
Symbolic Synthesis of Clock-Gating Logic
for Power Optimization of Synchronous
Controllers

L. BENINI and G. DE MICHELI
Stanford University
and
E. MACII, M. PONCINO, and R. SCARSI
Politecnico di Torino

Recent results have shown that dynamic power management is effective in reducing the total
power consumption of sequential circuits. In this paper, we propose a bottom-up approach for
the automatic extraction and synthesis of dynamic power management circuitry starting from
structural logic-level specifications. Our techniques leverage the compact BDD-based repre-
sentation of Boolean and pseudo-Boolean functions to detect idle conditions where the clock
can be stopped without compromising functional correctness. Moreover, symbolic techniques
allow accurate probabilistic computations; in particular, they enable the use of non-equiprob-
able primary input distributions, a key step in the construction of models that match the
behavior of real hardware devices with a high degree of fidelity. The results are encouraging,
since power savings of up to 34% have been obtained on standard benchmark circuits.

Categories and Subject Descriptors: B.6.1 [Logic Design]: Design Styles—Sequential circuits;
B.6.3 [Logic Design]: Design Aids—Automatic synthesis; Optimization

General Terms: Design

1. INTRODUCTION
Dynamic power management is probably the single most successful tech-
nique for power minimization in digital systems. A number of examples of
handcrafted power-management schemes can be found in the literature
[Biggs et al. 1994; Debnath and Debnath 1995] and are actually imple-
mented in well-known commercial devices. Automatic detection of good

Authors’ addresses: L. Benini and G. D. Micheli, Computer Systems Laboratory, Stanford
University, Stanford, CA 94305; email: luca@azur.stanford.edu; nanni@galileo.stanford.edu;
E. Macii, M. Poncino, and R. Scarsi, Dip. di Automatica e Informatica, Politecnico di Torino,
Torino, Italy 10129; email: {enrico; poncino; scarsi}@athena.polito.it .
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1084-4309/99/1000–0351 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999, Pages 351–375.

power management opportunities and synthesis of the required circuitry is
a relatively new discipline, but several investigations [Alidina et al. 1994;
Monteiro et al. 1995; Benini and De Micheli 1996] have shown that CAD
tools may be effective in this area as well. In this paper, we propose new
techniques for the automatic synthesis of power-managed controllers start-
ing from structural specifications (i.e., sequential logic networks).

The key idea in power management is that unused parts of a complex
design can be shut down during system operation. Shut-down can be
achieved by zeroing the voltage supply or, in static synchronous CMOS
logic, by stopping the clock. From a technology standpoint, supply shut-
down has several serious drawbacks, such as current spikes on power and
ground lines, loss of information stored in memory cells, and power-up
delays. Clock-gating has a reduced technological impact, and can be suc-
cessfully employed in a wider range of cases. However, it is still a relatively
aggressive technique that raises concerns on possible timing violations and
testability degradation. An even lower-impact approach to power manage-
ment requires the use of enabled flip-flops, sequential primitives where an
additional input signal determines whether the stored values must be
updated or held constant.

Supply shut-down, clock-gating, and flip-flop disabling span the trade-off
between achievable savings and technology complications. On one extreme,
power supply turn-off is the hardest to implement, but it completely
eliminates power dissipation during shut-down. On the other extreme,
flip-flop disabling is minimally intrusive, but it does not reduce clock power
and leakage power. We exploit clock-gating for implementing our power
management strategy because we believe that it represents a good trade-off
between aggressiveness and achievable power savings. Moreover, our strat-
egy is applicable to register disabling with no modification to the core
algorithms, and one minor architectural modification: The same signal
used to stop the clock can be used to disable the flip-flops.

From a methodology viewpoint, we adopt a bottom-up approach. The
starting point is a synchronous circuit described at the logic level by a
netlist containing combinational gate primitives and flip-flops. This is in
sharp contrast to top-down techniques, such as those proposed in Benini
and De Micheli [1996], where it is assumed that the initial specification of
the controller is given as a state transition graph (STG). Given the STG of
the circuit to be synthesized, conditions under which the next state and the
output signals do not change are identified. In such conditions, the clock is
disabled, since no useful computation is performed by the circuit, thus
avoiding some node switching that may cause useless power dissipation. In
Benini and De Micheli [1996] techniques are described for calculating the
conditions under which the clock can be stopped, as well as exact and
approximate algorithms for synthesizing the STG description with embed-
ded clock-gating mechanisms.

There are two major limitations in the method we proposed in Benini and
De Micheli [1996]. First, the tool can handle only small STGs. Controllers
which are automatically synthesized from high-level specifications may

352 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

have millions of states; explicitly enumerating all of them, as required by
the algorithms of Benini and De Micheli [1996], may thus simply be
unacceptable. Second, the computation of the clock-gating conditions is
done without considering the controller as a piece of a more complex system
but, rather, as a component running in isolation. This implies an inevitable
loss of information which could have been successfully exploited to achieve
a more effective global optimization.

In this paper, we address both the issues pointed out above. The problem
of optimizing larger controllers is tackled in two ways. First, by resorting to
symbolic data structures, that is, BDDs [Bryant 1986] and ADDs [Bahar et
al. 1997] to simplify the representation of the clock-gating conditions as
well as the calculation of the probability of the activation function. Second,
by employing a new and efficient algorithm for the search of the optimal
activation function that is able to dynamically estimate the savings, in
terms of power consumption, that different realizations of the clock-gating
logic produce on the circuit.

Regarding the calculation of the activation function, in Benini and De
Micheli [1996] it has been proposed that it can be computed by looking at
the sequential circuit in isolation; that is, as a self-standing computing
element, thus implicitly making the assumption of equiprobable input
statistics. The control-dominated systems we are considering here are
usually interacting with other controllers and/or data-paths; this may pose
some constraints on the signals that appear at the circuits I/O interfaces.
One way of properly modeling the influence of the environment on the
behavior of a design is through non-equiprobable primary input statistics.
In addition, even when the circuit’s primary inputs are totally independent
from the other components, there may be cases in which assuming a 0.5
input transition probability is not realistic (think, for example, of the
external reset signal of a microcontroller). We therefore propose to use
non-equiprobable primary input probability distributions in the computa-
tion of the activation function. Such distributions can be determined from
the knowledge of the specific functionalities associated to the various input
signals or, alternatively, by performing system-level simulation over a
large number of clock periods. Experimental data are provided to show the
impact that the accurate knowledge of the primary input statistics can
have on both the total probability of the activation function and the power
savings obtainable through implementation of the gated-clock architecture.

The applicability of the proposed algorithms strongly depends on the
amount of “idleness” in the target specifications. A circuit is idle when
either its inputs do not change very often or when input transitions do not
propagate to the outputs. The first form of idleness depends on input
statistics, while the second depends on both input statistics and function-
ality of the target circuit. We have performed extensive experimentation on
the entire Iscas’89 sequential benchmarks suite [Brglez 1989] assuming
independent and equiprobable inputs. With such input statistics, several
benchmarks are almost never idle, and cannot be optimized with our
technique. On the other hand, our solution produces sizable power savings

Symbolic Synthesis of Clock-Gating Logic • 353

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

on all benchmarks that are idle for a significant fraction of the operation
time. Average power savings of 17% have been obtained at limited area and
delay costs (11% and 8%, respectively). Moreover, results show that our
approach is capable of exploiting non-uniform input statistics for achieving
even higher power reductions.

