Automatic selection of instruction op-codes of

low-power core processors

L.Benini, G.DeMicheli, A.Macii, E. Macii and M.Poncino

Abstract: A methodology is presented for automatically determining an assignment of instruction
op-codes that guarantees the minimisation of bit transitions occurring inside the registers of the
pipeline stages involved in instruction fetching and decoding. The assignment of the binary
patterns to the op-codes is driven by the statistics concerning instruction adjacency collected
through instruction-level simulation of typical software applications. Therefore the technique is
best exploited when applied to encode the instruction set of core processors and microcontrollers,
since components of these types are commonly used to execute fixed portions of machine code
within embedded systems. The effectiveness of the methodology is illustrated through experi-
mental data obtained on a realistic case study, namely, the MIPS R4000 RISC microprocessor.

1 Introduction

Power consumption is becoming one of the most relevant
constraints that must be taken into account during the
design of modern digital systems, owing to the increased
costs of packaging and cooling devices of these types.
Obviously, the need of low-power electronic products is
even more stringent for portable/wireless applications,
such as laptop computers, mobile phones, and personal
digital assistants. Usually, these applications carry onboard
devices such as general-purpose microprocessors, dedi-
cated core processors, microcontrollers, and DSPs that,
besides reduced power dissipation, must ensure reasonably
high performance, and thus run at fairly high clock
frequencies [1].

Besides resorting to well-known technological choices
(e.g. fabrication process, implementation style, clock
frequency, supply voltage), there are several architectural
solutions that can be adopted to limit the power required by
microprocessor-based systems. These include modifica-
tions of the processor’s organisation [2, 3], careful design
of the memory and input/output subsystems [4-7], proper
choice of data representation [8], adoption of dynamic
power-management strategies [9-11], and exploitation of
bus encoding/decoding techniques [12-17].

In this paper we focus attention on the dynamic (or
switching) power dissipated intemally by a CMOS micro-
processor. More precisely, we target the minimisation of
the power consumed by the instruction fetching and decod-
ing circuitry. We move from the simple observation that
during program execution, sequences of op-codes are
continuously read from memory, decoded and stored into
CPU registers. Sending an N-bit binary pattern over an on-

© IEE, 1999

IEE Proceedings online no. 19990419
DOI: 10.1049/ip-cdt: 19990419

Paper first received 29th May 1998, and in revised form 3rd March 1999
L. Beaini and G. De Micheli are with the Computer Sy Lab Y,
Stanford University, Stanford CA 94305

A. Macii, E. Macii and M. Poncino are with the Politecaico di Torino, Dip.
di Automatica ¢ Informatica, Torino, ltaly 10129

[EE Proc.-Comput. Digit. Teck., Fol. 146, No. 4, July 1999

chip bus and loading it into a register is usually a power
consuming operation, since it may require to charge or
discharge the considerably high capacitances associated
with the bus lines and cells of the register. Up to N-bit
transitions can occur on the bus wires and inside the
register any time a new value is transferred and stored;
properly choosing the binary patterns assigned to the
instruction op-codes is then the key to reducing the
number of transitions and thus the switching component
of the power dissipated by the fetching and decoding logic.

We propose a method for automatically determining a
low-power op-codes assignment that consists of two phases.
First, instruction-level simulation is performed on traces of
typical programs, and the information about the number of
adjacencies between pairs of instructions is collected and
recorded. Then [logy KJ-bit binary codes are assigned to
the various op-codes using an algorithm which targets the
minimisation of the Hamming distance between the codes
which are very likely to be adjacent in typical machine
instruction streams (X represents the number of op-codes in
the microprocessor’s instruction set).

We show the effectiveness of our methodology through a
realistic case study. In particular, we have taken the MIPS
R4000 [18] as the target microprocessor and collected the
information on instruction adjacency when some general-
purpose programs are ¢xecuted. Then we have used the
low-power encoding schemes of [19, 20] to re-encode the
binary op-codes implemented in reality. Finally, we have
simulated the execution of the re-encoded instruction
streams, and calculated the obtained reduction in switching
activity occurring in the op-code bits. Savings are between
15% and 42%, depending on the encoding algorithm and
the benchmark program.

