
L. Semena, !(. Salo, G. De Micheli

Memory Representation and Hardware Synthesis of C Code with
Pointers and Complex Data Structures

Koichi Sato

koichi@lsi.nec.co.jp

System LSI Design Engineering Division

NBC corporation

Giovanni De Micheli

nanni@galileo.stanford.edu

Computer Systems Laboratory
Stanford University

Luc Semeria
lucs@azur.stanford.edu

Computer Systems Laboratory
Stanford University

ism. communication and data-type. For reactivity. SVSTEMC [21)
from Synopsys. CoWare and Frontier Design supports a mixed
synchronous and asynchronous approach implemented as a C++
library. Other extensions include ECL [5) from Cadence based
on C and Esterel. HANDLE-C [17) and BACH-C [3) originally
based on CX:CAM. SPECC [18) based on SPECCHART and CYNLIB
[16). In order to map functionality to hardware. a synthesizable-
CIC++ subset is usually defined. We can distinguish two
approaches. The first app-oach consists of translating a subset of
C into HDL (Verilog or VHDL) which will eventually be synthe-
sized using today's synthesis tools. Examples of such approach
include the early BACH-C compiler [3] from Sharp. OCAPI [8)
from IMEC as well as other commercial tools. The second
approach consists of using CIC++ directly. as an input to behav-
ioral synthesis. In particular. this approach has been chosen by
Synopsys with SCENIC [2) and by NBC with CYBER [13).

C/C++ is a procedural imperative language. Its semantic
relies on an implicit Yon Neuman architecture. The implementa-
tion of sequential functional descriptions into hardware has
extensively been studied during the last decade. Synthesis from
C/C++ descriptions can leverage some of this work but also
requires the development of some extensions for efficiently sup-
porting the different constructs of CIC++ such as pointers. com-
plex data structures, dynamic memory allocation. and object
oriented features. In particular. the synthesis of C code involving
dynamic memory allocation requires the access to an operating
system running in software or the generation of hardware alloca-
tors such as these implemented in the MATISSE framework [15].

The overall objective of our research is to explore synthesis
from full ANSI C. In our tool SpC [9). pointer variables are
resolved at compile-time to synthesize C functional models in
hardware efficiently. An extension to handle dynamic memory
allocation (malloc/free) has also been presented [11]. In this
paper. we focus on the mapping of complex data structures into
hardware. Besides. we present how arrays of pointers as well as
pointers inside of structures can be efficiently mapped to hard-
ware. Two examples of implementations are also presented.

2. MEMORY REPRESENTATION
In software. C programs are targeted to a virtual architecture

consisting of one memory in which everything is stored. Even
though register declaration may allow programmers to specify
the variables to place in registers. the assignment of variables to
registers is generally done by the compiler. The notion of caches
and memory pages are transparent to programmers.

In hardware. at the behavioral level. designers want to have
control on where data are stored and want to optimize the locality
of the storage. Typically, data may be stored in multiple memory
banks. registers. and wires (e.g. output of a functional unit). For
HDLs. the allocation of storage and the mapping of data to stor-

Abstract -. W~ pres~nt our tool SpC which enables th~ synth~sis
of C behavioral mod~ls with pointers and complex data struc-
tures. For both analysis and synthesis. memory is represented by
location sets. During m~mory partitioning. these location sets
are either mapped to simple variables or arrays. Point~rs are
encoded and loads/stores are replaced by assignments in which
data are directly accesses. Finally. dynamic memory allocation
and deallocation are performed within user-defined memory seg-
ments by an optimized hardware allocator instantiated from a
library.

1. INTRODUCTION: SY~IS FROM C
Different languages have been used as input to high-level

synthesis. Hardware Description Languages (HDLs), such as
Veri log HDL and VHDL, are the most commonly used. How-
ever, designers often write system-level models using program-
ing languages, such as C or C++, to estimate the system
performance and verify the functional correctness of the design.
Using CIC++ offers higher-level of abstraction, fast simulation as
well as the possibility of leveraging a vast amount of legacy code
and libraries, which facilitate the task of system modeling.

