Glitch Power Minimization by Gate Freezing

G. De Micheli #

L. Benini®

+
+ Politecnico di Torino

Torino, ITALY 10129

Abstract

This paper presents a technique for glitch power minimization
in combinational circuits. The total number of glitches is re-
duced by replacing some existing gates with functionally equiv-
alent ones (called F-Gates) that can be “frozen” by asserting a
control signal. A frozen gate cannot propagate glitches to its
output. An important feature of the proposed method is that
it can be applied in-place directly to layout-level descriptions;
therefore, it guarantees very predictable results and minimizes

the impact of the transformation on circuit size and speed.

1 Introduction

Minimizing glitching at the gate level is a complex task, be-
cause it is difficult to estimate the impact that the trans-
formations can have on glitch power. Two different ap-
proaches have been taken to solve this problem. Networks
can be designed using a glitch-free implementation style
(e.g., Shannon [1] circuits); alternatively, a non-glitch-free
implementation can be optimized to reduce the number of
glitches. The first solution has a major limitation: Glitches
are eliminated, but the constraints imposed by the design
style may lead to circuits that are less power efficient than
those realized with standard static CMOS gates. The sec-
ond approach is hindered by the uncertainties in the es-
timation of the cost function that drives the optimization
procedure. In other words, it is difficult to estimate if the
changes in the network introduced to minimize glitching
are useful or not, because they may modify the delay dis-
tribution of the circuit in an unpredictable fashion.

We follow the second avenue of attack, but we overcome
the predictability problem by posing tight constraints on
the amount of network perturbation that can be introduced
by the glitch minimization procedure. More in detail, we
propose an optimization method that operates in-place on
a layout-level description. We perform minor modifications
of the netlist that can be implemented on the placed and
routed circuit only by applying partial re-wiring of a few
signal nets. The cost function that drives the optimization
is very accurate, because glitch and total power estimation
are carried out on a network with accurate back-annotation
of wiring loads.

Avutomatic techniques for glitch minimization in logic cir-
cuits have been the subject of intensive research in the
past. Some of them have been developed for specific ap-
plications [4], while others are general-purpose [5, 6]. In
addition, guarded evaluation [T], although not explicitly
targeting glitch power minimization, has some affinity with
the gate freezing idea we present in this paper. Differently
from gate freezing, the techniques above are applied before
placement and routing.

et
A. Maciit

Stanford University
Stanford, CA 94305

. + .t
M. Poncino* R. Scarsi*

et
E. Macii*

© Universita di Bologna

Bologna, ITALY 40136

We have applied the gate freezing procedure to the Iscas’85
benchmarks [2], as well as to some examples taken from
the Mcnc’91 suite [3]. We have achieved an average glitch
power reduction of 14.0%, resulting in an average total
power savings of 6.3%. Area and speed of the circuits are
virtually unchanged. Obviously, gate freezing only targets
circuits with high glitching; therefore, its applicability is
of limited interest in the cases where spurious transitions
have a negligible impact on the global power balance.

2 Gate Freezing

The flow of the gate freezing procedure starts from a placed
and routed combinational circuit. We assume that wire
loads have been extracted and back-annotated into the
gate-level model of the circuit. Accurate switch-level sim-
ulation of user-specified patterns is performed to obtain a
detailed statistic of the glitching activity. Static gate-level
timing analysis is also performed, and arrival and required
times are computed for each node in the network. The
information on glitching and on timing constraints is sub-
sequently exploited in the gate-selection step. A fraction
of the gates in the netlist is selected. We choose non-
critical gates with high glitching and high fanout. The
selected gates are then replaced with functionally equiva-
lent F-Gates with one additional control input. Whenever
the control signal is low, the gate is not sensitive to input
transitions. Glitches on the output of the gate can thus
be eliminated by first keeping the control signal low at the
beginning of the clock cycle until the input signals of the
gate have stabilized to their final value, and then by raising
it and keeping it high until the end of the clock cycle. The
cost of the generation of the control signals is amortized
by clusteringthe F-Gates. Gates in a cluster share a single
control signal. The last step in the gate freezing procedure
is the incremental modification of the layout. The selected
gates are replaced by F-Gates, the drivers for the control
signals are instantiated, and the control signals are routed.
A practical implementation of gate freezing, to be success-
ful, must satisfy two critical requirements. First, the over-
head for the generation of the control signals should be
more than paid off by the power saved with gate freezing.
Second, the physical implementation of the circuit should
be minimally modified by the transformation. Hence, we
need low-overhead implementations for F-Gates and C-
Signal generation circuitry; moreover, we need effective al-
gorithms for selecting target gates and for grouping them
into clusters that share a common C-Signal. The next two
subsections are dedicated to the description of efficient im-
plementations for F-Gates and C-Signals. The algorithms
for gate selection and clustering are described in Section 3.

