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Abstract— Dynamic power management is a design methodology

aiming at controlling performance and power levels of digital circuits
and systems, with the goal of extending the autonomous operation time
of battery-powered systems, providing graceful performance degrada-
tion when supply energy is limited, and adapting power dissipation to
satisfy environmental constraints.
We survey dynamic power management applied at the system level. We
analyze first idleness detection and shutdown mechanisms for idle hard-
ware resources. We review industrial standards for operating system-
based power management, such as the Advanced Configuration and
Power Interface (ACPI) standard proposed by Intel, Microsoft and
Toshiba. Next, we review system-level modeling techniques, and de-
scribe stochastic models for the power/performance behavior of sys-
tems. We analyze different modeling assumptions and we discuss their
validity. Last, we describe a method for determining optimum policies
and validation methods, via simulation at different abstraction levels,
for power managed systems.
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1. Introduction

Design methodologies for energy-efficient system-level design are receiv-
ing an increasingly larger attention. The motivations for such interest are
rooted in the widespread use of portable electronic appliances (e.g., cellular
phones, laptop computers, etc.) and in the concerns about the environmen-
tal impact of electronic systems (whether mobile or not). In the former case,
low-power circuit and system design are required to provide a reasonable op-
eration time to battery-operated devices. In the latter case, heat dissipation
may pose a practical limitation to the design and use of high-performance
processors. Moreover, studies [19] have shown that present computers con-
sume a significant amount of electric energy, and a corresponding amount
of non-renewable energy resources. Thus system-level design must strike
the balance between providing high service levels to the users while cur-
tailing power dissipation. In other words, we need to increase the energetic
efficiency of electronic systems, as it has been done, by other means, with
other types of engines.

Electronic systems are heterogeneous in nature, by combining digital
with analog circuitry, using semiconductor (e.g., RAM, FLASH memories)
and electro-mechanical (e.g., disks) storage resources, as well as electro-
optical (e.g., displays) human interfaces. Power management must address
all types of resources in a system. The power breakdown for a well-known
laptop computer [32] shows that, on average, 36% of the total power is
consumed by the display, 18% by the hard-disk drive (HDD), 18% by the
wireless local area network (LAN) interface, 7% by non-critical components
(keyboard, mouse etc.), and only 21% by digital VLSI circuitry, mainly
memory and central processing unit (CPU). Reducing the power in the
digital components of this laptop by 10X would reduce the overall power
consumption by less than 19%.

Lowering system-level power consumption, while preserving adequate
service and performance levels, is a difficult task. Indeed, reducing system
performance (e.g., by using lower clock rates) is not a desirable option when
considering the increasingly more elaborate software application programs
for computers and features of portable electronic devices. On the other
hand, present systems have several components which are not utilized at
all times. When such components are idle, they can be put in sleep states
with reduced (or null) power consumption, with a limited (or null) impact
on performance.

Dynamic power management is a design methodology aiming at con-
trolling performance and power levels of digital circuits and systems, by
exploiting the idleness of their components. A system is provided with a
power manager that monitors the overall system and component states and
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controls the state transitions. The control procedure is called power man-
agement policy. We believe that dynamic power management is the most
appropriate approach to reduce power consumption under performance con-
straints, because significant power waste is associated with idle resources
and because of its general applicability. Note that support for dynamic
power management must be provided by the overall system organization,
and system architects often envision system partitions that enable power
management. Despite the fact that some systems are designed with power
management schemes, computer-aided design (CAD) support for this task
is limited, if any at all exists. Thus, designing and implementing dynamic
power management schemes are usually manual tasks.

The power management policy plays a key role in determining the ef-
ficacy of a power managed system. This chapter describes some computa-
tional methods for the determination of policies that are optimum under
some system modeling assumptions. Management policies can be imple-
mented in hardware or in software. In the case of simple systems, it may
be best to implement policies as specialized hardware control units that
can be modeled as finite-state machines (FSMs). Such units monitor the
system components’ states to determine their evolution in time.

When considering programmable digital systems, or generic systems
with a programmable digital component, it is possible to migrate to soft-
ware the task of controlling the power states. In particular, the operating
system (OS) is the software layer where the policy can be implemented
best, for those systems, like computers, that have an OS. 0S-based power
management (OSPM) has the advantage that the power/performance dy-
namic control is performed by the software layer (the OS) that manages the
computational, storage and I/O tasks of the system. Implementing OSPM
is a hardware/software co-design problem, because the hardware resources
need to be interfaced with the OS-based software power manager, and be-
cause both the hardware resources and the software application programs
need to be designed so that they cooperate with OSPM.

Recent initiatives to handle system-level power management include Mi-
crosoft’s OnNow initiative [36] and the Advanced Configuration and Power
Interface (ACPI) standard proposed by Intel, Microsoft and Toshiba [34].
The former supports the implementation of OSPM and targets the design of
personal computers with improved usability through innovative OS design.
The latter simplifies the co-design of OSPM by providing an interface stan-
dard to control system resources. On the other hand, the aforementioned
standards do not provide procedures for optimal control of power-managed
system.

System-level dynamic power management can be complemented by spe-
cific chip-level design techniques for power reduction. Low-power consump-
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tion in integrated circuits can be achieved through the combination of differ-
ent techniques, including architectural design choices [7], logic and physical
design [18, 23], choice of circuit families and implementation technology
[26]. In particular, dynamic power management can be applied to digital
circuits by specific techniques, such as supply voltage, frequency and activ-
ity control. Examples of activity control are clock gating of control units [2]
and signal gating of data-path [16] units. Such approaches are based on the
principle of exploiting idleness of circuits or portions thereof. They involve
both detection of idle conditions and the freezing of power-consuming ac-
tivities in the idle components. We refer the interested reader to [1] for a
comprehensive and comparative description of dynamic power management
methods at the chip and system level.

In this chapter, we survey system-level dynamic power management.
We consider first system-level design issues, such as idleness detection and
shutdown mechanisms for idle resources. We review the OnNow and ACPI
standards, as well as previous work in the area of power management.

