
Dynamic Power Management for non-stationary service requests

Eui-Young Chung
eychung@stanford.edu

Luca Benini
lbenini@deis.unibo.it

Alessandro Bogliolo
abogliolo@deis.unibo.it

Giovanni De Micheli
nanni@galileo.stanford.edu

Stanford University
Computer System Laboratory

Stanford, CA, 94305, USA

Università di Bologna
Dip. Informatica, Elettronica, Sistemistica

Bologna, ITALY 30165

Abstract

Dynamic Power Management is a design methodology
aiming at reducing power consumption of electronic sys-
tems, by performing selective shutdown of the idle sys-
tem resources. The effectiveness of a power management
scheme depends critically on an accurate modeling of the
environment, and on the computation of the control policy.
This paper presents two methods for characterizing non-
stationary service requests by means of a prediction scheme
based on sliding windows. Moreover, it describes how con-
trol policies for non-stationary models can be derived.

1. Introduction

Design methodologies for energy-efficient system-level
design are receiving increasingly larger attention [2, 6, 7,
10], because of the widespread use of portable electronic
appliances (e.g., cellular phones, laptop computers, etc.)
and of the concerns about the environmental impact of elec-
tronic systems.

Dynamic power management (DPM) [1] is a flexible and
general design methodology aiming at controlling perfor-
mance and power levels of digital circuits and systems, by
exploiting the idleness of their components. A system is
provided with a power manager that monitors the overall
system and component states and controls the state transi-
tions. The control procedure is called power management
policy.

Srivastava et al. [5] proposed heuristic policies to shut
down a system during idle periods. The basic idea in [5]
is to predict the length of idle periods and shut down
the system when the predicted idle period is long enough
to amortize the cost (in latency and power) of shutting
down and later re-activating the system. A shortcoming

This work was supported in part by MARCO and ARPA.
Eui-Young Chung was supported by Samsung Electronics. Co. LTD.

of the predictive shutdown approaches proposed by Sri-
vastava is that they are based on off-line analysis of usage
traces, hence they are not suitable to non-stationary request
streams whose statistical properties are not known a priori.
This shortcoming is addressed by Golding et al. [8, 9] and
Hwang and Wu [4] proposed on-line methods that dynami-
cally adapt the shutdown policy based on the distribution of
past user requests.

All predictive shutdown techniques share a few limita-
tions. First, they do not deal with resources with multiple
states of operation (instead of just active and sleep). Second
they cannot accurately trade off performance losses (caused
by transition delays between states of operation) with power
savings. Third, they do not deal with general system mod-
els where incoming requests can be enqueued while waiting
for service.

These limitations are addressed in [3] where general sys-
tems (with multiple states and queueing) and user request
are modeled as Markov chains. The Markov model en-
ables a rigorous formulation of the search for optimal power
management policies as a constrained minimization prob-
lem whose exact solution can be found in polynomial time.
Unfortunately a basic assumption in [3] is that the Markov
model is stationary. This assumption clearly does not hold
if the system experiences non-stationary load conditions.

The contribution of this paper is twofold. We propose
prediction schemes for the service requester (e.g., user) that
captures the non-stationary property of its behavior. We
present two schemes based on sliding windows to capture
the time-varying parameters of the stochastic processing
modeling the requester. Next we show how policies for
dynamic power management under non-stationary service
request models can be determined by interpolating optimal
policies computed under an assumption of stationariety.

2. System Modeling

In this section, we briefly review the system model intro-
duced in [3]. The overall system model for DPM is shown

PM

SR Queue SP

Command

Observe

Figure 1. Overall System Model for DPM

in Figure 1. An electronic system is modeled as a unit
providing a service, called service provider (SP) while re-
ceiving requests from another unit, called service requester
(SR). A queue buffers incoming unserviced requests. The
service provider can be in one of several states (e.g. ac-
tive, sleep, idle, etc.). Each state is characterized by the
ability/inability of providing a service and by a power con-
sumption level. Transitions among states may have a per-
formance penalty (e.g., latency in reactivating a unit) and a
power penalty (e.g., power loss in spinning up a hard disk).

A power manager (PM) is a control unit that controls
the transitions among states. The power consumption of the

is negligible with respetct to the overall power dissi-
pation. At given points in time, the power manager eval-
uates the overall state of the system (provider, queue and
requester) and decides to issue a command to stimulate a
state transition. A control policy is a sequence of decisions.
For our purposes, a policy can be thought of as a table, that
associates a probability of issuing a command with any sys-
tem state.

We model the system components as Markov chains [3].
In particular, we use a controlled Marcov chain model for
the system provider, so that the transition probabilities can
be made dependent on the command issued by the power
manager. We use a discrete time setting, i.e. we assume that
time is divided into time slices.