The use of CIC++ or a subset of CIC++ to describe both
hardware and software would accelerate the design process and
facilitate the software/hardware migration. Designers could
describe their system using C. The system would then be parti-
tioned into software and hardware blocks, implemented using
compilers and synthesis tools.

In order to help designers refine their code from a simula-
tion model to a synthesizable behavioral description, we are try-
ing to efficiently synthesize the full ANSI C standard. This task
turns out to be particularly difficult because of dynamic memory
allocation, function calls, recursions, goto's, type castings and
pointers.

Different subsets of C and C-like HDLs have been defined
and used for synthesis. We mention first those developed in the
eighties. HARDWAREC [4] is a fully synthesizable language with
a C-like syntax and a cycle-based semantic. It doesn't support
pointers, recursion and dynamic memory allocation. CONES [12]
from AT&T Bell Laboratories is an automated synthesis system
that takes behavioral models written in a C-based language and
produces gate-level implementations. Here, the C model
describes circuit behavior during each clock cycle of sequential
logic. This subset is very restricted and doesn't contain
unbounded loops nor pointers.

In the recent past a few projects have been looking at means
to use CIC++ as an input to current design flow [6]. The general
idea is to both extend and restrict the CIC++ languages. Con-
structs are added to the languages to model coarse-grain parallel-

age can be integrated with high-level synthesis. However, for C
models, partitioning the memory is complicated by such con-
structs as pointers, out-of-bounds array accesses, type casting,
and dynamic memory allocation.

In order to efficiently map C code into h8!dware. one need
an accurate representation of the memory. Such information is
also widely used in compilers. In order to parallelize programs
onto distributed architectures, the independent sets of data which
can be processed in parallel have to be extracted.

The simplest memory representation consists of a single
address space in which all data are stored. This trivial representa-
tion however prevents from optimizing the locality and parallel-
izing the code. On the other hand, the most accurate
representation, that would distinguish each element of arrays or
of recursive data structures, is not practical. As a result most
analysis techniques combines elements within a single data
structure.

In order to find both an accurate and a practical representa-
tion for hardware synthesis, we propose to use the notion of loca-
tion sets introduced by Wilson and Lam [14). Locations sets
support any of the data structures available in C including arrays,
structures, arrays of structures and structures containing arrays.
This representation is also relatively simple as it combines the
different elements of an array or of recursive data structures. It
can therefore be used for large C programs.

Let B be the set of memory blocks corresponding to the dif-
ferent variable declarations. A location set
I = (Ioc. I. s) e B x N x.Z' represents the set of locations
with offsets {I + isl; e .Z'} in a particular block of memory
loco That islis an offset within a block and s is the stride. If the
stride is zero, the location set contains a single element. Other-
wise, it is assumed to be an unbounded set of locations. Table I
soows the location sets for various expressions.

Table 1: location set examples ({=offset of field F), (s=stride or
array element size)

For simple data structures (arrays, structures, array of struc-
tures), offsets are used to identify the different fields of structures
whereas strides are used to record array-element sizes. Figure 1
gives an example of representation for an array of structures. The
representation doesn't distinguish the different elements within
the array but it distinguishes the different instantiations of vari-
ables and structures. This makes sense since all elements of an
array are usually alike.

1*1.8 1~.b1~1).81 ~1).bll(2J:;1 ~bl ~ l

o;u;e:'~;;;a;""""'-:;tnae"'-"";tna; FIQ~ 1: Represenlalk)n of struct (int a; int b) . ()

could access other elements of the structure by using out-of-
bound array indices.

Dynamically allocated memory locations (heap-allocated
objects) are represented by a specific location set. As far as accu-
racy. the goal is to distinguish complete data structures. The dif-
ferent elements of a recursive data structure would typically be
combined. For example. we want to distinguish one list from
another but we do not want to distinguish the different elements
of a list. Storage allocated in the same context is assumed to be
part of the same equivalence class. This heuristic have been
proven to work. well as long as the program uses the standard
memory allocation routines [14].