Next, we review system-level modeling techniques, and introduce stochas-
tic models for the power/performance behavior of systems. We analyze dif-
ferent modeling assumptions and we discuss their validity. We consider then
a working model, for which optimal policies can be computed. We present
next how policies can be implemented in electronic systems.

Last but not least, we describe several methods for validating the poli-
cies, based on simulation at different abstraction levels. We conclude by
stressing the need for CAD tools to support model identification, policy
optimization and validation for dynamically power-managed systems.

2. System design

In this section we consider issues related to system-level design. We view the
system hardware as a collection of resources, we characterize their idleness
and present methods for their shutdown. We consider then the interface
standards that support resource monitoring and control from the operating
system, and we review current related work on dynamic power management.

2.1. IDLENESS AND SHUTDOWN MECHANISMS

The basic principle of a dynamic power manager is to detect inactivity of
a resource and shut it down. A fundamental premise is that the idleness
detection and power management circuit consumes a negligible fraction of
the total power.

We classify idleness as ezternal or internal. The former is strongly tight
to the concept of observability of a resource’s outputs, while the latter can
be related to the notion of internal state, when the resource has one. A
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circuit is externally idle if its outputs are not required during a period of
time. During such period, the resource is functionally redundant and can
be shut down, thus reducing power consumption. A resource is internally
idle when it produces the same output over a period of time. Thus, the
outputs can be stored and the resource shut down.

While external idleness is a general concept applicable to all types of re-
sources (e.g., digital, analog, memories, hard-disks, displays), internal idle-
ness is typical of digital circuits. Thus, we will be concerned with external
idleness detection and exploitation, since we address here system-level de-
sign.

There are several mechanisms for shutting down a resource. Digital cir-
cuits can be “frozen” by disabling registers (by lowering the enable input)
or by gating the clock. By freezing the information on registers, data prop-
agation through combinational logic is halted, with a corresponding power
saving. (This saving may be significant in CMOS static technologies, where
power is consumed mainly during transitions).

A radical approach to shutdown is to turn off power to a resource. While
this mechanism is conceptually simple and applicable in general, it usually
involves a non-negligible time to restore operation. Note that in some cases
the context must be saved before shutdown (e.g., in non-volatile memory)
and restored at restart.

Some components can be shut down at different levels, each one corre-
sponding to a power consumption level and to a delay to restore operation.
As a first example, consider a backlit display. When the display is used,
both the LCD array and the backlighting are on. When the user is idle, the
backlighting and/or the LCD array can be turned off with different power
savings.

As a second example, a hard-disk drive [37] may have an operational
state, in addition to an idle, a low-power idle, a standby, and a sleep state. In
the idle states the disk is spinning, but some of the electronic components of
the drive are turned off. The transition from idle to active is extremely fast,
but only 50-70% of the power is saved in these states. In the standby and
sleep states, the disk is spun down, thus reducing power consumption by 90-
95%. On the other hand, the transition to the active state is not only slow,
but it causes additional power consumption, because of the acceleration of
the disk motor.

This example shows the trade-off of power versus performance in dy-
namic power management. The lower the power associated with a system
state, the longer the delay in restoring an operational state. Dynamic power
management strategies need to take advantage of the low-power states while
minimizing the impact on performance.
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2.2. INDUSTRIAL DESIGN STANDARDS

Industrial standards have been proposed to facilitate the development of
operating system-based power management. A precursor standard is Ad-
vanced Power Management (APM) [35], which provides several layers of
software to support power management on computers with compliant re-
sources. APM defines the software interface between an OS power manage-
ment policy driver and software for hardware-specific power management.
APM partitions the power management functionality into a hierarchy of
cooperating layers and standardizes the flow of information and control
among them. With this scheme, APM-compliant application software is-
sues commands to an APM driver which control the resources through the
BIOS layer .

More recently, Intel, Microsoft and Toshiba proposed the Advanced Con-
figuration and Power Interface (ACPI) [34], described in detail in the
next section, which superseeds APM. In contrast to APM, which hinges
upon the BIOS code layer, ACPI provides an OS-independent power man-
agement and configuration standard. It provides for an orderly transition
from legacy hardware to ACPI-compliant hardware. Although this initia-
tive targets personal computers (PCs), it contains useful guidelines for a
more general class of systems. The characterizing feature of ACPI is that
it recognizes dynamic power management as the key to reducing overall
system power consumption, and it focuses on making the implementation
of dynamic power management schemes in personal computers as straight-
forward as possible.

The ACPI specification forms the foundation of the OnNow initiative
[36] launched by the Microsoft Corporation. The OnNow initiative is spe-
cific to the design of personal computers (PCs) and proposes the migration
of power management algorithms and policies into the computer’s operating
system (OS). The scope of OnNow goes beyond dynamic power manage-
ment.

An OnNow-compliant PC platform must conform to a set of require-
ments [36], including:

— The PC is ready for use as soon as the user turns it on.

— The PC appears as off when not in use, but it must be capable of
responding to wake-up events (originated by the user or by a resource,
such as a modem sensing an incoming call).

— Software tracks hardware status changes and adjusts accordingly. OS
and software applications cooperate in the frame of dynamic power

'The basic input output system (BIOS) is the lowest layer of the OS that is often
customized to the hardware.
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management: applications are aware that resources may be in different
service states and release resources when they are unneeded.

— All hardware devices participate in the power management scheme, by
responding to the OS commands.

Personal computers are just beginning to meet the requirements of On-
Now in 1998. The migration of power management to the operating system
level will yield a profound improvement of the performance, power con-
sumption and quality of service of personal computers, because it will give
the control of the system to the component (i.e., the OS) that can make
the most informed decisions. OnNow relies on the ACPI infrastructure to
interface the software to the hardware components to be managed.

