
Design Automation for Embedded Systems, 6, 89–144 (2000)
c© 2000 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Hardware/Software Co-Design of Run-Time
Schedulers for Real-Time Systems

VINCENT JOHN MOONEY III1 mooney@ece.gatech.edu
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250

GIOVANNI DE MICHELI nanni@galileo.stanford.edu
Computer Systems Laboratory, Stanford University, Gates Computer Science Building, Stanford, CA 94305

Abstract. We present the SERRARun-Time Scheduler Synthesis and Analysis Tool which automatically generates
a run-time scheduler from a heterogeneous system-level specification in both Verilog HDL and C. Part of the run-
time scheduler is implemented in hardware, which allows the scheduler to be predictable in being able to meet
hard real-time constraints, while part is implemented in software, thus supporting features typical of software
schedulers.

SERRA’s real-time analysis generates a priority assignment for the software tasks in the mixed hardware-software
system. The tasks in hardware and software have precedence constraints, resource constraints, relative timing
constraints, and a rate constraint. A heuristic scheduling algorithm assigns the static priorities such that a hard
real-time rate constraint can be predictably met. SERRA supports the specification of critical regions in software,
thus providing the same functionality as semaphores.

We describe the task control/data-flow extraction, synthesis of the control portion of the run-time scheduler in
hardware, real-time analysis and priority scheduler template. We also show how our approach fits into an overall
tool flow and target architecture. Finally, we conclude with a sample application of the novel run-time scheduler
synthesis and analysis tool to a robotics design example.

Keywords: hardware/software co-design, run-time scheduler, system synthesis, real-time systems.

1. Introduction

We consider the design of mixed hardware/software systems, such as embedded systems and
robots. We aim at providing Computer-Aided Design (CAD) tools that help bring hardware
and software design flows closer together in order to allow designers to make tradeoffs
between software and hardware and thus more quickly evaluate design alternatives. An
indispensable component to a system of cooperating hardware and software is a run-time
scheduler.

The sequence of hardware and software tasks can change dynamically in complex real-
time systems, since such systems often have to operate under many different conditions.
For example, a robotics system which comes into contact with a hard surface may have
to change its force control algorithm, along with its attendant sensor set, estimators, and
trajectory control routines. Therefore the scheduler must be dynamic.

In hardware/software co-design an important problem is the management of software
routines and their coordination with hardware. A clear and easy solution is to put the run-
time system in software and suitably design the hardware such that it can be controlled from
the software. Unfortunately, software schedulers may not be predictable as far as being able
to satisfy real-time constraints. Therefore we implement the time-constrained portion of the

90 MOONEY AND DE MICHELI

scheduler in hardware, where delays are accurately known. This paper presents a strategy
for a mixed implementation of dynamic real-time schedulers in hardware and software,
and a CAD tool, called SERRA, to synthesize the necessary hardware and software for the
run-time scheduler as well as analyze the performance of the system.

Approaches tohardware/software co-designof embedded systems [14] can be differenti-
ated in several ways. One way is to consider the system-level specification, which is either
homogeneous(i.e., in a single specification language) orheterogeneous(i.e., involving mul-
tiple modeling paradigms). Another way to differentiate approaches is to distinguish how
the CAD tool partitions the system specification: approaches consider eitherfine-grained
partitions, i.e., at the operation or basic block level, orcoarse-grainedpartitions, i.e., at the
process or task level ([19] defines granularity in a slightly different way). For example, [20],
[18], [5] can be classified ashomogeneousandfine-grainedapproaches, while [2], [38] are
heterogeneousandcoarse-grained. The method of [34] supportshomogeneousspecifica-
tion in VHDL with bothfine-andcoarse-grainedpartitioning. We take theheterogeneous
andcoarse-grainedapproach in this paper.

There has been much previous work in hardware-software partitioning [18], [38], [14].
However, system designs modeled by heterogeneous specifications are often already parti-
tioned by designers into modules or tasks. Whereas some optimality is lost in using a coarse
granularity in partitioning, the resulting implementation is often closer to what designers
expect, and interfacing hardware to software blocks is easier. We assume the availability
of automated interface generation similar to [9], [38].

Designers of real-time embedded systems often have timing constraints that they must
meet for the design to be successful. To support soft and hard real-time constraints, system
designers need tight bounds on execution delays. In hardware/software co-design, schedul-
ing resources to meet these tight bounds is a critical problem because there may be parallel
threads of execution in the application with the same resource required by different threads.

Previous approaches to real time analysis have focused on software [28] since the per-
formance analysis of ASICs is considered a well studied problem already. Rate Monotonic
Analysis (RMA) [26] and Generalized Rate Monotonic Analysis (GRMA) [37] both as-
sume that tasks are independent and that each task has its own period and deadline. RMA
has been extended to account for release jitter and resource contention [3], [4]. RMA has
also been extended to allow precedence among tasks by formulating the problem as a big
task with the length of the Least Common Multiple (LCM) of all the periods [36]. Unfor-
tunately, this approach is usually impractical for hardware/software co-design because it
is difficult to handle a situation where the period and computation times are nondetermin-
istic but bounded, since a period of a LCM does not represent all possible situations [39].
In Deadline Monotonic Scheduling (DMS), each task is assigned a unique priority (the
smaller the deadline, the higher priority), and this scheme has been extended to the case of
parallel identical processors [40]. However, this extended DMS approach does not handle
the case where part of the processing is in dedicated hardware, because such processing
is itself part of the precedence graph and hence not reducible to start times for software
tasks.

Our formulation is similar to [8], [13], [35], [36], [39]. However, in our case we synthesize
a custom run-time scheduler in hardware and software for the application [30]. As a result,

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 91

we have more information about the scheduling of hardware and software tasks. Given this
more exact level of control, we can perform tight real-time analysis allowing high CPU
utilization. In performance- or safety-critical systems (e.g., a mobile robot control system
for capture of a satellite in space) our technique can provide precise real-time bounds.

In the approach of this paper, if a solution is found, we output the task priorities and guar-
antee that the system meets its relative timing constraints and its rate constraint, assuming
the system uses the custom run-time scheduler generated. While the approach of [6], [7] is
more general for verification purposes after the priority for each task is assigned, it does not
address the issue of assigning the priorities, nor does it address rate-constraint analysis to
find aworse case execution time (WCET)for the application implemented in hardware and
software. Similarly, [5], [13] assume the task priorities are given and does not guarantee
theirWCETcalculations are never exceeded.

The rest of the paper is organized as follows. Section 2 explains our design approach
and corresponding requirements. Section 3 describes our target architecture for the system
and the run-time scheduler. Section 4 discusses how we model our system of hardware
and software. Section 5 presents the real-time analysis and priority generation for software
tasks. Section 6 presents how we account for worst-case context switch and scheduling cost
when running the application, and presents a heuristic for decreasingWCETwhen allowing
tasks to be suspended and context switched out. Section 6.6 presents our support for critical
regions. Next, Section 7 shows the flow of the SERRA Run-Time Scheduler synthesis and
analysis tool. Section 8 gives some experimental results and presents an example from
robotics. Finally, Section 9 concludes the paper.

2. Motivation and CAD Requirements

We aim at supporting system-level design with hardware/software tasks custom designed
for a target architecture. We refer to the tasks in hardware ashardware-tasksand to the
tasks in software assoftware-tasks. We assume the existence of mature high-level synthesis
tools and software compilers, as well as intellectual property in the form of processor and
controller cores. We assume that the system requires both static scheduling, especially
in the coordination of hardware-tasks, and dynamic scheduling, given the inexact delay
of software and the randomness of the stimuli coming from the environment. Arun-
time schedulermust meet both of these scheduling requirements. Our tool, called SERRA,
automates the generation of the run-time scheduler, thus providing for thesynchronization
andschedulingof system-level components in hardware and software.

Our approach assumes acoarse-grainedpartition of the system into tasks. We assume
tasks model system components of significant sizes, and that the system consists of around
ten to a hundred tasks. The tasks are assumed to be written either in Verilog HDL or in
C. This approach matches design practice, where designers often describe their systems
in a heterogeneous way, using description languages appropriate to the subsystem being
implemented.

Example 1. As a motivational example, consider the set of control algorithms of Figure 2.
These algorithms calculate torques for the PUMA robot arms shown in Figure 1.

92 MOONEY AND DE MICHELI

Figure 1. PUMA arms (courtesy of the Computer Science Robotics Lab at Stanford).

We assume that the controller manages two arms at the same time, and thus any two
of the algorithms may be selected in each execution. An execution of the arm controller
must complete calculation of new torques for the arms once every millisecond. Since each
arm has six degrees of freedom, only six new torque values need to be communicated for
each update; thus, the amount of data flow in the system is small. However, the algorithms
(“laws” in robotics terminology) need to maintain floating point matrices representing the
kinematics and dynamics of the arms, so that the computation would be difficult to represent
concisely in, for example, finite-state machines. This control approach is also drastically
different than the fuzzy logic adaptive control in [1].

Figure 2 shows three of the ten different algorithms (laws) used with a PUMA arm;
Ohold2 Law , Ohold Law , andJhold Law are top-level tasks which call subtasks in a
particular sequence. Thecoarse-grainedpartitions of Ohold2 Law, Ohold Law, and Jhold
Law contains calls to many common subtasks. Some of the subtasks involve hardware
components with timing constraints specified on a cycle basis.

The CAD requirements for co-design of a system such as Example 1 are as follows. First,
we need to satisfy hard real-time constraints imposed by some of the hardware components
in the system as well as by external hardware. Second, we need to optimize the run-time
system over calls to multiple tasks in hardware and software. This involves allocation of

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 93

Figure 2. Robotics example: Concurrent control algorithms.

tasks to hardware and software as well as interface generation for communication. Third, we
need to guarantee a hard real-time rate constraint across tasks in hardware and in software.
The handling of multiple-rate constraints is beyond the scope of this paper.

The run-time scheduler synthesis described here supports the execution of software-tasks
through an interrupt triggering mechanism where hardware communicates to a software
scheduler which of the software-tasks are ready to execute. The CLARA tool, which is
embedded within the SERRA system, takes as input theworst case execution time (WCET)
for each task and then provides for the automated generation of priorities for the software-
tasks to be run on a preemptive fixed priority scheduler as well asWCETcalculation for
subsets of hardware- and software-tasks under a hard real-time rate constraint. Thus, SERRA

94 MOONEY AND DE MICHELI

Figure 3. Tool flow and target architecture.

provides the user with the ability to evaluate the performance of different partitions with an
automatically generated run-time scheduler (system). For example, the user can migrate a
task from C to Verilog to speed up a critical path in the algorithm.

Figure 3 shows the tool flow in which SERRA is embedded. Hardware-tasks are specified
in Verilog that can be synthesized by the Synopsys Behavioral CompilerTM [23] (labeled
BCin Figure 3;DClabels the Design CompilerTM). Software-tasks are written in C. Micro-
processor cores, memories (DRAM, SRAM), FIFO models, and other custom blocks are
assumed as available inputs to the system.

The system-level tasks in Verilog and C, as well as constraints, are input to a tool that
generates the interface and to SERRA. Constraints include relative timing constraints (min-
imum and maximum separation), resource constraints, and a single rate constraint. The
implementation of the synthesized system can vary from a system on a chip to a board or
set of interconnected components. The overall control/data flow of the run-time scheduler
is synthesized into hardware, while the necessary code for calling tasks in software is gen-

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 95

erated as well. Further aspects of aReal Time Operating System(RTOS) can be added in
software by the user if desired, although SERRA’s WCETcalculation assumes that only the
software which SERRA generates is run on the microprocessor.

We wrote a new backend forCINDERELLA [28] for MIPS assembly run on a MIPS R4K
processor; we call the new toolCINDERELLA-M. Software-tasks are compiled and input
to CINDERELLA-M, which outputs aWCET for each task. Similarly, from the hardware
synthesis of the Synopsys Behavioral CompilerTM (BCTM) [23], we obtain an exact execution
time for each hardware-task, which we take as aWCET for the hardware-task. As in the
case ofCINDERELLA, for the hardware-tasks we assume that any loops have user-specified
upper bounds, and that no synchronization is needed once the task begins execution (i.e.,
no busy waiting or other unbounded waits). TheWCETvalue for each task is required in
order to analyze whether or not we will always meet our rate constraint.

This paper focuses on the synthesis and analysis of a custom run-time scheduler.

3. Target Architecture and Kernel

Our target architecture consists of a CPU core with multiple hardware modules, each imple-
menting a particular hardware-task. The CPU has a two-level memory hierarchy consisting
of instruction and data caches with a large RAM. Since we target embedded systems, we
assume that the RAM is large enough to hold all the program code needed.

3.1. Task Execution

We associate astart and adoneevent with each task in order to allow the scheduler to
control the task. In hardware the two events are simply signals on an input port and an
output port, respectively. For software, we have astart vector and adonevector which
encapsulate thestart anddoneevents for each software-task.

Note that some tasks are called multiple times by different tasks, such asmatrix
vector multiply in our robot example, as can be seen in Figure 2. Some real-time
constraints in hardware can be satisfied by high-level synthesis. However, constraints at the
task level must be handled by the run-time system. How can the run-time system dynam-
ically allocate tasks while at the same time predictably satisfying exact timing constraints
between tasks?

The solution to predictability comes from a hardware solution with cycle based semantics.
Thus, constraints between events in exact units of cycles can be predictably met. We solve
this scheduling problem using a hardware cycle based FSM implementation of the part of
the scheduler which chooses which task(s) to execute next.

3.2. Run-Time Scheduler Implementation

We split the run-time scheduler into hardware and software based on an analysis of the
constraints. We hypothesize that exact relative timing constraints between tasks cannot be

96 MOONEY AND DE MICHELI

Figure 4. Target architecture.

satisfied by software. Thus, we have the problem of choosing between the predictability of
satisfying real-time constraints in hardware and the desirability of having some features of
an RTOS. We try to accommodate both choices by putting in hardware a FSM corresponding
to the task control flow of the system, while putting in software a reactive executive which
calls the appropriate software-tasks when signaled by the hardware FSM.