In order to generate an accurate memory representation. one
also needs to analyze the pointers' usage. Pointer analysis is a
compiler technique to identify at compile-time the potential val-
ues of the pointers in the program. It determines the set of loca-
tions the pointer may point to (point-to information). This
information is not only used to create the memory representation
but it is also used for synthesis. In the case of loads (...= *p),
stores (*p=...). and free. we want to synthesize the logic to
access. modify or deallocate the location referenced by the
pointer. The point-to information must be both safe and accurate:
safe because we have to consider all of the locations the pointer
may reference and accurate because the smaller the point-to-set
is. the more accurate the memory representation is and the less
logic we have to generate. We use a flow- and context-sensitive
pointer analysis [14] which provides better accuracy compared to
other analyses. Even though the complexity of ftow- and context-
sensitive analyses may be exponential. it is not a limitation for
hardware synthesis because we deal with rather small and simple
programs with limited calling contexts for functions and often no
recursions.

The pointer analysis and memory representation used here
support the complete ANSI C syntax. In this paper however. we
define our own synthesizable subset. Our subset includes mal-
loc/free as well as all types of pointers and type casting. Nev-
ertheless we set the following two restrictions.

The first restriction applies to systems described as a set of
parallel processes: pointers that reference data outside of the
scope of a process (e.g. global variables or data internal to some
other processes) are not allowed. The second limitation stems
from the fact that most commercial synthesis tools have restric-
tions on functions. Recursions are usually not supported. Proce-
dures that are mapped to components typically have restrictions
both on their functionality and their parameters (e.g. parameter
passed by reference is not supported by most HDL syntax). The
synthesis of functions in C is beyond the scope of this paper.
Functions in general are supposed to be inlined prior to synthe-
sis.

3. MAPPING TO HARDWARE
After analysis of the program. memory can be represented

as a set of location sets. Each location may represent a unique
location (case of a stride null), multiple locations (stride not null)
or heap objects. During mapping to hardware. each location set is
mapped to a single variable or an array that can be synthesized
using current synthesis tools.

3.1 Partitioning of the memory
The memory is partitioned into a set of locations sets. In this

section. we do not consider pointers and heap objects. The syn-
thesis of pointers and malloc/free is presented in Sections 3.2
and 3.3. In the rest of the paper, we use the following representa-
tion for fundamental (or basic) types: char and unsigned char

Nested arrays and structures, type casting and pointer arith-
metic are making things more complicated leading to some more
inaccuracies. The array bound information in the declared type
cannot be used because the C language does not provide array-
bounds checking. A reference to an array nested in a structure

44

L. Semena,](. Sato, G. De Micheli

Ex...", 2. This uample iUlUtrates the implem~,.tatio,. of a
strllCt/ln copy.

struct { int x: int Y } A, B:
A = B:

Aft~r trans/Qliono the following synlJluilllbk codI is pMnlUd:
int SPC-A-O_O, SPC-B_O_O: ;/ A.x. E.x
int SPC-A-4_0, SPC-B_4_0: .:'..~'. e.:;

are rqx-esented as 8 bits. short and unsigned short are rep-
resented as 16 bits. and int and unsigned int are represented
as 32 bits. These feP'Csentations are the most COInDK)D on 32 bits
architecture. Derived types such are pointers. arrays and sb"Uc-
tures are consb"Ucted from these fundamental data types.

Without heap objects. we can distinguish two types of loca-
tion sets: unique location sets whose stride are null. and multiple
locations sets with non-zero stride. For each location set
<loc./. p. we define the variable sPC_l«J_s.

For unique location set (s null), SPC_1ocJJ is a variable of
fundamental type. In the case of a location set representing a
variable of fundamental type (e.g. char. short. int) the map-
ping is straightforward. For Sb"Uctures. their different fields can
be mapped to separate variables (akin to registers in the final
hardware) as long as they are represented by separate location
sets.

