, CA requires users to wait for 98 sec-
onds in a 10-minute duration on the desktop hard disk.
The bottom of the figure is the waiting time by percent-
age. When the window size increases the percentage
of waiting time decreases for all algorithms. When the
window size is small, such as one minute, some algo-
rithms may require users to wait for more than 50% of
the time. This demonstrates the importance to measure
the worst-case performance for smalld. Traditional per-
formance metric using the total waiting time cannot pro-
vide enough information for determining user percep-
tion of performance degradation. This figure has several
“jumps” asd increases because the worst-case waiting
time may change from one window to another. Figure 4
also shows that the waiting time is considerably shorter
on the mobile hard disk. Figure 5 plots the longest shut-
down sequence in which the time between two adjacent
shutdowns is shorter than a threshold. In this figure, the
X-axis is the threshold value and the Y-axis is the lengths
of sequences. The arrow indicates that EA has a se-
quence of 27 waiting periods with less than one minute
between two shutdowns. Users perceive delays every
minute or even more frequently for 27 times.

0

5

10

15

20

25

30

35

30 60 90 120

maximum time between adjacent shutdowns (sec)

m
ax

im
um

 s
eq

ue
nc

e 
le

ng
th

[EA]

[CA]

[LT]

[SW]

Figure 5: Maximum Length of Shutdown Sequences

5. Discussion

5.1. Correlation of Adjacent Busy and Idle Periods

LS uses the length of the previous busy period to pre-
dict the length of the current idle period by “L-shape”
approximation. Figure 3 shows two traces we collected;



0

45

90

135

180

60 240 420 600

window size (sec)

lo
ng

es
t w

ai
t (

se
c)

[CA]

[LT]

[EA]

τ=120

0

20

40

60

80

60 240 420 600

window size (sec)

w
ai

tin
g 

(s
ec

)

[EA]

[LT]

[CA]

τ=120

0%

25%

50%

75%

100%

60 240 420 600

window size (sec)

w
ai

tin
g

[EA]

[LT]

[CA]

τ=120

0%

10%

20%

30%

40%

60 240 420 600

window size (sec)

w
ai

tin
g

[EA]

[LT]

[CA]

τ=120

Figure 4:Wd on Desktop (left) and Mobile (right) Disks

the dash line encloses most requests into an L shape. If
we consider only idle periods longer than 10 seconds
and redraw the distribution in Figure 6, we find this ap-
proximation requires refinement. One long idle period
(197 seconds, pointed by the arrow) follows a long busy
period; L-shape algorithm will keep a hard disk in the
working state during this period. Furthermore, a large
group of short idle periods follow short busy periods en-
closed by the circle. L-shape approximation is not suffi-
cient to determine the length of an idle period.

10

100

1000

0.001 0.01 0.1 1 10

busy period (sec)

id
le

pe
rio

d
(s

ec
)

Tbe

Figure 6:Tbusy[i] vs.Tidle[i] (Zoomed In)

5.2. State Transition Time

Table 3 lists the average ofTsd andTwu . Most algo-
rithms treat them as constants for simulation; in real-
ity, they are not constants. Figure 7 shows significant

variation ofTwu. For the desktop hard disk, the aver-
age ofTwu is 6.97 seconds and the standard deviation
is 0.65 second or 9.25%. For the mobile disk,Twu is
even more widely distributed; it is inappropriate to use a
single value forTwu. Markov models in DM are inexact
approximations because our experiments show thatTwu
is not exponentially distributed.

1000 1200 1400 1600 1800 2000 2200
0

5

10

15

20

25

30

4500 5000 5500 6000 6500 7000 7500 8000 8500 9000
0

10

20

30

40

50

60

70

Figure 7:Twu (ms) for Mobile (top) and Desktop Disks

5.3. Successive Wrong Shutdowns after a LongTidle

EA assumes that a long idle period is followed by other
long idle periods and a short idle period is followed by
other short idle periods. When a long idle period is fol-



lowed by short idle periods, however, the performance
deteriorates considerably and generates long sequences
in Figure 5. Consider an example, a user leaves the of-
fice and creates an idle periods of one hour. When the
user returns, the hard disk will be shut down repetitively
and made unusable during the first minute. In order
to remedy this problem, a desirable algorithm should
change its prediction sooner once successive wrong
shutdowns happen. We do not use predictive wakeup
because it consumes 96% more energy on the mobile
disk without significant performance improvement.

