
Automatic selection of instruction op-codes of
low-power core processors

L. Benini. G. DeMicheli. A. Macii, E. Macii and M. Poncino

Abstract: A methodology is presented for automatically detennining an assignment of instruction
op-codes that guarantees the minimisation of bit transitions occurring inside the registers of the
pipeline stages involved in instruction fetching and decoding. The assignment of the binary
patterns to the op-codes is driven by the statistics concerning instruction adjacency collected
through instruction-level simulation of typical software applications. Therefore the technique is
best exploited when applied to encode the instruction set of core processors and microcontrollers,
since components of these types are commonly used to execute fixed portions of machine code
within embedded systems. The effectiveness of the methodology is illustrated through experi-
mental data obtained on a realistic case study, namely, the MIPS R4000 RISC microprocessor.

1 Introduction

Power consumption is becoming one of the most relevant
constraints that must be taken into account during the
design of modem digital systems, owing to the increased
costs of packaging and cooling devices of these types.
Obviously, the need of low-power electronic products is
even more stringent for portable/wireless applications,
such as laptop computers, mobile phones, and personal
digital assistants. Usually, these applications carry onboard
devices such as general-purpose microprocessors, dedi-
cated core processors, microcontroUers, and DSPs that,
besides reduced power dissipation, must ensure reasonably
high performance, and thus run at fairly high clock
frequencies [I].

Besides resorting to well-known technological choices
(e.g. fabrication process, implementation style, clock
frequency, supply voltage), there are several architectural
solutions that can be adopted to limit the power required by
microprocessor-based systems. These include modifica.
tions of the processor's organisation [2, 3], careful design
of the memory and input/output subsystems [4-7], proper
choice of data representation [8], adoption of dynamic
power-management strategies [9-11], and exploitation of
bus encoding/decoding techniques [12-17].

In this paper we focus attention on the dynamic (or
switching) power dissipated internally by a CMOS micro-
processor. More precisely, we target the minimisation of
the power consumed by dte instruction fetching and decod-
ing circuitry. We move from the simple observation that
during program execution, sequences of opocodes are
continuously read from memory, decoded and stored into
CPU registers. Sending an N-bit binary pattern over an 00-

chip bus and loading it into a register is usually a power
consuming operation, since it may require to charge or
discharge the considerably high capacitances associated
with the bus lines and cells of the register. Up to N-bit
transitions can occur on the bus wires and inside the
register any time a new value is transferred and stored;
properly choosing the binary patterns assigned to the
instruction op-codes is then the key to reducing the
number of transitions and thus the switching component
of the power dissipated by the fetching and decoding logic.

We propose a method for automatically detennining a
low-power op-codes assignment that consists of two phases.
First, instruction-level simulation is performed on traces of
typical programs, and the infonnation about the number of
adjacencies between pairs of instructions is collected and
recorded. Then no~ Xl-bit binary codes are assigned to
the various op-codes using an algorithm which targets the
minimisation of the Hamming distance between the codes
which are very likely to be adjacent in typical machine
instruction streams (K represents the number of op-codes in
the microprocessor's instruction set).

We show the effectiveness of our methodology through a
realistic case study. In particular, we have taken the MIPS
R4000 [18] as the target microprocessor and collected the
information on instruction adjacency when some general-
purpose programs are executed. Then we have used the
low-power encoding schemes of (19,20] to re-encode the
binary op-codes implemented in reality. Finally, we have
simulated the execution of the re-encoded instruction
streams, and calculated the obtained reduction in switching
activity occurring in the op-code bits. Savings are between
15% and 42%, depending on the encoding algorithm and
the benchmark program.