Other bottom-up power optimization techniques have been proposed in
the literature. We investigate analogies and differences between our ap-
proach and previous ones, namely, the precomputation-based architectures
of Alidina et al. [1994] and Monteiro et al. [1995], and we compare the
power optimizations that can be achieved when different classes of circuits
are considered.

The paper is organized as follows: Section 2 provides definitions for
subsequent usage. In Section 3, we formally state the problem; summarize
the gated-clock architecture we adopt; and briefly describe our previous
work on the subject, the results of which are reported in Benini and De
Micheli [1996]. Section 4 constitutes the core of the paper: It describes the
symbolic algorithm for automatically synthesizing the activation function,
and discusses most of the issues related to its implementation. In Section 5
we outline extensions to the proposed technique; in addition, we investigate
the relationship between our approach and the precomputation architec-
tures proposed by Alidina et al. in [Alidina et al. 1994; Monteiro et al.
1995]. Section 6 is dedicated to experimental results and, finally, Section 7
provides concluding remarks.

2. BACKGROUND

We assume the reader to be familiar with the basic concepts of Boolean
functions and with the data structures commonly used for the symbolic
manipulation of such functions, that is, the binary decision diagrams
(BDDs). Background material on this subject can be found in Bryant
[1986]. We review here two Boolean operators essential for our purposes.
Given a single-output Boolean function, f~x1, . . . , xn!, the positive and the
negative cofactors of f, with respect to variable xi, are defined as:

fxi 5 f~x1, . . . , xi 5 1, . . . , xn! and fx9i 5 f~x1, s, xi 5 0, . . . , xn!

The existential and the universal abstraction of f with respect to xi are
defined as:

?xi f 5 fxi 1 fx9i and @xi f 5 fxi z fx9i

2.1 Sequential Circuits and Finite State Machines

We consider synchronous sequential circuits composed of combinational
gates and edge-triggered flip-flops. All flip-flops are controlled by the same
clock, and we assume that they are all resetable to a given state. Associated
with a sequential circuit is an encoded, Mealy-type, finite state machine
(FSM) that describes the behavior of the circuit. An FSM, M, is a 6-tuple

354 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

~X, Z, S, s0, d, l!, where X is the input alphabet, Z is the output alpha-
bet, S is the finite set of states of the machine, s0 is the reset state, d~x, s!
is the next state function (d : X 3 S 3 S), and l~x, s! is the output
function (l : X 3 S 3 Z). The sets X, Z, and S are non-empty. Boolean
functions d and l have multiple outputs: They implicitly define the state
transition graph (STG) of the given FSM.

Elements x [X are encoded by vectors of n Boolean variables, x1, . . . , xn,
called input variables. Similarly, present states s [S are encoded by k
Boolean variables, s1, . . . , sk, called present state variables, elements
z [Z are encoded by vectors of m Boolean variables, z1, . . . , zm, called
output variables, and next states t [S are encoded by k Boolean vari-
ables, t1, . . . , tk, called next state variables.

Mealy-type FSMs produce the output z when the edge labeled x is
traversed, while Moore-type FSMs produce the output z when a given state
s is reached. Therefore, in Moore-type machines, states, rather than edges,
are labeled with output symbols.

2.2 Pseudo-Boolean Functions and ADDs

A n-input pseudo-Boolean function, f : Bn 3 S, is a mapping from a
n-dimensional Boolean space to a finite set of elements S. Different
data-structures have been proposed for storing and manipulating functions
of this type. In this work, we use the algebraic decision diagrams (ADDs)
[Bahar et al. 1997].

The most important operators for efficient manipulation of the ADDs are:
ITE , APPLY, and ABSTRACT.

ITE takes three arguments: f, an ADD restricted to have only 0 or 1 as
terminal values, and g and h, generic ADDs. It is defined by:

ITE ~f, g, h! 5 f z g 1 f9 z h

APPLY takes one operator, op (e.g., 1 , 2 , 3), and two operand ADDs
as arguments; it applies op to all corresponding elements of the two
operands and returns the resulting ADD.

ABSTRACTreduces the dimensionality of its argument function through
existential arithmetic abstraction of some variables. Let u be the support of
a pseudo-Boolean function f~u!, and let x and y be two subsets of u such
that x ø y 5 u. The arithmetic existential abstraction of x from f~u! with
respect to the arithmetic sum is defined as:

\x
1f~u! 5 O

x
f~u!

This definition tells that, instead of taking the Boolean sum of all the
cofactors associated with the minterms of the x-variables, as in Boolean
existential abstraction, the ABSTRACToperator computes precisely the

Symbolic Synthesis of Clock-Gating Logic • 355

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

arithmetic sum. Similarly, the arithmetic existential abstraction of x with
respect to the MAXoperator is defined as:

\x
MAXf~u! 5 max

x
f~u!

2.3 Probabilistic Analysis of an FSM

The probabilistic behavior of a finite state machine can be studied by
regarding its transition structure as a Markov chain. It is sufficient to label
each out-going edge of each state with the probability of the FSM making
that particular transition in order to obtain a discrete-parameter Markov
chain. On the other hand, studying the behavior of the Markov chain, that
is, computing the state occupation probabilities, is related to performing
the reachability analysis of an FSM.

Given the transition relation of the FSM representing the sequential
circuit, it is possible to compute the vector p whose entries ps tell us the
steady-state probability of the FSM to be in state s. For mid-sized circuits
the calculation can be carried out in an exact fashion using the ADD-based
procedures of Hachtel et al. [1996]; for large sequential networks, the
approximate techniques of Tsui et al. [1995] must be employed. In both
cases, complex primary input probability distributions can be specified in
order to have more detailed hardware modeling options. In this work we
rely on the performance of these algorithms to overcome some of the
limitations which appeared in the implementation of the optimization
methods of Benini and De Micheli [1996].

3. REDUCING POWER THROUGH CLOCK-GATING

A gated-clock circuit is obtained by modifying the architecture depicted in
Figure 1(a). We define a signal called activation function (Fa) that selec-
tively stops the local clock of the circuit, when the machine does not
perform state or output transitions. When Fa 5 1 the clock will be stopped.

The sequential circuit with clock-gating logic is shown in Figure 1(b). The
block labeled “L” represents a latch, transparent when the global clock
signal CLK is low. The latch is needed for correct behavior, because Fa may
have glitches that must not propagate to the AND gate when the global
clock is high. Moreover, notice that the delay of the logic for the computa-
tion of Fa may be on the critical path of the circuit, and its effect must be
taken into account during timing verification.

The activation function is a combinational logic block with the primary
inputs and the state lines of the circuit as input variables. No external
information is used; the only input data for our algorithm are the gate-level
description of the circuit and the probability distributions of the input
signals.

3.1 Idle Conditions

Given the gate-level description of the circuit and its probabilistic model,
we first want to identify the idle conditions when the clock may be stopped.

356 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

A gate-level netlist is the implementation of a sequential circuit that can be
represented by a finite state machine. In the following, we will refer to the
FSM associated to the netlist to clarify some important points.

Determining the idle conditions is a simple task for circuits implement-
ing Moore-type FSMs. When the present state and the inputs are such that
the next state does not change, the Moore FSM is idle; in symbols: d~x, s!

5 s (i.e., the self-loops). Unfortunately, this property does not hold for
Mealy FSMs.