2.1 F-Gates

Once a target cell in the tech-mapped circuit has been
selected, it is replaced by a modified library cell (the F-
Gate) whose output can be selectively “frozen” with the
purpose of reducing the amount of glitching.

The basic modification of a generic CMOS library cell is
shown in Figure 1. It consists of the insertion of a n-type
transistor in series with the n-network. The gate input of
this n-type transistor is driven by the control input C.

Vi
77777 F——-
} \
| p—net }
‘ \
|
| o
‘ T
} \
| n-net }
‘ \
| 1

Figure 1: Basic Transformation of a Library Cell.

The behavior of the modified gate is quite intuitive: When
the control input C is high, the gate operates normally;
on the other hand, when C is low, the gate output is dis-
connected from the ground and, therefore, it can never be
discharged to the logic value 0.

In this configuration, the output of the gate is only par-
tially “frozen”; in fact, only the 1 to 0 transition is actually
forbidden, whereas the gate output can still exhibit the 0
to 1 transition. This may occur for any input configuration
that is supposed to force a 1 on the output. In other terms,
a low control input C will never allow a gate output that
is at the logic value 1 to make a transition.

The above considerations imply that we do not guarantee
to completely filter out transitions on the gate output. One
trivial way to obtain a total filtering would be to mimic the
structure of dynamic gates, and symmetrically insert a p-
type transistor before the supply connection, in series with
the p-network; in this case, the gate terminal of this p-
transistor should be controlled by the other phase, C, of
the control input C.

This solution would clearly suppress any transition on the
gate output, and solve the above limitation of the single n-
transistor solution. However, there are some considerations
that make the introduction of the p-transistor undesirable:
1) The load on the signal C is doubled for any gate such
signal must drive; i¢) Both phases of signal C are required;
111) The area of the modified gate is sensibly larger than
in the case of the single n-transistor; this is because, to
guarantee the proper output signal levels, the p-transistor
must be larger than the n-transistor.

The single n-transistor solution is less intrusive with re-
spect to the size of the library cell and its speed; there-
fore, it is preferable to the complementary one. Neverthe-
less, the single n-transistor configuration will obviously be
slightly larger and slower than the original cell.

2.2 C-Signal Generation

As described at the beginning of this section, static timing
analysis is carried out on the initial mapped circuit in a
pre-processing phase. For each gate g, arrival time AT(g),
required time RT(g), and slack S(g) are available.

Once the nodes in the network have been ranked accord-
ing to their suitability using the criteria described in Sec-
tion 3.1, we must restrict the choice for the replacement
with a modified cell only to gates that are not on the crit-
ical path (i.e., gates with non-null slack). This is because,
even though the modified cells are only slightly slower than
the standard ones, replacing a critical gate will cause the
cycle time of the circuit to increase.

We now derive the timing and functional conditions that
define the behavior of the control signal C for a candidate
gate g. In the following, let T denote the clock period, g
the candidate gate, and AT(g) its arrival time. Moreover,
let X = (z1,...,2n) denote the inputs of g, and AT(z;),
RT(z;), i = 1,...,n their corresponding arrival and re-
quired times.

We should observe first that all transitions occurring prior
to the arrival time are glitches, and can thus be suppressed.
This implies that C, the control signal of the modified gate
that will replace g, can be held at 0 in the time interval
between the beginning of the clock cycle and the time A
that equals the latest arrival time of the inputs of g. In
symbols:

Alg) = max AT(z:) (1)

At time A(g), gate g will have all of its inputs “ready”,
and will be ready to propagate its final value; this implies
that signal C should go high at time A(g) in order to allow
gate g to exhibit a correct temporal behavior.

However, the control signal C does not actually need to
go high exactly at A(g). As a matter of fact, if g is non-
critical, all of its inputs will be non-critical as well. There-
fore, all the inputs of g will have some slack. What we
must then guarantee is that C goes to 1 (i.e., g is free to
evaluate) before the time , which is the earliest required
time of all inputs of g. In symbols:

,(9) = min RT(z;)
=1,...,n

This allows a safety margin for the transition of the control
signal, because we have a don’t care region between A(g)
and , (g), where we can decide whether to raise signal C
or not.