I I ':'. : 8;

SPC-A-O_O . SPC...:B_O_O;
SPC-A-4_0 . SPC_B_4_0;

TM stnlCtun copy is broken into two assignmlnts
cornsponding to the two fields of the structun.

Ez4111P113. In the followillg code segment. the StnlCtun variable
its contains all array of short integers.

struct (
int i;
short ts(2];

) its;
int a. b;

its.i = 5;
b . its.i;

BecallSe 01 potential 0111 of bound array accesses (e.8. its. t [-
1)). the structlln variable ita is enti~/y ~p~sented by the
location set <its. O. 2>. The code segment is then translonned
into:

short SPC_its_O_2[t);
int SPC_--O_O, SPC-P_O_O;

II its.i . a;
SPC_it8_0_0(O) . SPC_--O_O » 16;
SPCju_O_O (1) . SPC_--O_O,

For multiple location set (s not null), SPC_locJJ is defined
as an array of fundamental type elements (e.g. array of integers).
These arrays can then typically be ma~ to memories (X" regis-
ter files either manually or according to current methodology
[1,7]. For arrays of structures, the different fields of the structures
can be mapped to different memories as long as their rep-esenta-
tions 00 not overlap. This allows to independently access the dif-
ferent fields of the structures, leading to more flexibility and
potentially better perfOmlances.

&.,.1.1. ConsiUr lhefollowing slnu:llln variable.
struct {

char cl;
char c2;
short s;
int i;

} csi;
FOIIr location S~IS npns~nt the follr fields of the stnu:llln c8i.
Ora ow specific tIIrg~t archit~ctlln. the fields csi. cl, csi. C2.
csi . s, and csi . i an nspectiv~/y npnsml~d by the location
sell <csi, 0, 0>,' <c8i. 1, 0>, <csi, 2. 0>, and <csi, 4, 0>.
The I~III in m~mory befon synthesis is npns~lIl~d on Figlln
2.

1/ b = its.i.
SPC~_O_O . SPC_it8_0_0[OJ « 16

SPC_it8_0_0[lJI

t...}. theseNote that, /ISing a concatenalima operalor
assignments can be wrinen as:

(
SPC-8Y_8tr_O_O(OJ
SPC-8Y_8tr_O_O(lJ

) . SPC_--O_O;

sPCJ»_O_O . {

b-~ - - - . - - - . - - - . - - - ~
b

~ C8i.G! !_i.:~.i 3.-:' , I - C8i.G! _i.c2 081.-

Ox-
I C8~.i ,

b- I I I
~---~---~---~---~

F9R 2: ~.. ~ _truct (char Cl1 char

c2; short 8; int i) csi. sPC-R_8tr_O_OIOJ
SPC-R_8tr_O_OllJ

} ;We create the following variables corresponding to each
locatim set:

char SPC_c8i_O_O;(csi.cl
char SPC_csi_l_O;, csi.c2
short SPC_csi_2_0; ... csi.s
int SPC_csi_4_0; ., ~si.i

As a result during the mapping to hardware the assignment
csi.c2 = 0;

is replaced by
SPC_csi_l_O = 0;

Out of bound array accesses. as well as copies of structures

can make things more complicated. With our memory represen-

tation. one data (e.g. an entire structure) may be represented by
the concatenation of multiple elements of location sets. In Exam-
ple 2 a structure is represented as two integers. In Example 3. an
integer inside of a structure is represented by the concatenation
of two shan integers.

3.2 Pointers
In the previous section, we did not consider pointer and type

casting. In software, the semantic of pointers is the address of
data in memory. This semantic assumes the target architecture
consists of a single memory space in which all dati are stored.

In hardware, as discussed in Section 2, dati may be stored
in multiple registers, memories or even wires (e.g. output of a
functional block). Therefore, to efficiently map C code into hard-
ware, pointers may not only address data in memory, they may
also reference registers, wires or ports. Our synthesis tool gener-
ates the appropriate circuit to dynamically M:CesS these locations
according to the pointers' value.