2.2.1. ACPI

ACPI [34] is an OS-independent, general specification that applies to desk-
top, mobile and home computers as well as to high-performance servers.
The specification has emerged as an evolution of previous initiatives that
attempted to integrate power management features in the low-level rou-
tines that directly interact with hardware devices (firmware and BIOS).
It also provides some form of backward compatibility since it allows ACPI-
compliant hardware resources to co-exist with legacy non-ACPI-compliant
hardware.

ACPI is the key element for implementing operating system power man-
agement strategies, such as OnNow. It is an open standard that is made
available for adoption by hardware vendors and operating system develop-
ers. The main goals of ACPI are to:

— Enable all PCs to implement motherboard dynamic configuration and
power management.

— Enhance power management features and the robustness of power man-
aged systems.

— Accelerate implementation of power-managed computers, reduce costs
and time to market.

The ACPI specification defines most interfaces between OS software
and hardware. The software and hardware components relevant to ACPI
are shown in Figure 1. Applications interact with the OS kernel through ap-
plication programming interfaces (APIs). A module of the OS implements
the power management policies. The power management module interacts
with the hardware through kernel services (system calls). The kernel in-
teracts with the hardware using device drivers. The front-end of the ACPI
interface is the ACPI driver. The driver is OS-specific, it maps kernel re-
quests to ACPI commands, and ACPI responses/messages to kernel sig-
nals/interrupts. Notice that the kernel may also interact with non-ACPI-
compliant hardware through other device drivers.
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Figure 1. ACPI interface and PC platform

At the bottom of Figure 1 the hardware platform is shown. Although
it is represented as a monolithic block, it is useful to distinguish three
types of hardware components. First, hardware resources (or devices) are
the system components that provide some kind of specialized functionality
(e.g., video controllers, modems, bus controllers). Second, the CPU can be
seen as a specialized resource that need to be active for the OS (and the
ACPT interface layer) to run. Finally, the chipset (also called core logic)
is the motherboard logic that controls the most basic hardware function-
alities (such as real-time clocks, interrupt signals, processor busses) and
interfaces the CPU with all other devices. Although the CPU runs the OS,
no system activity could be performed without the chipset. From the power
management standpoint, the chipset, or a critical part of it, should always
be active, because the system relies on it to exit from sleep states.

It is important to notice that ACPI specifies neither how to implement
hardware devices nor how to realize power management in the operating
system. No constraints are imposed on implementation styles for hardware
and on power management policies. Implementation of ACPI-compliant
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Figure 2. State definitions for ACPI

hardware can leverage any technology or architectural optimization as long
as the power-managed device is controllable by the standard interface spec-
ified by ACPL.

In ACPI, the system has five global power states. Namely:

Mechanical off state G3, with no power consumption.

Soft off state G2 (also called S5). A full OS reboot is needed to restore
the working state.

Sleeping state G1. The system appears to be off and power consump-
tion is reduced. The system returns to the working state in an amount
of time which grows with the inverse of the power consumption.
Working state GO, where the system is ON and fully usable.

Legacy state, which is entered when the system does not comply with
ACPIL.

The global states are shown in Figure 2 (a). They are ordered from top
to bottom by increasing power dissipation.

The ACPI specification refines the classification of global system states
by defining four sleeping states within state G1, as shown in Figure 2 (b):

S1 is a sleeping state with low wake-up latency. No system context is
lost in the CPU or the chipset.

S2 is a low wake-up latency sleeping state. This state is similar to the
S1 sleeping state with the exception that the CPU and system cache
context is lost.

S3 is another low wake-up latency sleeping state where all system
context is lost except system memory.

S4 is the sleeping state with the lowest power and longest wake-up
latency. To reduce power to a minimum, all devices are powered off.
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Figure 3. Global and power states and substates

Additionally, the ACPT specification defines states for system compo-
nents. There are two types of system components, devices and processor,
for which power states are specified. Devices are abstract representations of
the hardware resources in the system. Four states are defined for devices, as
shown in Figure 2 (c). In contrast with global power states, device power
states are not visible to the user. For instance, some devices can be in an
inactive state, but the system appears to be in a working state. Further-
more, state transitions for different devices can be controlled by different
power management schemes.

The processor is the central processing unit that controls the entire PC
platform. The processor has its own power states, as shown in Figure 2 (d).
Notice the intrinsic asymmetry of the ACPI model. The central role of the
CPU is recognized, and the processor is not treated as a simple resource.

Special devices are embedded controllers, that function as resources for
the main CPU. ACPI defines a specialized interface for embedded con-
trollers. Although from a power management point of view embedded con-
trollers are treated as normal resources, they have specialized drivers be-
cause they may be used to monitor power-related system characteristics,
perform low-level complex calculations, and they may provide data that is
required to implement power management policies. For example, an em-
bedded controller can be used to control board temperature sensors and
provide valuable data for thermal management.

States and transitions for an ACPI-compliant system are shown in Fig-
ure 3. Usually the system alternates between the working (G0) and the
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sleeping (G1) states. When the entire system is idle or the user has pressed
the power-off button, the OS will drive the computer into one of the states
on the left side of Figure 3. From the user’s viewpoint, no computation
occurs. The sleeping sub-states differ in which wake events can force a
transition into a working state, and how long the transition should take.
If the only wake-up event of interest is the activation of the user turn-on
button and a latency of a few minutes can be tolerated, the OS could save
the entire system context into non-volatile storage and transition the hard-
ware into a soft-off state (G2). In this state, power dissipation is almost null
and context is retained (in non-volatile memory) for an arbitrary period of
time. The mechanical off state (G3) is entered in the case of power failure
or mechanical disconnection of power supply. Complete OS boot is required
to exit the mechanical off state. Finally, the legacy state is entered in case
the hardware does not support OSPM.

It is important to note that ACPI provides only a framework for de-
signers to implement power management strategies, while the the choice of
power management policy is left to the engineer.

2.3. RELATED WORK

We consider now work in different areas related to dynamic power manage-
ment. The common theme is the search of methods for power/performance
management. Techniques and application domains vary widely.