In summary, signal C should have a timing behavior as
the one depicted in Figure 2. C can be thought of as a
delayed copy of the clock, yet with a different duty cycle
D¢ = #. In the picture, the shaded area shows the
slack for the 0 to 1 transition on C. With such signal, we
can guarantee that all the glitches before the latest arrival
time of the gate’s inputs are filtered out; the only spurious
transition that can propagate through a gate is the 0 to 1
transition mentioned in Section 2.1. The shaded area in
the figure shows this glitch-free portion of a clock cycle.

ck

Figure 2: Relation Between Signal C' and the Clock.

Signal C can be derived by proper filtering of the clock
signal, ck. As mentioned above, in the design of the circuit
for the generation of the control signals, we limit ourselves
to considering the A’s, and use the slack of the control
signal , — A only as a safety margin.

We can derive the following relations between the clock
signal ck and the control signal C. If the time A is smaller
than the fraction of the clock period with ck = 1, C can
be obtained as: C = ck’+ cka, where ck’is the inverse
of the clock signal, and cka is the clock signal delayed
by an amount of A. Conversely, if A is greater than the
fraction of the clock period with ¢k =1, C is computed as:
C = ck’- cka, The above relations are shown by means of
timing diagrams in Figure 3-a and 3-b, respectively.

ck T ck T

[N Ay N O B

A

ck’ ck’

A

ckA ckA

L
—
§ 1. [

Il
B
[LI

Figure 3: Timing Diagrams of Control Signal Generation.

Generating C requires a delayed version, cka, of the clock
signal. The trivial implementation of a delay element is a
chain of an even number of suitably sized inverters. Un-
fortunately, this implementation is highly power and area-
inefficient when the delay is much larger than a single in-
verter delay. Several implementations have been proposed
that overcome this limitation. We adopted the delay ele-
ment proposed in [8], whose power dissipation is approx-
imately three times that of a single inverter and area ap-
proximately four times larger (when the delay is approxi-
mately 16 times that of a single inverter).

The C signals are distributed through a dedicated network
(made of tapered buffers and delay elements) that stems
from the clock tree in a single point. Since the tap point
is a minimum-size buffer, the additional load on the clock
tree is usually negligible.

3 Gate Selection and Clustering

The basic version of the gate freezing algorithm is shown
in Figure 4. The procedure receives as inputs a mapped,
placed and routed circuit, M, a library of cells, L, con-
taining both ordinary cells and the corresponding F-Gates,
and the maximum number NFG of gates to be selected
for replacement with F-Gates. The procedure first per-
forms static timing analysis (Line 1) and power estimation
(Line 2); then, it selects candidate cells for replacement
with F-Gates (Line 3). Finally, it replaces each selected
gate g with the corresponding F-Gate (Line 4), it computes
the timing for the control signal of such gate (Line 5), and it
instantiates the circuitry for generating them (Line 6). We
first analyze procedure SelectCandidates (Section 3.1),
that returns the set of gates to be replaced by F-Gates.
Then, we focus our attention on gate clustering (Sections
3.2 and 3.3), a key step that is required to make gate freez-
ing applicable in practice.

procedure GateFreeze(M, L, NFG) {

1 (RT[], AT[]) = StaticTimingAnalysis(M);

2 Power[] = PowerSimulation(M);

3 @ = SelectCandidates (M, Power, AT, NFG);
foreach (gate g in G) {

4 M = ReplaceGate (M, L, g);
5 F, = ComputeControlCirc (M, AT(g), T);
6 M = AddControlCirc (M, g, Fg);
}
}

Figure 4: Gate Freezing Algorithm.

3.1 Selection of the Target Cells

The selection of the cells to be replaced with F-Gates is
mainly driven by the amount of glitching observed at the
output of each cell. Additionally, we take into account the
capacitive load of the nodes. Therefore, our simple pro-
cedure for cell selection is to sort the network nodes in
decreasing order of glitching activity weighted by load ca-
pacitance (we call this metric glitching-capacitance prod-
uct, ge for brevity), and to select the first NFG gates of the
sorted list. Glitching is measured by counting the number
of transitions at the output of each gate obtained by accu-
rate (i.e., real delay) simulation, and by subtracting from
this amount the number of transitions obtained through
ideal (i.e., zero-delay) simulation. The latter values must
either be 1 or 0, depending on whether there is a transition
or not. This difference represents the spurious transitions
propagating through a gate.