Pointers can be used to allocate, read, write and deallocate
dati. Allocation and deallocation performed through the standard

struct {
int b[5);

int i; short t8(2); } its;

if (. . .)

p' ~it8.i:
else

p = &b(2]i
P = p+li
out = *Pi

77I~ ~slllting cod~ after ~moving the load and sto~ is th~

following:
int SPC-p_O_Oi
short SPC_it8_0_2(4]i
int SPC_b_O_4[S];

library funclions malloc and free are deall in lhe next section.
For loads (...=*p) and stores (*p=...), we dislinguish lwo types of
poinlers: pointers to a single location, which can be removed,
and pointers to multiple locations.

Loads from pointers to a single location are simply replaced
by assignments from lhe location accessed. Similarly, stores are
simply replaced by assignments lo the location referenced. Dur-
ing memory partitioning, lhese locations are mapped to location
sets. As seen previously in Examples 2 and 3. location accessed
may correspond to lhe concatenation of multiple location set ele-
ments. Moreover. because of pointer type casting, the location on
which lhe load or store is performed may correspond to only part
of a location set element, as shown in Example 4.

Example 4. Consider the following code segment in which we
have a load and a store with type casting from type pointer to
integer (int *) to type pointer to short integer (short *).

short s [2] ;
int i:

ifC
:'p.tag=(! "::
SPC-p_O_O . 0 « 16

e1.e

ndcx
0;

nGex = 2. * -1
32;

II P.tA9 = 1 ,';:>
SPC-p_O_O . 1 « 16s[O] . *(short *)&i;

*(short *)&i 3 s[l];
The code segment is transformed into:

short SPC_s_0_2[2];
int SPC_i_O_O;

16 :se of i

SPC-p_O_O . SPC-p_O_O + 4: p.p+l

if(SPC-p_O_O» 16 .. 0) :! <!:.tag..O)
I; out. SPC_its_O_2 [po ind~x./2]
out . SPC_it8_0_2 (

SPC-p_O_O~Oxffff » 1
J ;

e1.. :; (tag:-!)
1/ out = SPC_its_L'_2[;>.inc~x/4]
out = SPC~_O_. [

SPC-p_O_O~Oxffff » 2

SPC_s_O_2[OJ = SPC_i_O_O»16;
SPC_i_O_O = SPC_8_0_2[lJ«16 I

(SPC_i_O_O & OxOOOOffff);
Note, tl8atthe expression (* lint *Is) in a load or a store

would lead to an implementation using the concatenation
{SPC_s_O_2 (0), SPC_s_O_2 [1) } as in Example 3.

Loads and stores from pointers to multiple locations are
replaced by a set of assignments in which the locations are
dynamically accessed according to the pointer's value.

The addresses (i.e. pointers' values) are encoded. The
encoded value of a pointer p consists of two fields: the tag p. tag
(left part of the code) corresponds to the location set referenced
by the pointer and the index p. index (right part of the code)
stores the number of bytes corresponding to the data referenced
within the location set. After encoding, the size of the pointers
can be reduced as shown in [9,IOJ. However, in order to suppon
type casting and out-of-bound array accesses, we assume that
pointers have a fixed size. In the rest of the paper, the size of the
tag and the index are supposed to be equal to 16 bits.

The index pan is stored within the first bits (least significant
bits) of the code to suppon pointer arithmetic and type casting.
An example for the implementation of an array of pointers is rep-
resented on Figure 3. It is important to note that, with this imple-
mentation, pointer arithmetic. even performed after type casting
from pointer type to integer type, is straightforward to imple-
ment.

The resolution of pointers can be further optimized. Loads
and stores can be optimized when the pointers' location is a
unique location set (i.e. case of a pointer variable) [9). Encoding
techniques [10) can also be to used to reduce the size of the
pointers' value (tag part).