Chip-level power management features have been implemented in main-
stream commercial microprocessors [9, 10, 11, 14, 29]. Microprocessor power
management has two main flavors. First, the entire chip can be put in one
of several sleep states through external signals or software control. Sec-
ond, chip units can be shut down by stopping their local clock distribution.
This is done automatically by dedicated on-chip control logic, without user
control. Techniques for the automatic synthesis of chip-level power man-
agement logic are thoroughly surveyed in [1].

At a much higher level of abstraction, energy-conscious communication
protocols based on power management have been extensively studied [17,
25, 27, 33]. The main purpose of these protocols is to regulate the access
of several communication devices to a shared medium trying to obtain
maximum power efficiency for a given throughput requirement.

Power efficiency is a stringent constraint for mobile communication de-
vices. Pagers are probably the first example of mobile device for personal
communication. In [17], communication protocols for pagers are surveyed.
These protocols have been designed for maximum power efficiency. Proto-
col power efficiency is achieved essentially by increasing the fraction of time
in which a single pager is idle and can operate in a low-power sleep state
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without the risk of loosing messages.

Golding et al. considered HDD sub-systems [12, 13], and presented an
extensive study of the performance of various disk spin-down policies. The
problem of deciding when to spin down a hard disk to reduce its power
dissipation is presented as a variation of the general problem of predicting
idleness for a system or a system component. This problem has been ex-
tensively studied in the past by computer architects and operating system
designers (reference [13] contains numerous pointers to work in this field),
because idleness prediction can be exploited to optimize performance (for
instance by exploiting long idle period to perform work that will probably
be useful in the future). When low power dissipation is the target, idle-
ness prediction is employed to decide when it is convenient to spin down a
disk to save power (if a long idle period is predicted), and to decide when
to turn it on (if the predictor estimates that the end of the idle period is
approaching).

The studies presented in [28, 15] target hypothetical “interactive ter-
minals”. A common conclusions in these works is that future workloads
can be predicted by examining the past history. The prediction results can
then be used to decide when and how transitioning the system to a sleep
state. In [28], the distribution of idle and busy periods for the interactive
terminal is represented as a time series, and approximated with a least-
squares regression model. The regression model is used for predicting the
duration of future idle periods. A simplified power management policy is
also introduced, that predicts the duration of an idle period based on the
duration of the last activity period. The authors of [28] claim that the sim-
ple policy performs almost as well as the complex regression model, and
it is much easier to implement. In [15], an improvement over the simple
prediction algorithm of [28] is presented, where idleness prediction is based
on a weighted sum of the duration of past idle periods, with geometrically
decaying weights. The weighted sum policy is augmented by a technique
that reduces the likelihood of multiple mispredictions.

A common feature of these power management approaches is that poli-
cies are formulated heuristically, then tested with simulations or measure-
ments to assess their effectiveness.

3. Modeling

In the sequel we consider the hardware part of the system as a set of
resources. We model the resources at a very-high level of abstraction, i.e.,
we view them as units that perform or request specific services and that
communicate by requesting and acknowledging such services. Resources of
interest are, of course, those that can be power managed, i.e., those that
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can be set in different states, as in the ACPI scheme.

From a power management standpoint, we model the hardware behavior
as a finite-state system, where each resource is associated with a set of states
and can be in one of the corresponding states. Power and service levels are
associated with the different states and transitions among states. In this
modeling style, we abstract away the functionality of the resource, and
we are concerned only with the ability of the resource to provide and/or
request a service.

Because of the high-level of abstraction in resource modeling, it is dif-
ficult, if not impossible, to have precise information about power and per-
formance levels of each resource. This uncertainty can be modeled by using
random variables for the observable quantities of interest (eg., power, per-
formance), and by considering average values as well as their statistical
distributions [1]. This stochastic approach is required to capture both the
non-determinism due to lack of detailed information in the abstract re-
source models as well as the fluctuations of the observed variables due to
environmental factors.

With this modeling style, computing optimum dynamic power manage-
ment policies becomes a stochastic optimum control problem [6]. The prob-
lem solution, and its accuracy in modeling reality, depend highly on the
assumptions we use in modeling. We will discuss next the impact of some
modeling assumptions, and then consider is detail a system model under
some specific assumption that enables us to compute optimum policies, as
shown in Section 4.

3.1. MODELING ASSUMPTIONS

A system model can be characterized by the ensemble of its components,
their mode of interaction and their statistical properties.

In general, we can view resources both as providers and requesters of
services to other resources. In practice, some resources will be limited to
providing or requesting services. We call system structure the system ab-
straction where resources are vertices of a directed graph and where resource
interaction is shown by edges. The interaction is the request of a service
and/or its delivery. Special resources, such as queues, can be used to model
the accumulation or requests waiting for services [31].

A simple example of a CPU requesting data to a hard-disk drive is
shown in Figure 4 (a). A more complex example is reported in Figure 4
(b): it shows a CPU interacting with a LAN interface, a HDD, a display,
a keyboard and a mouse. Requests to the CPU can be originated from the
keyboard, mouse and LAN interface. Requests to the display come from
the CPU (which also forwards requests from the keyboard and mouse). The
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(@) CPU HDD
MOUSE DISPLAY
(b)
KEYBOARD CPU HDD
LAN

DISPLAY

(©)
U S E R | CPU |—>|» HDD |

Figure 4. (a) CPU requesting data to a HDD. (b) Simple model of some resources of
a personal computer and their interaction. (¢) User-PC model where the requests sent
by the keboard and by the mouse are lumped as a single requester and the CPU, HDD,
LAN and display are lumped as a single provider.

CPU can request services to the HDD and LAN. Note that the keyboard
and mouse models can express also the behavior of the human user who
hits their keys and buttons.

A modeling trade-off exists in the granularity of the resources, i.e., be-
tween the number and average complexity of the resources. Whereas a
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system model with several resources and an associated structure can cap-
ture the interaction of the system components in a detailed way, most
researchers view systems with a very coarse granularity. Namely, systems
are identified by one resource providing a service, called service provider,
and one unit requesting a service, called service requester. The requester
models the workload source. This granularity can be used to model systems
like user-PC, as shown in Figure 4 (c), where the keyboard and mouse are
lumped as a single requester and the CPU, HDD and LAN are seen as a
single provider.