Therefore we split the run-time scheduler into two parts:

• An executive manager in hardware with cycle-based semantics that can satisfy hard
real-time constraints.

• A preemptive static priority scheduler that executes different threads based on eligible
software-tasks as indicated by thestart vector.

Figure 4 shows the target architecture of our system. At the top we have a CPU core with
a level 1 cache and copies of the start and done vectors in on-chip registers. The bottom
showsn hardware tasksV1 throughV n. The executive manager hardware FSM is labeled
RTS.v and generates all thestartevents as well as receives all thedoneevents. This FSM is
synthesized to implement the overall system control and can predictably meet the relative
timing constraints, if satisfiable, specified in exact numbers of cycles between the start times
of tasks.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 97

Table 1. Entry table for
software-tasks.

Entry Value

0 Pointer to sw-task 0
1 Pointer to sw-task 1
· · · ·
n Pointer to sw-task n

3.3. Control of Software

The hardware run-time scheduler updates thestart vector in software as follows. First, it
updates its local register containing thestart vector. Then it triggers an interrupt on the
CPU. The CPUinterrupt service routine(ISR) reads the register using memory-mapped
I/O and places it into the software copy of thestart vector. Figure 4 shows both thestart
anddonevectors in registers inRT S.v and their copies in on-chip registers inCPU core1.

Thestartvector may specify that several software tasks are ready to be executed. Thus, we
generate a preemptive static priority scheduler which executes the highest priority software-
task among the tasks indicated by the hardware FSM as ready to execute. The priority-based
scheduler is always called by the ISR after fetching the newstart vector into memory, and
whenever a software-task terminates.

When a software-task is finished executing, it updates thedonevector by writing the
new value ofdoneout with memory mapped I/O. Thus, thedonevector in the run-time
scheduler in hardware is updated. Notice that in the above two cases, a dedicated port could
be used instead of memory-mapped I/O, depending on the CPU.

3.4. Software Generation

For the software that runs on the microprocessor core (CPU), the individual software-tasks
are compiled and linked using standard C compilers and linkers. The software tasks are
compiled and linked into assembly, with data and program memory statically allocated.
Memory-mapped I/O is called with C pointers set explicitly to the appropriate addresses.
We thus have a table of software-tasks and their entry points as seen in Table 1.

Therefore, given a particular value of thestart vector, the appropriate software-task(s)
can be executed. The typical sequence of events in software is as follows:

• A hardware interrupt triggers the execution of the ISR.

• The ISR updates thestart vector and, if a higher priority task has become ready, calls
save context .

• A priority scheduler updates the task data structure and executes the highest priority
task now ready. If needed, the priority scheduler callsrestore context .

• When a software-task is finished, it writes out the new value of thedonevector.

98 MOONEY AND DE MICHELI

An advantage of this approach is that it can support standard RTOS scheduling algorithms
(round-robin, rate-monotonic, etc.), although we only consider a static priority scheme
here. Multiprocessing is helpful when a low-priority, long duration software-task is ready
to execute at the same time as a high priority, short duration software-task, but a price is paid
when switching context. A disadvantage of multiprocessing is the slower response time
due to added overhead for implementing the RTOS scheduling algorithm, polling executive,
and associated context switches.

Another possible option which has lower overhead is to have the ISR directly invoke each
software-task, executing each task in kernel mode, as discussed in [30]. Such a scheme,
however, does not allow a lower priority task to execute while an unexecuted higher priority
task is not yet ready. Thus, in this paper we only consider a priority driven scheme.

3.5. Priority Scheduler Template for Software

A task can be in one of two states:running/suspendedor ready/terminated. In our
simplified real-time operating system, once a software-task has completed (terminated),
it is ready to run again, so we overlap the traditionally distinctreadyandterminatedstates
into one. Therunning/suspendedstate, combined with the information in thestartanddone
vectors, tells us whether or notrestore context needs to be called before invoking the
highest priority task. In particular, if a higher priority task just finished execution and
the next highest priority software task ready to execute is in therunning/suspendedstate,
then we know that it must have been executing earlier at some point. Thus, we execute a
restore context for that process. Otherwise, we simply jump to the starting PC for the
task.

Note that the interrupt service routine (ISR) is responsible for callingsave context
if needed. The register file that contains the process state information is saved only when
the newstart vector indicates that a higher priority task is now ready to execute (i.e., we
eliminate context switching when one task ends and a new task begins, in which case there
is no need to save/restore the register file).

In operating systems terms, the run-time scheduler software portion implements priority-
based job scheduling (multiprogramming). Strictly speaking, this is not multitasking since
there is no time-shared access to CPU compute cycles.

Clearly, for this implementation to work, we need a priority for each software-task. We
obtain the priorities from the real time analysis, which will be explained in Section 5. We
now turn to modeling issues.

4. System Modeling

The input specification is a collection of tasks written in Verilog or C, with one of the tasks
designated as themain task. The main task begins execution and calls the other tasks. The
main task specifies the overall sequence of tasks in the application (an example of a main task
can be seen in Figure 5). From each task we extract a Control/Data-Flow Graph (CDFG)
of the tasks it invokes, where each node in the CDFG corresponds to a call to another

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 99

Figure 5. Robotics example: Main task.

100 MOONEY AND DE MICHELI

task. If a task does not call any other task, then it has no such CDFG. We call this kind of
task aleaf task. A task which is not the main task nor a leaf task is anintermediate task.
An intermediate task must trace back its invocation to the main task, and the intermediate
task must itself invoke at least one leaf task. We assume that an intermediate task has all
computation specified in leaf tasks. If an intermediate task does contain some computations,
a new leaf task can be generated containing these computations. This allows us to flatten
the hierarchical description and generate a CDFG of the system where all nodes are leaf
tasks. We assume that we have a rate constraint specified for the CDFG of the system. In
other words, we assume that the main task is invoked at a fixed rate.

Example 2. Figure 5 shows the overall flow of execution of the robot controller in the form
of a CDFG of the main task for the system. The original specification of the main task was
in Verilog. The other tasks are specified in C and Verilog.

Note that the CDFG of Figure 5 must complete once every millisecond. Thus, we have a
rate constraint on the graph. Note also thatXmit Frame1 (xf1) andXmit Bit1 (xb1)
have a strict relative timing constraint ofxb1 starting no less than 2 cycles afterxf1 and
no more than 8 cycles after. This input/output time constraint is satisfied by the CFE
implementing the control-flow.

An example a flattened CDFG where all the nodes are leaf tasks can be seen in Figure 6.
The flattened CDFG executes an appropriate subset of the control algorithms of Figure 2
to output torques for two PUMA robot arms. In this case, since there is no branching, the
CDFG is equivalent to a DAG with relative timing constraints.

SERRA leverages previous research on modeling hardware usingcontrol-flow expressions
(CFEs) [10], [11]. In SERRA, CFEs represent an intermediate model of the run-time system
that captures the global control-flow information in the system.

CFEs represent the serial/parallel flow of computation, branching, iteration, synchro-
nization and exceptions. CFEs can specify control flow that satisfies our relative timing
constraints [24] in hardware while also controlling dynamically the flow of execution.
CFEs have a deterministic finite-state machine (FSM) semantics, and so can be compiled
into specification FSMs representing the possible control-flow implementations.

We support the specification of tasks that cannot execute concurrently through the use
of NEVERsets [10]. For example,NEVER= {a,b, c} indicates that tasksa, b, andc can
never be active at that same time. In general,NEVERsets can model mutual exclusion; here,
we useNEVERsets to model resource constraints. We make use of this feature to specify
resource constraints such as(i) multiple calls to the same piece of physical hardware (which
implements a hardware-task), or(ii) software-tasks executed on the same microprocessor.
In this paper, we consider any number ofNEVERsets. For a target architecture of one CPU
core, it makes sense to have a singleNEVERset of software-tasks, which we use to serialize
the software-tasks executed on the same CPU, and multipleNEVERsets of hardware-tasks.
This is the case we focus on in this paper.

In a similar vein, tasks that must begin execution at the same time are specified through
the use ofALWAYSsets; e.g.ALWAYS= {a,b, c} indicates that tasksa, b, andc must each
begin execution at the same time. Note that this is the same as having bilateral relative

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 101

Figure 6. Flattened CDFG of robot arm controller.

102 MOONEY AND DE MICHELI

timing constraints of zero weight, which our run-time scheduler also supports. Thus, we
do not considerALWAYSsets explicitly in the formulation of our problem.

Finally, note that relative timing constraints among the start times of tasks are supported
by control-flow expressions(CFEs) [10], [11]. Thus, for example, one can specify a start
time of one task to be no less than 2 and no greater than 8 cycles, as is shown in Figure 2
and explained in Example 2.

5. Real Time Analysis

We aim at predictably satisfying real-time constraints in the form of control/data-flow
(precedence) constraints, resource constraints, and a rate constraint. We assume that we
have as input a CDFG representing the flow of tasks in the application, a rate constraint on
the graph, andNEVERsets specifying a resource constraint on software-tasks and resource
constraint(s) on hardware-tasks. In this section, we first show a formulation which does
not includeNEVERsets of hardware-tasks (hardware resource constraints) for the sake of
simplicity of explanation. We expand the formulation to include multipleNEVERsets of
hardware-tasks in Section 5.2.

To predictably satisfy the rate constraint, we need aworst case execution time (WCET)for
each task and aWCETfor the control/data-flow of the set of tasks under the rate constraint.
We obtain theWCET times for the individual tasks fromCINDERELLA-M and BCTM [23].
We need some assumptions to compute theWCETfor the set of tasks.

ASSUMPTION5.1 We have a Directed Acyclic Graph (DAG) representing a set of tasks,a
WCET for each task, and a NEVER set specifying tasks that must be executed in a mutually
exclusive manner. A rate constraint is specified for the execution of the whole graph.

Example 3. Figure 6 shows the DAG resulting from the parallel execution ofJhold Law
andOhold1 Law . While the full CDFG can select more combinations, e.g.Ohold2 Law
andJhold Law , we consider here only the case whereJhold Law andOhold1 Law
are selected to execute in parallel. In other words, the CDFG has been effectively reduced
to a DAG. Note that the system is still dynamic since the start and done times of tasks in
the DAG are not determined ahead of time but are handled at run-time. Also, the DAG may
contain relative timing constraints.

Note that reducing the CDFG to a DAG limits the amount of control-flow information
in the graph to relative timing constraints among tasks. In particular, a control choice
equivalent to anif statement is not modeled, nor is branching. Also note that for now we
consider only a singleNEVERset of software-tasks executed on the same CPU. We assume
that we have the resulting DAG in graph formG(V, A), whereV is the set of vertices and
A is the set of directed edges (“Arrows”).

ASSUMPTION5.2 Software is executed by a simple priority scheduler consisting of four
code segments: aninterrupt service routine (ISR), apriority scheduler , a
save context routine and arestore context routine.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 103

Note that thepriority scheduler is compiled for each embedded application; the
other three routines are written in assembly and do not require any recompilation.

ASSUMPTION5.3 Each task, once started, runs to completion.

Together with the previous assumption and the fact that thepriority scheduler code
only uses registers reserved for the operating system, we find that the only overhead for
software-tasks are the ISR andpriority scheduler calls. We will relax the assumption
of running to completion later when calculatingWCETinvolving software-tasks which can
be partially executed before being interrupted.

ASSUMPTION5.4 Hardware-software communication time is included in the WCET of each
task and/or is included as a distinct task.

We have several communication primitives, such as shared memory and FIFOs, with
interface generation along the lines of [9], [38]. In our examples, we use dedicated FIFOs
and unique shared memory addresses for communication.

ASSUMPTION5.5 Interrupts that switch context come only from the hardware run-time
scheduler as described in Section 3.3.

Example 4. As an example, consider Figure 7. This represents a subset of the tasks in
our robot control algorithm. TheWCET times for the individual tasks have already been
calculated byCINDERELLA-M and BCTM. Three tasks are specified in Verilog:mvm, fk ,
andcg , corresponding tomatrix vector multiply , forward kinematics , and
calc gravity , respectively, in Figure 2. (Taskmvmhas four instantiations inmvm1-4.)
Similarly, three tasks are specified in C:oh0 , oh1 , andcjd , wherecjd corresponds to
calc joint dynamics in Figure 2 and bothoh0 andoh1 are coarser-grained groupings
of tasks called byOhold Law in Figure 2. Since our target architecture for this example
contains only one microprocessor, all three software-tasks are put into a singleNEVER
set which states that their execution times cannot overlap at all. Thus, the tasks must be
serialized.

Consider theNEVERset shaded in Figure 7. A first-come-first-serve scheduling algorithm
would scheduleoh0 first, thenoh1 (sincemvmis still executing whenoh0 finishes), and
cjd last. Without considering the small overhead of the priority scheduler, this results in
a WCETof 46,033 cycles for the graph. However, ifoh1 were executedafter cjd , the
WCETwould be 39,012 for the graph.

Example 4 shows a difficult problem in that aNEVERset of software-tasks may cross
parallel paths. We cannot use one execution of a longest path algorithm to solve this
problem, because the execution start time of each task in aNEVERset depends upon the
scheduling of the other tasks in theNEVERset. In fact, finding the serial order of tasks in
theNEVERset which minimizesWCETcan be shown to be NP-Hard using the Sequencing
with Release Times and Deadlines problem [17].

104 MOONEY AND DE MICHELI

Figure 7. DAG andWCET.

In the context of our system design, solving this problem allows us to proceed with our
real-time analysis. For example, once we have aWCETfor the CDFG of Figure 5, then we
can say if the robot controller finishes execution within one millisecond.