3.3 Dynamic memory allocation
In order to support dynamic memory allocation and deallo-

cation, the hardware needs to access an allocator. In general, the
allocator could be implemented in software (for mixed hardware!
software implementations) or completely in hardware. Since this
work is on the synthesis of hardware from C, we only consider a
hardware implementation.

In software, malloc and free are implemented as standard
library functions. Similarly, for hardware synthesis, we use a
library of hardware components implementing malloc and
free. The idea here is to have one component, called allocator,
implement both the malloc and free functions. In order to effi-
ciently manage memory, the memory space is partitioned into
different memory segments in which data can be allocated.
Definition 1. A memory segment is defined as an array of finite
size in which d~ are allocated by a unique allocator. This a"ay
may later on be mapped to one or more memories during synthe-
sis.F9Jr8 3: Er-=o<ing of ~8fS in an anay

In our tool, the mapping of heap objects to the different
memory segments is done by the designer. Other tools could be
used to assist this task at the system-level. For each malloc in
the code, the designer selects in which memory segment the stor-
age is allocated. Since the size of the dynamically allocated
memory is a priori unknown at compile time, the designer also
sets the size of each memory segment The tool instantiates then

Loads and stores can then be removed using temporary vari-
ables and branching statements.

Example S. In the code segment below, the pointer p may point
to the location sets <its,O,2> and <b.O.4>.

int *p;

- .6

L. Semena,](. SaiD, G. De Micheli

the allocators corresponding to each memory segment and syn-
thesizes the appropriate circuit to allocate, access and deallocate
data.

in a library. During the translation into HDL. the different alloca-
~ors corresponding to each memory segment are instantiated and
the custom allocator functions are mapped to these allocator
modules. The communication between each allocator and the
main module is done using hand-shakes. The resulting HDL code
can then be synthesized using traditional high-level synthesis
tools.

Figure 4: Resolution of dynamic memory allocation and pointers
br hamware synthesis from C

4.2 Experimental results
We present two examples of implementations using SpC.

The first example is a filter used in the JPEO library of Synopsys
COSSAP [20] to perform, for example, ROB to YCrCb transfor-
mations. The filter implements the operation
Y[i] = c/ip(A.X[i]+B,C) fori = {J,2,...,n},whereAis
a 3 x 3 mabix, B and C are vectors, and X and Y are two 3 x n
dynamicaJly-allocated mabix.

The second example is the implementation of an ATM seg-
mentation engine. The segmentation engine receives frames to be
sent from the host. These frames are segmented into 48 byte cells
(payload of an ATM cell) to be transmitted on the network. The
engine keeps track of each frame in a queue. For every new
frame, a new virtual connection is open and a new queue element
is allocated. As a results, we have two sets of malloc calls: one
to allocate queue elements, the other to allocate connection status
records.

For each example, we present two sets of results. The first
set of results illustrates the case where malloc calls are mapped
to two separate allocators (no sharing). In the second set of
results, one allocator is shared (sharing). The allocators are taken
from our library [II]. We use two types of allocators. Genera/-
purpose allocators can manage elements of arbitrary size. Blocks
are allocated using a first-fit scheme. During deallocation adja-
cent free blocks are merged into larger blocks. Specific-purpose
allocators, on the other hand, are much simpler. They can only
allocate fixed-size element. Their allocation and deallocation
schemes are then straightforward. The ATM segmentation engine
may use either one general-purpose allocator or two specific-pur-
pose allocators. Using two specific-purpose allocators is then
preferable.

For each memory segment, a different allocator is instanti-
ated. Each malloc mapped to this memory segment is then
replaced by a call to the specific allocator. The pointer that takes
the result of the malloc function is defined as follows: its tag is
set according to the corresponding memory segment and its
index is set by the allocator. When multiple malloc calls are
mapped to a single memory segment, the corresponding allocator
is shared

For a call free (pI, in the general case where the pointer p
may point to multiple locations, the data to be deallocated may
be in one memory segment or another depending on the value of
the pointer p. We generate a branching statement in which the
different allocators, corresponding to the different memory seg-
ments, may be called according to the pointer's tag. The pointer's
index is then sent to the allocator to indicate which block should
be deal located. Loads, stores and addresses are resolved as
shown in the previous section. Examples 6 illustrates how mal-
loc and free calls are resolved while removing pointers.