Let us consider now the statistical properties of the components of a
system. Stationarity of a stochastic process means that its statistical prop-
erties are invariant to a shift of the time origin [22]. When resources are
viewed as providers of services in response to input stimuli, it is conceiv-
able to model their behavior as stationary. Conversely, when resources act
as workload sources, and when we model users’ requests as such, the sta-
tionarity assumption may not hold in general. For example, patterns of
human behavior may change with time, especially when considering the
fact that an electronic system may have different users. On the other hand,
observations of workload sources over a wide time interval may lead to
stationary models that are adequately accurate. An advantage of using sta-
tionary models is the relative ease of solving the corresponding stochastic
optimization problems.

The statistical properties of each component are captured by their dis-
tributions. An important aspect is the statistical independence (or depen-
dence) of the resources’ statistical models from each others. When a system
structure can be captured by disjoint graphs corresponding to statistically-
independent resources, the system decomposition allows us to consider and
solve independent subproblems. In practice, weak dependencies can some-
times be neglected. Conversely, system structures with many dependencies
correspond to complex models requiring a large computational effort to
solve the related optimization problems. As a result, the identification of
the system resources, interactions and statistics is a crucial step in modeling
real systems.

3.2. A WORKING MODEL

We consider here a working model, with one provider that receives requests
through a queue, and that is controlled by a power manager (PM), as shown
in Figure 5. This model is described in more detailed in [21]. We summarize
here the salient features of the model.

We assume stationary stochastic models for a service provider (SP), a
service requester (SR), and a queue (Q). We assume also that the service
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Figure 5. Coarse-grained system model

requester is statistically independent from the other components. We con-
sider a discrete-time setting, i.e., we divide time into equally-spaced time
slices. We use a parametrized Markov chain model to represent the statis-
tical properties of the system resources. By using the Markov assumption,
transition probabilities depend only on the current state and not on the
previous history. Moreover, we assume that transition probabilities depend
on a parameter, that models the command issued by the power manager.
We consider next the system components in detail.

Service provider. Tt is a device (e.g., HDD) which services incoming re-
quests from a workload source. In each time interval, it can be in only one
state. Bach state s, € {1,2,...,S5,} is characterized by a performance level
and by a power-consumption level. In the simplest case, we could have two
states (S, = 2): on and off. Otherwise, the states may be more, and in
particular match states (and substates) as defined by the ACPI standard.
At each timepoint, transitions between states are controlled by a power
manager through commands a € A = {1,2,...,N,}. For example, we can
define two simple commands: switch on (s_on) and switch off (s_off). When
a specific command is issued, the SP will move to a new state at the next
timepoint with a fixed probability dependent only on the command a itself,
and on the departure and arrival states. In other terms, after being given
a transition command by the power manager, the SP can remain in its
current state during the next time slice with a non-zero probability. This
aspect of the model takes into account the uncertainty in the transition
time between states caused by the abstraction of functional information.
Our probabilistic model is equivalent to the assumption that the evolu-
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tion in time of states is modeled by a Markov process that depends on the
commands issued by the power manager. Each state has a specific power
consumption rate, which is function both of the state and the command
issued. The SP provides service in one state only, that we call active state.

Service requester. It sends requests to the SP. The SR is modeled as a
Markov chain, whose state corresponds to the number of requests s, (with
sp €{0,1,...,S5, —1}) sent to the SR during time slice of interest.

Queuve. It buffers incoming service requests. We define its length to be
(Sq—1). The queue length is also Markov process with state s, € {0,1,...,S5,}.
The state of the queue depends on the state of the provider and requester,
as well as on the command issued by the power manager in the time slice
of interest.

Power manager. It communicates with the service provider and attempts
to set its state at each timepoint, by issuing commands chosen among
a finite set A. For example, the commands can be s_on, and s_off. The
power manager contains all proper specifications and collects all relevant
information (by observing SP and SR) needed for implementing a power
management policy. The consumption of the power manager is assumed to
be much smaller than the consumption of the subsystems it controls and it
is not a concern here.

The state of the system consisting of {SP,SR,Q} and managed by PM
is a triple s = (s, Sp, 5¢). Being the composition of three Markov chains, s
is a Markov chain (with S = S, x S, x S, states), whose transition matrix
depends on the command a issued by the PM.

Let us consider a simple example, as shown in Figure 6, representing
a power-managed HDD. The service requester has only two states, 0 and
1, representing the number of requests per time slice sent to the provider.
The queue of the service provider has two states, 0 and 1, representing
the number of requests to be serviced. The service provider has two states,
on and off, representing its functional state. When on, it services up to
one request per time slice taken from the queue. The corresponding power
consumption is of 3W. When off it does not service any request and it
consumes no power. However, a power consumption of 4W is associated
with any transition between the two states. SR evolves independently, while
the transition probabilities of SP depend on the command issued by the
power manager (s_on, s_off) and those of the queue depend on the states
of both SP and SR, as well as on the command. For example, consider the
SP in state on. (Center-left of Figure 6.) When command s_on is issued,
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Figure 6. An example of a system model with one service provider, one service requester
and one queue,with corresponding Markov chains.

the SP will stay in state on with probability 1, and transit to state off with
probability 0. Conversely, when command s_off is issued, it will stay in state
on with probability 0.8, and transit to state off with probability 0.2.

3.3. EXTENSIONS AND LIMITATIONS

System providers, requesters and queues with several internal states can be
modeled in a straightforward way. Power costs and performance penalties
can be associated with states and transitions of the Markov models. Thus,
the simple model exemplified by Figure 6 can be made more detailed, to
capture subtle differences among resource states (e.g., discriminating soft
off states from sleeping states).

Similarly, more complex system structures (with multiple providers, re-
questers and queues) can be modeled by considering the combined effect
of the resources’ models. This can be easily done under the hypothesis of
statistical independence of the resources’ behavior, as in the case of sev-
eral independent providers responding to a single workload source. In this
particular case the overall system model can be derived by composing the
Markov chains associated with each resource.