5.1. Constructive Heuristic Scheduling

We want to find a schedule for the tasks, with aNEVERset containing all the software-tasks,
where the other tasks are all hardware-tasks. We find an ordering of the software-tasks using
a problem formulation which is reminiscent of dynamic programming [21]. The formulation
enables us to construct in polynomial time a schedule of the tasks which minimizesWCET
(the heuristic may find a local minimum). Our constructive heuristic scheduling algorithm
allows us to take into account precedence constraints, a rate constraint, and a resource
constraint in the form of aNEVERset of software-tasks. In Section 5.2, we will extend
constructive heuristic scheduling to include multiple resource constraints in the form of
NEVERsets of hardware-tasks.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 105

5.1.1. Constructive Heuristic Scheduling Formulation

We take as input the DAGG(V, A) annotated withWCETs(one per task), aNEVERset
specifying the mutually exclusive software-tasks,WCETisrwhich is aWCETfor the ISR,
andWCETprschedwhich is aWCETfor thepriority scheduler code.

We divide the problem into stages according to the number of tasks in theNEVERset.
We first find a solution for the last stage, then the second-to-last stage, etc., up to the
first stage (we proceed in reverse order from the stage number). We use the following
definitions:

DEFINITION 5.1 Let there be n stages, where in each stage we decide which among n tasks
to schedule.

The number of stagesn is set equal to the number of tasks in theNEVERset plus two (for
the source and the sink).

DEFINITION 5.2 Let t denote a task, and let ti denote a task executed in stage i.

DEFINITION 5.3 Let the multivalued decision variables xik, i ∈ (1,2, . . . ,n− 1) and k∈
Z+, denote the ordered set of tasks from the NEVER set executed in the subsequent stages,
i.e., after stage i.

Note thatxik represents an ordered set of tasks.

DEFINITION 5.4 Let Xi , i ∈ (1,2, . . . ,n − 1), denote the multiset of decision variables
{xik}.

Example 5. Consider Figure 7. Since|NEVER| = 3, there are 5 stages. In stage 3 we
could find thatX3 = {x31, x32, x33} = {(oh0 ,sink),(oh1 ,sink),(cjd ,sink)}. Eachx3k

is an ordered set, andX3 is a multiset.

DEFINITION 5.5 Let state si = (ti , xik) in stage i denote the current task ready to start
execution and the subsequent tasks from the NEVER set executed in stages(i + 1, i +
2, . . . ,n− 1), where thesink is always executed in stage n.

Note that given an ordering of software-tasks, the rest of the graph is scheduled with an As
Soon As Possible (ASAP) schedule that takes into account the dependencies induced by
the ordering of the mutually exclusive tasks.

Example 6. In Figure 7 the tasks under consideration aresrc , oh0 , oh1 , cjd , andsink .
Since thesink is always executed last,Xn−1 = X4 = {(sink)}. The possible tasks executed
before thesink , and thus in stage 4, aret4 = oh1 andt4 = cjd . Thus the possible states
in stage 4 ares4 = (oh1 ,sink) ands4 = (cjd ,sink).

We denote theWCETfor taskt by WCET(t).

106 MOONEY AND DE MICHELI

Figure 8. GraphWCETexample.

DEFINITION 5.6 Given a state si , let Gsi ⊆ G be the directed acyclic graph Gsi (Vsi , Asi)

defined by the tasks in state si and their successors.

Example 7. Consider Figure 8. In this example we are in stagei = 4. The leftmost shaded
area coversGs4 defined bys4 = (oh1 , sink). In this caseVs4 = {oh1 ,mvm1, sink }.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 107

DEFINITION 5.7 Given a state si , let si be calledvalid if Gsi does not contain any task
which is in the NEVER set but does not appear in si .

Example 8. Consider Figure 8 again. The two valid states in stage 4 ares4 = (oh1 ,sink)
ands4 = (cjd ,sink). States4 = (oh0 ,sink), however, is not a valid state becauseGs4

containsoh1 , which is in theNEVERset but not ins4.

DEFINITION 5.8 Given a valid state si , let GraphWCET(si) be the worst case execution
time (WCET) as determined by an As Soon As Possible (ASAP) schedule for Gsi , where any
tasks in Gsi which are in the NEVER set are executed in the order in which they appear in
si . (If si is not valid, then GraphWCET(si) is undefined.)

Example 9. Continuing with Figure 8, consider the leftmost shaded area again. For this
Gs4, we find thatGraphWCET(s4) =WCET(oh1)+WCET(mvm1) = 21,799.

In other words,GraphWCET(si) is the overallWCETfor stages(i, i +1, . . . ,n), given that
the first taskti in si is executed in stagei , and the rest of the tasksxik in si are executed in
stagesi + 1, i + 2, . . . ,n according to the order in which the tasks appear inxik .

DEFINITION 5.9 Let fi (si), i ∈ (1,2, . . . ,n−1), denote a value equal to GraphWCET(si)

if both si is valid and the order of tasks in si does not violate any precedence constraints;
otherwise let fi (si) = ∞. We define fn(sn) to be zero since there is no task to execute after
the last stage, and the last task executed is always thesink (so that it is always the case
that sn = (sink)), whose execution takes zero cycles.

Example 10. A possible state for Figure 8 iss4 = (t4, x41) = (oh0 , sink). However, this
state is not valid, and so fors4 = (oh0 , sink), f4(s4) = ∞. The other two possibilities
for s4 are shown in Figure 8, and for those two we havef4(s4) = GraphWCET(s4).

Recall that tasks not in theNEVERset are all hardware-tasks and are scheduled ASAP.

DEFINITION 5.10 Let fi ∗(si), i ∈ (1,2, . . . ,n−1), be the minimum finite value of fi (si) =
fi (ti , xik) over all possible xik for a given ti .

DEFINITION 5.11 Given task ti (the current task executing), let xik∗ denote the value of xik

that yields fi ∗(si) = fi ∗(ti , xik).

Note that if there is noxik such thatfi (si) = fi (ti , xik) is finite, then we have nofi ∗(si)

nor xik∗ defined for task sequences beginning with taskti in this stage.
Thus, when computingfi ∗(si), we find the following holds, if there exists at least one

statexik for which fi (ti , xik) is finite:

fi
∗(si) = min

xik

fi (ti , xik) = fi (ti , xik∗), i ∈ (1,2, . . . ,n− 1)

DEFINITION 5.12 Given a valid state si = (ti , xik), let ts denote a successor of task ti ,
where Gts ⊂ G is the graph defined by ts and the successors of ts. Then, we define
GraphWCETsucc(ti , xik) to be the largest GraphWCET(ts, xik) of any successor ts of task ti .

108 MOONEY AND DE MICHELI

Figure 9. Constructive heuristic scheduling example stage 3.

In calculatingGraphWCETsucc(ti , xik), we schedule the subgraph induced by the successors
of taskti using an ASAP schedule. If we find a successorts of ti that is in theNEVERset,
then we useGraphWCET(ts), which, since the state is valid, was already calculated in a
previous stage that scheduled the tasks inxik .

Example 11. Consider Figure 9 where we are in stage 3; the leftmost shaded area
showsGs3 for s3 = (oh0 , oh1 , sink). So we havet3 = oh0 andx32 = (oh1 , sink).
One successor of taskt3 is oh1 , which is a member of theNEVERset. Thus we use
GraphWCET(oh1 , x32) = 21,799 as calculated in the previous stage. The other successor
of taskt3 is fk , for which we find that the subgraph consisting of tasks{fk ,mvm1, sink }
yields GraphWCET(fk , sink) = 8,900 (recall that a statesi = (t, xik) consists of a
task t and decision variablexik , where the tasks inxik must be in theNEVERset, or be
the src or thesink , but the taskt need not be in theNEVERset). The final result is
GraphWCETsucc(t3, x32) = 21,799.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 109

DEFINITION 5.13 Given a state si = (ti , xik), we define the following:

GraphWCETextra(si)

=
GraphWCETsucc(ti , xik)−GraphWCET(xik) if GraphWCETsucc(ti , xik)

> GraphWCET(xik)

0 otherwise

and GraphWCET(si) =WCET(ti)+GraphWCETextra(si)+GraphWCET(xik).

Example 12. Consider the leftmost shaded area in Figure 9 again; we havet3 = oh0 , x32 =
(oh1 , sink)ands3 = (t3, x32). We found previously thatGraphWCET(x32) = 21,799 and
GraphWCETsucc(t3, x32) = 21,799. From these values we find thatGraphWCETextra(s3) =
0 and thusGraphWCET(s3) =WCET(oh0)+ 0+GraphWCET(x32) = 24,020.

This definition allows us to take into account the case whereGraphWCETsucc(ti , xik),
the WCET of the subgraph covered by the successors of taskti , is not determined by
GraphWCET(xik) (i.e., the path through the software task(s) inxik) but instead is determined
by a different path through the subgraph. At this point we have specified all the definitions
needed to calculateGraphWCET(s) for any states.

5.1.2. Constructive Heuristic Scheduling Solution

The number of stagesn we use is equal to the number of tasks in theNEVERset (which
we callSWNEVERsince it is composed entirely of software-tasks) plus two (for the source
and the sink). We use a bottom-up approach and set the last stage to be the sink and the first
stage to be the source (we always have a source and a sink according to Assumption 5.1).

In each stage, we compute the best sequence of tasks given that we start with a particular
task. That is, in stagei , for each possible first taskti ∈ SWNEVER, we find the sequence of
tasks starting withti in stagei andxik∗ in stages(i, i + 1, . . . ,n) which yields the smallest
GraphWCET. Thus, since each distinct sequence of tasks defines a unique decision variable
for the next stage, at most|SWNEVER| decision variables are carried over from one stage
to the next. Thus, for eachti ∈ SWNEVER, there are at most|SWNEVER| candidates for
xik . This limits the total number of task sequences considered in each stage to a maximum
of |SWNEVER|2, making the algorithm polynomial instead of exponential. Unfortunately,
it also makes the algorithm a heuristic instead of an exact solution method.

Since the sink is always executed last and takes no time to complete, we assume that this
last stage has already been scheduled when we start. Note that in the following we number
the stages(1,2, . . . ,n). The last stage, scheduling the sink, is assumed to be already done.
Thus, our approach starts with the second to last stage, stagen−1, and progressively works
its way back to the first stage, stage 1. Finally, in the following we use indexi to refer to
current stage.

The pseudo-code for the Constructive Heuristic Scheduling Algorithm is shown in Fig-
ures 10 and 11. The algorithm of Figure 10 calculates the worst-case execution time for
a given stage, whereas the algorithm of Figure 11 actually implements the constructive

110 MOONEY AND DE MICHELI

Calc WCET(G,SWNEVER, i,n, fi+1
∗, Xi){

1 Xi−1 = ∅;
2 initialize fi ∗, fi ;
3 for (j = 1; j < (n− 1); j ++){
4 tj = j th task inSWNEVER;
5 for (each task orderxik ∈ Xi) {
6 si = (tj , xik);
7 if (order not possible(G, tj , xik)) {

/* if order not possible due to constraints inG */
8 fi (si) =∞;
9 } else{
10 calculateGraphWCETextra(si);
11 fi (si) = WCET(tj) + GraphWCETextra(si) + fi+1(xik);

/* note that by definition,fi+1(xik) = GraphWCET(xik) */
12 }
13 } /* fi (si) has now been calculated for all possiblexik for this tj */

14 if (fi (si) finite for somesi = (tj , xik)) {
/* if we did not find all fi (si) =∞ in this iteration */

15 xik∗ = xik such thatfi (tj , xik) is minimized;
16 fi ∗(si) = fi (tj , xik∗);
17 Xi−1 = Xi−1 ∪ {(tj , xik∗)};
18 }
19 }
20 return(fi ∗, Xi−1);
}
Figure 10.CalculateWCETalgorithm.

Solveorder(G,SWNEVER,WCETisr,WCETprsched) {
1 n = |SWNEVER| + 2; /* number of stages */
2 increaseWCETfor each task inSWNEVERby WCETisr+WCETprsched;
3 fn∗(sn) = fn(sink) = 0; Xn−1 = {(sink)}; /* initial values for stage n-1 */
4 for (i = n− 1; i > 1; i −−){ /* go through the stages in reverse order */
5 (fi

∗, Xi−1) = Calc WCET(G,SWNEVER, i,n, fi+1
∗, Xi);

/* recordWCETand state */
6 } /* when this loop ends we have calculatedf2

∗ andX1 */
7 (f1

∗, X0) = Calc WCET(G, {(src)},1,n, f2∗, X1);
/* record statex01∗ with minimumWCETfrom src */

8 x01∗ = the first (and only) set inX0;
/* X0 has only one set since the we passed in{(src)} to Calc WCET*/

9 GWCET = f1
∗(x01∗); /* annotateG with minimal overallWCETfound */

10 Gtask order list = x01∗; /* record the task order found */
}
Figure 11.Constructive heuristic scheduling algorithm.

heuristic scheduling algorithm and selects the order for the tasks inSWNEVER, which is a
singleNEVERset of software tasks.

The algorithm of Figure 11 actually implements the core of the constructive heuristic
scheduling algorithm. For stagen, no calculations are necessary since thesink always
takes zero time to execute.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 111

Scheduling starts with stagen − 1, for which each task inSWNEVEReither can be
scheduled then or cannot be scheduled then. For example, if a software-taskti has a
precedence constraint where another software-task must executeafter ti , then clearlyti
cannot be scheduled in stagen−1 since no software-task can ever be scheduled after stage
n− 1 (thesink is always scheduled last, i.e., in stagen). Each software-task which can
be scheduled to execute in stagen− 1 without violating any constraints is placed in a one
element set and added toXn−2 for the next stage.

Then, for stagen− 2, we calculate a|SWNEVER| × |Xn−2| table where we place in each
table entry theGraphWCETfor each state determined by a software-task eligible to execute
in this stage (n−2) followed by a software-task that can be executed in stagen−1 (if the two
software-tasks selected cannot execute in the chosen order due to precedence constraints,
the table entry records aGraphWCETof ∞). For each task inSWNEVER, we record a
decision variable (an ordered set, see Definition 5.3) indicating the sequence starting with
that task which has the minimalGraphWCET. The decision variables are accumulated in
Xn−3 for the next stagen− 3.