Consider, for example, the fragment of a Mealy FSM shown in Figure 2.
State S2 has a self-loop, but we cannot stop the clock when we observe the
code of S2 and inputs 11 on the state and input lines. The reason is that
the self-loop does not change the next state, but it changes the output if the
previous transition was S1 3 S2. Intuitively, the self-loop on S2 becomes
an idle condition only if it is taken for two consecutive clock cycles. In
contrast, the self-loop on S3 is an idle condition, because every incoming
edge of S3 has the same output, and knowing that the next state is S3

provides enough information to infer the output value.
This observation has been formalized in Benini and De Micheli [1996]

where the states of a Mealy-type FSM have been divided into two classes.
States like S2 where self-loops are not idle conditions (unless taken twice),
are called Mealy-states, while states like S3 are called Moore-states. For
Mealy-states it is not possible to stop the clock of the circuit just by
observing the state and input lines. In Benini and De Micheli [1996], an
algorithm is described that operates on the STG of the FSM to transform
Mealy-states into Moore-states, thus allowing the exploitation of more
self-loops as idle conditions where the clock can be stopped.

In this work, we want to extract the idle conditions available in the
synchronous network implementing the FSM. It is generally computation-
ally infeasible to explicitly handle the STG representation of large sequen-
tial circuits. As a consequence, the transformation from Mealy-states to
Moore-states is not applicable and we must restrict ourselves to the
Moore-states of the Mealy FSMs.

Combinational
 Logic

IN OUT

STATE

GCLK

CLK

&LaF

Combinational
 Logic

OUT

STATE

CLK

IN

(a) (b)

Fig. 1. (a) A sequential circuit. (b) Gated-clock version. .

Symbolic Synthesis of Clock-Gating Logic • 357

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

3.2 Activation Function

Given an FSM implemented by a synchronous logic network, we would like
to find the self-loops of the Moore-states. Such self-loops are uniquely
identified by the present state and input values and represent the set of
idle conditions that may be exploited to stop the clock. For example, for the
FSM fragment in Figure 2, the only useful idle condition is the self-loop on
S3 (identified by input value 00 and state value S3).

The complete activation function Fa~x, s! is defined as the union of all
the self-loops of the Moore-states (x and s are the input and the state
variables, respectively). The set of all self-loops in the FSM includes Fa,
because it contains also the self-loops of Mealy-states.

The identification of the Moore-states can be performed implicitly (i.e.,
without extracting the STG) by a procedure that requires a single unrolling
of the sequential circuit, that is, duplicating the combinational logic to
represent two consecutive time frames, as shown in Figure 3.

There are two cascaded logic blocks: The inputs of the first combinational
block are x and s, representing respectively primary and state inputs. The
outputs are z. The next state outputs of the first block are fed into the state
inputs of the second block (the signals t). The primary input values in the
second block are represented by x1, while the output of the second block are z1.

With this model, finding the Moore-states is quite simple. For a Moore
state t, the following property holds: If in the second combinational logic
block the state transition is a self-loop (i.e., d~x1, t! 5 t), for each state
transition s 3 t in the first block, the output z 5 l~x, s! and z1 5 l~x1, t!
are the same. Intuitively, this property expresses the requirement that
every incoming edge for state t has the same output value, but we are
interested only in states with self-loops, because otherwise no idle condi-
tions are available. Finding all states for which the condition is true is
equivalent to finding all Moore-states with self-loops, but no STG extrac-
tion is required. This procedure lends itself to an elegant symbolic formu-
lation that will be described in the next section.

4. SYNTHESIS OF THE CLOCK-GATING LOGIC

In this section, we describe a symbolic algorithm to generate the clock-
gating circuitry and we discuss the issues related to the global optimiza-

S1
S2

11/01

11/00

S3

01/11

00/11

Fig. 2. Fragment of a Mealy FSM.

358 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

tions that are enabled by the presence of the new logic into the circuit. The
expression giving the activation function Fa in symbolic form is the
following:

Fa~x1, t! 5 A z @x, s~B1C! (1)

The term A 5 P
i51
k ~d i~x1, t! [ti! imposes the condition that, in the second

frame of the unrolled circuit, the machine has a self-loop. This is expressed
by having each present state variable ti identical to the next state function
d i~x1, t!.

The term B 5 P
i51
m ~l i~x, s! [l i~x1, t!! describes the constraint on the

output values. Since we are detecting Moore-states, we require that the
output values of the incoming edge and the self-loop are the same. Notice
that the unrolling implies the use of different variables for the two frames
of the unrolled circuit.

The term C 5 ~P
i51
k ~d i~x, s! [ti!!9 is OR-ed with the second term to

express the fact that the equality of the outputs in two frames does not
need to be enforced for transitions not in the next state functions of the
FSM.

The resulting activation function Fa is expressed in terms of the auxiliary
variables ~x1, t! for convenience, and can be easily re-expressed as a
function of the inputs x and present states s by variable renaming.

4.1 Reducing the Activation Function

Direct application of Equation 1 yields, in the general case, functions whose
power dissipation may partially mask off the potential power savings.
Therefore, it is mandatory to develop a systematic method to reduce the
implementation of Fa, while keeping as high as possible the probability of
its ON-set.

To reach this objective, we proceed as follows: First, we build a pseudo-
Boolean function, PFa, which implicitly represents the probability of the
minterms in the ON-set of Fa. Then, we iteratively remove from Fa some of
its ON-set minterms until a given cost criterion breaks the loop. Clearly,

x

s t

x+

+z z

Combinational
 Logic (1)

Combinational
 Logic (2)

Fig. 3. Unrolling of an FSM.

Symbolic Synthesis of Clock-Gating Logic • 359

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

both the minterm removal and the stopping condition must be guided by a
combination of the size improvement in the implementation of Fa and the
probability decrease of the ON-set of Fa. We have devised several heuristics
that help in keeping these two requirements together.

4.1.1 Computing PFa. Let us assume the pseudo-Boolean functions of
the primary input probabilities, Pinputs~x!, and of the state occupation
probabilities, Pstates~s!, to be known (for the details on how these two
functions can be computed implicitly using ADDs the reader may refer to
Hachtel et al. [1996]). The probability PFa can be simply obtained as:

PFa~x, s! 5 Pinputs~x! z Pstates~s! z Fa~x, s! (2)

Obviously, PFa is stored as an ADD, whose paths from the root to the leaves
give the probability of all the minterms in the ON-set of Fa. The total
probability of the ON-set of Fa, (i.e., a real number) can then be computed
by applying the ABSTRACToperator:

PROB~Fa! 5 \x, s
1 PFa~x, s! (3)

4.1.2 Iterative Reduction of Fa. Given the activation function, Fa, and
its probability function, PFa, the reduction algorithm iteratively prunes
some of the minterms of Fa until an acceptable solution is found. The
pseudocode of the procedure is shown in Figure 4.

As mentioned earlier, the objective of procedure Reduce_Fa is to de-
termine a new activation function, Fa

Best, which is contained into the
original Fa, has a high global probability, and is less costly (in terms of both
power and area) if compared to Fa. Three main routines are called inside

Fig. 4. The Reduce_Fa Algorithm.

360 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

Reduce_Fa : Prune_Fa , Compute_Cost , and Stop_Test . We discuss them
in this order.

4.1.3 Heuristics to Prune Function Fa. We have experimented with two
different heuristics for pruning the activation function.