Unfortunately, in the general case, the system model is not amenable
to a simple decomposition. Consider for example systems such as the one
depicted in Figure 4 (b). The interaction among components causes statis-
tical dependence. Most requests to the display from the CPU are triggered
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Figure 7.  Statistical analysis of the inter-arrival times between service requests for
CPU, keyboard, mouse and HDD of a personal computer during software development.
For each device, three curves are plotted in lin-log scale: the probability density (solid
line), the probability distribution (bold line) and its complement to 1 (dashed line).

by the mouse and keyboard. Thus it is not possible to view the resources
as having an independent behavior.

Even when considering systems with simple structures, the identification
of the statistical distributions is not a simple matter. The use of station-
ary Markov models corresponds to use geometric distributions for requests
and service times. Such a model may deviate from reality. For example,
resources may have known, deterministic service delays compounded with
non-deterministic delays depending on the environment.

3.4. EXTRACTING MODELS FOR THE USER

System users can be viewed as workload sources and modeled as service
requesters. An approach to model the user behavior consists of monitoring
the system during a user session and then extracting a statistical model of
his/her behavior.
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System monitoring has to be sufficiently accurate to provide time-stamped
traces of service requests. The cumulative counts provided by the system
utilities of many computer systems are not sufficient to steer power man-
agement. In addition, monitoring has to be non-perturbative in order to
affect usage patterns as little as possible. A monitoring system specifically
designed for supporting dynamic power management in personal comput-
ers is described in reference [4]: the prototype implementation is conceived
as an extension of the Linux operating system [30]. The monitoring tool
can be configured to collect information about many resources at the same
time. Measured overhead for data collection is quite small (around 0.4%).
Figure 7 shows usage statistics simultaneously extracted for the CPU, the
keyboard, the mouse and the HDD of a personal computer during one-hour
of software development.

Once time-stamped request traces have been collected, they are used
to characterize the abstract model for the SR. If a discrete-time setting
is assumed for modeling, the trace need to be discretized first. For a given
time step 7', that is usually of the same order of the minimum time constant
of the SP, a discretized trace is a stream of integer numbers representing
request counts. The k-th number in the stream (i.e., ny) is the number
of requests with time stamps in the interval [(k — 1) - T,k - T|. According
to the definition of SR proposed in Section 3.2, m, represents the state
of the SR at the k-th time step. Characterizing a Markov model for the
user consists of tuning the state transition probabilities in order to make
the statistical properties of the model as similar as possible to those of the
stream. To this purpose, state transition probabilities are directly computed
from the discretized trace. For instance, the probability associated with the
transition from state s, = 0 to state s, = 1 is obtained as the ratio between
the number of 0,1 sequences in the stream and the total number of 0’s.
This procedure extracts the most accurate Markov model of any trace. If
the trace cannot be seen as the output of a Markov process, then the SR
Markov model needs to be validated by simulation, as described in Section
5.

4. Policy optimization

We consider now the policy optimization problem, for the working model
described in Section 3.2. Policy optimization strives at minimizing the av-
erage power consumption under performance constraints. Similarly, we can
define the complementary optimization of maximizing system performance
under a bound on the average power consumption. With the working model
of Section 3.2, performance relates to the average delay in servicing a re-
quest (i.e., wait time on a hard-disk access). Due to space limitation, we
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describe only the major steps toward solving the problem. The interested
reader is referred to [21] for details.

We need to analyze first how the PM controls the system, to define
formally the notion of policy, which is the unknown of the problem to
optimize.

At each time point, the power manager observes the history of the sys-
tem and controls the SP by taking a decision. A deterministic decision
consists in issuing a single command. A randomized decision consists of
specifying the probability of issuing a command. Randomized decisions
include deterministic decisions as special cases (i.e., the probability of a
command is 1).

A policy is a finite sequence of decisions. A stationary policy is one where
the same decision (as a function of the system state) is taken at each time
point. Note that stationarity means that the functional dependency of the
decision on the state does not change over time. Obviously, as the state
evolves, the decisions change. Markov stationary policies are policies where
decisions depend only on the present system state.

The importance of Markov stationary policies stems from two facts:
they are easy to implement and it is possible to show that optimum poli-
cies belong to this class. Namely, it is possible to prove formally that the
aforementioned policy optimization problems have an optimum solution
that is a unique randomized Markov stationary policy. In the particular
case that either the problem is unconstrained or the constraints are inac-
tive, then the solution is also deterministic [6, 21]. It is possible to show
that the policy optimization problem can be cast as a linear program. An
intuitive formulation is described here in an informal way. Consider the
PM, that observes the system state and issues commands. For each possi-
ble pair (state,command), we can compute its frequency, i.e., the expected
number of times that a system is in that state and issues that command.
The frequency is a non-negative number subject to the following conser-
vation law. The expected number of times state x is the current state is
equal to the expected initial population of z plus the expected number of
times z is reached from any other state. Moreover, average power and per-
formance loss can be expressed as linear functions of the (state, command)
frequencies. Thus, minimizing power consumption can be expressed as min-
imizing a linear function of the (state, command) frequencies, under linear
constraints.

Overall, linear programs modeling policy optimization can be efficiently
solved by standard software packages, for simple topologies and a reasonable
number of commands. The policy optimization tool described in [21] is built
around PCz, an advanced LP solver based on an interior point algorithm [8].

Figure 8 shows the power-performance trade-off curve obtained for the
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Figure 8. Power-performance trade-off curves for the example system of Figure 6.

example system of Figure 6 by iteratively solving the policy optimization
problem for different performance constraints. Performance is expressed
in term of average queue length, that is the average waiting time for a
request. An additional constraint is used, called request loss, to represent the
maximum probability of loosing a request because of a queue-full condition.
It is worth noting how the power-performance trade-off is affected by the
additional constraint. In particular, if a request-loss lower than 0.1337 has
to be guaranteed, the SP can never be shut down. In this case, no power
savings can be achieved regardless of the performance constraint.