Next, for stagen − 3, we again calculate a table of size|SWNEVER| × |Xn−3| where
we place in each entry theGraphWCETcorresponding to an ordered set of three software-
tasks. Each ordered set is composed of a task fromSWNEVERfollowed by two software-
tasks from an ordered set inXn−3. SinceXn−3 can contain at most|SWNEVER| sets, we
calculate theGraphWCETfor up to |SWNEVER|2 combinations of three sw-tasks. For
each tasktn−3 in SWNEVER, we select the decision variablex(n−3)k∗ which minimizes
GraphWCET(tn−3, x(n−3)k∗) and add ordered set(tn−3, x(n−3)k∗) to multisetXn−4 for the
next stagen− 4.

Continuing in this way for stages(n− 4,n− 5, . . . ,3,2), we calculate theGraphWCET
for each state composed of a task eligible to execute in that stage followed by a particular
order of software-tasks in the previous stage, selecting at most|SWNEVER| task orders to
pass on to the next stage. Note that as we decrease the stage number by one, we increase
the number of tasks in each ordered setxik ∈ Xi by one.

Thus, when we reach stage 1, we consider up to|SWNEVER| task orderings of all tasks in
SWNEVER, where the first task executed is thesrc . From these possibilities we choose the
best and find an order of execution for the tasks in theSWNEVERset yielding the smallest
GraphWCETamong the orders considered. Note that the final list from which the solution
is chosen is composed of task orderings chosen based on the optimality of suborderings
along the way, i.e., by selecting thexik that minimize the overallWCET for the graph
(theGraphWCET). Since choosing local minima may accidentally kick out a subordering
which later turns out to be necessary for the global minimum, this formulation is a heuristic.
However, it performs in polynomial time.

We next show the application of the algorithm to our example.
In order to begin with the last stage (i.e., stagen = 5), we schedule the sink, yielding

f5
∗(sink) = 0.
For stagen − 1 = 4, theWCET is determined entirely by the current state (whichever

task is chosen to execute). Therefore, our table of calculations need only includes4, f4(s4)

andX4.

112 MOONEY AND DE MICHELI

Table 2. Constructive heuristic
scheduling example stagen −
1= 4.

X4 f4(s4)

t4 sink X3

oh0 ∞
oh1 21,799 (oh1,sink)
cjd 26,413 (cjd,sink)

Table 3.Constructive heuristic scheduling example stage 3.

X3 f3(s3)

t3 (oh1,sink) (cjd,sink) x3k∗ f3∗(t3, x3k∗) X2

oh0 24,020 ∞ (oh1,sink) 24,020 (oh0,oh1,sink)
oh1 ∞ 43,812 (cjd,sink) 43,812 (oh1,cjd,sink)
cjd 35,012 ∞ (oh1,sink) 35,012 (cjd,oh1,sink)

Example 13. Consider Figure 7. We haven = 5 stages. For stage 5 we found that
f5
∗(sink) = 0. Table 2 shows the calculations for stage 4. From this we achieve

one optimization for the next stage already:oh0 cannot be scheduled in this stage due to
control/data-flow (precedence) constraints. Thus, the multisetX3 calculated for the next
iteration only has two members.

Figure 8 showed the two sets of tasks scheduled and theirWCETpaths in this pass of the
algorithm.

For stagesn − 2 through 2, we use thefi+1 and Xi values calculated in the previous
iteration. Note that for each possible ordered set of tasks, in the worst casen ∗ (|V | + |A|)
operations have to be performed in calculatingGraphWCET(si), whereV denotes the
vertices andA denotes the directed edges in the DAG of the task flow.

Example 14. Continuing our attempt to schedule Figure 7, we pass now to stage 3. Table 3
shows the calculations for this stage. The first finite-valued entry contains theGraphWCET
if oh0 is scheduled in stage 3 andoh1 in stage 4 (with thesink in stage 5). Note that
it is not possible to scheduleoh0 in stage 3 andcjd in stage 4 due to control/data-flow
constraints. Note also that there is no column forx3k = (oh0 , sink) since it was not
possible to scheduleoh0 in stage 4.

To calculate theGraphWCETvalues fors3, given that we execute taskt3 in this stage (3)
and the first task inx3k in the next stage (4), requires scheduling the subgraph covered by
taskt3, the tasks inx3k, and all of their successors. We use an ASAP schedule.

Figure 9 showed the states scheduled in this stage and and theirWCETpaths in this pass
of the algorithm.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 113

Table 4.Constructive heuristic scheduling example stage 2.

X2 f2(s2)

t2 (oh0,oh1,sink) (oh1,cjd,sink) (cjd,oh1,sink) x2k∗ f2∗(t2, x2k∗) X1

oh0 ∞ 46,033 37,233 (cjd,oh1,sink) 37,233 (oh0,cjd,oh1,sink)
oh1 ∞ ∞ ∞
cjd 37,233 ∞ ∞ (oh0,oh1,sink) 37,233 (cjd,oh0,oh1,sink)

Table 5.Constructive heuristic scheduling example stage 1.

X1 f1(s1)

t1 (oh0,cjd,oh1,sink) (cjd,oh0,oh1,sink) x11∗ f1∗(t1, x11∗) X0

src 39,012 41,233 (oh0,cjd,oh1,sink) 39,012 (src,oh0,cjd,oh1,sink)

Example 15. Next consider stage 2 of the attempt to schedule Figure 7 using the con-
structive heuristic scheduling algorithm. Table 4 shows the calculations for this stage.
For the states beginning with taskoh0 , the minimum value off2 is selected byx2k∗
yielding one value forf2

∗. Note thatx2k∗ is a set that takes on two different values,
namely (cjd,oh1,sink) and (oh0,oh1,sink), in the course of the calculation. On
the other hand,X1 is a multiset that contains all of the sets in its column, soX1 =
{(oh0 , cjd , oh1 , sink), (cjd , oh0 , oh1 , sink)}.

Note that the states eliminated in calculatingfi ∗(si) leave us carrying at most|SWNEVER|
ordered sets of tasks to the next stage calculation. This means at most|SWNEVER|2 different
possible task orderings are considered in each stage, just as we noted earlier. Unfortunately
one of the states eliminated in calculatingfi

∗(si), while suboptimal locally, may turn out
to be the global optima.

Example 16. Now for the last set of computations, stage 1. There is only one starting state,
the source, so the table has only one row. Table 5 shows the calculations for this stage.
The minimumWCET for the graph is found in choosingx11∗. Note that the algorithm
finally takes into account theWCET for taskcg , making the option of selectingcjd to
execute beforeoh1 less favorable. We end up withX0 = {x01∗}, and so the order found
is x01∗ = (src , oh0 , cjd , oh1 , sink) with a WCETof 39,012. Thus we giveoh0 the
highest priority,cjd the second-highest, andoh1 the lowest priority. Note that we useX0

andx01∗ only to record the final order found (there is no stage 0).

Thus we have an order (given our assumptions) of execution of tasks in theNEVERset
which minimizesWCET from among the task orders considered. We use this order to
statically set the priorities for the software-tasks.

114 MOONEY AND DE MICHELI

Figure 12.Multiple NEVERset example.

5.2. Multiple NEVER Sets of Hardware-Tasks

Up till now we have formulated our scheduling problem under the assumption that we have
unlimited hardware and a single processor. Now suppose we do have limited hardware
resulting in hardware-tasks implemented on the same hardware resource. We represent
each such resource constraint with aNEVERset of mutually exclusive hardware-tasks
which cannot overlap execution.

We can include multipleNEVERsets of hardware-tasks by extending the constructive
heuristic scheduling algorithm in a straightforward fashion. We simply set the number of
stagesn equal to the total number of tasks in allNEVERsets, plus two for thesrc and
sink . Let the number of distinctNEVERsets bed, where the firstNEVERset contains
all software-tasks in the application, while subsequentNEVERsets contain hardware-tasks
which utilize the same hardware resource to accomplish their computation.

Example 17. We consider a modified version of Figure 7 where the four tasksmvm1-4
are all executed on the same hardware modulemvm. Figure 12 shows the six of the seven
tasks in the twoNEVERsets as they are scheduled in stage 4 of the constructive heuristic
scheduling algorithm. We haven = 9 stages, sof9

∗(s), f8
∗(s), f7

∗(s), f6
∗(s) and f5

∗(s)
have already been calculated. The shading in Figure 12 identifies the tasks in the same
NEVERset scheduled at this step of the algorithm; the thick arrows indicate the relative
ordering among all of the tasks. The table for this stage is not shown here but would look
similar to Table 4. except that it would have seven by seven entries, one row/column per
task in aNEVERset.

Note that at this stage we have already scheduled 5 tasks and are considering which task
to schedule just before those 5. Due to precedence constraints in the DAG, none ofmvm1-4

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 115

can be scheduled at this stage, and therefore the entries are empty. (For example there is no
way to schedulemvm1in this stage and thus have 5 tasks scheduledafter mvm1completes.)

The constructive heuristic scheduling algorithm has already been shown in Figures 10 and
11. The only difference in calling the algorithm is that instead of passing inSWNEVER, we
call it with a multisetNEVERSETSwhich contains the firstNEVERset equal toSWNEVER,
while the rest of theNEVERsets all contain only hardware-tasks. The major difference from
the singleNEVERset algorithm shown in Figures 10 and 11 occurs in scheduling the DAG at
each step in the algorithm. Instead of a single ASAP schedule for the entire graph, we have
to perform an ASAP scheduling of the graph for each distinct never set. Thus, in the worst
case,(|V | + |A|) ∗ d operations have to be performed in calculatingGraphWCETextra(si)

of Definition 5.13, whered denotes the number ofNEVERsets contained in the multiset
NEVERSETS.

5.2.1. Complexity Analysis

First note that in order to calculatefi (si) = fi (ti , xik), we have to ASAP schedule the
DAG Gsi (Vsi , Asi), whereVsi denotes the vertices andAsi denotes the directed edges (ar-
rows) in the DAG of the task flow ofsi . Note thatGsi (Vsi , Asi) has already scheduled all
resource-constrained tasks other thanti in the previous stage. For each task inNEVERi ∈
NEVERSETS, an upper bound on the number of constant operations that have to be per-
formed for the ASAP schedule is((|Vsi | + |Asi |) ∗ d), whered is necessary since each task
may have to be visitedd times to account for multiple fanins. Since in each stageti ranges
over the tasks in someNEVERset, and recalling thatn−2=∑NEVERi∈NEVERSETS|NEVERi |,
we find thatti can take on any ofn − 2 values. Now, since for each possible value ofti
we select at most one value ofxik∗, Xi−1 has at mostn − 2 members in each iteration.
Thus, since in each iteration we calculatefi for every possible state (ti , xik), in the worst
case(n− 2)2 calculations offi are needed each iteration. Together with our earlier upper
bound of(|Vsi | + |Asi |) ∗ d for calculating fi , we end up with an asymptotic upper bound
of O((n− 2)2 ∗ (|Vsi | + |Asi |) ∗ d) = O((n2) ∗ (|V | + |A|) ∗ d) calculations for one stage
(i.e., forCalc WCETof Figure 10).

For Solveorder shown in Figure 11, none of the lines take time greater thanO(n2 ∗
(|V |+|A|)∗d). Thus, since we callCalc WCETat mostn times, our constructive heuristic
scheduling algorithm with multipleNEVERsets takes timeO(n3∗(|V |+|A|)∗d). Assuming
we can boundV , A, andd with a polynomial ofn, we have a polynomial-time algorithm.

5.3. Practical Considerations for the Calculation ofWCET

In order to make a correct calculation of theWCET, we have to consider the time spent
executing the ISR and thepriority scheduler . To be more specific, we will consider
the case where the processor is a MIPS R4K. To calculate theWCETof the entire graph,
we use the following costs, obtained by analyzing our run-time scheduler software code

116 MOONEY AND DE MICHELI

executed on a MIPS R4K model (with no cache analysis, i.e., assuming we always miss in the
instruction cache): interrupt overhead= 38 cycles and priority scheduler task selection=
98 cycles.

For the interrupt, we use pinInt(0) on the MIPS R4K model and do not save the register set
before passing control to the priority scheduler software. The priority scheduler template
uses several registers reserved for the kernel; it also uses two general purpose registers,
which it saves before using and restores just before exiting. Otherwise, with a general
context switch, our interrupt overhead would be much larger. Also, since each task runs
to completion (Assumption 5.3), no context switches are needed between tasks (in the
following sections, we will show how to relax this assumption and still account for the
worst case).

We use these costs to calculate theWCETof the entire graph. Note that in the actual
implementation of the constructive heuristic scheduling algorithm, theWCETfor the ISR
and theWCET for the priority scheduler are added to theWCET for each software-task
when calculating the task priorities.

We use the priority scheduler with the priorities found via constructive heuristic schedul-
ing. Note that we assume that precedence constraints needed to implement the chosen
task order is enforced by the run-time scheduler. In other words, no interrupts updating
thestart vector ofstart events for the software-tasks for a particular software-task until all
higher-priority software-tasks are finished executing

Example 18. Consider Figure 7. We use the priorities found in Example 16. We find
that the run-time scheduler causes three interrupts. Since the hardware part of the run-time
scheduler enforces the precedence constraint ofcjd beforeoh1 , 1,643 clock cycles go
unused between the completion ofoh0 and the start ofcjd . After the third interrupt,
oh1 executes concurrently withmvm2, mvm3andmvm4. After oh1 finishes, thenmvm1
executes.

A straightforward ASAP schedule is used. Several of the software- and hardware-tasks
have loops, for each of which the user provided upper bounds (the analysis ofCINDERELLA-
M supports user specification of loop bounds [28]). Notice how the critical path runs through
both hardware and software in different execution paths. Table 6 shows the calculation.