Exilmple " Consider the following code seg~nt.
p = malloc(l);
out = *p;
free (p) ;

Ifmalloc is mapped to a ~mory segment called legl ofsiu 32
bytes, we generate the following code (sPC-p_O_O fa Oxffff
implements p. index):

char segl [32]; ! / ml'n1()ry ~gmcnt: segl
SPC-p_O_O = alloc_segl (SPC-HALLOC, 1) ;
SPC_out_O_O = segl[SPC-p_O_O & Oxffff];

alloc_segl(SPC_FREE,SPC-p_O_O & Oxffff);
The allocator component corresponding to the function

alloc_segl is called for both,malloc and free. It implements
both the allocation and deallocation functions.

Further optimization can be perfonned [II]. The allocator
architecture may be simplified by modifying the encoding of the
pointers' value. Sequences of malloc and free may also be
optimized.

4. IMPLEMENTATION AND RESULTS

4.1 Toolftow
We have implemented the different techniques presented

here in our tool SpC using the SUIF environment [19]. The tool-
flow is shown on Figure 4. Our implementation takes a C func-
tion with complex data structures involving pointers and
malloclfree and generates a Verilog module. The memory rep-
resentation, consisting of distinct location sets, is used to map
memory locations onto variables and arrays in Veri log. The
resulting Veri log module can then be synthesized using the
Behavioral Compiler of Synopsys.

In addition to the C input function, the designer defines a set
of memory segments as well as the mapping of each malloc call
to one of these memory segments. The malloc/free calls are
then replaced by calls to the custom allocator function. Pointers
are then resolved: loads and stores are replaced and pointers' val-
ues are encoded. During memory partitioning, locations repre-
sented by a unique location set are mapped to variables of
fundamental type (e.g. char, short, int) and locations repre-
sented by a multiple location set are mapped to arrays derived
from a fundamental type (e.g. array of int). Finally the resulting
C code without pointers and structures gets translated into Ver-
ilog. Each type of allocator is defined as a hardware component

size (J_) CPU
time

~
23.8!:!.8 34.6

33.8

maJlod
free

number of
allocators

c HOL
--test

comb. DOD-C.

I :l gen.:-purp. 292 (_shari,., I ~-purp.

(-..> ~-

32S

398:

~
6111

1.127

791

430

557

~88 455

334

325

.,.Jpeg

1 2 s~.-purp.
403 (DO m8inj)

1 -.- purp .
(~)

ATM
sea.

4/2

Table 2: Results using one or two allocators (size in library units
using the tsmc.35 target library; frequency 100MHz for ATM
segmentation engine, SOMHz for JPEG; CPU time measured on
Sun Uhra2 does not iooooe high level synthesis)

5. CONCLUSION
We have rx-esented an e~tension of the synthesizable C sub-

set to pointers and complex data structures. In order to efficiently
partition the storage among the different data sets during analysis
and synthesis, memory is represented by locarion sets. During
memory partitioning, locations represented by unique location
sets are mapped to simple variables and locations represented by
multiple location sets are mapped to arrays. Pointers are encoded
and loads/stores are replaced by assignments in which data are
directly accesses. Finally, dynamic memory allocation and deal-
location are performed within each user-defined memory seg-
ments by an optimized hardware allocator instantiated from a
library.

Our tool SpC, implemented within the SUIF compiler envi-
ronment, takes a C function with pointers and comple~ data
structures and generates a Veri log module which can be synthe-
sized by commercial tools.

ACKNOWLEDGMENT
This work, done at Stanford University, was supported in

part by Synopsys Inc. Koichi Sato was on leave from NEC Cor-
poration.

REFEREN CES
[I] Francky Catthoor, Sven Wuytack, Eddy De Greef, Florin BaI-

asa, Lode Nachtergaele, Arnout Vandecappelle, "Custom
Memory Management Methodology," Kluwer Academic
Publishers, Dordrecht, June 98.