10

R0 = P00
R = P1 11

P01

P10

Figure 2. An example of a Markov Chain

whereas behaviors can be modeled as a station-
ary process, because the response to stimuli does not
change over time, the workload bounce can be highly non-
stationary, and that it is appropriate to model as a non-
stationary process. In this work, we focus on non-stationary
service requesters. A generic requester can have states.
For the sake of simplicity, we will discuss the case of ,
as shown in Figure 2. When in state 0, no request is is-
sued. When in state 1, one request per time slice is issued.
The corresponding transition matrix is denoted by . We
call the diagonal elements of user request probabilities
and we denote them by . The probabilities

(and the entire

transition matrix) are fixed for the stationary model [3].
For capturing the non-stationariety of SR, we assume that

can change over time and are initially unknown.

3. User Request Prediction

3.1. Single Window Approach

A sliding window is adopted to keep the recent user
request history and this information is used to predict future
user requests. A sliding window denoted as , consists of

slots and each slot, , stores
one previous user request, ı.e. . The
basic window operation is to shift one slot constantly every
time slice. An example for a window operation for two-state

W(0) W(1) W(2) W(3) W(4)

At time tn

0 1 1 1 0 10........................

........................

W(0) W(1) W(2) W(3) W(4)

At time tn

0 11 1 0........................

........................
+1

0 0

SR

SR

Figure 3. Single window operation for two-state user re-
quests

user requests is shown in Figure 3. As shown in Figure 3, at
each time point,
and stores a new user request from SR. The user
request prediction for the next time point is done as follows.
Let . Then,

1/ [(W(k) = i) (W(k-1) = j)] if 0

0 if = 0 and =

1 / (S-1) otherwise

(1)

where, “ ” is the equivalence operation with a Boolean
output, (i.e. it yields “1” when the two arguments are same,
otherwise returns “0”), and where “ ” is the “conjunction”
operation. Thus, a policy applied at a given time point
should be optimized for the predicted at the previous time
point. This can be achieved through policy table look-up
method described in Section 4.

3.2. Multi Window Approach

The basic structure for multi-window approach is shown
in Figure 4. There are as many windows as the number of
states of SR and their sizes are same(). At a time
point, the user request of the previous time point is stored
in the Previous Request Buffer (PRB) and this buffer con-
trols the window selector to choose a window in which the

W(0) W(1) W(2) W(3) W(4)

0 1 1 0 10........................

........................

W(0) W(1) W(2) W(3) W(4)

0 11 1 0........................

........................

0 0

SR

P

P

t

P

P (0)

(1)
Previous
Request
Buffer

0 W

W

0

1

Window
Selector

Figure 4. Multi window operation for two-state user re-
quests

current user request is stored. For convenience, the win-
dow selected when PRB stores state of a user request is
represented as . Each window slice stores the state of a
user request. Note that only the selected window performs
the shift operation, while the other windows stay constant.
Thus, each window stores previous user requests
and plays a role to predict the transition probabilities from
state to any other states. Each row of is mapped to the
window corresponding to the state which is source of the
transition and can be easily calculated as follows.

for all i, j (2)

One important factor in a window approach is the window
size, . It highly contributes to the accuracy of prediction
because WS determines the precision of the predicted user
request probability. If is too small, a small change in
user requests causes a large effect to user request prediction.
Conversely, if is too large, a large change in user re-
quests gives only a small amount of effect to the prediction.
Extensive experimental work for window size selection is
described in later section.

4. Dynamic Power Management

4.1. Policy Table Construction

A look-up table stores the data sampled from a n-
dimensional function which has n input variables. Sam-
pling points of each variable are mapped to the table in-
dices of the corresponding dimension of the table. For
two-state service requester, input variables are and .
By denoting the number of sampling points of each vari-
able as , i=0,1, the sampling points for and can
be be generally denoted as (),

(), respectively. An example of a
two-dimensional policy table constructed for
is shown in Figure 5. Each cell of a policy table is also a
two-dimensional table, which we call a decision table. A
decision table is a matrix with as many rows as the total
system states and as many columns as the command issued

S0

S1

S2

A0 A1 A2S
A

0.3 0.2 0.5

0.9 0.0 0.1

0.2 0.4 0.4

S : System States

A: Commands

A Decision Table

R0

R0(0)

R0(1)

R0(2)

R0(3)

R0(4)

R1(0) R1(1) R1(2) R1(3) R1(4)

R1

Figure 5. An example of a 2D policy table

by the PM to SP. Each cell of a policy table can be indexed
as a pair . For each pair , a
policy optimization is performed to get the decision table
and the obtained decision table is stored to a cell of the pol-
icy table with the corresponding index. The overall table
is constructed once for all and its size is times the
size of the table used in [3]. Apart from the larger storage
overhead, there is no performance penalty in accessing this
table.