Obviously, the choice of an existing microprocessor
(MIPS R4000) has been made only for the sake of
illustration of the goodness and usefulness of our
approach, which is applicable to the early phases of the
design flow of new processors. In particular, it is self-
evident that the output of the op-code assignment proce-
dure is heavily influenced by the specific software used to
compute the frequency of instruction adjacency. Therefore
our technique is best suited for dedicated processors, since

173



they are commonly used within embedded systems to
execute the same portion of code over and over. The use
of such components, commonly identified as intellectual
proprietary (IP) cores, as basic blocks for the development
of special-purpose digital systems is becoming a well-
established design strategy in the microelectronics indus-
try. This is the reason we believe that the proposed power
optimisation strategy could be of interest for 1P core
engineers and vendors.

2 Automatic selection of low-power op-codes

2.1 Methodology

The methodology for selecting the binary patterns to be
assigned to the various instruction op-codes we proposc is
pictorially summarised in Fig. 1. It consists of two main
phases. In the first, instruction-level simulation is executed
on typical instruction streams to collect the information
concerning the adjacency of pairs of op-codes. Assuming
an instruction set consisting of a total of K distinct op-
codes, we store the adjacency statistics into a X x K matrix,
called 4, whose entries a;; represent the number of times
op-code i immediately precedes op-code j. From matrix A4
we derive a weighted undirected graph GA(¥ E ,W) with
V1=K vertices. We call graph G, the instruction adja-
cency graph. Each vertex v; € V represents op-code i, and
each edge ¢;; € E is labelled w; ;=a;,+a;, and connects
vertex v; to vertex v, If w;;#0, V i#j, GV E, W) is
completely connected, i.e. it is a clique. Given the instruc-
tion adjacency graph G (¥ E, W), the target is to assign to
each vertex v; a binary code of length [log, |K|] in such a
way that the following cost function gets minimised:

CG V. E W) =Y w,-H, o
€ij

where H;; is the Hamming distance between the two codes
of vertices v; and v;. The ultimate objective is to assign
closer (in the Hamming scnse) codes to vertices joined by
*heavy’ edges. In this way, pairs of op-codes that are likely
to be adjacent in the instruction stream, when stored in the
same register at two consecutive clock cycles, will require
a small number of switchings within the register’s bits, thus
reducing the total switching power.
Example: Consider the instruction adjacency graph G (¥
E, W) of Fig. 2a. If we encode the vertices vy, . . .,v3 as in
Fig. 2b, the cost is 1710. On the other hand, with the
encoding of Fig. 2¢ the value of the cost function is 1300.
The problem we are addressing (i.e. finding a minimum-
length encoding for the vertices of graph G (V E, W)
which minimises the cost function of eqn. 1) has been
thoroughly investigated in the context of FSM encoding for

program
fraces

instruction
ad|. matrix

instruction-level
simulator

instruction
set

ST —
encoding
program

Fig. 1 Low-power op-codes selecsion inethodology

174

|

T

low power

instruction
set

i

Fig. 2 Example of GAVE,W) encoding

low power and efficient solutions can be found in the
recent literature ([21] is a comprehensive survey).

Exact encoding algorithms are only applicable to very
small graphs (a few tens of vertices), since finding the
optimal encoding is simply an instance of the grph embed-
ding problem, which is provably NP-hard. This is the
reason we propose to adopt two heuristic procedures.
The first [19], more accurate, is based on the solution of
an integer linear programming problem,; it relies on explicit
enumeration of all the vertices in the graph and can be used
for midsized examples. The second procedure [20], on the
other hand, is less accurate but it is fully based on implicit
representations of boolean and pseudo boolean (i.e. real-
valued) functions by means of BDDs [22] and ADDs [23],
and solves the encoding problem as a maximum weighted
matching problem. Therefore it is of interest for larger
graphs (more than a few hundreds of vertices).

