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Abstract

We introduce the design methodology known as dynamic power management (DPM), targeting
the mazimization of power efficiency under performance constraints for electronic systems. We first
describe the basic motivations for implementing DPM, then we survey several power management
schemes. Finally, we provide guidclines to assessing the potential impact of a DPM scheme for a
given target sysiem.

1 Introduction

Electronic circuits and systems are usually designed to deliver peak performance, but in many
cases peak performance levels are not needed for most of the operation time. Cellular phones and
portable computers are just two examples of systems with non-uniforin workload. When the user
is making or receiving a call with a cellular phone (or he/she is compiling a C program with a PC),
he/she wants to have maximum performance. However, when the user is carrying the phone in his
pocket (or he/she is thinking to what to write next during a text-editing session on a PC), he/she
does not need the full computational power of the system.

On the other hand, an increasingly large class of electronic systems is designed with power
consumption in mind. Portable systems are obviously highly power-constrained, in an effort to
extend battery life and decrease battery weight. Even stationary equipment is power constrained,
due to increasing concerns about the cost and noise of cooling systems, the cost of electric power
(for large systems) and stricter environmental impact regulations.

Dynamic power management (DPM) reduces power consumption by dynamically adjusting per-
formance levels to the workload. A general circuit or system can be seen as a collection of interacting
resources. If workload is non-stationary, some (or many) resources may be idle when the environ-
ment does not maximally load the system. The basic idea in DPM is to put underutilized or idle
resources into states of operation with reduced or null performance levels that require little or no
power.

We call power manager (PM) the system component (hardware or software) that performs DPM.
A power manager consists of an observer that monitors the load of the system and its resources, a
controller, that issues commands for forcing state transitions in system resources, and a policy, which
is a control algorithm for deciding when and how to force state transitions (based on information
provided by the observer). The two main issues in implementing DPM are: how to design a
system that can be efficiently managed with minimal power waste and reduced performance penalty,
and how to implement the power manager. Regarding PM implementation, we face three main
challenges: controller design, observer design and policy optimization.

In the rest of the paper, we will first review how systems have been designed to enable efficient
DPM. Then, we will focus on PM design and, more specifically, on policy optimization. We will
survey several classes of policies and analyze how and when they can be successfully applied.
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2 Power Manageable Systems

In this section, we will take a bottom-up view. We will first focus on how power-manageable
system components (e.g., chips) have been designed. Then we will see what is done for enabling DPM
for functionally complete systems containing many interacting components. Finally, we analyze the
problem of managing power for a collection of communicating systems (a network).

2.1 Component design

Our working definition of component is general. A component is a hardware block implementing
a task in a complete system. Notice that the granularity of this definition is arbitrary, hence
components can be as simple as a functional unit within a chip, or as complex as a board. We will
first focus on power management for single chips and their components.

A large body of research has been dedicated to chip-level power management (see [1] for a
survey). One of the most common techniques at the chip level is clock gating: whenever a functional
unit becomes idle, its clock signal is stopped, preventing power consumption caused by spurious
switching. Many commercial microprocessors implement clock gating to reduce power dissipation {7,
8, 9, 10]. Even though clock gating often requires handcrafted implementations, several algorithmic
techniques have been developed for automatically synthesizing clock-gating logic (2, 3, 4, 5, 6).

Clock gating is a successful PM technique mainly because it is possible to resume normal system
activity in a very short time (i.e., one or a few clock periods). The main challenge in implementing
clock gating is efficient idleness detection. Idleness detection logic can be added to a design if its
power consumption is much smaller than the power saved. In some microprocessors [7], units have
dedicated idleness detection logic that stops their clock without any external control. The clock
distribution for the entire microprocessor can be gated, but this decision is not taken autonomously
by the microprocessor itself: special instructions are provided to force global clock freezing.

It is important to notice that clock gating does not completely eliminate power dissipation. First,
even if the clock is not distributed, clock-generation circuitry is still active and dissipates power.
Second, the chip still dissipates leakage power, which is not reduced by clock gating, Microprocessors
and chips for battery-operated systems have stringent quiescent power constraints that may not be
met by clock gating. Hence, more aggressive power-down techniques have been implemented.