4.2. Decision Using Interpolation

The predicted user request can be used to select cells in
the policy table containing optimal policy at a given time.
If the predicted user request is one of the sampling points
used in policy optimization, we can choose a decision from
the cell in the corresponding table index according to the
system state denoted as . But there may be a gap be-
tween the predicted user request and sampling points be-
cause predicted user request is a value calculated in a con-
tinuous interval (from 0 to 1), while the sampling points
are discretely sampled. We use a two-dimensional linear
interpolation/extrapolation technique to compute the deci-
sion tables for value pairs that do not correspond
to sampled values in the policy table. The pseudo-code of
the interpolation/extrapolation procedure is shown in Fig. 6.
Extrapolation is used if the values of any of the is ei-
ther larger than the largest sampled value or smaller than
the smallest sampled value. In all other cases, the interpo-
lated value is computed as three successive one-dimensional
linear interpolations on the table entries corresponding to

pairs surrounding the predicted values of and
.

5. Experimental Results

We applied the proposed prediction schemes to a Hard
Disk Drive with highly-non stationary workload. The HDD
(i.e., the SP) consumes 3W in active state and 0W in sleep
state. The transition time from active to sleep (and vice
versa) takes in average 10 time slices. Requests can be
stored in a queue with length 2, and require in average 1.25

2DInterpolation (CS, cell, , , ,)
for (i = 0; i < 2; i++)

if () /* extrapolation */
= 0;
= 1;

else if () /* extrapolation */
= - 2;
= - 1;

else /* interpolation */
= j s.t. ;
= j+1;

for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
Select a decision from cell(,)
for State CS;

foreach (command)
= OneDimInterp(,);
= OneDimInterp(,);
= OneDimInterp(,);

return();

Figure 6. 2-dimensional Interpolation

time slices to be served. The Markov model of the sys-
tem (SP, Queue and SR) has 14 states. The PM can issue
2 commands: GO ACTIVE and GO SLEEP. The decision
table from the policy optimization is matrix, where
the row is the total number of states and the column is the
number of commands [3]. We tested our adaptive policy on
a worst-case, highly non-stationary workload, constructed
by concatenating 26 workloads with different , , and
different duration (between 30,000 and 50,000 time slices).
With a perfect workload estimation scheme, each workload
would be immediately identified, the optimal policy com-
puted and used until the change to a new workload. We call
this policy Best-Adaptive. We can also define another ideal
policy, called the Best-Oracle, that assumes perfect knowl-
edge not only of workdload parameters, but also of the dura-
tion of every single idle period in the request stream. In this
case, we can analyze the stream to find idle periods which
are longer than the sum of transition time from active state
to sleep state and vice versa. These idle periods can be used
for system shutdown without performance degradation. Ob-
viously, both the best-adaptive and best-oracle policies are
theoretical limits, which cannot be achieved in practice be-
cause they require the availability of pefect predictors of fu-
ture events (they can be tested in simulation by examining
in advance the entire input trace that drives the simulator).
They will be used for comparison with our adaptive poli-
cies. We extended the optimizer and simulator introduced
in [3] to generate the policy table and simulate user work-
load with the proposed prediction schemes. We computed
minimum power performance-constrained policies. Perfor-
mance constraints are expressed by limiting the average
time spent by a request in the queue () and the proba-

(a) (b)

Figure 7. (a) Power Comparison (b) Average Waiting
Time Comparison

(a) (b)

Figure 8. (a) Power Comparison of Each Workload
() (b) Power Comparison of Each Workload
()

bility of an incoming request to find the queue full (we call
this event request loss). Notice that the constraints are
not equivalent: is usually tighter for workloads with high
number of requests (because of the limited queue lengh),
while dominates for light workloads. For the first set of
experiments, was chosen to be 10% more than the loss
experienced without power management, and was set to
increase expected waiting time by 1 time slice. Optimiza-
tion and simulation were performed on SUN Ultra2 SPARC
workstation (200MHz, 520MB main memory) to find out
the optimal window size (). The computation time for
policy table construction (table) was approxima-
tively 5 minutes. We compared the power and performance
of our adaptive approaches with the best-adaptive policy.
We also compare with the non-adaptive approach [3] which
considers the overall workload as a stationary Markov chain
with constant an . Figure 7 (a) and (b) report respec-
tively power and average waiting time as a function of slid-
ing window width. The non-adaptive approach produces
higher power consumption than our adaptive approaches.
Also, constraints are now well matched (even though, in this
case, the non-adaptive policy is conservative). The graphs
also show that both window approaches are very close to
the best-adaptive policy when the window size is reasonably
large. Notice that double window approach is more stable