Obviously, the choice of an existing microprocessor
(MIPS R4000) has been made only for the sake of
illustration of the goodness and usefulness of our
approach, which is applicable to the early phases of the
design flow of new processors. In particular, it is self-
evident that the output of the op-code assignment proce-
dure is heavily influenced by the specific software used to
compute the frequency of instruction adjacency. Therefore
our technique is best suited for dedicated processors, since

173

C lEE, 1999

lEE ~ing.f oo1iDe DO. 19990419
DOl: 10.1049/ip-edl:19990419

Paper first receivecl29th May 1998, aM in reviled form 3rd March 1m

L. Denini and G. De Micheli ... with the Computer SySIeInIl.abonQy,
Stanford University, Staoford CA 94305

A. Macii, E. Macii aDd M. Poncino arc with the Polilccnico di Torino, Dip.
di AutomaIica c IIIfoImItica. Torino, Italy 10129

lEE Proc..c-plll. DixiI. rd.. HI/. /46. No. 4. Jwiy /999

they are commonly used within embedded systems to
execute the same portion of code over and over. The use
of such components, commonly identified as intellectual
proprietary (IP) cores, as basic blocks for the development
of special-purpose digital systems is becoming a well-
established design strategy in the microelectronics indus-
try. This is the reason we believe that the proposed power
optimisation strategy could be of interest for IP core
engineers and vendors.

~10 ~10 ~10 ~ Y1 00 01 00 11

-.e -- 111- ~&l1
d ". ~ 11. 10 01 ". 10

Cz1710 C-I300. b c
Fig. 2 E%GmpI8 .G~~W) IJIoodlng

low power and efficient solutions can be found in the
recent literature ([21] is a comprehensive survey).

Exact encoding algorithms are only applicable to very
small graphs (a few tens of vertices), since finding the
optimal encoding is simply an instance of the grph embed-
ding problem, which is provably NP-bard. Tbis is the
reason we propose to adopt two heuristic procedures.
The first [19], more accurate, is based on the solution of
an integer linear programming problem; it relies on explicit
enumeration of all the vertices in the graph and can be used
for midsized examples. The second procedure [20], on the
other hand, is less accurate but it is fully based on implicit
representations of boolean and pseudo boolean (i.e. real-
valued) functions by means ofBDDs [22] and ADDs [23],
and solves the encoding problem as a maximum weighted
matching problem. Therefore it is of interest for larger
graphs (more than a few hundreds of vertices).

2 Automatic selection of low-power op-codes

C(GA(V,E'W)=LQ)tJ,HiJ (I)
e;,;

where HiJ is the Hamming distance between the two codes
of vertices Vi and vi- The ultimate objective is to assign
closer (in the Hamming sense) codes to vertices joined by
'heavy' edges. In this way, pairs of op-codes that are likely
to be adjacent in the instruction stream, when stored in the
same register at two consecutive clock cycles, will require
a small number of switchings within the register's bits, thus
reducing the total switching power.

Example: Consider the instruction adjacency graph GA(~
E, W) of Fig. 2a. If we encode the vertices vo,. . ',V3 as in
Fig. 2b, the cost is 1710. On the other hand, with the
encoding of Fig. 2c the value of the cost function is 1300.

The problem we are addressing (i.e. finding a minimum-
length encoding for the vertices of graph GA(~ E, W)
which minimises the cost function of eqn. I) has been
thoroughly investigated in the context ofFSM encoding for

2.2 Applicability and impact
In tbis Section we discuss the scope of applicability of our
medlodology and its implications on microprocessor
(microcontroller) design. Furthermore, we analyse where
and how power is saved by applying op-code re-encoding.
As seen in die previous Section, our technique assigns op-
codes to instructions in a power-conscious fasbion. If we
consider processor cores with proprietary instruction sets,
die processor architect has complete freedom in designing
die instruction set architecture (ISA) and is free to choose
instruction op-codes as well. However, it is often the case
that microprocessor (or microcontroller) cores must be
compatible with a given mainstream instruction set archi-
tecture (such as the well-known Intel x86 ISA). In this
case, changing the instruction op-codes implies that legacy
code is not binary-compatible with the new machine.

Fortunately, the upgrade of legacy code needed to make
it compatible with the new op-code encoding is straightfor-
ward and can be performed directly on program binaries. It
is sufficient to pass legacy binaries through a filter that
replaces the op-codes of original instructions with die new,
low-power ones. This operation requires a single pass
through the binaries. No recompilation is necessary, nor
complex binary translation schemes. The only limitation of
this procedure is that it cannot be applied to self-modifying
codes. The case of migration of legacy code and the
absence of any special requirements for external or internal
hardware support are two strong pqints in favour of op-
code re-encoding.