The first one is based on the idea of removing from the ON-set of Fa the
minterms or the cubes whose probability is smaller than a relative,
user-selected threshold, a [@0,1#.

Given the probability function PFa~x, s!, we first compute the maximum
value of its leaves:

Max 5 \x, s
MaxPFa~x, s! (4)

Then, we set to 0 all the leaves of the PFa~x, s! ADD whose values are
smaller than a z Max, and we set to 1 the remaining leaves. This is
accomplished through an ad-hoc ADD operator called THRESHOLD; we

denote as P̃Fa the so obtained ADD (which is, actually, a BDD, since it has
only 0 and 1 leaves). Finally, the current activation function is computed
by application of the ITE operator:

Fa
Curr 5 ITE ~P̃Fa, Fa, 0! (5)

Preserving a high probability for Fa is essential. However, to obtain a
minimum power implementation, it is equally important to keep the area of
the clock-gating circuitry under control. It is well known that reducing the
number of minterms in the ON-set of a function does not guarantee that
the size of the corresponding (optimized) circuit decreases. On the other
hand, if some minterms in the ON-set are moved to the don’t care-set
instead of the OFF-set, then the final realization of the circuit is advanta-
geous from the area point of view. To take this aspect into account, we need
to generate the don’t care function, DCFa

Curr, which is associated to the
activation function. One way of computing it is the following:

DCFa

Curr 5 Fa Q Fa
Curr (6)

Clearly, DCFa

Curr can be used to optimize Fa
Curr at each iteration of the

reduction process.
In the rare cases where a large fraction of the minterms of Fa has the

same probability, say p, keeping the p leaf in the ADD does not allow
enough reduction of Fa; on the other hand, setting it to zero causes an
unacceptable decrease in the total probability of the pruned Fa. We propose
a solution based on the concept of BDD subsetting [Ravi and Somenzi
1995]. We retain only the “dense” subset of minterms with probability p, in
the hope that to a small ADD for the probability function corresponds a
compact logic circuit realizing the reduced Fa. Experimental evidence has
proved this choice to be reasonably efficient.

Symbolic Synthesis of Clock-Gating Logic • 361

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

The reduction technique outlined above uses as its primary pruning
criterion the probability of the minterms to be added to the don’t care-set.
An alternative heuristics is reminiscent of the strategy presented in
Alidina et al. [1994], and it is based on the key observation that reducing
the number of variables in the support of Fa may cause a reduction in the
size of its implementation, since the number of circuit inputs decreases
accordingly. The procedure selects a variable xi to be eliminated from the
support of Fa based on the probability of the universal abstraction qi 5
@xiFa~x!. Variables with the highest P~qi! are eliminated, one at a time,
until a user-selected cost requirement (which accounts for both the total
probability of the reduced Fa and the size of its implementation) is met.
Also in this case, the reduced activation function can be further optimized
at each iteration of procedure Reduce_Fa by using the don’t care informa-
tion that can be computed using Equation 6. For space reasons, we do not
discuss the details of this heuristic.

4.1.4 Computing the Cost of Function Fa. The pruning heuristics de-
scribed in the previous section use, as the driving criterion, the total
probability of the reduced activation function as well as the size of its
implementation. However, the ultimate objective of the optimization algo-
rithm is the reduction of the dissipated power of the overall design.
Therefore, the cost function we employ to decide whether the current
solution is acceptable uses power as the primary target. Its expression is
the following:

Curr2Cost 5 POWER~Circ!~1 2 PROB~Fa
Curr!! 1 POWER~Fa

Curr! (7)

POWER(Circ) indicates the average power dissipation of the original circuit,
computed through Monte-Carlo or symbolic simulation. POWER~Fa

Curr!,
on the other hand, is the average power dissipation of an optimized
multilevel implementation of Fa

Curr. The first term of the summation
represents an estimate of the expected power dissipation of the circuit
when clock-gating is present. The second contribution is the additional
power consumed by the activation function. The biggest source of approxi-
mation is in the assumption that the power of the gated-clock circuit
(excluding the activation function) scales linearly with the probability of
Fa

Curr. The advantage of this cost function stands in its limited computa-
tional requirements, since POWER(Circ) is calculated once and for all
before starting the Fa reduction process. The negative side is that the
possibly beneficial effects of simplifying the logic of the overall circuit using
Fa

Curr as the external don’t care set are not accounted for. By contrast,
POWER~Fa

Curr! is clearly recomputed for each new activation function—
that is, at each iteration of the Reduce Fa algorithm.

Alternative cost functions of increasing accuracy and computational
demand are obviously available. We have actually experimented with some
of them; for example, we have considered the following:

362 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

Curr2Cost 5 POWER~Fa
Curr 1 Circ! (8)

This is clearly more accurate than the one of Equation 7. In fact, each Fa
Curr

is first synthesized and optimized and then connected to the original circuit
as in Figure 1(b). The power dissipation of the overall network is then
estimated. The complexity of the computation is increased, because a power
estimation of a larger design is required at each iteration. Unfortunately,
extensive experimentation has shown that adopting more sophisticated
solutions does not pay off in terms of the trade-off between the quality of
the synthesized activation function and the time spent in the synthesis
process. Therefore, we have chosen to stick to the simplest formulation of
the cost function given in Equation 7.

4.1.5 The Stopping Criterion. As in any gradient-based refinement pro-
cedure (where the iterations continue as long as there are improvements,
and stop as soon as the cost function starts increasing again), we reduce the
ON-set of Fa at each iteration and we exit the reduction loop the first time
the cost function starts increasing, that is, Curr2Cost . Best2Cost. Exper-
imental evidence in previous work [Benini and De Micheli 1996] has shown
that, in most cases, the cost function is either monotone or with a single
minimum. This result is intuitive, since the reduction of the activation
function is such that the newly generated Fa is contained into the one
generated at the previous iteration, and therefore once a minimum is hit, it
is difficult to hit another one. This argument is plausible as long as the
circuitry implementing Fa and the logic of the original circuit are kept
separated. In fact, in this case, a smaller activation function improves the
power dissipation only by reducing the consumption in the clock-gating
circuitry. A size reduction of Fa that increases the power implies that the
power not saved in the circuit is larger than the power saved in the
clock-gating circuitry, and using an even smaller activation function will
only make this situation worse.

When the cost function is more complex, this line of reasoning may no
longer be correct. This is because minterms removed from Fa are actually
added to the don’t care set of the same function, and since such don’t care
conditions are used to optimize the overall circuit, a larger don’t care set
may help in reducing its size, and therefore, possibly, the total power
consumption. It is clear then that, due to the complexity of the adopted cost
function, finding a direct relationship between such function and the
optimality of the computed solution is not an easy task. We are currently
investigating more sophisticated stopping criteria which are able to guide a
branch-and-bound searching technique.

4.2 Global Circuit Optimization

The result produced by procedure Reduce_Fa is a gate-level specification of
the activation function, Fa, which is likely to produce some power savings
when appropriately connected to the original sequential design.

Symbolic Synthesis of Clock-Gating Logic • 363

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

After the logic is included in the circuit in the way shown in Figure 1(b),
some global optimization can be performed. Notice that the activation
function is functionally redundant. Since the target is area rather than
power minimization, the optimizer may remove the clock-gating logic in its
entirety, thus producing a circuit which is very similar to the original one.
This is most likely to happen when Fa is used as the external don’t care set
for each primary and state output and redundancy removal methods are
used for the optimization. Clearly, this is something we must avoid.

