
Timed Supersetting and the Synthesis of Large Telescopic Units

L. Benini # G. De Micheli # A. Lioy z E. Macii z G. Odasso z M. Poncino z

Stanford University

Computer Systems Laboratory

Stanford, CA 94305

z Politecnico di Torino

Dip. di Automatica e Informatica

Torino, ITALY 10129

Abstract

In high-performance systems, variable-latency units are often em-

ployed to improve the average throughput when the worst-case de-

lay exceeds the cycle time. Although such units have tradition-

ally been hand-designed, recent results have shown that variable-

latency units can be automatically generated. Unfortunately, the

existing synthesis procedure has limited applicability due to its

computational complexity.

In this work, we de�ne and study an optimization problem, timed
supersetting, whose solution is at the kernel of the procedure for

automatic generation of variable-latency units. We contribute a

new algorithm for solving timed supersetting in the most di�-

cult case, that is, when the timing behavior of the circuits is ex-

pressed through an accurate delay model. The proposed solution

overcomes the complexity limitation of previous approaches, and

its robustness is experimentally demonstrated by obtaining high-

throughput, variable-latency implementations for all the largest

circuits in the Iscas'85 and Iscas'89 benchmark suites.

1 Introduction
As performance constraints become tighter, it is increasingly

di�cult to speed up combinational logic blocks simply by re-

ducing their critical path delays. Variable-latency units (i.e.,

circuits that take a variable, integer number of clock cycles to

completea computation)are frequently used in high-throughput

systems to achieve good average-case performance even when

the worst-case delay can not be accommodated within the cycle

time. Floating-point arithmetic units are typical examples of

circuits of this kind.

The hand-crafted design of variable-latency units is a di�cult

task; for this reason, recently, a method for the automatic gen-

eration of such units has been proposed [1]. The key idea of

this approach is that of transforming a slow, �xed-latency unit

into a fast, variable-latency one (called telescopic unit) which

delivers a higher average throughput with low average latency.

Consider a combinational unit, de�ned as the logic between two

sets of latches. Given the minimum allowable cycle time, T , of

the unit, equal to its longest delay, a reduced value, T � < T , is

selected. Then, the input conditions for which the propagation

of the input values through the original logic takes longer than

T � are identi�ed. Finally, a combinational block is automati-

cally synthesized and added to the original unit. The task of

such block is to generate a handshaking signal, the hold signal

fh, whose value informs the environment when the correct re-

sult is available at the outputs of the unit. Obviously, the hold

logic introduces area, timing, and power overheads that must be

kept under control. For this purpose, ad-hoc synthesis heuristics

have been presented in [1].

The synthesis of telescopic units entails the solution of a general

problem that we call timed supersetting (TS for brevity): Find

a set of input conditions that include all values propagating to

the outputs with delay longer than a given T �.

The main theoretical contribution of this paper is to study the

properties of TS, analyze its relationship with classical results

in the �eld of timing analysis, and describe a novel class of

algorithms for its solution.

From the practical side, the new algorithms overcome the main

limitation of the methods of [1], namely the applicability of the

synthesis procedures of the hold signal to large circuits, due to

the inherent weakness of the exact, ADD-based algorithm em-

ployed [2]. When a complexand realistic delaymodel is adopted,

the algorithm is memory and time consuming; therefore, it is us-

able only for small circuits, i.e., a few hundreds of gates. To par-

tially alleviate this problem, one may resort to a simpler delay

model, e.g., the unit delay model. Even in this case, however,

the wall of a few thousands of gates can hardly be broken. This

is not surprising, since the ADD-based method exactly solves

the false path problem, which is known to be NP-complete [3],

independently on the selected delay model. Our new algorithms

replace the exact ADD-based method and enable the computa-

tion of the hold function for large blocks (several thousands of

gates) even when a complex gate delay model is adopted.

The main advantage of the ADD-based technique is that it pro-

vides the true propagation delay for each input pattern; hence,

it allows the computation of the minimum set of patterns that

solves TS. In contrast, the algorithms proposed in this paper

�nd a non-minimum solution to TS. Such solution is conserva-

tive, that is, it always includes the minimum one.