To assess the usefulness of op-code re-encoding it is also
useful to estimate the power savings that can be obtained.
The new oP-CQdes reduce the number of bit transitions
between back-to-back instructions. Hence, power will be
saved wherever instruction streams are processed. In a
microprocessor, instructions are usually read from first-
level cache (or, less frequently, from memory), then
processed by the instnlction pipeline. The flow of the
instruction stream is depicted in Fig. 3. For the sake of
explanation, we assume a microprocessor architecture with

fEE Pmc.-COINPIIt. DIgit. Td.- HoI. /44 No 4. July 1999

fig. 1 ~ ~:;:o~~

174

2. 1 Methodology
The methodology fOT selecting the binary patterns to be
assigned to the various instruction op-codes we propose is
pictorially summarised in Fig. 1. It consists of two main
phases. In the first. instruction-level simulation is executed
on typical instruction streams to collect the infonnation
concerning the adjacency of pairs of op-codes. Assuming
an instruction set consisting of a total of K distinct op-
codes, we store the adjacency statistics into a K x K matrix,
called A, whose entries alJ represent the number of times
op-code i immediately precedes op-codej. From matrix A
we derive a weighted undirected graph GA(I-: E.W) with
IVI =K vertices. We call graph GA the instruction adja-
cency graph. Each vertex VI E V represents op-code i, and
each edge eiJ E E is labelled wi. j=aiJ+aj.1 and connects
vertex VI to vertex vj- If WIJ # 0, V i # j, G,.(I-: E. W) is
completely connected, i.e. it is a clique. Given the instruc-
tion adjacency graph GA(I-: E. W), the target is to assign to
each vertex VI a binary code of length no82 IKIl in such a
way that the following cost function gets minimised:

1:::>1C8dIe - I'~

Fig. 3 Flow of Wlrtlt:tiOll S- ill miclOptrKessor

The microprocessor achieves high throughput by pipe-
lining cache accesses, reducing register access times and
allowing the latency of functional units to span more than
one pipeline cycle. Fig. 5 shows the eight stages of the
instruction pipeline.

split first-level instruction cache (I-cache) and data cache
(D-cache).

Second-level cache or main memory are accessed only
on cache misses (cache misses are generally rare relatively
to hits), while instructions are read from l-caches in every
clock cycle. Moreover, the sequencing of instruction
streams is often destroyed when accessing second-level
cache. Hence, op-code re-encoding is particularly useful to
reduce transitions, and therefore power, on the bus that
connects the I-cache with the microprocessor pipeline [24)
and within the pipeline itself [25) (the blocks drawn with
bold lines in Fig. 3).

It may be argued that the power consumed in this portion
of a microprocessor is only a mction of the total power
dissipation, and op-code re-encoding impacts only a small
portion of the total power. Furthermore, in some micro-
processors, instruction decoding logic may be on the
critical path. In this case, even op-code selection may be
dictated by performance constraints; thus, there may be
limited degrecs of freedom in op-code selection. For
example, low-power assignment could be restricted to
some specific op-codes. Nevertheless, the power savings
provided by our technique, when applicable, can be
obtained with little design effort because optimal op-
codes are automatically computed.

As a last note, we observe that instruction encoding
techniques have been applied successfully in commercial
low-power microprocessors. The ARM family [26J
provides two instruction sets: a complete set, whose
instructions are encoded in 32 bits, and a reduced set
with l6-bit instructions. In contrast to op-code re-encod-
ing, supporting two instruction sets imposes significant
hardware overhead in the microprocessor. ARM's dual
instruction set is claimed to be power efficient [26J because
it reduces memory usage for storing programs, thereby
reducing the number of cache reads and the power dissi-
patcd in the communication between cache and micropro-
cessor. The implementation of instruction encoding
techniques in real-life microprocessors confinns that such
techniques are indeed useful and may have a nonnegligible
impact on overall system power dissipation, even if they
target only a fraction of total chip power.