Remember that nodes with zero slack cannot be selected,
because replacing them with F-Gates would slow down the
circuit; consequently, node selection is applied only to gates
with non-zero slack. In addition, we observed that picking
new gates in the recursive fanout of already chosen gates
may be disadvantageous. In fact, the presence of an F-Gate
in the fanin cone of a gate tends to reduce the glitching
activity of the gate itself. This effect could be taken into
account by performing power analysis after selecting each
node; however, this process could make the optimization
procedure very slow in the case of large circuits.

We have adopted an enhanced selection procedure that ap-
proximately takes into account previous selections. Ini-
tially, all nodes are marked with an integer label, which
is set equal to 0. Then, the node with highest glitching-
capacitance product is selected. If two or more nodes have
the same gc value (with a 10% tolerance margin), we use
the total capacitive load of the transitive fanout as a tie-
breaker. The gate with highest total capacitive load of the
transitive fanout is chosen first. The label of all the nodes
in the transitive fanout of the selected node is then incre-
mented. Node labels are used as tie-breaker for successive
selections. If two or more nodes have the same gc value
(with the usual 10% tolerance margin), we select the one
with smallest label. If this rule is not sufficient to break all
the ties, the total capacitive load of the transitive fanout is
used. If the ties persist, we chose randomly. The process
is stopped after NFG nodes have been selected.

3.2 Clustering

In the algorithm of Figure 4, one control signal for each
selected gate needs to be generated. Although the number
of gates replaced is usually a small fraction of the cells
that are present in the circuit implementation (less than
5%), the generation of a control signal for each F-Gate
is still quite impractical, since each signal has generally a
duty cycle value different from any other, and there is then
little chance to exploit some sharing.

To reduce both the area of the control circuitry implemen-
tation and the routing of the control signals, we need to
limit the number of such signals as much as possible. One
way of doing this is to cluster the F-Gates according to the
values of their arrival times A’s, as defined in Equation 1.
The clustering problem can be stated as follows: Given
a set of NFG gates G = (g1,...,9nFe), and their arrival
times Ag,, ..., Agypg, find a partition P = (Pi,..., Px)
of the A’s such that: ¢) The partition is balanced; i) The
variance of the A times within each block P; of the parti-
tion is minimized; %i¢) The number of blocks, K, is small.
The partition P on the arrival times induces a partition on
the set of selected gates G = (G1,...,Gxk).

The requirement of the minimum variance is related to
the error that this approximation introduces. In fact, all
the gates belonging to the same block G; will be fed by
the same control signal, whose delay, with respect to the
clock, is determined by the earliest of their A times. More
formally, the delay D¢, for all the control signals of the
gates in G; is given by:

Dg, = min A(g) (2)
(g €Gy

where A(g) is defined as in Equation 1.

The approximation introduced by clustering some of the
control signals together arises from the fact that all the
gates g in G; having A(g;) larger than the D¢, will allow
the propagation of the glitches occurring in the time in-
terval [A(gmin), A(g)], where gmin is the gate in G; that
determines the bound of Equation 2.

Figure 5 shows the pseudo-code of the clustering-based
gate freezing algorithm.

procedure ClusteredGateFreeze(M, L, NFG) {
1 (RT[], AT[]) = StaticTimingAnalysis(M);
2 Power[] = PowerSimulation(M);
3 @ = SelectCandidates(M, Power, AT, NFG);
4 (G, P) = Clustering(AT, G);

foreach (block G; of G) {

5 Dg,; = GetEarliestA(AT, G;);
foreach (gate g in G;)
6 M = ReplaceGate(M, L, g)
7 Fg,; = ComputeControlCirc(M, Dg,, T);
8 M = AddControlCirc(M, G;, Fg,);
}
}

Figure 5: Clustered Gate Freezing Algorithm.

The I/O interface and the flow of this algorithm are similar
to those of Figure 4. The main difference stands in Lines 4-
8, where a proper partition of the candidate gates is first
built (Line 4) (the details on the clustering procedure are
described in Section 3.3). Procedure Clusteringreturns a
partition P = (Py,..., Px) of the A times, and the corre-
sponding partition of the selected gates G = (G1,...,Gk).
Then, the algorithm iterates over the K blocks of G, and
derives, for each cluster G;, the values of Dg;, as defined
by Equation 2 (Line 5). Each gate g € G; is then re-
placed with the corresponding F-Gate (Line 6). After all
the gates in G; have been replaced, the circuitry for gener-
ating the shared control signal is determined (Line 7) and
incrementally added to the circuit layout (Line 8).