The downside of the conservative solution is that the hold logic

may be activated for patterns that do not actually violate the

cycle time constraint; thus, the telescopic unit may operate with

an average throughput that is inferior to what could theoreti-

cally be achieved. Nevertheless, the advantages overcome the

limitations, since the new algorithms for the solution of TS are

practical for much larger and more complex units, such as those

that can be found in high-performancemicroprocessors or DSPs.

Throughout the paper, the knowledgeable reader may observe

the strong relationship between TS and the timing analysis

problem (i.e., �nding the true longest delay of a circuit and

a pattern that exercises it). Indeed, a minimum solution to TS

and the true longest delay of a circuit can be found by the same

ADD-based algorithm; on the other hand, approximate timing

analysis methods can not be directly used for solving TS.

The improved procedure for the automatic synthesis of tele-

scopic units which encompasses the TS solution algorithms of

this paper has been implemented within the SIS environment

[4] using the CUDD package [5], and it has been benchmarked

on the largest circuits taken from the Iscas'85 [6] and Iscas'89

[7] benchmark suites. Results are satisfactory, since an average

throughput improvement of 12% has been achieved at the price

of a 5.8% average area overhead.

2 Background

2.1 Boolean Functions and Operators

We assume the reader to be familiar with the basic concepts of

Boolean functions and with the data structure commonly used

for the symbolic manipulation of such functions, that is, the

binary decision diagrams (BDDs). Backgroundmaterial on this

subject can be found in [8].

We review here two Boolean operators which are essential for

our purposes. Let x = [x1; x2; : : : ; xn] be a vector of Boolean

variables. Given a single-output Boolean function, f(x), the
positive and the negative cofactors of f , with respect to variable

xi, are de�ned as:

fxi = f(x1; : : : ; xi�1; 1; xi+1; : : : ; xn)

and

fx0

i
= f(x1; : : : ; xi�1; 0; xi+1; : : : ; xn)

The existential abstraction of f with respect to xi is de�ned as:

9xif(x) = fxi + fx0

i

The Boolean di�erence of f with respect to xi is de�ned as:

@f(x)

@xi
= fxi � fx0

i

2.2 Circuits and Delays

A combinational logic block is a feedback-free network of com-

binational logic gates. If the output of a gate, gi, is connected

to an input of a gate, gj, then gi is a fanin of gj and gate gj
is a fanout of gate gi. A controlling value at a gate input is

the value that determines the value at the output of the gate

independent of the other inputs, while a non-controlling value

at a gate input is the value whose presence is not su�cient to

determine the value at the output of the gate.

Each connection, c, is associated with two delays, dr(c), rise

delay, and df (c), fall delay. The delay function of connection

c from gate h to gate g is called d(c; x). It equals dr(c) if g

takes value 1 when input vector x is applied to the primary

inputs of the logic block. Otherwise, d(c; x) = df (c). If all fanin

connections of g have the same values of dr(c) and df (c), we

de�ne the delay function of g as d(g; x) = d(c; x), where c is

any fanin connection of g. If f(g;x) is the global function of g

(function in terms of the primary inputs) and c connects gate h

to gate g, then:

d(c; x) = f(g;x) � dr(c) + f 0(g;x) � df (c)

Given a gate g, the arrival time, AT(g; x), is the time at which

the output of g settles to its �nal value if the primary input vec-

tor x is applied at time 0. Given a maximum delay constraint,

the required time, RT(g;x), is the time at which the output

of gate g is required to be stable when the primary input vec-

tor x is applied in order for the output to stabilize within the

maximum allowed delay. The slack , ST(g;x), of a gate g is the
di�erence between its required time and its arrival time, i.e.,

ST(g;x) = RT(g;x)� AT(g;x).
A path in a combinational logic block is a sequence of gates and

connections, (g0; c0; : : : ; cn�1; gn), where connection ci, i = 0;

1; : : : ; n� 1, connects the output of gate gi to the input of gate

gi+1. The length of a path, P = (g0; c0; : : : ; cn�1; gn) is de�ned

as

d(P; x) =

n�1X

i=0

d(ci; x)

The topological delay of a combinational logic block is the length

of its longest path. An event is a transition 0! 1 or 1! 0 at a

gate. Given a sequence of events, (e0; e1; : : : ; en), occurring at

gates (g0; g1; : : : ; gn) along a path, such that ei occurs as a result

of event ei�1, the event e0 is said to propagate along the path.