The solution we have adopted to overcome this problem consists of adding
to the circuit an extra output pin to make function Fa directly observable.
With this artifact, redundancy removal procedures can be applied to the
circuit. This type of optimization has highly beneficial effects on the
gated-clock circuits: Not only may it reduce the power dissipation, it also
increases the testability of the system, because it eliminates the untestable
faults in the combinational logic generated by the insertion of the redun-
dant clock-activation logic [Favalli et al. 1996].

5. EXTENSIONS

If a sequential circuit is an implementation of a Mealy FSM with no
Moore-states, the activation function will be empty. In this section, we
discuss generalizations of the procedure used to find the initial Fa that
allow the exploitation of different kinds of idle conditions. The generalized
procedure is applicable to feedback-free sequential circuits as well (i.e.,
pipeline stages). Consequently, it may be noticed that our approach has the
same scope of applicability as precomputation [Alidina et al. 1994; Mon-
teiro et al. 1995], namely, sequential circuits described in a structural
fashion at the logic level. In the second part of the section, we analyze the
analogies and differences between our clock-gating strategy and precompu-
tation, and we show that the two techniques are not equivalent and exploit
different types of idle conditions.

5.1 Covering Additional Self-Loops

We have shown in Section 3 that the basic clock-gating technique cannot
stop the clock in self-loops of Mealy-states, because for such self-loops
output transitions might be required, even if the next state does not
change. This problem can be solved if the outputs of the sequential circuit
are taken as inputs of the activation function as well as the state and
primary inputs. The gated-clock architecture can be modified as shown in
Figure 5. If all outputs are taken as inputs of the activation function, all
self-loops can be exploited to stop the clock.

As an example, consider again Figure 2: If we are allowed to observe the
output values, then a state value of S2, an input value 00, and an output
value 11 uniquely identify the self-loop in S2. Observing these values we
can stop the clock because the FSM is in a self-loop, and the output is not
going to change in the next clock cycle. Intuitively, the desirable conse-
quence of observing the outputs is that more information is available for

364 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

detecting idleness. Unfortunately, the negative counterpart is that the
activation function has an increased number of inputs and it may become
more complex. The symbolic formula for the computation of the activation
function including the output values is similar to the one presented in
Equation 1:

Fa~x1, t, z1! 5 A z ~D 1 C! (9)

where terms A and C are the same as in Equation 1, and D 5 P
i51
m ~l i~x1,

t! [zi
1!. Notice that the support of Fa has been extended to include the

output variables z1. Term D is the key difference between Equations 1 and
9; in fact, it expresses the condition that, when the next state and the
present state are the same (i.e., A 5 1), the FSM is idle if the outputs also
do not change. Interestingly, the idle conditions captured by Equation 9 are
a superset of the “hold conditions” as defined in Theeuwen and Seelen
[1997].

It may be observed that, since the number of outputs in a sequential
circuit is often very large, the size of the activation logic may increase too
much. However, it may be the case that we do not need to use all outputs as
inputs of Fa. For example, referring to Figure 2, to exploit the self-loop on
S2 it is sufficient to sample the second output, because the first output does
not change on all transitions reaching S2.

Formula 9 can be modified so that only a subset of the outputs becomes
part of the support of Fa. We have:

Fa~x1, t, z1! 5 A z ~~D1 z D2! 1 C! (10)

where D1 5 P
i51
w ~l i~x1, t! [zi

1!, D2 5 P
i5w11
m ~l i~x, s! [l i~x 1 , t!!, and

w is the number of circuit outputs we want to consider.
There is a clear trade-off between the number of additional self-loops

that can be considered in the activation function by including one or more
outputs to its support and its size (and power dissipation). Ideally, we

Combinational
 Logic

IN OUT

STATE

GCLK

CLK

LaF

Fig. 5. Modified gated-clock architecture.

Symbolic Synthesis of Clock-Gating Logic • 365

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

would like to include in the support of Fa all outputs whose observation
enables the exploitation of many self-loops. The complexity of the imple-
mentation of Fa strongly depends on the selection of the subset of outputs
to be included in its support.

We have devised a heuristic procedure to perform the selection of an
optimal subset of outputs for inclusion in the support of the activation
function. For each primary output, zi

1, of the circuit, we first compute
function Fa~x1, t, zi

1! and we determine the value of its probability Pi. This
step provides information on how beneficial the inclusion of a single output
in the support of Fa can be.

Function Fa~x1, t, z1! is built iteratively, starting from Fa
~0! 5 Fa~x1, t!

(i.e., the activation function computed by Equation 1, with no output
variables in its support). The activation function at step n of the iteration is
computed as:

Fa
~n! 5 Fa

~n21! 1 Fa~x1, t, z1! (11)

where Fa~x1, t, z1! is determined using Equation 10. On each iteration, w
is incremented by one (i.e., one output is added to the support of Fa). The
outputs are selected starting from those with higher Pi.

It is easy to realize that the probability of Fa
~n! is non-decreasing for

increasing n. However, a point of diminishing return may be reached, when
adding outputs to the support of the activation function leads to a marginal
increase in probability and to a substantial increase in the complexity of its
implementation. For this reason, after each iteration the power savings are
estimated with the heuristics described in Section 4. The iteration is
stopped when the cost starts increasing.

The iterative algorithm returns an activation function that includes in its
support some of the outputs of the sequential circuit. Most of the run time
is spent in the evaluation of the power savings for each Fa

~n!, which involves
optimal pruning and cost estimation. The greedy nature of the algorithm
guarantees that the worst-case number of iterations is equal to the number
of outputs. Hence, the run time is kept under control.

5.2 Feedback-Free Sequential Circuits

Let us consider the case of feedback-free sequential circuits, where all
primary inputs are latched and no output is fed back to the inputs.
Although such circuits are still sequential (the output at one clock cycle
depends on the input in the previous one), they do not have state lines.
Therefore, computing the activation function for circuits falling into this
category through Equation 1 yields the null function. However, an Fa with
nonempty ON-set can be obtained using Equation 9; in fact, the expression
for Fa reduces to:

366 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

Fa 5 D 5 P
i51

m

~li~x1, t! [zi
1! (12)

In essence, the meaning of Equation 12 is that there is no need for clocking
the flip-flops of the circuit if the new input values are not going to change
the current value of the outputs.

Clearly, there is no Boolean function for which Fa 5 0, but computing
the entire Fa is at least as complex as computing the outputs (if not more,
because the number of inputs of Fa is actually larger than the number of
inputs of the feedback-free circuit). The key observation is again that we do
not need to stop the clock whenever Fa is true. We can select a function
contained in Fa that stops the clock with maximum efficiency and which
has low complexity. The synthesis algorithms described in Section 4 can
then be applied with no modification even in the degenerate case of
feedback-free circuits.

5.3 Relationship With Precomputation

In this section, we assume the reader to be familiar with the work of
Alidina et al. on precomputation techniques for gate-level power manage-
ment [Alidina et al. 1994; Monteiro et al. 1995]; therefore, a detailed
description of the architectures, as well as the algorithms for their auto-
matic generation is omitted.

The precomputation approach has been proposed initially for the optimi-
zation of feedback-free sequential designs. However, in Alidina et al.
[1994], the authors have claimed that the applicability of their technique is
not restricted to these types of circuits, but, instead, it can be easily
extended to designs having an arbitrary structure. In particular, they have
shown in detail how the precomputation architecture can be adapted to the
case of synchronous sequential circuits having the traditional topology
illustrated in Figure 1(a).