5.4. Algorithm Ordering and Device Parameters

Compared to the desktop hard disk,Tsd + Twu and
Esd + Ewu are 70% and 91% less on the mobile hard
disk. As a result, DPM algorithms can be more aggres-
sive to shut down the mobile disk in order to save energy
since the penalty is considerably less. The ordering on
the desktop computer in Table 4 is similar to the ordering
on the notebook computer except EA where it consumes
less power than most other algorithms. This algorithm
was originally designed for X-server and telnet, which
have small shutdown and wakeup overhead because no
mechanic device is involved. This example shows the
importance to tune an algorithm for its intended appli-
cation.

6. Conclusions

We built a framework to compare power management al-
gorithms. To our knowledge, this is the first time DPM
algorithms are compared while running realistic work-
loads and interacting with users. Our experience shows
that waiting in a short duration and consecutive wait-
ing, instead of total waiting time, directly affect user
perception of performance. We quantitatively define
performance metrics that reflect user experience. Our
study concentrates on comparing power management al-
gorithms for control the power states of computer hard
disks and discusses several key issues in designing DPM
algorithms.

7. Acknowledgments

This work is supported by MARCO, ARPA, GSRC, and
NSF (CCR-9901190).

8. References

[1] ACPI. http://www.teleport.com/̃acpi.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. A Survey of De-
sign Techniques for System-Level Dynamic Power Manage-
ment. IEEE Transactions on VLSI Systems, March 2000.

[3] E.-Y. Chung, L. Benini, A. Bogliolo, and G. D. Micheli. Dy-
namic Power Management for Non-Stationary Service Requests.
In Design Automation and Test in Europe, pages 77–81, 1999.

[4] E.-Y. Chung, L. Benini, and G. D. Micheli. Dynamic power
management using adaptive learning tree. InInternational Con-
ference on Computer-Aided Design, pages 274–279, 1999.

[5] F. Douglis, R. Cáceres, F. Kaashoek, K. Li, B. Marsh, and J. A.
Tauber. Storage Alternatives for Mobile Computers. InUSENIX
Symposium on Operating Systems Design and Implementation,
pages 25–37, 1994.

[6] F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spin-
Down Policies for Mobile Computers. InComputing Systems,
volume 8, pages 381–413, 1995.

[7] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the Power-
Hungry Disk. InUSENIX Winter Conference, pages 293–306,
1994.

[8] R. Golding, P. Bosch, and J. Wilkes. Idleness is not Sloth. In
USENIX Winter Conference, pages 201–212, 1995.

[9] C.-H. Hwang and A. C. Wu. A Predictive System Shutdown
Method for Energy Saving of Event-Driven Computation. In
International Conference on Computer-Aided Design, pages 28–
32, 1997.

[10] Intel. Mobile Power Guide ’99.

[11] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Compet-
itive Randomized Algorithms for Nonuniform Problems.Algo-
rithmica, 11(6):542–571, June 1994.

[12] J. R. Lorch and A. J. Smith. Software Strategies for Portable
Computer Energy Management.IEEE Personal Communica-
tions, 5(3):60–73, June 1998.

[13] Y.-H. Lu and G. D. Micheli. Adaptive Hard Disk Power Man-
agement on Personal Computers. InGreat Lakes Symposium on
VLSI, pages 50–53, 1999.

[14] Y.-H. Lu, T. Šimunić, and G. D. Micheli. Software Con-
trolled Power Management. InInternational Workshop on Hard-
ware/Software Codesign, pages 157–161, 1999.

[15] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli. Pol-
icy Optimization for Dynamic Power Management. InDesign
Automation Conference, pages 182–187, 1998.

[16] Q. Qiu and M. Pedram. Dynamic Power Management Based
on Continuous-Time Markov Decision Processes. InDesign Au-
tomation Conference, pages 555–561, 1999.

[17] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen. Pre-
dictive System Shutdown and Other Architecture Techniques for
Energy Efficient Programmable Computation.IEEE Transac-
tions on VLSI Systems, 4(1):42–55, March 1996.

[18] M. T. Stokes.Time in Human-Computer Interaction. PhD. The-
sis, Psychology Department, Texas Tech University, 1991.

[19] T. Šimunić, L. Benini, and G. D. Micheli. Event-Driven Power
Management of Portable Systems. InInternational Symposium
on System Synthesis, pages 18–23, 1999.

[20] T. Šimunić, L. Benini, and G. D. Micheli. Dynamic Power Man-
agement of Laptop Hard Disk. InDesign Automation and Test
in Europe, 2000.