Figure 9. Power Consumption for Real Trace

and accurate than the single window approach for the same
window size. The appropriate window size is over 40 for
the double window approach and is over 90 for the single
window approach. Not only the overall trade-off between
the performance and power, but also the local trade-off is
important because it represents how well the policy exploits
idleness on a short time scale. Figure 8 reports on the
axis the index of the 26 different workloads of the non-
stationary trace. Power obtained with best-adaptive, best-
oracle and our adaptive policies (with window size 50) is
reported on the axis. When the performance constraint
is tight (,) as shown in Figure 8 (a), the
window approaches are still comparable to the best-adaptive
approach, but even the best-adaptive policy does worse than
the best-oracle for light workloads with tight performance
constraints. When the waiting time constraint, is re-
laxed without change of (, = 8), the best-
adaptive approach and both window approaches are compa-
rable to the best-oracle as shown in Figure 8 (b). Notice that
relaxing the constraint does not imply that the waiting time
increases proportionally: for heavy workloads the request
loss constraint dominates and keeps the waiting time low.
To confirm this intuitive fact, we observed that the waiting
time increase on the entire trace when is only 10%
with respect to the waiting time when . It is also
interesting to observe that for some workloads the adaptive
policies save even more power than the best-oracle. This is
possible because some performance is traded off for power,
while this is not allowed in the best-oracle policy, where
performance is constrained to be the same as without power
management. Finally, we applied the window approaches
to a real trace of time-stamped disk accesses [3]. We per-
formed two experiments with different constraints, namely

, and with , and com-
pared the power consumption with that of the best-oracle
policy. Results are shown in Figure 9. Since the trace is
for a relatively light workload, the power consumption of
the adaptive policies with tight constraints is high with
respect to the best-oracle policy. On the contrary, by relax-
ing the constraint (), we obtain policies that are

even more aggressive than the best-oracle with a measured
waiting time increase of just 6% compared to the average
waiting time when . The adaptive policies com-
pare favourably with the non-adaptive approach for both
tight and loose : average power is 2.81W for the non-
adaptive approach (for both values) while it is 2.78W
(with tight constraint) and 2.57W (with loose constraint) for
the double-window adaptive policy ().

6. Conclusions

In this paper, we described adaptive power management
policies for non-stationary workloads. Our adaptive ap-
proach is based on sliding windows and interpolation to find
an optimal policy from a pre-characterized optimal policy
table. The proposed approach deals effectively with highly
non-stationary workloads: good overall and instantaneous
accuracy is achieved. Moreover, our adaptive method of-
fers the possibility of trading off power for performance in a
controlled fashion. Simulation results show that our method
is comparable to ideal predictive policies which cannot be
implemented in practice and outperforms non-adaptive poli-
cies.

References

[1] L. Benini and G. De Micheli. Dynamic Power Management:
Design Techniques and CAD Tools. Kluwer, 1997.

[2] A. Chandrakasan and R. Brodersen. Low-Power Digital
CMOS Design. Kluwer, 1995.

[3] G. Paleologo, L. Benini, A. Bogliolo and G. D. Micheli. Pol-
icy optimization for dynamic power management. DAC -
Proceedings of the Design Automation Conference, pp.182-
187, 1998.

[4] C.-H. Hwang and A. Wu. A predictive system shutdown
method for energy saving of event-driven computation. Pro-
ceedings of the Int.l Conference on Computer Aided Design,
pp.28-32, 1997.

[5] M. Srivastava, A. Chandrakasan and R. Brodersen. Predic-
tive system shutdown and other architectural techniques for
energy efficient programmable computation. IEEE Transac-
tions on VLSI Systems, 4(1), pp.42-55, March 1996.

[6] J. Monteiro and S. Devadas. Computer-Aided Techniques
for Low-Power Sequential Logic Circuits. Kluwer, 1997.

[7] W. Nebel and J. Mermet (Eds.). Low-Power Design in Deep
Submicron Electronics. Kluwer, 1997.

[8] R. Golding, P. Bosh and J. Wilkes. Idleness is not sloth. Pro-
ceedings of Winter USENIX Technical Conference, pp.201-
212, 1995.

[9] R. Golding, P. Bosh and J. Wilkes. Idleness is not sloth. HP
Laboratories Technical Report HPL-96-140, 1996.

[10] J. M. Rabaey and M. Pedram (editors). Low-Power Design
Methodologies. Kluwer, 1996.