The overallWCETis 39,284 cycles.

Recall that we assume that the hardware part of our run-time scheduler is the only source
of interrupts for the CPU (Assumption 5.5). Now we know that we can generate the FSM
such that hardware part of the run-time scheduler only interrupts the software to indicate
that the next highest priority task is ready to execute once the previous task (in priority
level) has completed. Thus, we can guarantee that each software task runs to completion
(Assumption 5.3). With these two assumptions, we find that no context switches ever occur
in our software (no calls tosave context or restore context). Furthermore, only
one call tointerrupt service routine (ISR) and one call topriority scheduler
are needed per software task. Thus, we find that the final output of ourWCETcalculation is
an upper bound on theWCETof the graph, given the priorities assigned to software-tasks in
the sameNEVERset. The pseudo code for thisWCETcalculation was shown in Figure 10.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 117

Table 6. WCETcalculation example.

sw-task # cycles hw-task # cycles

int-ser-routine 38 cg 4,000
priority-sch-sw 98
oh0 2,221
int-ser-routine 38 fk 4,500
priority-sch-sw 98
cjd 13,213
int-ser-routine 38 mvm2 4,400
priority-sch-sw 98
oh1 17,399
” ” mvm3 4,400
” ” mvm4 4,400

mvm1 4,400

So we now can analyze satisfiability of a rate constraint in a dynamically changing,
concurrent execution of hardware-tasks and software-tasks, given our run-time scheduler
implementation.

6. Context Switch Cost and Out-of-Order Execution

In the previous section, we found a solution that minimizesWCETwhen software-tasks are
assigned priorities and not executed until all higher priority software-tasks have completed.
However, in some cases there may be unused CPU cycles between two software-tasks with
consecutive priorities, e.g. if a hardware-task needs to finish to satisfy precedence constraints
(captured in the DAG). Thus, we may want to relax Assumption 5.3 and allow lower priority
software-tasks to execute during otherwise unused CPU cycles, even when some higher
priority tasks have not yet executed. We call this situationout-of-order executionbecause
we abandon the exact sequencing of software-tasks according to their priority as was done
in the previous section.

However, now ourWCET calculation must account for software-tasks which are par-
tially executed and then interrupted. In our analysis theWCETof a context switch is for
eithersaving the register set—save context —or for restoring a previous register set—
restore context . Since context switching is a major cost to consider when trying to
optimize for real time,2 we feel that the savings is worth the effort spent separating the two
kinds of contexts switches.

Note that when a particular software-task completes its execution, there are no registers to
save when transferring the processor to another software-task. Similarly, when a particular
invocation of a software-task first begins execution, there is no register state to load. Elim-
inating context switches in these cases does not mean that there cannot be other processes
switched out; it just means that saving or restoring the register set may not be necessary at
that particular instant.

Interrupts are disabled during context switches. The priority scheduler is restarted if
an interrupt is received during its execution. Note that due to the construction of the

118 MOONEY AND DE MICHELI

hardware part of the run-time scheduler, at most one interrupt will occur per software-
task.

6.1. Upper Bound on Extra Calls to the Priority Scheduler and Context Switch

Suppose we havem software-tasks whose order, assuming each runs to completion, has
been found by the constructive heuristic scheduling algorithm described in Section 5. Then,
suppose we allowl of the software-tasks to execute out-of-order; that is, for any of thel
software-tasks, if it is ready to start before software-tasks higher in priority are ready, we
allow it to execute until one of the higher priority tasks is ready to execute. (Clearly,l < m
since the highest priority task cannot execute “out-of-order.”) Since at most one interrupt
will occur per software-task for each execution of the application (as captured in the DAG),
the ISR overhead is fixed based on the number of software-tasks. With interleaved execution
of software-tasks, however, the number of calls to the scheduler is not fixed. What is the
overhead, in terms of extra executions of the priority scheduler and context switch code,
incurred by allowing thesel tasks to execute early (out-of-order)?

In order to begin our analysis, we define the following:

DEFINITION 6.1 Let5 assign a priority to each software-task that minimizes WCET if each
task runs to completion: if5(sa) > 5(sb) then the sa has a higher priority than sb.

Presumably we found5 using the constructive heuristic scheduling algorithm of the
previous section.

DEFINITION 6.2 A software-task executesearly when the run-time scheduler sets its start
event before all higher priority tasks have completed execution.

Clearly, a software-task that executes early can possibly execute out-of-order.

DEFINITION 6.3 Let I = {i1, i2, . . . , i l } = the set of l software-tasks allowed to execute
early and possibly execute out-of-order.

Each taski ∈ I can have part or all of it computation performed before the software-task
immediately preceding it in priority has even begun to execute at all.

DEFINITION 6.4 Suppose we have two tasks i and j with5(j) > 5(i) but under some
conditions it is possible that the run-time scheduler will assert the start event for i before
the start event for j . Then we say that software-task i canjump software-task j .

Clearly, for it to be possible fori to jump j , then there cannot be any precedence constraint
betweeni and j .

DEFINITION 6.5 Given a set I of software-tasks that can execute early, let
J = { j1, j2, . . ., jq} = the set of q software-tasks that can bejumped by some i∈ I .

Example 19. Consider the DAG shown in Figure 13 where theNEVERset specifies
software-tasks which must execute on the same CPU. The order of tasks in theNEVERset
which minimizesWCET for the graph is(oh0 , cjd , oh1)—thus5(oh0) > 5(cjd) >

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 119

Figure 13.DAG, WCET and5 example.

5(oh1)—and is shown by the two darker arrows in Figure 13. Thus, the static pri-
ority scheduler in software has the highest priority assigned tooh0 , the next highest
priority to cjd and the lowest priority tooh1 . Notice that afteroh0 finishes, there
are 8,779 cycles of delay beforecjd can start, due tocg (note that this example uses
a different hardware version ofcg than Figure 7). If the run-time scheduler were to
set the start event foroh1 right after oh0 finishes, thenoh1 would executeearly and
cjd would be jumped. In this case we would haveI = {i1} = {oh1 } and J = { j1}
= {cjd }.

In general, a task can be in bothI andJ. Note that in Figure 14, Figure 15, Example 20 and
the subsequent proofs, the abbreviationp stands for a call to thepriority scheduler
code,scto thesave context code andrc to therestore context code.

Example 20. Figure 14 shows a graphical representation of the execution of the DAG of
Figure 13 whereoh1 executes early (i.e., out-of-order) with respect to its assigned priority

120 MOONEY AND DE MICHELI

Figure 14.DAG with out-of-order execution example.

(the thick arrows indicate the out-of-order execution flow). The two small columns show
which extra calls to thepriority scheduler code (p), save context code (sc) and
restore context code (rc) occur. An extra call top first occurs to schedulei1 = oh1
right afteroh0 finishes. There is no need to call any context switch code since one software-

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 121

Figure 15.Extra priority scheduler and context switch time examples.

task is completely finished, namelyoh0 , and the other software-task,oh1 , starts up from the
beginning of its code. Next,j1 = cjd becomes ready, necessitating a call toscto store the
register state foroh1 . Finally,cjd finishes and a call torc is needed to continue execution
of oh1 from its state when it was interrupted. Thus, after thesource , i1 causes an extra
call to p, j1 causes an extra call tosc, i1 causes an extra call torc and finally thesink is
reached. Thus, the columns show the extra overhead incurred in extra calls top, scandrc
that would not have been incurred were the tasks executed strictly in order of their assigned
priorities.

Example 21. Let’s consider the three examples of Figure 15. In(A), I = {i1} and|I | = 1;
in (B), (C), (D) and(E), I = {i1, i2, i3} and|I | = 3. Notice that in all five examples the
number of software-tasks that get “jumped” is|J| = 10. Both(B) and(C) have some tasks

122 MOONEY AND DE MICHELI

in both I andJ; for example, in(B) i1 andi2 can be jumped byi3, and so bothi1 ∈ J and
i2 ∈ J.

In (A), i1 is allowed to execute after the source. So, in every space between two software-
tasks,i1 tries to execute, causing an extra call top and torc before actually running any
instructions ofi1 itself. Then, when a task inJ is ready to execute, a call toschas to be
made sincei1 is not finished yet. Notice that norc calls are needed for any of the tasks in
J since eachj ∈ J runs to completion.

Next we propose two theorems about the number of additional calls top, rc andsc if
we allow software-tasks in a setI to execute while no higher priority tasks are ready (even
though some higher priority task has yet to start execution). For the sake of simplicity, note
that in the following, given two setsA andB, we useA− B to denote the elements ofA
not in B.

THEOREM6.1 Consider o hardware-tasks and m software-tasks{s1, s2, . . . , sm} with pri-
ority 5 which execute on a single processor.

Let I = {i1} be a single software-task allowed to executeearly. Furthermore, let the
software-tasks that i1 can possiblyjump be J= { j1, j2, . . . , jq}, where5(j1) > 5(j2) >
· · · > 5(jq) and q< m.

Claim: the number of additional calls to thepriority scheduler(p) ,
save context(sc) and restore context(rc) code due to allowing the software-
task i1 to execute early has an upper bound of

|J| ∗ (p+ sc+ rc). (I)

Proof. The proof is reported in [32], [33].

Example 22. An example of the worst case scenario is shown in(A) of Figure 15,
which shows the case forq = 10. The total number of extra calls is 10∗ (p + rc
+ sc).

THEOREM6.2 Consider o hardware-tasks and m software-tasks{s1, s2, . . . , sm} with pri-
ority 5 which execute on a single processor.

Let I = {i1, i2, . . . , i l }, where5(i1) > 5(i2) > · · · > 5(i l), be software-tasks, l< n,
such that all of them are allowed to executeearly. Furthermore, let the different software-
tasks that some i∈ I can possibly jump be J= { j1, j2, . . . , jq}, where5(j1) > 5(j2) >
· · · > 5(jq).

Claim: the number of additional calls to thepriority scheduler (p),
save context (sc) andrestore context (rc) code due to allowing the software-tasks
of I to execute early has an upper bound of

(|(J − (J ∩ I)) ∪ I | − 1) ∗ (p+ sc+ rc). (II)

Proof. The proof is reported in [32], [33].

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 123

The main point of this section has been accomplished: to analyze the worst-case over-
head incurred in allowing software-tasks to execute out-of-order. Our major result is
Equation (II), which gives us a formula which quantifies the number of extra calls to the
priority scheduler , save context and restore context code, where we as-
sume that each software-task necessitates one call to theinterrupt service routine -
(ISR) andpriority scheduler .

6.2. Instruction Cache Analysis

We want to quantify all of the overhead associated with allowing software-tasks to execute
out-of-order. The previous section dealt with the overhead in terms of extra calls to the
priority scheduler and context switch code. What about the instruction cache?

To calculate theWCETof a software-task, we useCINDERELLA-M. However,CINDERELLA-
M’s instruction cache analysis assumes that no interrupts occur [27]. In our case, the
presence of interrupts means that a software-task’s instructions can possibly be kicked out
of the instruction cache if it is suspended to allow execution of a newly ready, higher priority
software-task. Thus, we use the following heuristic to augmentCINDERELLA-M’s analysis.

CINDERELLA-M calculates the binary code size of each software-task. From this, we
calculate the maximum number of instruction cache lines needed and the cost of reloading
the entire instruction cache with the task’s instructions. Note thatCINDERELLA-M’s analysis
[28] already includes the worst-case effects for the situation where the binary code size is
greater than the instruction cache size, so the maximum number of instruction cache lines
we have to consider is bounded by the size of the instruction cache.

Ideally CINDERELLA-M would return aworst case instruction cache penaltydue to the
instruction cache being emptied of a task’s instructions. However, we simply read the binary
code size using theView→Function Statistics command ofCINDERELLA-M. Then
we use the following formula, wherebinarycodesizeandicachelinesizeare in bytes:

WCETreloadicache=
(⌈

binary code size−1

icache line size

⌉
+1

)
∗(time to load a single icache line)

(III)

Note that thebinary code size-1 and+1 in the formula are necessary to account for the case
where the first instruction byte maps to the last byte of an instruction cache line. The only
exception to this formula is when it gives a result greater than the time to load the entire
instruction cache, in which case we takeWCET reload icacheto be the lower value, i.e.,
the time to load the entire instruction cache.

Thus, for each possible interruption by a higher priority task that a task can experience,
we have to add the cost of reloading all the instruction cache lines for that task to the overall
WCETfor the entire graph. In the worst case, this additional cost will be incurred for every
possible call torc. Thus, for each possible call torc, we add the worst case instruction
cache refill time, as well as theWCETfor therestore context code.

Example 23. Software-taskoh1 , when compiled, has a binary code size of 3584 bytes.
TheView→Function Statistics command ofCINDERELLA-M is one way to count

124 MOONEY AND DE MICHELI

the binary code size, and this is the method we use. The MIPS R4K we use has icache line
size of 16, while the time to load a single instruction cache line is 18 cycles. Thus, foroh1 ,
we find the following using Equation (III):

WCET reload icache=
(⌈

3584− 1

16

⌉
+ 1

)
∗ (18) = 4050

6.2.1. Practical Considerations in Instruction Cache Analysis

As in Section 5.3, we consider the case where the processor is a MIPS R4K. Note that the
MIPS R4K does not have a scratchpad section in its primary caches (instruction and data
are separate), nor is it configurable to allow one. The cache controller is all in hardware.
Thus, in order to calculate theWCETof the four operating systems routines we use (ISR,
priority scheduler , save context , andrestore context), we always assume
that they miss in the instruction cache; this assumption was implicit when we calculated
these values in Section 5.3.

This estimate is obviously undesirable because the routines are called often and most
likely will often be resident in the cache (e.g., none of the three software-tasks considered
in our robotics example take up the full instruction cache size of 8K). We could eliminate
the instruction cache misses for these four routines in general by either(i) finding with
other analysis an upper bound on the number of times the routines can be kicked out of the
instruction cache, or(ii) placing the four routines into a scratchpad section of the instruction
cache (i.e., a scratchpad section is one that is never kicked out by the caching system in
order to make room for new instructions due to a cache miss). Unfortunately,(ii) is not
available for the specific CPU we consider.