3.2 Instruction set summary
Each CPU instruction is 32 bits long. There are three
instruction fonnats, shown in Fig. 6:
. Immediate (I-type)
. Jump (J-type)
. Register (R-type)
The instruction decoding phase is greatly simplified by
limiting the number of formats to these three. This limita-
tion means that the more complicated and less frequently
used operations and addressing modes can be synthesised

3 Case study

3.7 MIPS R4000 architecture
The MIPS R4000 is a 64~bit microprocessor which
provides a 64-bit on-chip floating-point unit, a 64-bit
integer arithmetic logic unit, 64-bit integer registers, a
64-bit virtual address space, and a 64-bit system bus.
Fig. 4 shows a block diagram of the R4000 microproces-
sor.

The R4000 microprocessor realises instruction paralle-
lism by using an eight-stage superpipeline; each stage
takes one P-cycle (P-clock operates at twice the frequency
of the masrer-clock). The execution of each instruction
takes at least eight P-cycles. Nom1ally, two instructions are
issued at each master-clock cycle. Once the pipeline has
been filled, eight instructions are executed simultaneously.

lEE PnJC..Cm..pIIf. DIgit. r«1l., Jf>/ 146. N", 4, July 1999

~
aou
ova.

Fig. 5 IIJ3tnu:tIDIr pipeIiJIC stagG

175

81 .. 21m 1815 0

I ~I ASI NT J ~ j ~.. 0

I~I -- 1J-trP8
81 .. 11. 1815 1110 88 0
I ~ I AS I AT I RD I; I bd.1 R- trP8

Ag.6 CPU~~
J = MIUIICd8c type; J =)-. type; .. -,.,. type

by the compiler, using sequences of these same sinlple
instructions.

The instruction op-codes are six-bits long; their binary
encodings are shown in Table 1 (rows are labelled with bits
[31. .29J, and columns are labelled with bits [28..26D.

The SPECIAL op-code (corresponding to the 00000o
binary string) actually identifies a total of 52 R-type
instructions; such instructions are characterized by a six-
bit extended op-code that is placed in the right-most bits of
the binary word. Tablc 2 shows the actual encoding of such
extended op-codes (rows are labelled with bits [5..3J, and
columns are labelled with bits ([2..0D.

it on a DEC-Station 5000/200 with the MIPS R4000
microprocessor and running the Ultrix operating system
configured in single-user/single-task mode. Then we built
matrix Ai and the associated instruction adjacency graph
GA;. Finally, we constructed the global graph GAG = 1:; GAl

that encompasses the instruction adjacency information for
all the considered benchmark programs, and we have run
on such graph the explicit and the implicit encoding
algorithms of [19, 20]. Tables 3 and 4 show the new
binary patterns for all the main op-codes. By inspection,
the application of the explicit encoding algorithm has
modified almost all the op-codes; on the other hand, a
lower number of changes bas been introduced by the
implicit algorithm. This behaviour was expected, since
the explicit algorithm introduces fewer approximations in
the computation of the near-optimal codes, and therefore it
more heavily modifies the initial encoding. The simulation
results of the following Section demonstrate that the op-
codes of Table 3 are substantially better than the ones of
Table 4. On the other hand, as mentioned, the algorithm of
[19] may not be used in the case of op-codes longer than
six bits because of computational complexity.

An additional step of re-encoding bas been applied to
the extended op-codes of the SPECIAL instructions (i.e.
the R-type instructions characterised by an 'all-zero' main
op-code). In this case, the re-encoding problem has been
formulated in a more articulated way, since additional
constraints on the selection of the binary patterns to be
assigned to the extended op-codes do exist. In fact,
SPECIAL instructions are often adjacent to non-SPECIAL
ones, for which the six right-mQst bits cannot be modified.
We have solved the op-codes assignment problem by
applying a simple genetic local search algorithm similar
to the Galops procedure proposed by Olson and Kang [27].

Table 5 reports the new binary patterns that were
assigned to the extended op-codes of the SPECIAL

3.3 Low-power op-codes selection
To show the effectiveness of the low-power op-<:odes
selection methodology described in Section 2, we present
the results obtained by applying it to the case of the MIPS
R4000 microprocessor."