In order to completely eliminate power, it is possible to: (i) disable the clock-generation circuitry,
(ii) completely turn off the power supply to parts of the chip. Both these techniques imply non-
negligible delay for returning to the active state. In some cases, activation times are several orders
of magnitude longer than the time required for clock gating [9].

In general, we can model a power manageable component as a finite-state process. States are the
various mode of operation that span the tradeoff between performance and power. State transitions
have a power and delay cost. In general, low power states have lower performance and larger
latency than states with higher power. This simple abstract model holds for many devices such
as disk drives [11], wireless network interfaces [12], displays [11], that are more heterogeneous and
complex than a single chip.

2.2 System design

From our viewpoint, a system is a set of interacting components that implement a given specifi-
cation. Notice that this generic definition does not pose any limitation on the size and complexity of
a system. The activity of components is coordinated by a system controller. For complex systems,
control is often implemented in software. For instance, in computer systems, global coordination is
performed by the operating system (OS).

The OS has precise and up-to-date information on the workload and on the status of system
resources, hence the power manager is naturally implemented as a module of the OS. This ob-
servation is the basis of the OnNow initiative promoted by Microsoft corporation {13], that fosters
operating sysiem directed power management (OSPM). OnNow specifies some requirements for com-
puter systems, namely: (i) the turn-on delay should be negligible, the computer appears to be off,



but it is capable of responding to wake-up calls; (ii) the OS controls power and performance levels;
(iii) applications are aware of the possibility of finding hardware resources in different service rates;
(iv) resources participate in DPM by responding to OS commands. OnNow is clearly not the only
effort in designing power manageable computer systems controlled by software: many hardware ven-
dors have developed software drivers that support DPM, and several researchers are investigating
power-efficient software design techniques [14].

The design of systems that can be managed via software (through the OS) is also supported by an
open interface specification called advanced configuration and power management interface (ACPI),
promoted by Intel, Microsoft and Toshiba [15]. ACPI supports a finite-state model for system
resources, and specifies the hardware/software interface that should be used to control them. The
objectives of ACPI are to enable dynamic re-configuration and to support OSPM. It is important
to notice that ACPI just specifies the interface between hardware and software and does not pose
constraints on how the OS should take power management decisions, or how hardware vendors
should implement component with multiple power states.

Although ACPI is primarily dedicated to computers, it can be used as a reference for a more
general class of electronic systems. A power-manageable system should provide clean finite-strate
abstraction of its components to the power manager and should be able to provide information
on workload and resource usage. Standardization of the interface between PM and system is an
important feature for decreasing design time.

2.3 Network design

In many cases, systems are not isolated, but they actively communicate among themselves. We
call network a set of communicating systems. While network design has been traditionally focused
on communication quality and throughput, the increased emphasis on low-power portable systems
with communication capabilities has spurred several research initiatives targeting power-efficient
networking [16].

Energy-conscious communication protocols based on power management have been extensively
studied [17, 18, 19]. The main purpose of these protocols is to regulate the access of several com-
munication devices to a shared medium trying to obtain maximum power efficiency for a given
throughput requirement. Even when interference is not an issue, point-to-point communication can
be made more power efficient by increasing the predictability of communication patterns [20]: if it
is possible to accurately predict the arrival time of messages (packets), idle times can be exploited
to force communication devices into a low-power inactive state.

3 Power manager design

In this section we will analyze techniques for controlling the power state of a system and its
components. We assume that the system implements the interface layers required for supporting
the finite-state abstraction described in the previous section. We focus on how to design effective
power management policies, under the assumption that control and observation tools are provided
within the system. Even though coordination of DPM for multiple resources and systems is an
interesting open issue, for the sake of simplicity, we will focus on controlling a single resource (or,
equlvalently, the state of a system as a whole).

First, it is important to clarify why DPM is a non-trivial problem. Consider a system where
transition between power states are instantaneous: negligible power and performance costs would
be paid for peforming state transitions. In such a system, DPM is a trivial task, and the optimum
policy is greedy: as soon as the system is idle, it can be transitioned to the deepest sleep state
available. On the arrival of a request, the system is instantaneously activated. Unfortunately,
most power manageable systems have non-negligible performance and power cost for power state
transitions. For instance, if entering a low-power state requires power-supply shutdown, returning
from this state to the active state requires a (possibly long) time for turning on and stabilizing the
power supply. If power state transitions have a cost, we are faced with a non-trivial optimization



problem: we need to decide when it is worthwhile (performance and power-wise) to transition to a
low-power state, and which state should be chosen (if multiple low-power states are available).