3.3 Clustering Heuristics

The clustering problem, as stated in Section 3.2, is too gen-
eral. In fact, the solution with optimal cost may require a
number of clusters, K, which may be too large. We have
implemented two heuristics that solve the clustering prob-
lem when K is upper-bounded by a user-specified value.
Experiments have shown that the first one, based on clus-
ters growth, works better on clusters of small cardinality
(and thus on small circuits), while the second heuristics,
based on matching, best performs on mid to large-sized
clusters (and thus on mid to large circuits).

In both cases, the cost function o4yg we have used to drive
the clustering procedure is the average cluster variance
(i-e., the average A of the gates in G;), whose formal def-
inition is the following (we assume to have a total of K

clusters, (G1,...,Gi,...,Gk)):

L

K

Oaug =

where: N
> sea,(A(9) — Aavg)
o; =
|G

is the variance of the A values in cluster G;. Obviously,
better solutions are identified by lower values of o gug.
The details of the two heuristics mentioned above are omit-
ted for space reasons; for further information, the inter-
ested reader can refer to [9].

‘ Circ ‘ PI ‘ PO ‘ Gates ‘l Original Il Optimized Il [%] [Clust. ‘ NC ‘NFG ‘
[GP [TP [Area [GP] TP [Area [GP | TP | Area || Heur.

c432 37 6 312 0.343 1.448 829290 0.308 1.381 853339 -10.2 -4.6 +2.9 Growth 4 30
c499 41 32 637 1.337 4.092 5643849 1.022 3.861 5818808 -23.5 -5.6 +3.1 Growth 5 30
c880 60 26 479 0.816 2.923 2130128 0.715 2.766 2153559 -14.1 -5.7 +1.1 Growth 4 30
cl3bb 41 32 755 2.827 6.827 2846062 2.666 6.553 2908675 -6.1 -4.1 +2.2 Growth 6 40
cl908 33 25 854 3.518 9.133 4079104 3.179 8.646 4201477 -10.6 -5.6 +3.0 Match 6 40
c2670 233 139 1036 5.380 12.582 5319860 4.282 11.304 5355734 -16.7 -10.1 +4.1 Match 8 50
c3540 50 22 1587 13.111 30.019 13447900 9.904 25.340 13703410 -24.4 -15.5 +1.9 Match 5 70
cb31lb 178 123 2959 23.290 50.853 42937951 21.766 52.417 43925524 -6.5 +2.9 +2.3 Match 10 80
c6288 32 32 4354 104.277 256.622 69175176 90.051 232.075 71942183 -13.7 -9.6 +3.8 Match 10 90
c7552 207 108 37563 19.392 40.527 60352334 16.987 36.960 61921495 -12.4 -8.8 +2.6 Match 9 80
alu2 10 6 457 0.891 3.342 1842912 0.736 3.051 1887141 -17.3 -8.7 +2.4 Growth 4 30
alu4 14 8 1010 3.481 11.794 6284460 2.609 10.541 6403864 -25.2 -10.6 +1.9 Growth 8 50
dalu 75 16 1492 5.022 17.358 12093812 4.097 17.064 12601752 -18.4 -2.3 +3.4 Match 9 70
frg2 143 139 1346 1.912 12.348 9731865 1.803 11.810 10062748 -5.7 -4.3 +3.3 Growth 9 70
t481 16 1 1089 0.903 7.783 7490340 0.860 7.612 7722540 -4.7 -2.2 +4.2 Match 8 50
Avg. -14.0 -6.3 +2.8

Table 1: Experimental Results.

4 Experimental Results

We have implemented the clustered gate freezing procedure
using SIS as the gate-level front-end. A pictorial descrip-
tion of our experimental environment is shown in Figure 6.

Synthesis and
Tech Mapping -

(sis) Circuit
Layout

=

Back-Annotation
(In-House Tool)

Gate-Level

Netlist Placement and
outing

(ALLIANCE)

Incremental Layout
Modification
(ALLIANCE)

Gate-Level
Timing Analysis
i)

Clustered
Gate Freezing
(sIS)

Figure 6: Experimental Environment.