6.3. Total Upper Bound on WCET

In this section we combine the results of the previous two sections in order to come up with
a total upper bound formula for the case of tasks with priority5 running on a CPU where
the setI of tasks may execute early and the setJ of tasks may be jumped.

Let WCETprschedbe theWCETof thepriority scheduler code,WCETsavecntxt
be theWCET of the save context code andWCETrestorecntxtbe theWCET of the
restore context code. Furthermore, letWCET reload icachei be the maximum addi-
tionalWCETdue to extra instruction cache misses in taski ∈ I , and letWCET reload icache
be the maximum additionalWCET due to extra instruction cache misses for any
i ∈ I .

Now, for each possible interruption by a higher priority task that a task can experience,
we have to add the cost of reloading all the instruction cache lines for that task to the overall
WCETfor the CPU. In the worst case, this additional cost will be incurred for every possible
call to rc. Thus, for each possible call torc, we add the worst case instruction cache refill
time, as well as theWCETfor therestore context code.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 125

Thus, by Theorem 6.1 and its corresponding Equation (I), for a givenG and I with one
element{i1} and the associatedJ, an upper bound on the increase in overallWCETfor G
is given by the following:

|J| ∗ (WCETprsched+ WCETsavecntxt+WCETrestorecntxt

+ WCET reload icache) (IV)

Similarly, by Theorem 6.2 and Equation (II), for a givenG and I with associatedJ, an
upper bound on the increase inWCETfor G is given by the following:

(|(J − (J ∩ I)) ∪ I | − 1) ∗ (WCETprsched+WCETsavecntxt

WCETrestorecntxt+WCET reload icache) (V)

This completes our calculation of the total upper bound onWCET for the CPU with in-
struction cache analysis included.

6.4. Constructive Heuristic Scheduling with Out-of-Order Execution

In this section we present a heuristic algorithm that can improve the solution of the con-
structive heuristic scheduling algorithm where we do not have Assumption 5.3 and thus
software-tasks are not all necessarily atomic. In other words, we allow a lower prior-
ity software-task to execute part of its calculation during (previously) unused CPU cy-
cles when a higher priority software-task is not yet ready to execute (for example, if the
higher priority software-task is waiting for the completion of a hardware-task). Before
allowing the out-of-order execution, we calculate the extra overhead (e.g., due to con-
text switch) and make sure that, overall, we still arrive at a faster execution time for the
application.

We proceed as follows. First, we compute the priorities by the algorithm of Section 5 for
multipleNEVERsets. Thus, we have an order of software- and hardware-tasks contained in
NEVERSETSand the correspondingWCETfor the DAG representing the application. Our
goal is to increase CPU utilization by starting execution of a low priority software-task that
is ready when no higher priority software-task is yet ready. However, if not done carefully,
we could end up increasing overallWCET, although in general relaxing Assumption 5.3 will
allow us to reduceWCET for the graph, thus improving our solution. We use the bounds
proven in Section 6.3 to guide our decision and guarantee that any out-of-order execution
allowed will not worsen theWCET.

The basic insight that we gain from the Section 6.3 is the following. Suppose we consider
a software-taskpi lower in priority (and thus later in execution if all software-tasks execute
strictly in priority order) than two consecutive priority software-tasksk1 andk2 which
leave the CPU unused for a certain number of cycles between the completion ofk1 and
the beginning ofk2. Let’s define a functionget space (k1, k2) that returns a number
equal to the amount of unused CPU cycles. Should we allowpi to execute afterk1 finishes
(assuming there are no control/data-flow constraints preventingpi from doing so)? To
answer this question, we use the bound found in Equation (V) of Section 6.3: if the amount

126 MOONEY AND DE MICHELI

Executeout of order(G,5,NEVERSETS,WCETprsched,
WCETsavecntxt,WCETrestorecntxt) {

1 SWNEVER= 1st set inNEVERSETS; m = |SWNEVER|;
/* Get set and number of software-tasks */

2 Ä = (src , p1, p2, . . . , pm) wherepi ∈ SWEVER,1≤ i ≤ m,
and5(p1) > 5(p2) > . . . > 5(pm);

/* Ä stores the source followed by the software-tasks in priority order */
3 p0 = src ; /* now we haveÄ = (p0, p1, p2, . . . , pm) */
4 W = WCETprsched+WCETsavecntxt+WCETrestorecntxt;
5 I = ∅; J = ∅; 9 = ∅; /* 9 keeps track of new precedence constraints */
6 i = 1; WCET reload icache= 0;

/* i keeps count of the number of tasks in setI plus one */
/* in the following for loop, we consider allowing software-tasks(pm, pm−1, . . . , p2)

to execute early */
7 for (l = m; l ≥ 2; l −−) {
8 k2= pl−1;
9 if (k2 ∈ J) v = 0; elsev = 1;

/* v keeps count of the number of tasks skipped bypl and not already∈ J */
10 newprec task= k2;
11 for (k1= pl−2 to k1= p0) {
12 if (∃ a precedence constraint{k2→ pl }) continue;

/* exit inner for(k1=. . .) loop */
13 if (get space (k1, k2)≥ (i + v + num tasks skipped (Ä) - 1)

*(W + WCET reload icachei)) {
14 newprec task= k1;
15 after prec task= k2;
16 if (WCET reload icachei > WCET reload icache)

WCET reload icache=WCET reload icachei ;
17 }
18 k2= k1;
19 if (k2¬ ∈ J) v ++;
20 }
21 if (newprec task) {
22 9 =9 ∪ {newprec task→ pl };

/* add new precedence constraint{newprec task→ pl } to9 */
23 updateI , J;
24 reduceget space (newprec task,after prec task)
25 by (i + num tasks skipped (Ä))*(W + WCET reload icachei);
26 i ++;
27 } else{ 9 =9 ∪ {pl−1→ pl }; } /* add consecutive precedence constraint to9 */
28 }
29 return(9, WCET reload icache);
}

Figure 16. Execute out-of-orderalgorithm.

of space (unused cycles) is greater than or equal to Equation (V), then yes, otherwise no.
That is the insight behind the heuristicExecute Out-of-orderprocedure of Figure 16.

We describe now the heuristic algorithm of Figure 16 that improves the execution time
of a schedule by allowing out-of-order execution. From5, which was computed by the
algorithm described in Section 5.2, we obtain the software-task order(p1, p2, . . . , pm),
where there arem software-tasks. Then we consider allowing a software-taskpl to ex-

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 127

ecute early one at a time in reverse order of the software-tasks from this set (except for
the first software-task, for which it does not make sense to execute early). Thus, given
a software-taskpl ∈ (p2, p3, . . . , pm), and starting with the software-task scheduled last
(i.e., pm), we consider allowingpl to execute early. For each such software-taskpl we
check if pl can execute in some unused space between two consecutive and higher pri-
ority software-tasksk1 andk2, assuming no precedence constraints are violated. Ifpl

can execute in the space, then we check if the space is big enough to account for the
worst-case extra execution time that will be incurred according to Equation (V). Note that
we calculate Equation (V) in Figure 16 by usingnum tasks skipped (Ä), a function
which returns the number of tasks currently in(J − (J ∩ I)) (i.e., not including the tasks
currently under consideration, unless they were already placed inI or J in a previous it-
eration). Now, if the space of unused CPU time is big enough, then we greedily schedule
pl in that space and appropriately reduce the available space to reflect the new sched-
ule; otherwise we add the precedence constraint of strict in-order consecutive execution,
namely{pl−1 → pl }. As we go along, we keep track ofI and J as we add tasks to each
set. Continuing in this way, we consider all possible software-tasks one by one for early
execution.

When this heuristic completes, we have a final set of precedence constraints for the
software-tasks that allows out-of-order execution without increasing theWCETof the ap-
plication.

Note that in order to make a correct calculation of theWCET, we have to consider the time
spent executing the ISR, the priority scheduler, and context switches. As in Section 5.3, we
will consider the specific case where the processor is a MIPS R4K. We use the following
costs, obtained by analyzing our run-time scheduler software code executed on a MIPS
R4K model (with no cache analysis, i.e., assuming we always miss in the instruction and
data caches): save context = 162 cycles, restore context = 162 cycles, interrupt overhead =
38 cycles, and priority scheduler task selection = 98 cycles.

Example 24.[Sample Application ofExecute Out-of-orderalgorithm] Consider Figure 17,
which shows theBCETandWCETfor each task, the icache refillWCETfor the software-
tasks (SWNEVER), and the priorities found for the tasks:5(oh0) > 5(cjd) > 5(oh1).

We begin by consideringoh1 for out-of-order execution. We find that the space between
the end ofoh0 and the beginning ofcjd is 11,000 - (2,221 +WCETisr+WCETprsched) =
8,643 cycles (using the costs above, we find thatW =WCETprsched+WCETsavecntxt+
WCETrestorecntxt= 422). At this point in the algorithm of Figure 16, we find that
(i +m+num tasks skipped (0)−1) = 1+1+0−1 = 1, and thatWCET reload icachei
= 4,050, giving us a move cost of 1∗ (422+ 4,050) = 4,472. Since 8,643≥ 4,472, we
setnewprec task(of Figure 16) tooh0 . We next find out thatoh1 cannot execute before
oh0 sinceoh1 requires data generated byoh0 . Thus, we add the precedence constraint
{oh0 → oh1 } which means that we do not add precedence constraint{cjd → oh1 }.
Therefore, the run-time scheduler will set thestart event ofoh1 as soon asoh0 finishes
execution instead of waiting forcjd to finish.

We next considercjd for out-of-order execution. We find that it does not make sense to
try to havecjd execute beforeoh0 sinceoh0 starts right away. So we add the precedence

128 MOONEY AND DE MICHELI

Figure 17.Example withWCETcalculation of instruction cache refill time.

constraint{oh0 → cjd }which means thatcjd }will run to completion (since it cannot start
until the task immediately preceding it in priority executes). This completes the algorithm
of Figure 16 for the example of Figure 17.

Note that the precedence constraint{oh0 → oh1 } in this case is redundant because the
precedence constraint is already enforced by a control/data-flow constraint (in general, of
course, such redundancy will not always be the case).

The result is that the lower priority taskoh1 executes in the idle CPU time between the
end ofoh0 and the beginning ofcjd .

6.4.1. Calculation of WCET With Out-of-Order Execution

After execution of theExecute Out-of-orderalgorithm of Figure 16, we have a maximum
value forWCET reload icache(which could be zero if|I | = 0).

With the context switch, interrupt and priority schedulerWCETcosts we obtained from
our MIPS R4K example, we calculate theWCETof the entire graph, scheduling everything
ASAP where each software-task hasWCETisr+WCETprsched= 136 cycles added to its
WCET. At this point we have performed exactly the same calculations as in Section 5.3. If
|I | = 0, then this is our final answer.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 129

Table 7. WCETcalculation example.

sw-task # cycles hw-task # cycles

int-ser-routine 38 cg 11,000
priority-sch-sw 98
oh0 2,221
int-ser-routine 38
priority-sch-sw 98
oh1 8,507
int-ser-routine 38 fk 4,500
savecontext 162
priority-sch-sw 98
cjd 13,213
priority-sch-sw 98 mvm2 4,400
restorecontext 162
WCET reloadicache 4,050
oh1 8,892 mvm3 4,400
“ “ mvm4 4,400

mvm1 4,400

If |I | 6= 0, then bothI and J are nonempty, and we have to account for extra overhead.
We use the bound found using Theorem 6.2 in Section 6.3, namely Equation (V), reprinted
here for convenience:(|(J − (J ∩ I)) ∪ I | − 1) ∗ (WCETprsched+WCETsavecntxt+
WCETrestorecntxt+WCET reload icache). Adding this value to theWCET found from
scheduling the graph gives us an upper bound on theWCETof the graph. This is the value
we return to the user.

Example 25(WCET calculation). Consider Figure 17. If we make each software-task run
to completion, then with the optimal order of (oh0 , cjd , oh1) we calculate that theWCET
for the graph is 46,148 cycles. However, we found in Example 24 that we should allow
oh1 to execute afteroh0 , even thoughoh1 has a lower priority than software-taskcjd .
This allows previously unused CPU cycles to be filled.

We haveJ = {cjd }, I = {oh1 } and J ∩ I = ∅. The heuristic of Figure 16 gives
us WCET reload icache= 4050. Using our costs forWCETprsched, WCETsavecntxt,
and WCETrestorecntxt, we find thatW = 422. From Equation (V) and our cost for
WCET reload icache, we find that (|(J − (J ∩ I)) ∪ I | − 1) ∗ (WCETprsched+
WCETsavecntxt+WCETrestorecntxt+WCET reload icache) = 1∗(422+4050) = 4472.
Table 7 shows the ASAP graph schedule with the worst-case execution time added in.
Notice that the maximum context switch overhead and the maximum one additional call
to the priority scheduler have been accounted for. The actual order of execution is shown
in Figure 18. The finalWCET is 42,113 cycles, which is less than our initial solution of
46,148 cycles.

This final output is an upper bound on theWCETof the graph given the priorities as-
signed to software-tasks and the precedence constraints added to the graph and therefore
implemented in the hardware portion of the run-time scheduler. In addition to helping to

130 MOONEY AND DE MICHELI

Figure 18.DAG with out-of-order execution.

limit the increase in overallWCETdue to software-tasks, the added precedence constraints
also guarantee mutually exclusive invocation of hardware-tasks in the sameNEVERset.