2.2 Applicability and impact

In this Section we discuss the scope of applicability of our
methodology and its implications on microprocessor
(microcontroller) design. Furthermore, we analyse where
and how power is saved by applying op-code re-encoding.
As seen in the previous Section, our technique assigns op-
codes to instructions in a power-conscious fashion. If we
consider processor cores with proprietary instruction sets,
the processor architect has complete freedom in designing
the instruction set architecture (ISA) and is free to choose
instruction op-codes as well. However, it is often the case
that microprocessor (or microcontroller) cores must be
compatible with a given mainstream instruction set archi-
tecture (such as the well-known Intel x86 ISA). In this
case, changing the instruction op-codes implies that legacy
code is not binary-compatible with the new machine.

Fortunately, the upgrade of legacy code needed to make
it compatible with the new op-code encoding is straightfor-
ward and can be performed directly on program binaries. It
is sufficient to pass legacy binaries through a filter that
replaces the op-codes of original instructions with the new,
low-power ones. This operation requires a single pass
through the binaries. No recompilation is necessary, nor
complex binary translation schemes. The only limitation of
this procedure is that it cannot be applied to self-modifying
codes. The case of migration of legacy code and the
absence of any special requirements for external or internal
hardware support are two strong points in favour of op-
code re-encoding.

To assess the usefulness of op-code re-encoding it is also
useful to estimate the power savings that can be obtained.
The new op-codes reduce the number of bit transitions
between back-to-back instructions. Hence, power will be
saved wherever instruction streams are processed. In a
microprocessor, instructions are usually read from first-
level cache (or, less frequently, from memory), then
processed by the instruction pipeline. The flow of the
instruction stream is depicted in Fig. 3. For the sake of
explanation, we assume a microprocessor architecture with

IEE Proc.-Comput. Digit. Tech.. Yol. 146, No. 4, July 1999



e

t
r main memory [

DrOcessay ‘
pipeling ‘

SEL thul“v

| cache
|

> anﬂ Ty
| cache

Fig. 3 Flow of instruciion stream in microprocessor

split first-level instruction cache (I-cache) and data cache
(D-cache).

Second-level cache or main memory are accessed only
on cache misses (cache misses are generally rare relatively
to hits), while instructions are read from I-caches in every
clock cycle. Moreover, the sequencing of instruction
streams is often destroyed when accessing second-level
cache. Hence, op-code re-encoding is particularly useful to
reduce transitions, and therefore power, on the bus that
connects the I-cache with the microprocessor pipeline [24]
and within the pipeline itself [25] (the blocks drawn with
bold lines in Fig. 3).

It may be argued that the power consumed in this portion
of a microprocessor is only a fraction of the total power
dissipation, and op-code re-encoding impacts only a small
portion of the total power. Furthermore, in some micro-
processors, instruction decoding logic may be on the
critical path. In this case, even op-code selection may be
dictated by performance constraints; thus, there may be
limited degrecs of freedom in op-code selection. For
example, low-power assignment could be restricted to
some specific op-codes. Nevertheless, the power savings
provided by our technique, when applicable, can be
obtained with little design effort because optimal op-
codes are automatically computed.

As a Jast note, we observe that instruction encoding
techniques have been applied successfully in commercial
low-power microprocessors. The ARM family [26]
provides two instruction sets: a complete set, whose
instructions are encoded in 32 bits, and a reduced set
with 16-bit instructions. In contrast to op-code re-encod-
ing, supporting two instruction sets imposes significant
hardware overhead in the microprocessor. ARM* dual
instruction set is claimed to be power efficient [26] because
it reduces memory usage for storing programs, thereby
reducing the number of cache reads and the power dissi-
pated in the communication between cache and micropro-
cessor. The implementation of instruction encoding
techniques in real-life microprocessors confirms that such
techniques are indeed useful and may have a nonnegligible
impact on overall system power dissipation, even if they
target only a fraction of total chip power.