Under a speci�ed delay model, a path P = (g0; c0; : : : ; cn�1; gn)

is said to be sensitizable if an event e0 occurring at gate g0 can

propagate along P. A false path is a non-sensitizable path. The

critical path of a combinational logic block is the longest sensiti-

zable path under a speci�ed delaymodel: Its length is the delay,

D, of the combinational logic block and it is a lower bound on

the cycle time T , i.e., D � T . For the sake of simplicity, we

neglect set-up and hold times, and propagation delays through

registers. These factors can be easily incorporated into our anal-

ysis and synthesis technique.

It is possible to compute topological approximations to arrival

times (AT(g)), required times (RT(g)), slacks (ST(g)), and

path lengths (d(P)) by resorting to known graph algorithms [9]

whose complexity is linear in the number of gates involved. Such

approximations have two important properties, namely they are

conservative and pattern-independent. The �rst property is ex-

pressed by the following inequalities which hold for all x:

AT (g) � AT(g;x)
RT(g) � RT(g;x)
ST(g) � ST(g;x)
d(P) � d(P;x)

The second property is expressed by omitting the input depen-

dence in the symbols representing the topological approxima-

tions. The topological delay of a combinational block, called

topological critical path, is the topological delay of its longest

path.

3 Telescopic Units
Suppose that the want to increase the average throughput of a

combinational unit, shown in Figure 1-a. Obviously, this can be

done by shortening the cycle time of the unit from its original

value, T , to T � < T . One possible way of achieving this goal is

through the addition to the combinational unit of an output sig-

nal, fh (called the hold output), which takes the value 1 anytime

an input vector requires more than T � time units to propagate

to the outputs of the block (see Figure 1-b).

R
eg

is
te

rs

f h

R
eg

is
te

rs

Combinational
 Logic Block

Combinational
 Logic Block

(a) (b)

Figure 1: A Combinational Unit (a), and a Telescopic Unit (b).

The modi�ed unit is called telescopic unit, since it may require

additional cycles for terminating the computation, depending

on the speci�c patterns appearing at the primary inputs of the

unit. For patterns which are not activating the hold signal,

the computation completes in T � < T time units. Patterns for

which fh = 1, on the other hand, require 2T � time units to

propagate through the logic block all the way to the primary

outputs.

3.1 Conditions for Throughput Improvement

Clearly, the lower the probability of the hold signal to take

on the value 1, the larger the overall throughput improvement

achieved by the telescopic unit.

The average throughput, P �, of the telescopic unit is given by

the following formula:

P � =
Prob(fh)

2T �
+

1� Prob(fh)

T �

where Prob(fh) is the probability of the hold signal to be one.

On the other hand, the average throughput of the original unit

is simply:

P =
1

T

The use of the telescopic unit is therefore advantageous only for

some values of T � and Prob(fh), i.e., when P � > P . We have

the following condition for throughput improvement:

Prob(fh) <
2(T � T �)

T

It should be noticed that the inequality above is valid only for

T � � T=2. Even though, in principle, the expression for P �

can be modi�ed so as to account for values of T � < T=2, it

should be considered that in this case the circuitry needed to

support the telescopic unit would become more complex, since

the combinational logic may need, for some input patterns, more

than two cycles to complete its computation. It is thus assumed

that T � is always T=2� T � � T .