Notice that with this result we do not know exactlywheneach software-task will begin and
end. Software schedulers are by their very nature dynamic, especially with a system like ours

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 131

that contains caches. Thus, a run-time system that statically schedules all software-tasks
and their start/finish times may require timers and other additional components, making
such an approach infeasible or impractical. Also, the totalWCETfound for the system may
be one that no single static schedule could achieve, because the possibilities for different
interactions between tasks could not be so tightly arranged as with the dynamic approach
here. In Section 8, we will use Example 25 of this section—which reduces ourWCETfrom
46,148 to 42,113—to show how out-of-order execution allows us to use task preemption in
our final implementation to meet a hard real-time rate constraint.

Now we can analyze satisfiability of a rate constraint in a dynamically changing, con-
current execution of hardware-tasks and software-tasks with multiple resource constraints
(expressed withNEVERsets), given our run-time scheduler implementation.

6.5. Task Splitting

One of the limitations of theExecute Out-of-orderalgorithm of the previous section is
that the original priorities assigned to software-tasks is kept. However, having abandoned
Assumption 5.3, one might be tempted to go back to the original formulation of the Con-
structive Heuristic Scheduling Algorithm of Section 5.1 used to assign priorities. Can we
improve upon the algorithm when software-tasks are allowed to execute out-of-order? Are
there optimal task priorities with out-of-order task execution whichany algorithm will al-
ways miss because of Assumption 5.3? It turns out that there are. Consider the following
example:

Example 26. Consider Figure 19. The constructive heuristic scheduling algorithm will
compare the two possible orderings,(b, c) and(c,b), and will find that the overallWCETis
12,000 cycles for the first case and 13,000 for the second. Thus, software-taskb will receive
the highest priority. Even an exhaustive algorithm which enumerates all possibilities will
find this result.

Now we run the heuristic of Section 6.4 and find that we cannot improve on the solution
since there is no space (unused CPU cycles) beforeb, which begins execution right away.
Thusc must wait untilb finishes to begin execution; overallWCET for the graph is still
12,000 cycles.

Supposec had a higher priority thanb and that out-of-order execution were allowed.
Then, ignoring the software scheduling, interrupt and context switch overhead,b would
execute for 3,000 cycles concurrently witha, thenc would execute for 4,000 cycles, and
finally b would finish in 3,000 cycles whiled concurrently executes, resulting in an overall
WCETof 10,000 cycles, which is significantly less than previously found.

To deal with this problem, we add the following heuristic: we allow the user to specify
for a tasks that it can besplit into n equal chunks. We then splits into n sequential tasks
(s1, s2, . . . , sn) each with 1

n of the WCET of s. Then we run the constructive heuristic
scheduling algorithm as before, but from the final order we set the priority ofs to be the
priority found forsn and discard the priorities found for(s1, s2, . . . , sn−1).

132 MOONEY AND DE MICHELI

Figure 19.Constructive heuristic scheduling example of suboptimal result.

Example 27. Consider Figure 20. This time the user specifies that software-taskb can
besplit into n = 2 chunks. The modified specification of theNEVERset,WCETfor each
task, and resultant graph can be seen in Figure 20. The constructive heuristic scheduling
algorithm finds the ordering(b1, c,b2) (which is optimal), from which we extract the order
only includingbn, resulting in(c,b2). Thusc receives a higher priority thanb and we have
5(c) > 5(b).

Now we run the heuristic of Section 6.4 and find thatbshould be allowed to begin execution
right after the source, and then be suspended whenc becomes ready. The hardware portion
of the run-time scheduler is synthesized to implement this, namely by interrupting the CPU
right away to communicate astart vector indicating thatb is ready to execute. Ignoring
the software scheduling, interrupt and context switch overhead, the overallWCET is now
10,000 cycles.

6.6. Critical Regions

An important programming methodology to support is the use of critical regions. A critical
region is a section of software code where critical resource(s) are used or common variable(s)
are read/written. In fact, software semaphores were originally created in order to allow the
specification of critical regions in software. Thus, if our run-time scheduler can support the

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 133

Figure 20.Example of scheduling with task splitting.

specification of critical regions, then we can accomplish the same goal without resorting to
semaphores.

We support critical regions vianoninterruptiblesoftware-tasks. The user can specify a
setNONINTof noninterruptible software-tasks. If a task is inNONINT then the task will
not be considered for membership in the setI of tasks allowed to execute out-of-order. In
other words, all higher priority software-tasks must finishbefore the task is scheduled, so
that any interrupts received during the task’s execution cannot be from a higher priority task,
thereby ensuring that the noninterruptible software-task is never kicked out. In this manner
a set of critical regions, e.g. that access the same shared variables or other resource, can be
defined. The algorithms of Section 5 are modified to take into account that these processes
are noninterruptible by simply retaining Assumption 5.3, namely that the task, once started,
runs to completion. Note that one could implement a semaphoreS by specifying each
access toSas a noninterruptible software-tasks.

Since the entire critical region must run to completion, releasing the resource or no longer
accessing the shared variable, thepriority inversion problem does not arise in the final
implementation. The problem ofpriority inversion refers to a situation where a lower
priority process holds a resource when a higher priority process interrupts which needs to
use the held resource. In this case the higher priority process is prevented from executing
and has to release control to the lower priority process; thus, the lower priority process
has, in effect, made itself higher in priority—i.e., the priorities of the two processes have

134 MOONEY AND DE MICHELI

Figure 21.Example specification of noninterruptible task.

been inverted. By design, a noninterruptible software-task cannot give rise to thepriority
inversionproblem.

Note, however, that we assume that the critical region is located as a single task within
a DAG. Thus, the only looping on the critical region or semaphore allowed is that of each
execution of the DAG; finer level looping on a critical region is not allowed (although loops
without critical regionsare allowed in individual C and Verilog tasks, as long as an upper
bound can be given on the number of times a loop will repeat in a given execution of the
task containing the loop).

Example 28. In Figure 21 taskb is specified as noninterruptible. CLARA finds that the
order, if each task runs to completion, is(c,b). Sinceb is noninterruptible, we do not
consider executing part ofb during the unused CPU time available whilea is executing.
The precedence constraint{c → b} is generated.

7. Tool Flow

Figure 22 (repeated from Figure 3 for the reader’s convenience) shows our tool flow when
applying our design tools to a system design. The hardware-tasks are written in Verilog and
software-tasks are written in C. Constraints include relative timing constraints, a single rate
constraint, and resource constraints in the form ofNEVERsets. Precedence constraints are

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 135

Figure 22.Tool flow and target architecture.

implicit in the task specification which takes the form of a Directed Acyclic Graph. SERRA

focuses on run-time scheduler synthesis andworst-case execution time (WCET)analysis
both to help optimize the scheduler synthesized and to satisfy a rate constraint. Satisfaction
of relative timing constraints (minimum and maximum separation) in hardware blocks is
dealt with in hardware control synthesized by a tool (THALIA 2) not described in this paper
[10], [11].

The system-level tasks, written in Verilog and C, and the constraints are input to SERRA

and to a tool that generates the interface. One of the tasks is specified as the main task.
CINDERELLA-M takes input in C and outputs aWCET for each software-task (note that
bounds on loops must be provided by the user) [27], [28]. Similarly, from BCTM we obtain
aWCETfor each hardware-task (loop bounds must be provided here in some cases as well).
Since we compare BCTM-generatedWCETswith softwareWCETs, we convert all delays
to the number of microprocessor clock cycles (since the hardware clock speed is typically
slower.) These values are used to annotate the leaf tasks in the final DAG of the system
specification. Figure 7 showed a sample DAG and a corresponding table with theWCET
annotations.

136 MOONEY AND DE MICHELI

Figure 23.Block diagram of SERRA.

7.1. SERRA Run-Time Scheduler Analysis and Synthesis

The SERRA design tool is shown in Figure 23. SERRA first extracts the task control-flow
from the system specification. The user-specified main task contains the overall sequence
of tasks in the application. System-level task control-flow is expressed usingcontrol-flow
expressions(CFEs) which were described briefly in Section 4. DIEGO can extract a CFE
description from a task written in Verilog; for example, given the main task in Verilog,
DIEGO can generate in CFE format the sequence of task invocations (calls) from the main
task. Then, given the output from feeding the tasks to BCTM or CINDERELLA-M, the CFEs
are annotated with aWCETfor each hardware or software task. A single rate constraint is
specified in the form of invoking the main task at a fixed rate.

SERRA synthesizes the control-unit of the scheduler by means of tool THALIA 2 which
takes as input a CFE description and produces a logic-level description in synthesizable
Verilog [10], [29]. The timing, resource and precedence constraints specified in the CFEs
input to THALIA 2 are translated into a finite-state machine implementation if the constraints
are satisfiable.

The constructive heuristic scheduling algorithm is implemented by CLARA, which gen-
erates the static priorities for the software- and hardware-tasks. SERRA synthesizes the

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 137

control-unit of the scheduler into a hardware FSM which includes the additional prece-
dence constraints found by CLARA.

CLARA can effectively handle multipleNEVERsets, split tasks (Section 6.5), andnon-
interruptiblesoftware-tasks (Section 6.6). Furthermore, CLARA can generate precedence
constraints among software-tasks in a singleNEVERset where lower priority software-tasks
can execute during idle time when higher priority software tasks are not yet ready. The
analysis for this case is also implemented by CLARA, and thus it calculatesWCETfor the
out-of-order execution using the results from Section 6.4.1.

To generate the run-time kernel’s C code, SERRAuses templates of the priority scheduler in
C, the Interrupt Service Routine (ISR) in MIPS assembly and context switch code in MIPS
assembly. For the software that runs on the microprocessor core (CPU), the individual
software-tasks are compiled together with the priority scheduler, ISR, and context switch
code using standard C compilers and linkers. Data and program memory are statically
allocated.

SERRA also allows the user to override the priorities found by the heuristics of CLARA.
Even further, SERRA allows the user to override precedences added to the hardware portion
of the run-time scheduler, so that different software-tasks can be allowed to execute early in
a different order than that found by the heuristic of Section 6.4. Thus, possible optimizations
can be added by the user. SERRA can then calculate the newWCETfor the application with
the new set of priorities and/or new set of precedences. SERRAthus provides for interactive
performance evaluation of the run-time system, as well as synthesis for each particular
implementation.

8. Example and Experimental Results

In this section, we present an example of how a design can be successfully synthesized
using the system described in the previous sections. We consider a robot controller design
for manipulating two PUMA arms containing concurrent “laws” that must calculate new
torques every millisecond. We show how real-time constraints can be satisfied with a
run-time system that also provides for dynamic allocation of resources.

For our example, we consider the robot control algorithm of Figures 5 and 6. We im-
plement the tasks required for executingJhold Law andSet Torque in parallel with
Ohold1 Law andSet Torque . The DAGs, including the leaf tasks that implementSet
Torque , are shown in Figure 24. Note thatXmit Frame1 (xf1) andXmit Bit1 (xb1)
of Set Torque1 have a strict relative timing constraint ofxb1 starting no less than 2
cycles afterxf1 and no more than 8 cycles after. The exact same constraint holds forSet
Torque2 . This constraint could not always be satisfied with control signals generated by
a run-time scheduler in software (note our CPU in Figure 22 has an L1 cache). We assume
that the full system drivesXmit Bit from hardware modules other thanXmit Frame
and thus the two hardware tasks, although tightly coupled, must be kept separate.

We perform real-time analysis using the CLARA tool which has been implemented in
15,000 lines of C. We first use Constructive Heuristic Scheduling for multipleNEVERsets
and find the order of (oh0 , cjd , oh1) for the software-tasks. Even with task splitting
applied tooh1 , the order does not change. Thus, we set the static priorities in the software

138 MOONEY AND DE MICHELI

Figure 24.Directed acyclic graphs of Ohold1 Law, Set Torque, and Jhold Law with relative timing constraints.

scheduler such that5(oh0) > 5(cjd) > 5(oh1). Then we run theExecute Out-of-
order algorithm and find, just as we did in Example 24, that we should allow taskoh1 to
execute on the CPU as soon asoh0 is finished. Therefore we find the following precedence
constraints:{oh0 → cjd } and{oh0 → oh1 }.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 139

Figure 25.Final hardware portion of run-time scheduler.

The Constructive Heuristic Scheduling algorithm found order (mvm2, mvm3, mvm4, mvm1)
for NEVER2 and order (xf2 , xb2 , xf1 , xb1) for NEVER3. Excluding redundant prece-
dence constraints already present in the DAG, we find the following additional precedence
constraints:{mvm4→ mvm1} and{xb2 → xf1 }.

As in Example 25, we calculate aWCET for of 42,113 for Figure 24 with out-of-order
execution. This provides for the upper bound on execution speed for the tasks in Figure 24
under worst-case conditions.

Figure 25 shows the hardware portion of the run-time scheduler. Signalswnt , gp1 ,
gv1 ,. . . , hmin Figure 25 are thestart events for the corresponding tasks in Figures 24 and
26. The signalglobal start kicks of execution for the very first time; after that, thedone
signal ofhmrestarts the iteration. The right-hand box is the FSM generated from the CFE
for the system [10], [30]. Note that Figure 25 shows an optimization in the control logic for
mvm1. Since thebest case execution time, orBCET, of oh1 is greater than theWCETof fk ,
we can set thestartsignal ofmvm1based only on thedonesignals ofoh1 andmvm4(rather
than a conjunction of thedonesignals offk , oh1 andmvm4). Similarly, due to the length
of mvm1-4, we find that we do not need to add the{xb2 → xf1 } precedence constraint.
Finally, note that the designer knows thathmdoes not need to wait for the transmission of
the torque values to the robot arms; it can begin calculating right aftermvm4finishes. These
optimizations were added in SERRA manually by the user.

The software tasks are compiled and linked into assembly, with data and program memory
statically allocated, as well as memory-mapped I/O. Finally, the software portion of the
run-time scheduler is generated in the form of an Interrupt Service Routine that reads in a

140 MOONEY AND DE MICHELI

Figure 26.DAG of robot arm controller with relative timing constraints.

startvector which task needs to be executed in software, a priority scheduler which selects
which software-task to execute, and routines for saving and restoring context.