Consider a simple system with two power states: on and off. Power in the on state is P,, and the
system is fully operational. Power in the off state is Poss and performance is null. Power for a on
to off transition is P, oy and the time required is ATon,ory- The opposite transition has Poyys,on
and AT,n,0rs power and performance costs, respectively. The costs for going to the off state and
coming back to the active state are: Pyg = Pon,oss + Pogson and Tod = ATon,ors + ATosg,0n- If
we decide to go to the off state, the power savings should be enough to compensate for the cost
incurred in state transitions. Furthermore, the performance penalty should be lower than a given
constraint. Notice that the DPM problem becomes trivial if there are no performance constraints:
we could keep the system always off.

From this introductive analysis, we conclude that policy optimization is a power optimization
problem under performance constraints. In the next subsections, we survey two different approaches
to policy optimization, namely predictive techniques and stochastic control. To illustrate the basic
techniques we will use the simple two-state system described above.

3.1 Predictive Techniques

The rationale in all predictive approaches is to take DPM decisions based on predictions on the
duration of idle periods. A generic predictive method observes the time-varying workload, and,
based on this observation, computes a predicted duration Tp,.q of the upcoming idle time. The PM
then decides to transition to the off state if Tpred > TBE, Where Tpg is the break-even time, the
minimum idle time long enough to amortize the state transition cost.

Good predictive approaches should minimize the time in which the system wastes power because
the predictor does not signal the beginning of an idle period. Second, they should minimize the
mis-predictions Tprea # Tidie, Where Tiq. is the actual duration of an idle period. We call over-
prediction the case Tpred > Tidle: over-predictions always have performance and power cost. We call
under-prediction the case Tprea < Tigre: under-predictions imply power waste, but may not incur
performance costs.

The most common predictive PM policy is the fized timeout. The policy can be summarized as
follows: when an idle period begins, a timer is started with duration Tro. If after Tro the system is
still idle, then the PM forces the transition to the off state. The system remains off until receives a
request from the environment that signals the end of the idle period. The fundamental assumption
in the fixed time-out policy is that the probability of T;4i. being longer than Tgg + Tro, given that
Tiqte > Tro is close to one: Pr(Tiqie > Tro + TBe|Tiaie > Tro) = 1. Time-outs are “implicitly”
predictive even if they never generate an actual Tprd, in the sense that they predict a long idle time
if the system has been idle for a while.

The critical design decision is obviously the choice of the time-out value Tro. In the next section
we will analyze the tradeoffs involved in such choice. The main limitations in fixed time-outs are: (i)
they may be ineffective when workload is non-stationary, and some form of adaptation is required;
(ii) power is wasted while waiting for the timeout to expire; (iii) performance penalty is always paid
upon wakeup.

To address the first limitation, several adaptive time-out policies have been proposed: in [21]
a set of time-out values is maintained and each time-out is associated with an index indicating
how successful it would have been. The policy chooses, at each idle time, the time-out that would
have performed best among the set of available ones. Another policy, presented in [22], also keeps
a list of candidate time-outs, and assigns a weight to each time-out based on how well it would
have performed relatively to an optimum off-line strategy for past requests. The actual time-out
is obtained as a weighted average of all candidates with their weights. Another approach [23] is
to keep only one time-out value and to increase it when it is causing too many shutdowns. The
time-out is decrease when more shutdowns can be tolerated. Several predictive policies are surveyed
and compared in [24], where a general classification scheme is also proposed.

Predictive shut-down policies [25] address the second limitation of time-outs, namely the power
wasted while waiting for the timeout to expire. These policies are aggressive and shut down a system



as soon as it becomes idle, if they predict Tprea > TBe. A prediction of idle time duration is made
available as soon as the idle period begins. Predictions are made based on past history. Past idle
periods T7%;. and busy periods T}, are observed to build the prediction for Tjy,.