[2] Abhijit Ghosh, Joachim Kunkel, Stan Liao, "Hardware S)-n-
thesis/rom C/C++:' in Proc. Design Automation and Test in
Europe DATE'99, pp. 387-389, Munich, 1999.

[3] Andrew Kay, Toshio Nomura, Akihisa Yamada. Koichi
Nishida, Ryoji Sakurai, and Takashi Kambe, "Hardware Syn-
thesis with Bach System." in Proc. IEEE International Sym-
posium on Circuits and Systems ISCAS'99, Orlando. may
99.

[4J David Ku and Giovanni De Micheli, "High-Level Synthesis of
ASICs under 1imin,g and Synchronization Constraints," Klu-
wer Academic Publishers, Boston, MA 1992.

[5J Luciano Lavagno, Ellen Sentovich, "ECL: A Specification
Environment for System-Level Design," in Proc. Design
Automation Conf. DAC99, New Orleans, pp. 511-516, June
99.

[6J Giovanni De Micheli, "Hardware Synthesis from C/C++," in
Proc. Design Automation and Test in Europe DATE'99, pp.
382-383, Munich, 1999.

[7] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolau,
"Memory Issues in Embedded Systems-an-Chip: Optimiza-
tions and Exploration," Kluwer Academic Publishers, Octo-
berl998.

[8J p. Schaumont, S. Vemalde, L. Rijnders, M. Engels, I. Bolsens,
"A Programming Environment for the Design of Comple;x;
High Speed ASICs," in Proc. Design Automation Conf.
DAC'98, pp. 315-320, San Francisco, June 1998.

[9J Luc Semeria, Giovanni De Micheli, "SpC: Synthesis of Point-
ers in C. Application of Pointer Analysis to the Behavioral
Synthesis from C," in Proc. Int. Conf. on Computer-Aided
Design ICCAD'98, pp. 340-346, San Jose, November 1998.

[IOJ Luc Serneria, Giovanni De Micheli, "Encoding of Pointers
for Hardware Synthesis," in Proc. Int. Workshop on IP-based
Synthesis and System Design (IWLAS'98), pp 57-63, Greno-
ble, December 98.

[IIJ Luc SCmena, Koichi Sato, Giovanni De Micheli, "Resolution
of Dynamic Memor)' Allocation and Pointers for the Behav-
ioral Synthesis from C," in Proc. Design Automation and Test
in Europe DATE'OO, Paris, March 2000.

[12] Charles Stoud, Ronald Munoz. David Pierce, "Behavioral
Model Synthesis with Cones", IEEE Design & Test of Com-
puters, Vol 5 N03, pp.22-30, June 88.

[13] Kazutoshi Wakabayashi, "C-based Synthesis with Behavioral
Synthesize/; Cyber," in Proc. Design, Automation and Test in
Europe DATE'99, pp. 390-391, Munich, 1999.

[14J Robert Wilson. Monica Lam, "Efficient Conte;x;t-Sensitive
Pointer Analysisfor C Programs," in Proc. of the ACM SIG-
PLAN'95 Conf. on Programming Languages Design and
Implementation, pp.I-12, June 95.

[15J Sven Wuytack, Julio da Silva Jr., Fraocky Catthoor, Gjalt de
Jong, Chantal Ykman, "Memory Management for Embedded
Network Applications," Trans. on Computer Aided Design,
Volume 18, number 5, pp 533-544, May 99.

[16J CynApps Inc., htt~://www.c~na~~s.com
[17J Handle-C, httg://oldwww.comlab.ox.acuk1oucl/Klou~

hwcweb/handel/

[18] SpecC, httD://WWW.s~cc.Kl.j~
[19J Suif Compiler, httg://suif.stanford.edu
[20] Synopsys Inc. h~://www.s~~s~s.com
[21] SystemC, httg://www.S~stemC.°r&

-48-