Unfortunately, in spite of the nice theoretical formulation of the solution,
no experimental evidence of its practical usefulness has been presented in
the literature. We have thus conducted a deeper investigation on this
subject. In Section 6, we report some results on the outcome of our analysis.

Precomputation and gated-clocks are both based on the concept of syn-
thesizing a logic function that stops the clock of a sequential circuit in a
subset of all possible input conditions. Although the clock-stopping cir-
cuitry for precomputation (i.e., enable signals for the latches) and gated-
clocks (i.e., disabling of the clock signal) appear to be different, it is easy to
realize that the difference is only a matter of implementation style.

This observation may lead to the conclusion that precomputation and
gated-clocks are equivalent. In fact, they are not. Precomputation detects
clock-stopping opportunities based on lack of observability. If, for some
input conditions, a large number of inputs is not observable at the outputs,
there is no need to clock the flip-flops associated to the unobservable

Symbolic Synthesis of Clock-Gating Logic • 367

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

inputs. On the contrary, gated-clocks are based on the intrinsic memory-
retaining property of CMOS circuitry. If there are conditions for which we
can pre-determine that the outputs are not going to change, there is no
need to clock the circuit, because the input activity does not propagate to
the outputs. Moreover, we can stop the clock indefinitely, as long as the
outputs do not need to be updated. We may thus conclude that there are
circuits for which precomputation is completely ineffective, namely, those
for which a large fraction of the inputs is always observable. On the other
hand, gated-clocks are not effective for systems where at least one output
changes every clock cycle.

The nonequivalence of gated-clocks and precomputation, that is, the
capability of the two approaches of finding logic conditions for power
management with non-empty intersection, may suggest a simultaneously
application of the two techniques. Unfortunately, results obtained using
both optimizations showed that they are effective on almost disjoint classes
of circuits. In other words, for most of the examples we have experimented
with, the use of only one of the two methods yielded better power savings
than their combination.

6. EXPERIMENTAL RESULTS

The power optimization algorithms proposed in this paper have been
implemented within the SIS [Sentovich et al. 1992] environment, and their
effectiveness benchmarked onto standard examples taken from the litera-
ture. The original descriptions have been optimized for area using the SIS
script script.rugged , and mapped for speed using the SIS command map
-n 1 -AFG . These mapped circuits have been used as the starting point for
our experiments. The logic for the reduced Fa has been computed through
procedure Reduce_Fa and connected to the original circuit as indicated in
Figure 5. The functional specification of Fa has then been added as external
don’t care-set for each circuit output, and the circuit optimized for area
through script.rugged .

The cell library we have used for the experiments contained NAND and
NOR gates with up to four inputs, buffers, and inverters. Each cell had 3
different size/drive options. Power values of the initial and final circuit
implementations were obtained through transistor-level simulation of
10,000 random vectors using Irsim [Salz and Horowitz 1989]. All the
experiments were run on a DEC AXP 1000/300 with 128 MB of main
memory.

As mentioned in the introduction, the clock-gating transformation per-
forms best on reactive circuits, i.e., circuits with a large number of idle
conditions. We examined the entire Iscas’89 synchronous sequential
benchmarks [Brglez 1989] (a total of 31 examples), assuming independent
and equiprobable inputs with 0.5 switching activity. The circuits were
simulated for 10,000 clock cycles. Idleness was measured by computing the
fraction of clock cycles for which primary and next state outputs did not
change. The results of our experiment are reported in Table I. The table

368 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

gives the number of inputs, outputs and flip-flops of the benchmarks as
well as their idleness. Only circuits with more than 10% idleness have been
considered as candidates for testing the clock-gating transformations pro-
posed in the previous sections.

A total of 14 examples has then been selected, and Table II summarizes
the obtained results. In particular, columns Gates, Delay, and Power tell
the number of gates, the rise and fall delays (in nsec), and the power
dissipation (in mW), before and after clock-gating is applied. Column
Variation gives the percentage of gate count and delay increase and power
reduction obtained on each example. Finally, columns Fa PROB, Fa Power,
and Fa Time report the probability of the simplified Fa, the power (in mW)
dissipated by the logic implementing it, and the CPU time (in sec) required
by procedure Reduce_Fa to determine the simplified activation function.

It is important to note that PROB~Fa! is usually smaller than the
corresponding idleness reported in Table I. This is because the on-set of the
activation function has been reduced to limit its size and power.

Table I. Idleness of the Iscas’89 Circuits

Circuit PI PO FF Idleness

s27 4 1 3 45.81%
s208.1 10 1 8 45.73%

s298 3 6 14 41.60%
s344 9 11 15 0.68%
s349 9 11 15 0.68%
s382 3 6 21 45.71%
s386 7 7 6 64.08%
s400 3 6 21 45.71%

s420.1 18 1 16 47.83%
s444 3 6 21 45.71%
s510 19 7 6 54.25%
s526 3 6 21 45.42%

s526n 3 6 21 45.42%
s641 35 24 19 0.98%
s713 35 23 19 0.98%
s820 18 19 5 8.75%
s832 18 19 5 8.75%

s838.1 34 1 32 46.41%
s953 16 23 29 6.87%

s1196 14 14 18 0.23%
s1238 14 14 18 0.23%
s1423 17 5 74 0.00%
s1488 8 19 6 34.70%
s1494 8 19 6 34.70%
s5378 35 49 179 0.00%

s9234.1 36 39 211 0.00%
s13207.1 62 152 638 0.00%
s15850.1 77 150 534 0.00%

s35932 35 320 1728 0.00%
s38417 28 106 1636 0.00%

s38584.1 38 304 1426 0.00%

Symbolic Synthesis of Clock-Gating Logic • 369

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

It should also be observed that the steady-state probabilities of the FSMs
associated to the circuits have been computed using the exact methods of
Hachtel et al. [1996] in all cases, except for circuit s838.1 (indicated in the
table with an *), for which the approximate method of Tsui et al. [1995] has
been used.

We have tested both pruning heuristics for the generation of the optimal
Fa, but the quality of the results did not change sensibly (for the results in
the table we report the best obtained savings).

The size (and the number of flip-flops) of the circuits considered in our
experiments is such that the application of the techniques presented in
Benini and De Micheli [1996] would not be possible, because of the
complexity of the STG extraction procedure. In contrast, our symbolic
algorithms easily deal with these examples. For some circuits the power
savings are sizable (25%-35%), while for others the advantage given by
gating the clock is limited. The area and the delay are kept under control
(11% and 8% increase, on average).

The ability of our method to handle relatively large controllers does not
imply a loss in accuracy in the computation of the circuits’ idle conditions.
To support this claim, in Table III we compare the power results achieved
by the BDD-based procedure of this paper to those published in Benini and
De Micheli [1996] for some of the small, symbolic Mcnc’91 finite state
machines [Yang 1991] (the ones for which large savings were obtained by
the explicit algorithm). From the data we can conclude that the symbolic
approach is at least as powerful as the explicit one.

Since the reactive nature of a controller typically depends on the external
environment, it is likely that idle conditions will be exercised when the
circuit is interacting with the components in its neighborhood. Such inter-
action may be modeled through non-equiprobable primary input distribu-
tions. Then, given that the computation of the activation function depends
on the input probabilities, we expect the size and the probability of Fa to be
affected by the use of non-equiprobable input distributions.