3.2 Synthesis of the Hold Logic

The synthesis of the hold logic critically depends on the capa-

bility of �nding all input patterns that propagate to the outputs

with delay larger than T �. Such patterns must be included in

the ON-set of the hold function fh. In the next section we will

analyze this problem in detail. Here, we assume a black-box

procedure, ComputeF h(B, T �), which returns the ON-set of

fh (represented as a BDD) to be available. The input param-

eters of such procedure are the initial speci�cation of the unit,

B, and the desired cycle time, T �.

ComputeF h solves the timed supersetting problem. In fact, the

minimum solution of TS is the ON-set of the hold function fh
that contains all and only those input values that propagate

to the outputs of the unit with a delay longer than T �. We

would like to obtain solutions of TS that are as close as possible

to the minimum one because their probability of being one is

minimized, hence the average throughput is maximized.

However, it must be guaranteed that the implementation of the

hold logic itself has a delay shorter than T �, and this may not

be always possible. Thus, the target is to determine an enlarged

hold function, fe
h
� fh, such that the average performance of

the unit only marginally degrades, but the implementation of

fe
h
meets the timing constraint, T �, and has a limited area.

A heuristics has been devised in [1] for determining and syn-

thesizing the enlarged function fe
h
; it starts from the BDD rep-

resentation of fh, and it generates the hold logic following an

iterative paradigm. First, the BDD of fh is mapped onto a

multiplexor network; then, such network is optimized through

traditional logic synthesis techniques; �nally, a check is made to

�nd out if the timing constraintT (fh) < T � is met. If this is not

the case, the ON-set of fh is enlarged, to obtain fe
h
, by properly

removing some BDD nodes, and the process is repeated.

4 The Timed Supersetting Problem
In this section we formally state the timed supersetting (TS)

problem and one important variation, called minimum timed

supersetting (MTS). The practical relevance of TS and MTS for

the synthesis of telescopic units has been outlined in the previ-

ous section. For the sake of comparison, we briey describe the

algorithm for the solution of MTS (and TS) presented in [1].

We then take a completely di�erent approach and present the

key contribution of this paper, namely a robust and widely ap-

plicable algorithm for the solution of TS.

Consider a combinational logic block B with primary inputs

x = [x1; :::; xni] and outputs o = [o1; :::; ono]. The timed su-

persetting problem can be formally stated as follows:

Problem 1 Find a set S of input values x that includes all

values which propagate to the outputs o with a delay larger than,

or equal to a given T �.

Obviously, TS has always the trivial solutionBni , i.e., the com-

plete Boolean space is guaranteed to include all input values

with propagation delay larger than T �. We are interested in

non-trivial solutions of TS. A theoretically relevant solution is

the minimum one. The minimum timed supersetting problem

consists of �nding the smallest set of input values with propa-

gation delay larger than T �. Formally:

Problem 2 Find the set Smin of all and only those input pat-

terns x which propagate to the outputs o with a delay larger

than, or equal to a given T �.

It is quite easy to prove the NP-completeness of MTS. Solving

MTS when T � is equal to the longest propagation delay of B

is at least as hard as �nding a single pattern with maximum

propagation delay. This problem is NP-complete [3].

Observe that Smin � S, i.e., every solution of TS is guaranteed

to contain the solution of MTS. Among the solutions of TS, we

are interested in near-minimum solutions. More in detail, we

are looking for approximations S of Smin that:

1. Include Smin ;

2. Are as close as possible to Smin;

3. Can be computed in polynomial time and space (in ni).

Before discussing our approximation strategy, we briey review

an algorithm for the exact solution of MTS.

4.1 Exact MTS Solution

An ADD-based algorithm for the exact solution of MTS has

been presented in [1]. The arrival time ADD, AT (goi ;x), for
each output oi of the block, is �rst computed using the algo-

rithm of [2]. Such ADDs provide the propagation delay for any

possible input vector. The BDD for the function f
oi
h
, which as-

sumes the value 1 for all input vectors for which the arrival time

of oi is greater than the desired cycle time T �, is then given by:

f
oi
h
(x) = THRESHOLD(AT(goi ;x); T

�)

THRESHOLD is the ADD operator that takes f , a generic

ADD, and val, a threshold value, and sets to 0 all leaves of

f whose value is smaller than val and to 1 all leaves of f whose

value is greater than or equal to val. The resultingADD, fval, is

thus restricted to have only 0 or 1 as terminal values; therefore,

it is a BDD [10].