Switch-Level
Power Simulation
(IRSIM)

The initial circuits were optimized using script.delay,
and mapped using map -nl -AFG onto a gate library con-
sisting of two and three input NAND and NOR gates, and
INV and BUF gates with three different driving capabil-
ities. Placement and routing of the tech-mapped circuits
onto a 0.6um static CMOS physical-level library was done
using Alliance [10]. Gate- and switch-level netlists were ex-
tracted from the layout using an in-house tool; such netlists
were used for gate-level timing analysis (using SIS) and for
switch-level power simulation (using Irsim [11]). After ap-
plying the clustered gate freezing procedure, the layouts
were incrementally modified using Alliance, and the power
dissipated by the optimized circuits was estimated (using
Irsim) on the switch-level netlists extracted from the final
layouts. Timing verification was also performed using SIS
on the gate-level netlist derived from the final layout.
The circuits we considered for the experiments are the
Iscas’85 benchmarks [2]; results for some of the largest
Mcnc’91 multi-level networks are also reported [3].

Table 1 summarizes the data. Columns GP, TP, and Area
give the glitch power (in mW), the total power (in mW),
and the layout area (in A?) before (columns Original) and
after (columns Optimized) optimization. Columns [%] give
The three
right-most columns indicate the clustering heuristics, the
number of clusters (NC), and the number of frozen gates
(NFQG) that have been chosen for each experiment.

the percentages of power and area variation.

Results, though preliminary, are very promising. In fact,
an average glitch power reduction of 14.0%, resulting in
an average reduction of the total power of 6.3% has been
achieved at the cost of a negligible area increase (2.8%
on average). Obviously, the speed of the circuits has not
changed, since only non-critical gates have been replaced
with the (marginally slower) F-Gates.

Note that gate freezing exclusively targets glitch power re-
duction. Therefore, the quality of the results would only be
marginally affected by gate-level power optimization tech-
niques (e.g., POSE [12]) that minimize zero-delay power.

5 Conclusions

We have proposed a technique for glitch power minimiza-
tion in combinational circuits. The method consists of
transforming some high-glitching gates into modified de-
vices that are able to filter out spurious output transitions
whenever a proper control signal is activated. The tech-
nique has the distinctive feature of being applicable as a
post-layout processing step, since it performs in-place opti-
mization on the placed and routed description, and it only
requires incremental re-wiring.

References
[1]

L. Lavagno, P. McGeer, A. Saldanha, A. Sangiovanni Vincentelli,
“Timed Shannon Circuits: A Power-Efficient Design Style and Syn-
thesis Tool,” DAC-32, Jun. 1995.

F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” ISCAS-
85, Jun. 1985.

S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0, Tech. Rep., MCNC, Jan. 1991.

E. Musoll, J. Cortadella, “Low Power Array Maultipliers
Transition-Retaining Barriers,” PATMOS-95, Oct. 1995.

J. Monteiro, S. Devadas, A. Ghosh, “Retiming Sequential Circuits
for Low Power,” ICCAD-93, Nov. 1993.

A.Raghunathan, S. Dey, N. Jha, “Glitch Analysis and Reduction in
Register Transfer Level Power Optimization,” DAC-33, Jun. 1996.

[2]

(3]
[4]
(]
6]

with

[7] V. Tiwari, S. Malik, P. Ashar, “Guarded Evaluation: Push-
ing Power Management to Logic Synthesis/Design,” ISLPD-95,
Aug. 1995.

[8] L. Benini, P. Vuillod, A. Bogliolo, G. De Micheli, “Clock Skew

Optimization for Peak Current Reduction,” Kluwer Journal of VLSI
Signal Processing, Vol. 16, No. 2/3, Jun. 1997.

L. Benini, G. De Micheli, A. Macii, E. Macii, M. Poncino, R. Scarsi,
Gltich Power Minimization by Gate Freezing, Tech. Rep., Politec-
nico di Torino, Apr. 1998.

A. Grenier, F. Pecheux, ALLIANCE: A Complete Set of CAD Tools
for Teaching VLSI Design, Tech. Rep., Université Pierre ¢ Marie
Curie, 1993.

A. Salz, M. Horowitz, “IRSIM: An Incremental MOS Switch-Level
Simulator,” DAC-26, Jun. 1989.

S. Iman, M. Pedram, “POSE: Power Optimization and Synthesis
Environment,” DAC-33, Jun. 1996.

(el

[10]

[11]

[12]