We selected a total of eight software applications,
including DBMSs, word processors, data compression
and logic synthesis tools. For each application i, we
generated the corresponding instruction trace by executing

Table 1: Original op-codes

[28..26)
000

SPECIAL
ADO!
COPO
DADDI

LB
S8
LL
SC

[31..29)
000

001

010

011

100

101

110

111

001
REGIMM

ADDIU

COP1

DADDIU

LH

SH

LWC1

SWC1

010
J

SlTl

COP2

LDl

LWl

SWL

LWC2

SWC2

011
JAL

SlT1U
R£SRVO1

LOR
LW
SW

RESRVD6
RESRVD7

100

BEQ

ANDI

SeaL

AeSRVD2

LBU

SOL

UD

SCD

101

BNE

ORI

BNEL

RESRVD3

LHU

SDR

LDC1

SDC1

110
BLEZ

XORI

BLEZl

RESERVD4

LWR

SWR

LDC2

SOC2

111
BOTZ

LUI

BOTZl

RESRVDS

LWU

CACHE

LD

SO

Table 2: Original extended op-codes

[2..0)

000

SLl

JR

MFHI

MULT

ADD

RESRVD7-

TGE

DSLl

[5..3)
000

001

010

011

100

101

110

111

001

RESRVD1

JALR

MTHI

MULTU

ADDU

RESRVD8

TGEU

RESRVD11

010

SAl

RESRVD3

MFLO

DlV

SUB

SLT

TLT

DSRL

011

SRA

AESRVD4

MTlO

DIW

SUBU

SlTU

TlTU

DSRA

100

SllV

SYSCAll

DSlLV

DMULT

AND

DADO

Tea

DSL1.32

101
RESRVD2
BREAK

RESRVD6
DMULTU

OR
DADDU

RESRVD9
RESRVD12

110

SRlV

RESRVD5

DSRlV

DOIV

XOR

DSUB

TNE

DSRL32

111

SRAV

SYt«;

DSRAV

DOIVU

NOR

DSUBU

RESRVD10

DSRA32

176 lEE P1OC.-~ DiIIr. TIch., HI/. 146, No.4, .Ally 1999

Table 3: Low-power op-codes (explicit algorithm)

(28..26)
000
LW
LUI
SW

LWC1
SPECIAL
ADOtU
SEa
COP1

[31..29]
000

001

010

011

100

101

110

111

001

se
LWU

AESRVD6
SOC2
AND!
SH

8t.T1
SO

010

J

SWL

ADDI

COP2

JAL

BlEZ

LB

SWR

100

REGIMM

LWR

SLTlU

LWL

SHE

LBU

lHU

SWC1

101

LOR

RESRVD3

LDC1

RESRVD5

BGTZ

SOL

COPO

LLD

110

LL

'BGTZl

RESRVO1

LDC2

LH

DAOOIU

SWC2

BNEl

011

XORI
. SDR

SDC1

RESRVD7

ORI

SC

LD

RESRVD4

111

BlEIl

SEaL

SCD

LDL

LWC2

RESRV02

CACHE

DADDI

Table 4: Low-power op-codea (Implicit algorithm)

[28..26)
000

BLEZ

OR!

ADO!

J

DADO!