Two approaches have been proposed in [25]. In the first, a non-linear regression equation is
obtained from past history to predict idle time: Tprea = $(T%yive Trnie's - - STRk Trc k) If
Tprea > TaE the system is immediately shut down as soon as it becomes idle. The system wakes up
only upon arrival of a service request from the environment. The format of the non-linear regression
is decided heuristically, by a human designer, while the fitting coefficients can be computed with
standard techniques. The main limitations of this approach are: (i) there is no automatic way
to decide the type of regression equation; (ii) off-line data collection and analysis are required to
construct and fit the regression model. '

The second policy proposed in [25] is based on a threshold. The duration of the busy period 17,
immediately preceding the current idle period is observed. If Tyctive < TThr, the Tpr.q is taken to
be larger than Tgg and the system is shut down. The rationale of this policy is that for the class
of systems considered in [25) (interactive graphic terminals), short active periods are often followed
by long idle periods. Clearly, the choice of Tra, is critical. Careful analysis of the scatterplot is
required to set it to a correct value, hence this method is inherently off-line (i.e., based on extensive
data collection and analysis). Furthermore, the method is not applicable if the scatterplot is not
L-shaped.

Another aggressive shutdown policy has been proposed in [26]. This policy is capable of on-line
adaptation, since the predicted idle time T2, 4 is obtained as a weighted sum of the last idle period
T7;.! and the last prediction ’I;:,:;: Thred = aTh! + (1 - a) P':'}‘ Under-prediction impact is
mitigated by employing a time-out scheme to re-evaluate Tpred periodically if the system is idle and
it has not been shut down. Over-prediction impact is reduced by imposing a saturation condition
on predictions: T7, 4 < Cma,_-T;‘,:,}. The policy proposed in [26] also addresses the third limitation
of time-out policies, namely the performance penalty that is always paid on wakeup. To reduce this
cost, the policy performs predictive wakeup when the predicted idle time expires, even if no new
requests have arrived. This choice may increase power dissipation if Tiase has been under-predicted,

but decreases the delay for servicing the first incoming request after an idle period.

3.2 Stochastic control

Policy optimization is an optimization problem under uncertainty. Predictive approaches address
workload uncertainty, but they assume deterministic response and transition times for the system.
However, the system model for policy optimization is very abstract, and abstraction introduces
uncertainty. Hence, it may be safer, and more general, to assume a stochastic model for the system
as well. Second, predictive algorithms are based on a two-state system model, while real-life systems
have multiple power states. Policy optimization involves not only the choice of when to perform
state transitions, but also the choice of which transition should be performed. Third, predictive
algorithms are heuristic, and their optimality can only be gauged through comparative simulation.
Parameter tuning for these algorithms can be very hard if many parameters are involved. Finally,
predictive algorithms are geared toward power minimization, and cannot finely control performance
penalty.

The stochastic control approach addresses the generality and optimality issues outlined above.
Rather than trying to eliminate uncertainty by prediction, it formulates policy optimization as an
optimization problem under uncertainty. More specifically [27], power management optimization has
been studied within the framework of controlled Markov processes [28, 29]. In this flavor of stochastic
optimization it is assumed that the system and the workload can be modeled as Markov chains.
Under this assumption, it is possible to: (i) model the uncertainty in system power consumption and
response (transition) times; (ii) model complex systems with many power states, buffers, queues,
etc.; (iii) compute power management policies that are globally optimum; (iv) explore tradeoffs
between power and performance in a controlled fashion. The Markov model postulated by the
stochastic control approach [27] consists of:



e A service requester (SR), a Markov chain with state set R, that models the arrival of service
requests for the system (i.e, the workload).

e A service provider (SP), a Controlled Markov chain with S states that models the system. Its
states represent the modes of operation of the system (i.e, its power states), its transitions are
probabilistic, and probabilities are controlled by commands issued by the power manager.

e A power manager (PM), that implements a function f : S x R — A from the state set of SR
and SP to the set of possible commands A. Such function is an abstract representation of a
decision process: the PM observes the state of the system and the workload, takes a decision
and issues a command to control the future state of the system.

e Cost metrics, that associate power and performance values to each system state-command
pair in S x A.