Table II. Results for the Non-Idle Iscas’89 Circuits

Circuit
Before Optimization After Optimization Variation Fa

Gates Delay Power Gates Delay Power Gates Delay Power PROB Power Time

s27 18 6.60/6.57 33.21 30 8.06/8.04 26.12 166% 122% 221% 0.367 5.06 0.1
s208.1 90 11.00/10.98 75.43 95 11.07/11.05 49.38 15% 11% 234% 0.371 1.76 1.2
s298 131 19.26/19.24 89.18 140 19.90/19.88 72.37 17% 13% 219% 0.241 4.32 1.8
s382 154 19.09/19.07 90.31 166 19.58/19.56 74.42 18% 12% 218% 0.251 6.81 5.1
s386 148 14.94/14.92 63.20 160 15.97/15.95 58.88 18% 17% 28% 0.110 1.71 5.8
s400 168 20.81/20.79 90.36 186 21.24/21.22 69.13 111% 12% 223% 0.249 1.21 7.9
s420.1 171 16.42/16.40 104.05 183 17.40/17.38 68.80 17% 16% 234% 0.382 3.42 14.5
s444 199 20.31/20.29 103.81 217 22.12/22.10 79.21 19% 19% 223% 0.249 2.54 4.6
s510 289 25.62/25.60 95.42 306 27.31/27.29 83.51 16% 16% 213% 0.140 1.79 29.1
s526 206 18.24/18.22 119.36 230 19.83/19.81 114.23 111% 19% 24% 0.244 12.11 11.6
s526n 187 16.12/16.10 114.39 211 17.72/17.70 109.64 113% 110% 24% 0.244 11.09 11.4
s838.1 * 342 33.24/33.22 174.83 347 34.30/34.28 114.63 11% 13% 234% 0.398 10.35 26.9
s1488 518 22.72/22.70 177.31 533 26.82/26.80 164.87 13% 118% 27% 0.120 8.20 8.7
s1494 533 24.50/24.48 178.76 549 28.16/28.14 166.17 13% 115% 27% 0.120 8.31 8.5

370 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

As an example, let us consider the minmax3 circuit [Coudert et al. 1989];
in Figure 6 we plot the value of PROB~Fa! for varying values of the
probability of the enable (active high) and clear (active low) control
inputs. For a fixed value of the probability of clear , PROB~Fa! increases
as the probability of enable decreases, and it goes up as the probability of
clear increases. This is reasonable, since a high probability of both
enable and clear to be active drives the circuit into the hold states,
corresponding to the traversal of the self-loops of the STG.

To show how the knowledge of the primary input statistics impacts the
synthesis and the refinement of Fa, and thus the achievable power savings,
in Table IV we present results for the circuits of Table II in which the
probability of some of the inputs has been set to values different from 0.5.
It is important to note that even though, in principle, assuming non-
equiprobable inputs may increase the computational effort required to
determine the steady-state occupation probabilities, execution times for the
experiments of Table IV have not changed appreciably with respect to those
where 0.5 probabilities have been assumed for all the inputs.

Since no information was available for both the circuit functionality and
the environment in which the controllers are operating, we have chosen to
modify the statistics of the primary inputs belonging to the support of the
activation function calculated for the equiprobable case. More specifically,
we have set the input probabilities so as to emphasize the reactivity of the
benchmarks. As expected, power savings have gone up sensibly.

Obviously, the input vector streams used for simulation have been
properly biased so as to match the non-equiprobable input probabilities.

In Section 5, we have shown how gated-clocks can be applied also to
feedback-free sequential circuits, a class of circuits for which precomputa-
tion-based solutions have shown to be effective.

In Table V, we compare the performance of the two methods on a sample
of the Mcnc’91 benchmark suite [Yang 1991]. In particular, we have
chosen all the examples used for the experiments in Monteiro et al. [1995].
Since the original descriptions of the benchmarks are inherently combina-
tional, the test cases have been constructed by adding input and output
latches to the combinational logic. The data clearly indicate that the
effectiveness of the two methods is circuit dependent; therefore, no conclu-

Table III. Comparison to the Results of Benini and De Micheli [1996] on the Mcnc’91
FSMs

Circuit PI PO States Power Savings

Symbolic Explicit

bbara 4 2 10 45% 49%
bbtas 2 2 6 12% 21%
keyb 7 2 19 26% 11%

lion9 2 1 9 10% 13%
s420.kiss 19 2 18 24% 18%

Symbolic Synthesis of Clock-Gating Logic • 371

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

sion can be drawn about the superiority of one approach with respect to the
other.

It should be observed that the power savings shown in Table V for the
precomputation method differ from those reported in Monteiro et al. [1995];
this is due to three factors. First, power estimates in Monteiro et al. [1995]
are obtained using the symbolic simulation available in SIS, while in this
paper power values have been determined using Irsim. This has allowed us

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

P
R

O
B

(F
a)

p(clear)

p(enable)=0.25
p(enable)=0.5

p(enable)=0.75

Fig. 6. Case study: The minmax3 circuit.

Table IV. Results for the Iscas’89 Circuits with Non-Equiprobable Inputs

Circuit PROB(Fa) Power

Orig. Opt. Savings

s27 0.776 27.61 16.23 40%
s208.1 0.831 64.34 17.21 73%

s298 0.902 53.37 10.67 81%
s382 0.814 56.91 27.61 55%
s386 0.696 52.10 18.60 65%
s400 0.809 67.17 15.42 77%

s420.1 0.829 90.76 21.40 76%
s444 0.811 69.43 19.88 72%
s510 0.670 81.19 45.75 44%
s526 0.807 88.13 43.27 51%

s526n 0.806 84.45 41.05 51%
s838.1 * 0.894 146.60 86.02 41%
s1488 0.883 131.03 77.86 41%
s1494 0.881 133.89 80.44 40%

372 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

to properly account for the power dissipated by the latches, as well as that
consumed by the clock distribution network. Second, the gate library used
for technology mapping is different. Third, we employed clock-gating,
while, in Monteiro et al. [1995], enabled flip-flops were used.

As discussed in Section 5.3, some theoretical work has been presented in
Alidina et al. [1994] on the possibility of extending precomputation-based
architectures to the case of sequential circuits having a traditional gate-
level structure (see Figure 1(b)), but no experimental evidence was pre-
sented. We have thus implemented the various extensions within our
framework, and we have compared the results to those obtained by adding
to the original circuit the clock-gating logic. The data in Table VI show the
ineffectiveness of the precomputation-based approach for this type of
designs (savings, in percentage, are computed with respect to the reference