3 Case study

3.1 MIPS R4000 architecture

The MIPS R4000 is a 64-bit microprocessor which
provides a 64-bit on-chip floating-point unit, a 64-bit
integer arithmetic logic unit, 64-bit integer registers, a
64-bit virtual address space, and a 64-bit system bus.
Fig. 4 shows a block diagram of the R4000 microproces-
SOr.

The R4000 microprocessor realises instruction paralle-
lism by using an ecight-stage superpipeline; each stage
takes one P-cycle (P-clock operates at twice the frequency
of the master-clock). The execution of each instruction
takes at least eight P-cycles. Normally, two instructions are
issued at each master-clock cycle. Once the pipeline has
been filled, eight instructions are executed simultaneously.

IEE Proc.-Comput, Digit. Tech., Vol. 146. No. 4, July 1999

B4-bit system bus

!

systemn S-cache data P-cache instruction
control control cache control cache
J L |
- I I I —_
- »
CPO CPU L FPU I
exception/ CPU registers FPU registers
contral ~|
registers ALU pipseline bypass
memory . .
management “’f‘d aligner/ FP multiplier
registers store driver
meger FP divider
translations muliplier/divider
lookaside ad .
d it
bufters ress uni FP add. convert
square root |
PC incremanter i

r Y

I
]

pipeline control

Fig. 4 R4000 processor internal block diagram

The microprocessor achieves high throughput by pipe-
lining cache accesses, reducing register access times and
allowing the latency of functional units to span more than
one pipeline cycle. Fig. 5 shows the eight stages of the
instruction pipeline.

3.2 Instruction set summary

Each CPU instruction is 32 bits long. There are three
instruction formats, shown in Fig. 6:

o Immediate (I-type)

e Jump (J-type)

e Register (R-type)

The instruction decoding phase is greatly simplified by
limiting the number of formats to these three. This limita-
tion means that the more complicated and less frequently
used operations and addressing modes can be synthesised

g e e .
| cyce | Poych (2 ﬂNF"

E_i_ HE I.-.;{lll ||':Ib—| fb:l\"E
I | AF |:.-: nrllzq Tc..na

£x| e .r;e.| T l.'.'l-'.i

[F]s ﬁr]:.-c D:]_l-. [1c] ﬁ.

FeTe |'FHE<|DF|I.‘IS|TEi'\'-EI|

|'r:|""|':"|

| IF| H] 51&-1]:-:-} oF|os] 1c [wa)

“IW_F.I;FL:S..' TC [we)]

! K= T
(gl s|-1F'£x':F.:s|fc|-;m'|

curent
CPU
cycle

Fig. 5 Instruction pipeline stages
175



T =

L]
| vvon

31 2828 o
L] s ] e
St_2026 2130 1615 1110 686 0O

el [ [ 0] &t Jua] moe
Fg. 6 CPU instruction formats
1= immediae type; J = jump type; R = register type

by the compiler, using sequences of these same simple
instructions.

The instruction op-codes are six-bits long; their binary
encodings are shown in Table 1 (rows are labelled with bits
[31..29], and columns are labelled with bits [28..26)).

The SPECIAL op-code (corresponding to the 000000
binary string) actually identifies a total of 52 R-type
instructions; such instructions are characterized by a six-
bit extended op-code that is placed in the right-most bits of
the binary word. Table 2 shows the actual encoding of such
extended op-codes (rows are labelled with bits [5..3], and
columns are labelled with bits ([2..0]).

3.3 Low-power op-codes selection

To show the effectiveness of the low-power op-codes
selection methodology described in Section 2, we present
the results obtained by applying it to the case of the MIPS
R4000 microprocessor.’