In [27], the general Markov model is specialized by assuming finite state set, finite command set
and discrete (or slotted) time. To perform policy optimization, the Markov chains of SR and SP are
composed to obtain a global controlled Markov chain. Then, the problem of finding a minimum-
power policy that meets given performance constraints can be cast as a linear program (LP). The
solution of the LP produces a stationary, randomized policy. Such a policy is a non-deterministic
function which, given a present system state, associates a probability to each command. The
command to be issued is selected by a random trial based on the state-dependent probabilities.
It can be shown [29] that the policy computed by LP is globally optimum. Furthermore, LP can
be solved in polynomial time in the number of variables. Hence, policy optimization for Markov
processes is exact and computationally efficient.

The stochastic optimization approach enjoys desirable properties of flexibility, global optimality
and mathematical soundness. However, several important points need to be understood. First, the
performance and power obtained by a policy are ezpected values, there is no guarantee that results
will be optimum for a specific workload instance (i.e., a single realization of the corresponding
stochastic process). Second, policy optimization requires a Markov model for SP and SR. If we can
safely assume that the SP model can be pre-characterized, we cannot assume that we always know
the SR model beforehand. Third, policy implementation in practice may not be straightforward.
We have always implicitly assumed that the power consumption of the PM is negligible, but this
assumption needs to be validated on a case-by-case basis. Finally, the Markov model for the SR or
SP can be just an approximation of a much more complex stochastic process. If the model is not
accurate, then the “optimal” policies are just approximate solutions.

4 Analysis of power-managed systems

The potential impact of applying DPM to a given system depends on system parameters and
workload statistics. In this section we study the joint effect of system and workload parameters in
order to evaluate the suitability of DPM and provide guidelines for selecting among power manage-
ment schemes.

We divide this section into three parts: in the first part we discuss the general applicability of
DPM by referring to an ideal power manager, while in the second and third parts we focus on
predictive techniques and stochastic control, respectively.

4.1 Applicability of DMP

Consider a simple resource with only one sleep state controlled by an ideal PM having complete
(a priori) knowledge of the entire workload trace. The optimum policy for the ideal PM consists of
shutting down the resource at the beginning af all idle periods longer than the break-even time (i.e.,
long enough to compensate the cost of shut-down) and waking it up right in time to serve upcoming
requests with no delay. The resulting power consumption (Pigeq1) is a lower bound for the power
consumption that can be achieved by means of DPM without impairing performance.



We denote by P,avea the potential power saving (i.e., the gap between P41 and the power
consumption of the active state, P,,) and we study its sensitivity to system parameters and workload
statistics. System parameters are represented by the break-even time Tgg, workload statistics are
represented by the probability density function (pdf) of idle periods T;4.. Intuitively, the larger
Tpe (with respect to the average idle time) the smaller P,g5ycq. In the limiting situation where
all idle periods are shorter than Tgg, no power savings would be achieved by means of DPM: an
ideal PM implementing the optimum policy would never shut the resource down, thus providing
Pideat = Pon and Pyaped = 0.

For a two-state component, Tgg can be expressed as a function of the shut-down cost and delay
(P,q and T4, as defined in Section 3) and of the power consumption in on and off states (P,, and

Posy):

D._D
TBE=Tad+Tch (1)
on — Loty
In practice, Tpg grows linearly with T,4 and P,4, and depends hyperbolically on P,, — P,;;. For
systems with multiplesleep states, a different Tpg has to be defined for each state. In general, deeper
sleep states have lower power consumption at the cost of longer and more expensive transitions.
When designing power-manageable components, a trade-off between P,ys, P,4 and T,4 has to be
found for each sleep state to obtain small Tgg. Sleep states with smaller Tgg are more likely to be
successfully exploited by DPM.
If we denote by F the probability distribution of the idle periods, and by T&';f>7.s s the average
length of idle periods longer than Tgg, P,qved can be expressed as the product of three terms: the
power saving of the sleep state, the expected idle time in excess of Tgg and the probability of going

to sleep according to the optimum ideal policy.
Piaved(TBE) = (Pon — Poss N Tiaids 15e — TBE)(1 — F(TBE)) (2)

P, 4ye4 is always a decreasing function of Tgg: it takes maximum value for Tgg = 0 and asymptot-
ically tends to 0 for increasing values of Tgg. The way it goes to zero depends on the first order
statistics of the workload, namely, on the distribution of T}g4..