The trade-off curve for a more complex system is reported in Figure
9. The SP is a commercially-available power-manageable HDD with one
active state and four inactive states, spanning the trade off between power
consumption and shut-down/wake-up times [39]. The average power con-
sumption of the disk when in the active state is of 2.5W. The SR model
was extracted as described in Section 3.4 from the time-stamped traces of
disk accesses provided in [38]. A queue of length 2 was used.

Points associated with several heuristic policies are also plotted in the
power-performance plane for comparison. Although we cannot claim that
our heuristic policies are the best that any experienced designer can for-
mulate, some of them provide power-performance points not far from the
trade-off curve. Note that heuristic solutions do not allow the designer to
automatically take constraints into account. On the other hand, trial and
error approaches may be highly expensive due to the large number of pa-
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Figure 9. Power-performance feasible trade-off’s for a commercially-available

power-manageable hard disk.

rameters (in our case study the policy is represented by a 66x5 matrix with
330 entries). Moreover, even if it is possible to produce heuristic policies
that produce “reasonable” results, there is no way for the designer to es-
timate if the results can be improved. For these reasons, computer-aided
design tools for policy optimization can be of great help to system designers.

4.1. POWER MANAGER IMPLEMENTATION

Power management policies can be computed off-line or on-line. In the for-
mer case, a policy is computed once for all for the system being designed,
and implemented in hardware or software as described in this section. Al-
ternatively, several policies can be computed off-line and stored, each cor-
responding to a different environmental factor, such as a workload source.
The power manager can switch among the policies at run time. On-line
policy computation is also possible. Once the power manager has identified
a change of the environmental conditions that make the current policy no
longer effective, a new policy can be computed which takes into account
the new environmental parameters (e.g., request arrival rate). Once the
policy is computed, it can be executed until the power manager deems it
appropriate.

In the case of simple systems, it may be practical to implement the
dynamic power management policy as a hardware control circuit. Since
circuit synthesis methods are currently used for hardware design, policy
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implementation consists of representing the policy in a synthesizable hard-
ware description language (HDL) model for the power manager. In general,
the circuit input is the system state and the output are the commands.

Deterministic policies can be implemented by table look-up schemes.
Randomized policies require storing the conditional probabilities of issuing
a command in any given state and comparing them with a pseudo-random
number, which can be generated by using a linear feedback shift register
(LFSR). The command probabilities should be normalized to the length of
the LFSR. In particular, when only two commands are possible (e.g., s_on
and s_off), their conditional probabilities sum up to 1 and thus only one
probability needs to be stored. The binary outcome of the comparison with
a pseudo-random number corresponds to the chosen command. This scheme
can be easily extended to handle N, commands by means of a table with
N, — 1 entries per state and N, — 1 comparisons with the pseudo-random
number, which can be executed in parallel.

The implementation of policies in software requires the software synthe-
sis of the power manager (e.g., the generation of a C program that issues
the commands as a function of the system state) as well as its embedding
in the operating system. In the case of randomized policies, the program
should make use of a pseudo-random number generator for deciding which
command should be issued. The power manager may be executed in kernel
mode and be synchronized and/or merged with the OS task scheduler to
reduce the performance penalty due to context switch.

5. Validation

In this section we address the problem of bridging the gap between the high
level of abstraction at which policy optimization is performed and the real-
world systems, where optimal policies have to be applied. In Section 3 we
have described a general approach for modeling power-manageable systems
as interacting Markov processes. In Section 4 we have shown that such an
abstract model allows us to cast the policy optimization problem as a linear
program that can be solved in polynomial time. All modeling assumptions
made to formulate and solve the policy optimization task need to be tested
in order to validate its results. We briefly describe validation techniques
based on simulation and emulation at different abstraction levels, ranging
from the direct simulation of the Markov models used for optimization to
the actual implementation of the optimal policies in the target systems. We
discuss the main strengths and the inherent limitations of each approach.

Discrete-time simulation of Markov processes. Discrete-time simulation is
performed at the same abstraction level used for optimization. The simula-
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tor takes the policy and the Markov models of the components and itera-
tively performs the following steps: i) take a decision (based on the current
state), i) evaluate cost/performance metrics, 7ii) evaluate the next state
of all components, i) increment time, update the state and iterate. Notice
that both the policy and the next-state functions of the Markov chains
are non-deterministic discrete functions (NDFs): inputs are present-state
variables and commands, whereas outputs are the outcomes of random pro-
cesses. NDF's can be represented as matrices having as many rows as input
configurations and as many columns as output values. Entries represent
the conditional probabilities of all possible outcomes for all given input
configurations. To evaluate a function, the row associated with the current
input configuration is selected and a pseudo-random number (uniformly
distributed between 0 and 1) is generated and compared to the entries in
the row to select the actual command.

Needless to say, this simulation paradigm cannot be used to validate the
policy against the modeling assumptions of Section 3, since it relies on them
as well. However, it provides valuable information about the time-domain
system behavior. Constraints and objective functions used for optimization
are average expected values of the performance/cost metrics of interest.
Simulation allows us to monitor the instantaneous values of such parame-
ters (to detect, for instance, the temporary violations of performance con-
straints) and to measure their variance.

Discrete-time simulation with actual user traces. 'The simulation paradigm
is the same described in the previous paragraph. The only difference is that
the model of the service requester is now replaced by a trace taken from
a real-world application. At each time step, the present state of the SR is
read from the trace, instead of being non-deterministically computed from
the previous one.

Though the abstraction level is still very high, trace simulation allows
us to remove all assumptions on the time distribution of service requests.
As a result, it can be used to check the validity of the Markov model used
for the SR during optimization.

Discrete-time simulation with real request traces was performed to val-
idate the trade-off curve of Figure 9. Simulation results are denoted by
circles in figure. The small distance of the circles from the solid-line curve
is a measure of the quality of the SR Markov model extracted from the user
traces and used for optimization.