We selected a total of eight software applications,
including DBMSs, word processors, data compression
and logic synthesis tools. For each application i, we
generated the corresponding instruction trace by executing

Table 1: Original op-codes

it on a DEC-Station 5000/200 with the MIPS R4000
microprocessor and running the Ultrix operating system
configured in single-user/single-task mode. Then we built
matrix A; and the associated instruction adjacency graph
G ;. Finally, we constructed the global graph G,° =X, G
that encompasses the instruction adjacency information for
all the considered benchmark programs, and we have run
on such graph the explicit and the implicit encoding
algorithms of [19, 20]. Tables 3 and 4 show the new
binary patterns for all the main op-codes. By inspection,
the application of the explicit encoding algorithm has
modified almost all the op-codes; on the other hand, a
lower number of changes has been introduced by the
implicit algorithm. This behaviour was expected, since
the explicit algorithm introduces fewer approximations in
the computation of the near-optimal codes, and therefore it
more heavily modifies the initial encoding. The simulation
results of the following Section demonstrate that the op-
codes of Table 3 are substantially better than the ones of
Table 4. On the other hand, as mentioned, the algorithm of
[19] may not be used in the case of op-codes longer than
six bits because of computational complexity.

An additional step of re-encoding has been applied to
the extended op-codes of the SPECIAL instructions (i.e.
the R-type instructions characterised by an ‘all-zero’ main
op-code). In this case, the re-encoding problem has been
formulated in a more articulated way, since additional
constraints on the selection of the binary patterns to be
assigned to the extended op-codes do exist. In fact,
SPECIAL instructions are often adjacent to non-SPECIAL
ones, for which the six right-most bits cannot be modified.
We have solved the op-codes assignment problem by
applying a simple genetic local search algorithm similar
to the Galops procedure proposed by Olson and Kang [27].

Table 5 reports the new binary patterns that were
assigned to the extended op-codes of the SPECIAL

[28..26)

[31..29} 000 001 010 011 100 101 10 111
000 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ
001 ADDI ADDIU SLTI SLTW ANDI ORI XOR! L
010 CcoPo COP1 CcoP2 RESRVD1 BEQL BNEL BLEZL BGTZL
on DADDI DADDIU LDoL LDR RESRVD2 RESRVD3 RESERVD4 RESRVD5
100 L8 LH LwL w LBU LHU LWR Lwu
101 SB SH SWL SwW SDL SDR SWR CACHE
110 w LwC1 LWGC2 RESRVDé LD LDCH LDC2 [}
111 sC SWC1 SWC2 RESRVD7 8CD SDC1 SDC2 SD

Table 2: Original extended op-codes

(2.0}

[5..3] 000 001 010 o011 100 101 110 111
000 SLL RESRVD1 SRL SRA SLLV RESRVD2 SRLV SRAV
001 JR JALR RESRVD3 RESRVD4 SYSCALL BREAK RESRVDS SYNC
010 MFHI MTHI MFLO MTLO DSLLV RESRVD8 DSRLV DSRAV
o011 MULT MULTU Div DIV DMULT DMULTU DDV DDIVU
100 ADD ADDU sus SuUBU AND OR XOR NOR
101 RESRVDT RESRVD8 SLT SLTU DADD DADDU Dsus DSuUBU
110 TGE TGEU TLT TLTU TEQ RESRVD9 TNE RESRVD10
i DSLL RESRVD11 DSAL DSRA RESRVD12

DSRL32 DSRA32

IEE Proc.-Comput. Digit. Tech., Vol. 1486, No. 4, July 1999



Table 3: Low-power op-codes (explicit algorithm)

[28..26)

[31..29) 000 001 010 o1 100 101 110 111
000 W sB J XORI REGIMM LDR LL BLEZL
001 i Lwu SWL " SDR LWR RESRVD3 BGTZL BEQL
010 SW RESRVDE ADDI SDC1 SLTIV LDC1 RESRVD1 SCD
o011 LWC1 8DC2 - coP2 RESRVD7 LwL RESRVD5 LDC2 DL
100 SPECIAL AND{ JAL ORI BNE BGTZ LH LWG2
10 ADDIU SH BLEZ SC LBU SOL DADDIU RESRVD2
110 BEQ 8L LB 13} LHU COPO SWC2 CACHE
111 COP1 sD SWR RESRVD4 SWC1 LD BNEL DADDI