BEQL

COPO

COP2

(31_29)
000

001

010

011

100

101

110

111

001
BGTZ
XORI
LB
58

DADDIU
BNEl

Ll
RESRVO1

010

REGIMM

JAL

LWL

~

U)l

BLaz

LWC2

SWC2

011

SlTlU

LUt

LWR

SH

LDA

BGTZl

RESRVD6

RESRVD7

100

BNE

SPECIAL

SWl

COP1

RESRVD2

LBU

lLD

SCO

101

SLTI

LW

SWR

LWC1

RESRVOO

LWU

LDC1

SOC1

110

BEQ

AODIU

LH

SC

RESRVD4

SOl

LDC2

SDC2

111
ANDI
SW

CACHE
SWC1

RESRVD5
SDR
LD
SD

Table 5: Low-power extended op-codes

[2..0)
000

SLl

SLTU

MFHI

MULT

ADD

RESRVD7

TOE

DSLL

(5..3J

~

001

010

011

100

101

110

111

001
RESRVD1

AND
MTHI

MUL TU
ADDU

RESRVDe

TGEU
RESRVD11

010

XOR

RESRVD3

SYSCALl

SlLV

SUB

JR

TlT

DSRl

011

SLT

RESRVD4

~O

MF\.O

SRA

JALR

TLTU

DSRA

100
OR

SUBU
DSlLV
DMUlT

SAL
DADO
TEQ

DSW2

101
RESRVD2
BREAK

RESRVD6
DMUlTU

DIV
DADDU

RESRVD9
RESRVD12

110
SRAV

RESRVO5
DSRLV
DDIV
DIVU
DSUB
TNE

DSRL32

111

SAlV

SYNC

DSRAV

DOIVU

NOR

DSUBU

RESRVD10

DSRA32

instructions when the re-encoding phase was driven by the
data collected on the software applications mentioned. By
comparing Tables 2 and 5 it can be seen that only a few
extended op-codes have been modified. This is essentially
due to the fact that the constraints posed to our genetic
local search re-encoding procedure by the non-SPECIAL
instructions present in the trace excessively reduce the
degrees of freedom that can be exploited to detemline
advantageous binary assignments of the extended op-
codes.

the average switching activity of each op-code bit. Then,
for each application. we have determined the low-power
op-codes using both the explicit and the implicit algo-
rithms, re-encoded the original instruction stream using the
new op-codes, and calculated the new average switching
activity of each op-code bit. Table 6 shows the results of
the comparison. Savings are considerably high: Between
30 and 42% for the explicit encoding algorithm, and
between IS and 33% for the implicit one. Notice that the
data in the table only refer to the main op-codes (i.e. the six
left-most bits of each instruction); improvements in the
switching activity of the six right-most bits obtained by
optimising the extended op-codes of the SPECIAL instruc-
tions have been quite limited (around S% on average).

As mentioned, the results are obtained using ad-hoc
instruction encodings. Therefore they clearly show the
usefulness of the proposed approach as a tool for helping
in determining the most suitable encoding for a special-
purpose machine on which a well-established piece of
embedded code will be repeatedly executed. However,

177

3.4 Results for real software applications
The end result we expect from the application of OUt
technique is a reduction of the switching activity in the
op-code bits of some registers of the pipeline stages when
sequences of machine instructions are executed. To make
sure that this is actually what happens, we have taken the
machine code of eight different programs and monitored

lEE Proc.~ Vigil. reck.. ~l. 146. No. 4, .TIlly 1999

Table 6: Average switching activity reduction

~ Average SwItching activity per main 0P-<:0de bit

6 References

1 CHANORAKASAN, A.P~ SHENG, 5., and BRODERSEN, R. W.:
'Low"JX'WeC CMOS digital dai...', IEEE J. SoIid-S- Circuitr, 1992,
27, (4), pp. 473-484

2 GARY, S.: 'Low~ Ini=pIOc:eIS()f deIigJI', ill: RABAEY, J.M.,
PEDRAM" M., (Eds), 'Low power deai... methodologies' (KJuwer,
NorweD, MA, 1996) Chap. 9

3 DOBBERPUHL, D.: 'The deai... of a high perfOrlDallce low-pC1Uler
microprocasor', ~, of ACM/IEEE international symposium
00 Low-po~ E/-.."ia and D&Jign, lSLPED'96, Au&USI 1996,
Monterey, CA,))p. 11-16

4 WUYTACK, S., CAlTHOOR. R, NAClffER.OAELE, L., and DE
MAN, H.: 'Global communication and memory optimizing traIISfomIa.
lions for low power daip', Proceedings of ACM/IEEE i.-nationa1
workabop on Low PI7wer IXsign, IWLPD-94, April 1994, Napa Valley,
CA, pp. 20~205

5 PANDA, P;R., and DlJIT, N.D.: 'Rcducing 8ddIeIS bus tnDSitions for
low ~frIarW>rY m8PPina', Proceedings oflEEE European C(JIlfelellCe
01\ IXslR1I GIld Tat, EDTC-96, MarcbI996, Paris, FIaDC:e, pp. ~ 7