Event-driven stochastic simulation. In event-driven simulation, model eval-
uation is no longer periodic. The model of each component is re-evaluated
only when an event (i.e., a change) occurs on some of the state/command
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variables it depends on. The evaluation of a component may produce new
events to be scheduled at a future time. Both the output events and their
scheduling times may be non-deterministic. For instance, the command
issued by a randomized policy can be modeled as an instantaneous non-
deterministic event, while the transition between two states of the SP can
be viewed as a deterministic event (if the next state is uniquely determined
once a command has been issued) to be scheduled at a non-deterministic
time (if the transition time is a random variable). The scheduling time is
pseudo-randomly chosen according to a given probability distribution. An
event-driven stochastic simulator is described in [5].

The main advantage of the event-driven paradigm is that it can eas-
ily handle stochastic processes with arbitrary distributions. Conversely,
discrete-time simulation is implicitly based on the memory-less assumption
that is behind Markov models, that allows us to represent and simulate
only geometrically-distributed random variables. Adding memory informa-
tion to a Markov model in order to represent different distributions is not a
practical solution since it causes the exponential increase of the number of
states. Event-driven simulation provides a more practical way of applying
optimal policies to arbitrary SP models in order to check the validity of the
Markov model used for optimization.

Fully-functional simulation. The functionality of a system can be de-
scribed at many levels of abstraction. Functional simulation can be per-
formed at any level. Here we focus on cycle-accurate simulation, that is the
most accurate simulation paradigm that can be used to handle systems as
complex as a personal computer. Cycle-accurate simulation matches the
behavior of the real system at clock boundaries. When the system is a
computer, cycle-accurate simulation provides enough detail to boot an op-
erating system and run an actual workload on top of it. A fully-functional
simulator specifically designed to study computer systems is SimOS [24],
that can handle multi-processor architectures and provides models for sim-
ulating commercial microprocessors, peripherals and operating systems.
When system functionality comes into the picture, most of the sim-
plifying modeling assumptions can be eliminated. In particular, stochastic
models for SP and SR are no longer required, since even their function-
ality can be exactly simulated. Performance penalties can be realistically
estimated and accurate cost metrics (i.e., power consumptions) can be as-
sociated with the operating states of the resources. In addition, functional
simulation realizes a unique trade-off between realism and flexibility. On
one hand, it provides a means of validating the policies against the real
world and gives the designer a direct hands-on experience of most of the
implementation issues involved in OS-directed power management. On the
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other hand, it allows the designer to explore the entire design space, bal-
ancing hardware and software solutions.

The main drawback of functional simulation is performance: simulation
times may be more than three orders of magnitude slower than the run
times on the corresponding real system, making the approach impractical
to study complex workloads.

Emulation. We use the term emulation to denote a validation approach
that uses functionally-equivalent real hardware components to exercise the
behavior of part of the system. In particular, we are interested in using a
computer without power-management features as the hardware platform
to emulate a power-managed functionally-equivalent one. As an example,
suppose that we are designing a power-management policy for the HDD
of a laptop computer, having one active state and several inactive states
(with different power consumptions and wake-up times). If such a HDD is
not available for validation, the power-managed system can be emulated on
an equivalent computer (with the same workload of the target one) with
a non-power-manageable HDD. As long as the device used for emulation
has the same performance of the target one, it can be employed to em-
ulate the active-state functionality, while inactive states (and transitions
between them) can be simulated by the software device driver. The code of
the original device driver needs a few changes: i) an additional state vari-
able representing the power state, 7i) a routine for updating the power state
according to power-management commands, 4ii) a timer to simulate state
transition times, iv) a routine to provide power consumption estimates and
v) a request-blocking mechanism that enables actual accesses to the disk
only when in the active state. In general, emulation of power-managed sys-
tems is based on the observation that dynamic power management can only
reduce system performances. Hence, if a functionally-equivalent real system
is available for exercising the active-state performance, lower-performance
states can be emulated as well.

Emulation has two desirable features. First, it runs at the same speed
of the actual system, thus enabling policy validation against realistic work-
loads of any complexity and real-time interactive user sessions. This gives
the user a direct experience of performance degradations possibly induced
by power management. Second, it enables the software specification of the
low-power states of the SP. The possibility of easily changing the SP model
can be exploited both during the design of a power-manageable resource,
to verify the effectiveness of a given low-power state, and during system-
level design, to select among equivalent power-manageable components.
The main drawback with respect to simulative approaches is that the sys-
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tem architecture is assigned once for all: no architectural choices can be
explored.

Implementation. Policies can be validated by testing their implementa-
tions. Since the policy is directly applied to the target system, its actual
impact on the cost metrics of interest can be measured accurately. Thus
experimentation at this level is useful as a final step in validating a given
policy.

6. Conclusions

Dynamic power management is an effective means for system-level design
of low-power electronic systems. Dynamic power management is already
widely applied to system design, but today most electronic products rely on
ad-hoc implementation frameworks (e.g., firmware code) and on heuristic
management policies (e.g., timeout policies). We expect that the use of
industrial standards, such as OnNow and ACPI, will soon facilitate the
clean implementation of operating system based power management.

This survey has shown how systems can be modeled so that optimal
management policies can be computed, validated and implemented. The
computation of optimal policies is a new problem for system-level design. In
particular, we have shown a working model for which the optimal stochastic
power-management control problem can be efficiently and exactly solved.
The solution method we have analyzed relies on a modeling abstraction of
system resources in terms of Markov processes. Several extension can be
made to the model, at the price of complicating the solution procedure, by
considering more detailed system models. As in many design problems, good
engineering judgment is key in determining the right balance among model
accuracy, exactness of the solution (for the given model), and computational
effort.

Due to the proliferation of handheld electronic systems, and due to in-
creasingly stringent environmental constraints on non-mobile systems, we
believe that designers will be very often confronted with the challenge of
deriving optimal, or near optimal, dynamic power management solutions.
As a result, computer-aided design tools for power management will be
extremely useful is system-level design for model identification, policy op-
timization and validation.
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