Table 4: Low-power op-codes (Implicit algorithm)

[28..26]

(31..29) 000 001 010 on 100 101 110 111
000 BLEZ 8GTZ REGIMM SLTIV BNE SLTI BEQ ANDI
001 ORI XORt JAL Lt SPECIAL w ADDIU sw
010 ADDt [§: LwL LWR SwL SWR LH CACHE
o1 J . SB LHU SH COP1 LWC1 SC SWC1
100 DADDI DADDIU LDL LDR RESRVD2 RESRVD3 RESRVD4 RESRVDS
101 BEQL BNEL BLELZ BGTZL LBY wu SDL SOR
110 COPQ L LWGC2 RESRVDé up LDC1 LDC2 LD
1 coP2 RESRVD1 SWC2 RESRVD7 SCOo SDC1 SDC2 SD

Table 5: Low-power extended op-codes

(2.0}

I5..3) 000 001 010 011 100 101 110 1
000 SLL RESRVD1 XOR SLT OR RESRVD2 SRAV SALV
001 SLTU AND RESRVD3 RESRVD4 susU BREAK RESRVD5 SYNC
Q10 MFHL MTHI SYSCALL MTLO DSLLV RESRVDS DSRLV DSRAV
011 MULT MULTU StLv MFLO DMULT DMULTU DDV DDIVU
100 ADD ADDU SuUB SRA SAL Div DIVU NOR
101 RESRVD7 RESRVD8 JR JALR DADD DADDU osuB osyBy
110 TGE TGEU nr TLTY TEQ RESRVD9 TNE RESRVD10
11 DSLL AESRVD11 DSRL DSRA DSLL32 DSRL32 DSRA32

RESRVD12

instructions when the re-encoding phase was driven by the
data collected on the software applications mentioned. By
comparing Tables 2 and 5 it can be seen that only a few
extended op-codes have been modified. This is essentially
due to the fact that the constraints posed to our genetic
local search re-encoding procedure by the non-SPECIAL
instructions present in the trace excessively reduce the
degrees of freedom that can be exploited to determine
advantageous binary assignments of the extended op-
codes.

3.4 Results for real software applications

The end result we expect from the application of our
technique is a reduction of the switching activity in the
op-code bits of some registers of the pipeline stages when
sequences of machine instructions are executed. To make
sure that this is actually what happens, we have taken the
machine code of eight different programs and monitored

IEE Proc.-Comput. Digit, Tech., ¥ol. 146, No. 4, July 1999

the average switching activity of each op-code bit. Then,
for each application, we have determined the low-power
op-codes using both the explicit and the implicit algo-
rithms, re-encoded the original instruction stream using the
new op-codes, and calculated the new average switching
activity of each op-code bit. Table 6 shows the results of
the comparison. Savings are considerably high: Between
30 and 42% for the explicit encoding algorithm, and
between 15 and 33% for the implicit one. Notice that the
data in the table only refer to the main op-codes (i.e. the six
left-most bits of each instruction); improvements in the
switching activity of the six right-most bits obtained by
optimising the extended op-codes of the SPECIAL instruc-
tions have been quite limited (around 5% on average).

As mentioned, the results are obtained using ad-hoc
instruction encodings. Therefore they clearly show the
usefulness of the proposed approach as a teol for helping
in determining the most suitable encoding for a special-
purpose machine on which a well-established piece of
embedded code will be repeatedly executed. However,