The system begins each iteration once a millisecond. After obtaining the positions and
velocities of the two robot arms, the run-time scheduler starts the execution ofcg in hardware
for Jhold Law and oh0 in software forOhold1 Law . It continues with interleaved
hardware-software execution as shown in Table 7 and pictured graphically in Figure 14.
Finally, it tightly schedules accesses toXmit Frame andXmit Bit to set the torques for
the robot.

Notice that from the point of view of the run-time scheduler,xf1 andxf2 are only one
cycle actions; we do not wait for anydonesignal, but assume that ifxb1 completes then
xf1 has completed, and similarly that ifxb2 completes thenxf2 has completed. This was
a design decision made up front based on the Verilog code for the tasks. On the other hand,
notice thatxf1 , xb1 , xf2 , andxb2 are all in the sameNEVERset. This is because the
same hardware-tasks,Xmit Frame andXmit Bit , are used to transmit the torque data,
and we do not wantxf2 to begin whilexb1 is still executing, norxf1 to begin whilexb2
is still executing. Thus we need to pay attention to thedoneevents ofxb1 andxb2 .

The complete, flattened DAG with relative timing constraints is shown in Figure 26
(reprinted from Figure 6 with additional information added). Theepsilon task takes zero

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 141

Table 8.Code space,BCETandWCETfor sw-tasks.

Software-Task Lines Lines Task Task Icache refill
C Assem. BCET WCET WCET

oh0 90 237 1,598 2,221 612
oh1 693 3,263 12,341 17,399 4,050
cjd 286 1,177 9,989 13,213 3,258
int-ser-routine N/A 26 11 38 N/A
context-switch N/A 42 34 162 N/A
priority-sch-sw 107 141 26 98 N/A

Table 9.Results for the synthesis of hw-tasks.

Hardware-Task Lines Area BCET WCET
Verilog

cg 2897 59,587 11,000 11,000
fk 2362 42,168 4,500 4,500
mvm 629 33,645 4,400 4,400
xmit-frame 108 987 322 322
xmit-bit 66 199 322 322
run-time-sch-hw 484 413 N/A 99,701

cycles and serves to synchronize the task executions by making sure every task before it
has completed before continuing. The scheduling of tasks shown in Figure 26 but not in
Figure 7—wnt , gp1 , gv1 , gp2 , gv2 , xf1 , xb1 , xf2 , xb2 , hm—together take 57,200
cycles in the worst case. Since our MIPS R4K core runs at 100 MHz, the rate constraint
allows us to use 100,000 cycles. Thus, we have 42,800 cycles left for the remaining tasks—
oh0 , oh1 , fk , cg , cjd andmvm1-4. TheWCETof 42,113 we found (see Example 25)
fits our rate constraint, and thus we utilize out-of-order execution, using task preemption in
our final implementation. (Note that without out-of-order execution, we would have had a
WCETof 46,148, which would violate the constraint.) Thus, our schedule guarantees that
we meet our hard real-time rate constraint.

Table 8 presents the results for the compilation of the software and best- and worst-case
execution time estimation withCINDERELLA-M. Unfortunately,CINDERELLA-M does not
perform any data-cache analysis, so all data references are assumed to miss, incurring the
cost of loading in a data cache line.

In Table 9, we see the results for the synthesis of the hardware tasks of Figure 7 using
the Behavioral CompilerTM, except for the run-time scheduler hardware part which was
synthesized with the Design CompilerTM. The third column in Table 9 shows the number
of gate equivalents the hardware required using the LSI 10K Logic library. We clock the
hardware at 10 MHz. Using a MIPS R4K model in Verilog, we simulated the Robot Arm
Controller, with its synthesized run-time scheduler, in Verilog using Chronologic’s VCSTM.

142 MOONEY AND DE MICHELI

9. Conclusions

The SERRA Run-Time Scheduler Synthesis and Analysis Tool helps designers perform
system-level design with hardware and software at a coarse level of granularity. We have
shown how one can synthesize a run-time scheduler in hardware and software that can
predictably meet real-time constraints while dynamically executing tasks in hardware and
software. We have utilized the methodology of control-flow expressions to synthesize the
hardware control portion of the scheduler.

We have addressed the important problem of real-time analysis in hardware/software
co-design with a custom run-time system. The SERRA Run-Time Scheduler tool, which
encapsulates the CLARA Real-Time Analysis tool, helps designers perform system-level
design quickly and efficiently. We can predictably meet hard real-time constraints with our
approach, based on static priority assignment, a custom priority scheduler, and a synthesized
run-time scheduler, which allows a more detailed analysis of the system. The final result
is tighter execution bounds thus squeezing more performance out of the same components
than with a traditional RTOS and associated real-time analysis.

Acknowledgments

This research was sponsored by ARPA under grant No. DABT63-95-C-0049 and by a
Fellowship from National Semiconductor. We also acknowledge the contributions of Sera
Linardi, who portedCINDERELLA to MIPS, Toshiyuki Sakamoto, who wrote the Verilog
hardware-tasks and implemented interrupts in the MIPS R4K model, Firdaus Abdullah,
who implemented the full Verilog simulations of the hardware-software run-time scheduler
for the Robot Arm Controller, and Yau-Tsun Steven Li, who provided guidance and support
for CINDERELLA-M and associated analysis.

Notes

1. The first author was a Ph.D. candidate at Stanford University when this paper was written.

2. For example, the major result of [22] was a 66% reduction in context switch cost.

References

1. M. Abid, A. Changuel and A. Jerraya, “Exploration of Hardware/Software Design Space through a Codesign
of Robot Arm Controller,”European Design Automation Conference,pp. 42–47, September 1996.

2. J. K. Adams and D. E. Thomas, “Multiple-Process Behavioral Synthesis for Mixed Hardware-Software
Systems,”International Symposium on System Synthesis,pp. 10–15, September 1995.

3. N. Audsley, A. Burns, M. Richardson, K. Tindell and A. J. Wellings, “Applying new scheduling theory to
static priority pre-emptive scheduling,”Software Engineering Journal,pp. 284–292, September 1993.

4. N. Audsley, A. Burns, R. Davis, K. Tindell and A. J. Wellings, “Fixed Priority Pre-emptive scheduling: A
Historical Perspective,”Real-Time Systems,(8):173–198, 1995.

5. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, E. Sentovich, K. Suzuki and B. Tabbara,Hardware-Software Co-Design of Embedded Systems
The Polis Approach, Kluwer Academic Publishers, Norwell, MA, 1997.

HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME SCHEDULERS 143

6. F. Balarin, K. Petty, A. Sangiovanni-Vincentelli and P. Varaiya, “Formal Verification of the PATHO Real-
Time Operating System,”Proceedings of the 33rd Conference on Decision and Control, CDC ‘94,December
1994.

7. F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno and A. Sangiovanni-Vincentelli, “Formal Verification of
Embedded Systems based on CFSM Networks,”Proceedings of the 33nd Design Automation Conference,
pp. 568–571, June 1996.

8. P. H. Chou and G. Borriello, “Software Scheduling in the Co-Synthesis of Reactive Real-Time Systems,”
Proceedings of the 31st Design Automation Conference,pp. 1–4, June 1994.

9. P. H. Chou, R. B. Ortega, and G. Borriello, “The Chinook Hardware/Software Co-Synthesis System,”
International Symposium on System Synthesis,pp. 22–27, September 1995.

10. C. N. Coelho Jr. and G. De Micheli, “Analysis and Synthesis of Concurrent Digital Circuits Using Control-
Flow Expressions,”IEEE Transactions on CAD/ICAS,Vol. 15, No. 8, pp. 854–876. August 1996, and Tech-
nical Report CSL-TR-96-694, http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-TR-96-
694, Stanford, CA, April, 1996.

11. C. N. Coelho Jr.,Analysis and Synthesis of Concurrent Digital Systems Using Control-Flow Expressions,
Ph.D. Thesis, Technical Report CSL-TR-96-690, http://elib.stanford.edu/Dienst/UI/2.0/Describe/
stanford.cs%2fCSL-TR-96-690, Stanford, CA, March, 1996.

12. T. Cormen, C. Leiserson and R. Rivest,Introduction to Algorithms, The MIT Press, Cambridge, 1990,
pg. 35.

13. B. Dave, G. Lakshminarayana and N. Jha, “COSYN: Hardware-Software Co-synthesis of Embedded Sys-
tems”,Proceedings of the 34th Design Automation Conference,pp. 703–708, June 1997.

14. G. De Micheli and M. Sami, editors,Hardware/Software Co-Design,Kluwer Academic Publishers, Norwell,
MA, 1996.

15. G. De Micheli,Synthesis and Optimization of Digital Circuits,McGraw Hill, Inc., New York, NY, 1994,
pp. 208–211.

16. R. Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Herrmann and M. Trawny, “The COSYMA environ-
ment for hardware/software cosynthesis of small embedded systems,”Microprocessors and Microsystems,
20, pp. 159–166, 1996.

17. M. Garey and D. Johnson,Computers and IntractabilityA Guide to the Theory of NP-Completeness,W. H. Free-
man and Company, N.Y., 1979, pg. 239.

18. R. K. Gupta,Co-Synthesis of Hardware and Software for Digital Embedded Systems, Kluwer Academic
Publishers, Boston, MA, 1995.

19. J. Henkel, R. Ernst, “The Interplay of Run-Time Estimation and Granularity in HW/SW Partitioning,”4th
International Workshop on Hardware/Software Co-Design,Pittsburgh, 1996.

20. J. Henkel, Th. Benner, R. Ernst, W. Ye, N. Serafimov and G. Glawe, “COSYMA: A Software-Oriented
Approach to Hardware/Software Co-Design,”The Journal of Computer and Software Engineering,Vol. 2,
No. 3, pp. 293–314, 1994.

21. F. Hillier and G. Lieberman,Introduction to Operations Research,6th edition, McGraw-Hill, Inc., New
York, 1995, pp. 424–469.

22. M. Humphrey, G. Wallace and J. Stankovic, “Kernel-Level Threads for Dynamic, Hard Real-Time Environ-
ment,” 16th IEEE Real Time Systems Symposium, pp. 38–48, 1995.

23. D. Knapp,Behavioral Synthesis: Digital System Design Using the Synopsys Behavioral Compiler, Prentice
Hall, Upper Saddle River, NJ, 1996.

24. D. C. Ku and G. De Micheli,High Level Synthesis of ASICs Under Timing and Synchronization Constraints,
Kluwer Academic Publishers, Norwell, MA, 1992.

25. A. W. Leigh,Real Time SoftwareFor Small Systems, Sigma Press, Wilmslow, U.K., 1988.
26. C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-real time environment,”

Journal of the ACM,20(1):46-61, January 1973.
27. Y. Li, S. Malik and A. Wolf, “Performance Estimation of Embedded Software with Instruction Cache

Modeling”, Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,pp. 380–
387, November, 1995.

28. S. Malik, W. Wolf, A. Wolf, Y. Li and T. Yen, “Performance Analysis of Embedded Systems,” in G. De
Micheli and M. Sami, editors,Hardware/Software Co-Design,pp. 45–74, Kluwer Academic Publishers,
Norwell, MA, 1996.

144 MOONEY AND DE MICHELI

29. V. Mooney, C. Coelho, T. Sakamoto and G. De Micheli, “Synthesis From Mixed Specifications,”European
Design Automation Conference,pp. 114–119, September 1996.

30. V. Mooney, T. Sakamoto and G. De Micheli, “Run-Time Scheduler Synthesis For Hardware-Software
Systems and Application to Robot Control Design,”5th Int’l Workshop on Hardware/Software Co-Design,,
pp. 95–99, Braunschweig, Germany, March 1997.

31. V. Mooney and G. De Micheli, “Real-Time Analysis and Priority Scheduler Generation For Hardware-
Software Systems with a Synthesized Run-Time System,”Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design,pp. 605–612, November, 1997.

32. V. Mooney G. De Micheli,Hardware/Software Co-Design of Run-Time Schedulers for Real-Time Systems,
Technical Report CSL-TR-97-739, http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-
TR-97-739, Stanford, CA, November 1997. (This technical report is an early version of this journal paper.)

33. V. Mooney,Hardware/Software Co-Design of Run-Time Systems, Ph.D. Thesis, Technical Report CSL-
TR-98-762, http://elib.stanford.edu/Dienst/UI/2.0/Describe/stanford.cs%2fCSL-TR-98-762, Stanford, CA,
June 1998.

34. S. Narayan, F. Vahid and D. Gajski, “System Specification with the SpecCharts Language,”IEEE Design
& Test of Computers,pp. 6–13, December 1992.

35. S. Prakash and A. C. Parker, “SOS: Synthesis of Application-Specific Heterogeneous Multiprocessor Sys-
tems,”Journal of Parallel and Distributed Computing, Vol. 16, pp. 338–351, December, 1992.

36. K. Ramamritham, “Allocation and Scheduling of Precedence-Related Periodic Tasks,”IEEE Proceedings
on Parallel and Distributed Systems,6(4):412–420, April 1995.

37. L. Sha, R. Rajkumar and S. Sathaye, “Generalized rate monotonic scheduling theory: a framework for
developing real-time systems,”Proceedings of the IEEE,82(1):68-82, January 1994.

38. D. Verkest, K. Van Rompaey, I. Bolsens & H. De Man, “CoWare–A Design Environment for Heterogeneous
Hardware/Software Systems,”Design Automation for Embedded Systems,Vol. 1, No. 4, pp. 357–386,
October 1996.

39. T. Yen and W. Wolf, “Performance Estimation for Real-Time Distributed Embedded Systems,”Proceedings
of International Conference on Computer Design,pp. 64–69, 1995.

40. P. Altenbernd, “Deadline-Monotonic Software Scheduling for the Co-Synthesis of Parallel Hard Real-Time
Systems,”Proceedings of the European Design and Test Conference, pp. 190–195, 1995.