6 WUYTACK, S., CAlTHOOR. F., NACHTERGAELE, L., and DE
MAN, H.: 'PIJWcr cxp\oraIion for data dominated video appiicatioas',
Proceedings of ACMIIEEE intemabonat symposium on Low PI7wer
El«I7Oftics and IXsip,ISLPFD-96, Au&Ust 1996, Mon~, CA, pp.
359-364

7 DrGUET, J.P;, WUYTACK, S., CATfHOOR. F., and DE MAN, H.:
'~ medIodology for data reuse exploration in bierarcblcal
memory mappings', Proceedings of ACM/IEEE international SYJnPO-
sium on Low lt1wer E/~nics and IXsip, ISLPED-97, August 1991,
Monterey, CA, pp. 30-35

8 CHANDRAXASAN, S., and BRODERSEN, R. W.: 'Minimizing power
coDSUmplion in dicita1 CMOS cirouill.' Prvc. IEEE, 199583, (4), pp.
498-523

9 ALffiINA, M_, MONTEIRO, J., DEVADAS, S., GHOSH, A., utd
PAPAEFrHYMIOu, M.: 'PrecomputaIion-bued ~ logic opti-
mization for low po.wr', IEEE TIUM., 1994 ~1.2, (4), pp. 42&-436

10 BENlNI, L., SlEGEL,P.,andDEMlCHELI,G.: 'A-nc syn1llesis of
pled ckx:b for POMr ~oo iD sequential circuits', IEEE IXsign.
Tut Comput., 1994 11, (4), pp. 32--40

II SRIVAStAVA, M.B., CHANDRAKASAN, A., and BRODERSEN,
R. W.: '~ictive system ~ and od1cr ardtilecblralle<:hDiques
for eDa&Y cffitienl progJanu11able compuladoo', /EEETIDn.r_, 1996
~l", (I), pp. .2-55

12 SU, CoL., TSUJ, C.Y., utd DESPAIN, A. M.: 'SaviD&~ in The
control path of embeckIed proc;a$OlS', IEEE IXsip Tut CompJIt., 1994
J I, (4), pp. 24-30

13 STAN, M.R., and BURLESON, W.P.: 'Bus-inYat codins for Iow~
I/O', IEEE T/V1IS., 1995 ~I-3, (I), W. 49-58

14 BENlNI, L., DE MICHEll, G-, MACII, E., SCruTo, D., and SILVANO,
C.: 'Asymptotic zero-tIansi1iOD ~vity encoding for ~ ~ in
'--POMr microproCCSIor-bued sySIeDtI', ProceediDp of IEEE 7th
GRat Lakes symposium 00 YLS1, Gl.S-YLSJ-97, Mud11991, Urbaaa,
\L, pp. 11~

15 BENINI, L., DE MICHELI, G., MACn, E., PONCINO, M., and QUER,
S.: 'RedIJciD& JJO9Ief" COlIIWnpiioo of ~ sySIeDtI by addIeIS boll
eDCOdiDa', IEEE TIVns., 1998 VLSI-4, (.), pp. 5S4-562

16 MUSOLl, E., LANG, T., aDd CORTADELLA, J.: 'Working-2Xme
eDC:odiDI for rDduc:in& die eDCIIY in micropocouor -- ~',
IEEE 7ivM., 1998 VLSI-4, (4), pp. S6&-Sn

17 KALAMBUR, A., aDd IRWIN, MJ.: 'An ~ ~ mode for
low power', Proc:cedings of ACM/IEEE iDIerDaIiooaI symposium on
Low AI-,. Electronics and Duign, ISLPED-91, August 1997,
Moarerey, CA, pp. 208-213

18 HEINRICH, J.: 'MIPS R4000 mic:ropnx:es- user's manual' (MIPS
Teclanolocies, Mouatain V_, CA, 1994), 2M edn.

19 BENINI, L., and DE MICHELI, G.: 'StIle aSIiBJImeIII for low ~
di8aipatioo', IEEE J. Solid Stale CilCaiLf, 1995, 30, (3), pp. 258-268

20 HACHTEL, GD., HERMIDA, M., PARDO, A., PONCINO, M.,
SOMENZI, F.: 'Ro-encodiag ICqUeDti.J cirouillto IWUte power dissipa-
tion', Proceedings of ACM/Itt£ inIemaIioaat coaf-- on ~teI"-
Aided 1Xsign, ICCAD-94, November 1994, San Jose, CA, pp. 70-73