177



Table 6: Average switching activity reduction

Program  Average Switching activity per main op-code bit
explicit algorithm implicit algorithm
bejore after savings after savings

espresso  0.3025 o
gs 0.2995

gunzip 0.2889

gzip 0.3206

jodi 0.2861

latex 0.3036

matiab 0.3340

oracle 0.3443

Global 0.3012

the proposed methodology can be beneficial also to
designers of general-purpose microprocessors. For devices
of this type, the goal would be to determinc the best
average encoding, that is, the one which minimises the
power for most of the applications whose execution on the
processor is the most likely to happen. The approach to be
followed is then that of collecting the statistics on instruc-
tion adjacency for all such applications, and then use this
information to determine the new encoding. To show the
applicability of our technique also to the case of general-
purpose machines, we have re-encoded the instruction
stream of each program using the op-codes of Tables 3
and 4, and determined the average switching activity per
op-code bit before and after re-encoding. The last row of
Table 6, named Global, reports the average of these values
taken over the eight programs we have considered. Savings
are larger than 30%.

4 Conclusions

Microprocessors of the latest generations, including appli-
cation-specific products (e.g. embedded cores, microcon-
trollers, and DSP processors), are performance-critical
devices, since they tend to run at very high clock frequen-
cies; consequently, they normally consume a considerable
amount of dynamic power. Designers are thus constrained
to resort to optimisation techniques to keep the available
power budget under control. We have directed our attention
to the power dissipated by the fetching and decoding logic
of a processor. We have demonstrated that the choice of the
instruction binary codes plays a key role in the minimisa-
tion of the power consumed by these portions of the digital
system. We have therefore presented a metbodology that
can be fruitfully exploited by processor engineers to auto-
matically determine a near-optimal, low-power assignment
of the op-codes for special-purpose machines, and have
supported our claims concerning the viability and the
effectivencss of the proposed technique through experi-
mental results collected on a real-life microprocessor,
namely, the MIPS R4000.

5 Acknowledgment

This work is supported, in part, by a grant from SGS-
Thomson Microelectronics.

178

6 References

I CHANDRAKASAN, AP, SHENG, S., and BRODERSEN, R. W.:
‘Low-power CMOS dxptal design’, IEEE J. Solid-State Cln:um 1992,
27, (4), pp. 473484

2 GARY, S.; ‘Low. microprocessor design’, in: RABAEY, IM.,
PEDRAM,, M., &nw power design methodologies' (KJuwar
Norwell, MA, 1996)

> DOBBERPURL. D The desp of 5 hgh proemanc oo
microprocessor’ of A internati symposium
on Low-power Electronics and Design, ISLPED'96, August 1996,

Moaterey, CA, pp. 11-16

4 WUYTACK, S., CATTHOOR, F, NACHTERGAELE, L., and DE
MAN, H.: Global communication and memory optimizing transforma-
tions for low design’, Proceedings of ACM/IEEE international

anerDa:gn, IWLPD—N April 1994, Napa Valley,
CA, pp. D03-205

5 PANDA, PR, and DUTT, N.D. Roductngfmoddnu bus transitions for

of

’, European conference
on and Test, EDTC-96, March1996, Paris, France, pp. 6367
6 WUYTACK, S, CA'I'I‘HOOR, F., NACHTERGAELE, L., and DE
MAN, H.: Power cxploration for data dominated video applw-nons
ACM/IEEE inl ium on Low Power

ternational sympos
m& and Design, ISLPED-96, August 1996, Monterey, CA, pp.
7 DIGUET, 1P, WUYTACK, S., CATTHOOR, F, and DE MAN, H.:
Fomnhzed methodology for data reuse mq)lonmn in hnemchic
*, Proceedings of ACM/IEEE internati
sium on Law lbwer 'Electronics and Design, ISLPED-97, August 1997
Monterey, CA, pp. 30-35
8 CHAND IDRAKASAN, S., and BRODERSEN, R.W.: ‘Minimizing power
9mumpuon8_23 mdlgmlCMOScncuu ProcIEEE 1995 83, (4), pp.
498-5
9 ALIDINA, M, <!5):{(1,)};"‘!:!'31RO J, DEVAI-)bA;id S., GHOSHI A., and
PAPAEFTHYMI Preconvutmo sequential logic opti-
mization for low power’, JEEE Trans., 1994 VLSI-2, (4), pp. 426-436
10 BENINI, L., SIEGEL, P, and DE MICHELLG ‘Automatic synthesis of

gated clocks for power Teduction in sequential circuits’, JEEE Design.
Test 1994 11, (4), pp. 3240