Table V. Comparison to Precomputation for Feedback-Free Circuits

Circuit PI PO Original Power Gated Clocks Precomputation

Power Savings Power Savings

9sym 9 1 123.56 62.33 49% 123.56 0%
z5xp1 7 10 59.41 49.40 17% 51.27 13%
alu2 10 6 108.90 105.09 2% 108.90 0%

apex2 39 3 286.78 286.78 0% 114.18 60%
cm138a[-2 6 8 35.75 13.66 63% 29.81 17%
cm150a[-2 21 1 94.78 60.51 36% 74.78 21%
cm162a[-2 14 5 52.13 52.13 0% 52.13 0%

cmb 16 4 66.49 15.45 77% 45.91 32%
comp 32 3 144.04 116.22 19% 68.69 53%

cordic[-2 23 2 111.30 38.31 66% 81.79 27%
dalu 75 16 588.28 588.28 0% 424.30 28%
mux 21 1 99.67 61.39 38% 70.52 29%

sao2 10 4 65.55 33.05 49% 39.71 40%

Table VI. Comparison to Precomputation for Traditional Sequential Circuits

Circuit Original Power Gated Clocks Precomputation

Power Savings Power Savings

s27 33.21 26.12 21% 33.21 0%
s208.1 75.43 49.38 34% 71.56 5%

s298 89.18 72.37 19% 89.18 0%
s382 90.31 74.42 18% 82.50 9%
s386 63.20 58.88 8% 63.20 0%
s400 90.36 69.13 23% 77.26 14%

s420.1 104.05 68.80 34% 97.23 8%
s444 103.81 79.21 23% 86.19 15%
s510 95.42 83.51 13% 95.42 0%
s526 119.36 114.23 4% 119.36 0%

s526n 114.39 109.64 4% 114.39 0%
s838.1 * 174.83 114.63 34% 154.12 9%
s1488 177.31 164.87 7% 177.31 0%
s1494 178.76 166.17 7% 178.76 0%

Symbolic Synthesis of Clock-Gating Logic • 373

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

circuits). The reason for this poor behavior lies in that the precomputation
function never attempts to stop the present-state inputs, which represent
the majority of the inputs to the combinational logic for sequential circuits
with a realistic number of memory elements.

7. CONCLUSIONS

We have presented a fully symbolic bottom-up approach to the automatic
generation of clock-gating logic for sequential circuits. Our methodology
starts from synchronous gate-level networks and does not require the
explicit extraction of the STG, a very computationally expensive operation.
We leverage the BDD-based representation of Boolean and pseudo-Boolean
functions to extend the applicability of clock-gating techniques to classes of
sequential systems of size unattainable by previous methods based on
explicit enumeration algorithms.

The generality of our formulation enables the application of the synthesis
procedure to activation functions with extended support (including some of
the circuit outputs). The compactness and expressive power of ADDs allow
us to accurately compute the probability of the activation function, and to
develop algorithms that control the optimization of the global power
dissipation with superior accuracy, compared to previous approaches.

Our optimization strategy also relies on an integrated synthesis method-
ology that aims at reducing the overhead of the redundant clock-gating
logic by effectively exploiting the additional don’t care conditions in the
combinational logic. The results are promising, since we obtain power
reductions as high as 34% with negligible area and performance degrada-
tions.

REFERENCES

ALIDINA, M., MONTEIRO, J., DEVADAS, S., GHOSH, A., AND PAPAEFTHYMIOU, M. 1994.
Precomputation-based sequential logic optimization for low power. IEEE Trans. Very Large
Scale Integr. Syst. 2, 4 (Dec. 1994), 426–436.

BAHAR, R. I., FROHM, E. A., GAONA, C. M., HACHTEL, G. D., MACII, E., PARDO, A., AND SOMENZI,
F. 1997. Algebraic decision diagrams and their applications. Formal Methods Syst. Des. 10,
171–206.

BENINI, L. AND DE MICHELI, G. 1996. Transformation and synthesis of FSMs for low power
gated clock implementation. IEEE Trans. Comput.-Aided Des. Integr. Circuits 15, 6 (June
1996), 630–643.

BIGGS, T. AND ET AL., 1994. A 1 Watt 68040-compatible microprocessor. In Proceedings of the
IEEE Symposium on Low Power Electronics IEEE Computer Society Press, Los Alamitos,
CA, 12–13.

BRGLEZ, F., BRYANT, D., AND KOŹMIŃSKI, K. 1989. Combinational profiles of sequential
benchmark circuits. In Proceedings of the IEEE International Symposium on Circuits and
Systems (Portland, OR, May 1989) IEEE Press, Piscataway, NJ, 1929–1934.

BRYANT, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35, 8 (Aug. 1986), 677–691.

COUDERT, O., BERTHET, C., AND MADRE, J. C. 1989. Verification of sequential machines using
Boolean functional vectors. In Proceedings of the IFIP International Workshop on Applied
Formal Methods for Correct VLSI Design (Leuven, Belgium, Nov.) IFIP, 111–128.

374 • L. Benini et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

DEBNATH, G., DEBNATH, K., AND FERNANDO, R. 1995. The Pentium processor-90/100, microar-
chitecture and low-power circuit design. In Proceedings of the IEEE International Confer-
ence on VLSI Design (Jan. 1995) IEEE Press, Piscataway, NJ, 185–190.

FAVALLI, M., BENINI, L., AND DE MICHELI, G. 1996. Design for testability of gated-clock
FSMs. In Proceedings of the IEEE European Conference on Design and Test (EDTC ’96,
Paris, France, Mar. 1996) IEEE Press, Piscataway, NJ, 589–596.

HACHTEL, G. D., MACII, E., PARDO, A., AND SOMENZI, F. 1996. Markovian analysis of large
finite state machines. IEEE Trans. Comput.-Aided Des. Integr. Circuits 15, 12 (Dec. 1996),
1479–1493.

MONTEIRO, J., RINDERKNECHT, J., DEVADAS, S., AND GHOSH, A. 1995. Optimization of
combinational and sequential circuits for low power using precomputation. In Proceedings
of the 1995 Chapel Hill Conference on Advanced Research in VLSI (Chapel Hill, NC, Mar.
1995) 430–444.

RAVI, K. AND SOMENZI, F. 1995. High-density reachability analysis. In Proceedings of the 1995
IEEE/ACM International Conference on Computer-Aided Design (ICCAD-95, San Jose, CA,
Nov. 5–9), R. Rudell, Ed. IEEE Computer Society Press, Los Alamitos, CA, 154–158.

SALZ, A. AND HOROWITZ, M. 1989. IRSIM: An incremental MOS switch-level simulator. In
Proceedings of the 26th ACM/IEEE Conference on Design Automation (DAC ’89, Las Vegas,
NV, June 25–29, 1989), D. E. Thomas, Ed. ACM Press, New York, NY, 173–178.

SENTOVICH, E. M., SINGH, K. J., MOON, C. W., SAVOJ, H., BRAYTON, R. K., AND SANGIOVANNI-
VINCENTELLI, A. 1992. Sequential circuits design using synthesis and optimization. In
Proceedings of the IEEE International Conference on Computer Design (Cambridge, MA, Oct.
1992) IEEE Computer Society Press, Los Alamitos, CA, 328–333.

THEEUWEN, F. AND SEELEN, E. 1997. Power reduction through clock gating by symbolic
manipulation. In Proceedings of the IFIP International Conference on Very Large Scale
Integration (VLSI ’97, Gramado, Brazil, Aug. 26-29)

TSUI, C.-Y., MONTEIRO, J., PEDRAM, M., DEVADAS, S., DESPAIN, A. M., AND LIN, B. 1995. Power
estimation methods for sequential logic circuits. IEEE Trans. Very Large Scale Integr. Syst.
3, 3 (Sept. 1995), 404–416.

YANG, S. 1991. Logic synthesis and optimization benchmarks user guide version
3.0. Microelectronics Center of North Carolina, Research Triangle Park, NC.

Received: June 1997; accepted: January 1998

Symbolic Synthesis of Clock-Gating Logic • 375

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 4, October 1999.