21 MACII, E.: 'SequcntiaI synthesis and opCjmiuIion foc low p~', in:
MBRMET, J., NEBEL, S. W~ (Eds), 'Low power desip iD deep
..bniaon eJectroaX:s' (KJuwer, Dordrecba, The Netbertaods, 1997)
Cbap.5.3

22 BRYANT, R.: 'Gmph-based algorithms for Booleaa funcIMm mmiputa.
lion', IEEE 7)un.r., 1986 C-3s, (8), pp. 79-8S

23 BAHAR. R.r., FROHM, E., GAONA, C., HACHTEL, G.D_, MAC1I, E.,
PARDO, A~ and SOMENZI, F.: 'Algebraic decisioa dilgnml aDd their
appiicatioos', Form4I Mellt0d8 Syst. Des-, 199718, pp. \71-206

24 B£NINI, L., DE MICHELI, G., MACII, E., scruTo, D., and SILVANa,
C.: 'Address bus eIx:oding ~iques for sysIan-level power opIim~-
tioa', Proc:eediDgs of IEEE Confereace on Duip AIIlOmdtiOll and Tut
in Europe, D~98, FebniaJy 1998: Paris, Fraace, ~. 861-866

25 CHANG, J. M., aDd PEDRAM, M.: Low POM1' Iq1ster ~ and
bindiDa', ProceecIinls of ACM/tEEE 00DfeIeDce 00 D&Jip A_--
tiOfI_, DAC-32, J- 1995, San FlaDcisco, CA,~. 29-35

26 FURBER, S.: 'ARM sylIem ~. (Addison-Wesley, ReattiDg,
MA,1997)

27 OLSON, £., and KANG, S. M,: 'Low-f)(Jwer stale ~t for finite
- maclIinea', J'n)ceedibg, of ACM/1EEE IatemaIiona1 'NOrbhoP 00
Low lt1wer Dezlp. IWLPD-~, April 1994 , Napa Valley, CA, pp. 63-68

explk2t algorithm mplicit algorithm

eIpr8IIO o.~
os o~
gunzip 0.2989
~ 0.3206
jed 0.2861
latex 0.3036
maU8b 0.3340
oracle 0.3443
GIOOaI 0.3012

the proposed methodology can be beneficial also to
designers of general-purpose microprocessors. For devices
of this type, the goal would be to determine the best
average encoding, that is, the one which minimises the
power for most of the applications whose execution on the
processor is the most likely to happen. The approach to be
followed is then that of collecting the statistics on instruc-
tion adjacency for all such applications. and then use this
information to determine the new encoding. To show the
applicability of our technique also to the case of general-
purpose machines. we have re-encoded the instruction
stream of each program using the op-codes of Tables 3
and 4, and determined the average switching activity per
op-code bit before and after re-encoding. The last row of
Table 6, named Global, reports the average of these values
taken over the eight programs we have considered. Savings
are larger than 300/0.

4 Conclusions

Microprocessors of the latest generations, including appli-
cation-specific products (e.g. embedded cores, microcon-
trollcrs, and DSP processors), are pcrfonnance-critical
devices, since they tend to run at very high clock frequen-
cies; consequently, they nonnaIJy consume a considerable
amount of dynamic power. Designers are thus constrained
to resort to optimisation techniques to keep the available
power budget under control. We have directed our attention
to the power dissipated by the fetching and decoding logic
of a processor. We have demonstrated that the choice of the
instruction binary codes plays a key role in the minimisa-
tion of the power consumed by these portions of the digital
system. We have therefore presented a methodology that
can be fruitfully exploited by processor engineers to auto-
matically determine a near-optirnal, low-power assignment
of the op-codes for special-purpose machines, and have
supported our claims concerning the viability and the
effectiveness of the proposed technique through experi-
mental results collected on a real-life microprocessor,
namely, the MIPS R4000.

5 Acknowledgment

This work is supported, in part. by a grant Dum SGS-
Thomson Microelectronics.

178 - hwc..c-..t. DWt. 7«A.. fbL J46;No. 4, Ny J999