1 SRIV AVA, , CHAND , A., and BRODERSEN,

RW.: shutd and other architectural techmqucs

forenugydﬁc (mmmmbkcompuuuon IEEE -Trans., 1996
VLSI4, (1), pp. 42-55

12 SU.C.L TSU] cY, mdDESPAlN A. M.: ‘Saving in the
bedded IEEE Design Test ., 1994

u (4),&,, 24—30
138 and BURLESON, W.P: ‘Bus-invert coding for low-power

1o, [EEE Trans., 1995 VLSE3, (1), pp. 49-58
14 BENINI L., DEMICHELL G., MAC ILE., SCIUTO D, mdSlLVANo
. ‘Asymp(ouc m«tnnsmon actwuy encodmg hm n

power microprocessor-based IEEE 7th
g"m Lg[k?n symposium on VLS], g 97 March 1997 Urbana,
7-

15 BEN!'NI, L., DE MICHELI, G., MACIL E., PONCINO, M., lndQUER,
S.: *Reducing eommptlonofeore—baedsymmsby
encoding’, E Trans., l998 VLSl-6 (4), pp 554-562

16 MUSOLL. E., LANG ., and CORTADELLA, J

encrgy ln
IEEE ﬂwu 1998 VLS]-6. (4), Pp- 568—572

17 KA.LAMBUR, , and [RWIN, M_J.: 4 addrewngmodefor
low power’, Pmoeedm.gs of ACM/IEEE international symposium on
Low Power Electronics and Design, ISLPED-97, Auglm 1997,
Moanterey, CA, pp 208-213

18 HEINRICH, J.: ‘MIPS R4000 user’s I (MIPS

19 Da—e mmmm‘%‘&.,“mgm

“ low power
dissipation’, JEEE J Solid State Cm:m% 1995, 30, (B)Pg) 258—268

‘Working-zone
ml%mes’

20 lélSCHTEL,FG , HERMIDA, M M.,
MENZI, d lwwr asip
tion’, Proceedings of ACMI%EE on C

Aided Design, ICCAD-94, November 1994, SanJose,CA pp. 70-73
21 MACIL, E.: ‘Sequential synthesis and opummnonforlowpwu in:
MERMET, I, NEBEL, S.W, (Eds), ‘Low deep
submamu electronics’ (Kluwer, Dordrechs, The Netherlands, 1997)

22 BRYANT, R.: ‘Graph-based for Boolean function manipula-
tion’, JEEE Dum 1986 C-35Ag),pp 79—85
23 BAHAR,RI FROHM,E GAONA, C., HACI-l'l'EL.d'G.D MACII.E

ARDO, A., and SO decision diagrams and
ications’, FonnalMelhodr.S)ct Des., 1997 10, pp. 171-206
24 B L., DEMICHELL, G., MACILE, SCIU'IOD . and SILVANO,
C.: *Address bus encoding lechmqua for system-level power optimiza-

tion’,Proceaq-R of IEEE Confe on Design Aut matior and Test
in Europe, D. 98, February l998Pmannee.pp 861-866 od

25 CHANG, 1. M., andPEDRAM M.: ‘Low powu‘mgmer
binding’, Ptooeedm |ofACM/I£EE fe on Design A
tion., DAC-32 .lnne 1995, San Francisco, CA,pp 29-35
26 FURBER, S.:’ ‘ARM system archit (Addison-Wesley,
27 gf'soﬂ and KANG, 5. M,; for fini
. state assignment for we
mac}una g, of ACM/lEEE

Lowl’bmrDaign IWLPD-94, April 1994, Napa Valley, CA, pp. 6

IEE Proc.-Compu:. Digtt. Tech., ¥ol. 146, No. 4, July 1999