As a rule of thumb, we can say that DPM can be successfully applyed to a power manageable
system whenever the Tpg of (some of) its sleep states is smaller than the average idle time of the
workload.

4.2 Predictive techniques

In most real-world systems there is no knowledge of future input events and DPM decisions have
to be taken based on uncertain predictions. Predictors exploit the correlation between the future
event to be predicted and the past history of the workload. We denote by p and o, respectively,
the event to be predicted and the observed event the prediction is based on. We are interested in
predicting idle periods long enough to go to sleep, in symbols: p = {T;u. > Tsg}.

We define two figures to represent the quality of a predictor: safety, that is the complement of
the risk of making wrong predictions, and efficiency, that is the complement of the risk of missing a
prediction. Safety and efficiency can be expressed in terms of conditional probabilities Prob(p|o) and
Prob(o|p), respectively. A safe predictor never makes overpredictions (Prob(p|o) = 1), an efficient
predictor never makes underpredictions (Prob(olp) = 1). A predictor with maximum safety and
efficiency is an ideal predictor, whose availability would enable the actual implementation of the
ideal PM discussed in the previous subsection. Predictors of practical interest are neither safe nor
efficient, thus causing sub-optimum control. Their quality (and the quality of the resulting control)
depends on the choice of the observed event o and on the second-order workload statistics.

Predictors based on timeouts use the elapsed idle time as observed event: o = {T7%,, > Tro}.
Timeouts have two main advantages: they are general (their applicability slightly depends on the
workload) and they are safe (safety can be improved simply by increasing the timeout value). Unfor-
tunately, they trade-off efficiency for safety: large timeouts cause a large number of underpredictions,
and a sizeable amount of power is wasted (during user’s idleness) waiting for the timeout to expire.



This last issue is addressed by predictors based on the past history [24, 25], that observe the
length of the last idle/active periods: e.g., 0 = {7 med < i), The length of the next idle period
is predicted a priori, thus enabling the PM to take a decision as soon as a new idle period starts.
On the other hand, the applicability and the quality of history-based predictors depend on the
correlation between past and future events, that is not under designer’s control. As a matter of
fact, short-term correlation has been observed in many real-world workloads, but the nature and
strength of such correlation is strongly instance dependent. For a given workload, history-based
predictors are usually more efficient and less safe than time-outs.

For non-stationary workloads adaptive predictors are required [21, 22, 23, 26]. While for timeouts
the only parameter to be adjusted is the timer duration, for history-based predictors even the type
of observed events should in principle be adapted to the workload.

4.3 Stochastic control

Stochastic control based on Markov models has several advantages over predictive techniques.
First, it captures the global view of the system, thus allowing the designer to search for a global
optimum that possibly exploits multiple inactive states of multiple interacting resources. Second, it
enables the exact solution (in polynomial time) of the performance-constrained power optimization
problem. Third, it exploits the strength and optimality of randomized policies.

The scope of application of stochastic control has two limits: modeling assumptions and com-
plexity. If the system or the workload are non Markovian, optimality cannot be proved and the
expected results need to be validated against simulation, emulation or implementation. Second, im-
plementing a randomized policy for stochastic control is usually more complex than implementing
predictive techniques. While complexity is usually not an issue for PMs implemented as software
components, it may be a concern for hardware PMs.

The ideal application of stochastic control are computer-based systems subject to performance
constraints. We remark, however, that policy optimization can be used as a powerful tool for design
exploration even when stochastic control is not the target DPM technique. In fact, once Markov
models have been constructed for the system and the workload, the Pareto curve of optimum tradeoff
points can be drawn on the power-performance plane by repeatedly solving policy optimization while
varying performance constraints. The Pareto curve provides valuable information to evaluate and
improve the quality of any power management strategy.

5 Conclusions

DPM exploits variations in workload to save power. We have surveyed Several DPM techniques
and discussed their potential and applicability. We have shown that DPM can be effectively applyed
to a variety of systems to provide sizable power savings with small performance penalties.

Most systems today use some form of DPM, but they are often based on ad-hoc heuristics that
are far from the global optimum and cannot be extended to deal with the growing number of degrees
of freedom made available by today’s power-manageable components. On the other hand, we are
only at the beginning of the development of advanced power management schemes, whose design
complexity is prompting for the development of new CAD tools.
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