Since the interest is in the set of input conditions for which at

least one block output oi has an arrival time greater than T �,

we have that fh can be easily determined as:

fh(x) =

noX

i=1

THRESHOLD(AT(goi ;x); T
�)

where no is the total number of block outputs.

The main limitation of the algorithm is its worst-case expo-

nential time and space complexity. When a complex, load and

path dependent delay model is used, it is impossible to build

the delay ADDs AT even for the outputs of relatively small

circuits. The memory requirements for such construction are

simply excessive. Another shortcoming of this approach is that

when building the delay ADDs complete delay information is

computed, even for patterns that propagate much faster than

T �. The computation of unneeded information contributes to

the memory blow-up problem.

4.2 Near-Minimum TS Solution

Since the exact solution of MTS is computationally infeasible for

large circuits, we resort to algorithms that solve TS but attempt

to �nd solutions which are as close as possible to the minimum

one. Notice the analogy with the approaches used in timing

analysis. When exact delay computation is una�ordable, it is

possible to resort to safe approximations with various degrees

of tightness.

Consider a combinational logic block B with primary inputs

x = [x1; :::; xni]. A gate, gi, of the network is associated with

a Boolean function fi(y), where y = [y1; :::; yngi] is the local

support of fi. We call Fi(x), the Boolean function associated

with gate gi expressed as a function of the primary inputs (global

support).

Let us assume that topological static delay analysis has been

performed, and that the topological critical path C = (g1; g2;

: : : ; gm) has been determined (notice that, for the sake of clarity,

we omit the indication of the connections between gates in the

speci�cation of paths). Let us assume also that the delay of

the critical path, Tc, violates the desired cycle time, namely

Tc > T �. Since we are relying only on topological delay analysis,

we conservatively consider the path as a true one. Consequently,

all input conditions that activate it must be in the ON-set of

the hold function fh.

To �nd such conditions, from the primary inputs, we move along

the critical path towards the output. We call critical input yc of

a gate gi on the critical path the input which connects it with

gate gi�1, that is, connection ci�1. For each gate in the path,

we specify the local sensitization function si as the Boolean

function that takes on the value 1 for all input conditions such

that the critical input is a controlling input:

si(y) =
@fi(y)

@yc
(1)

Notice that, given si(y) for a gate gi, we can compute the global

sensitization function Si, which expresses the sensitization con-

ditions for gate gi as a function of the primary inputs x. This
can be done by recursive backward substitution of the local sup-

port variables until the primary inputs are reached.

The sensitization conditions for the entire path, C, can now be

computed as the intersection of all sensitization conditions of

the gates g1; : : : ; gm in C. In formula:

Scrit(x) =

mY

i=1

Si(x) (2)

We call Scrit the path sensitization conditions. This formula

holds because for a signal to propagate along a path, all gates

on the path must be sensitized. We call partial path sensitiza-

tion conditions Scrit;j =
Q

j

i=1
Si (with j � m) the path sen-

sitization conditions for gates belonging to the path up to level

j. Clearly, Scrit;m = Scrit. The partial sensitization conditions

can be computed with the following recursion, for j = 1; : : : ;m:

Scrit;j(x) = Scrit;(j�1)(x) � Sj(x)

Scrit;1(x) = S1(x)
(3)

An important property of Formula 3 is that Scrit;j � Scrit;k
for each j > k, that is, the Scrit;j 's are monotonically de-

creasing (i.e., the ON-set of Scrit is monotonically shrinking)

with increasing j. Notice that computing the complete Scrit is

equivalent to testing the viability of path C. Since this is a NP-

complete problem, there will be instances for which this com-

putation requires an exponential amount of time or resources.

However, the key observation is that we do not have to compute

the complete Scrit to �nd a conservative set of input conditions

for which the circuit delay Tc violates the timing constraint T �

(i.e., the hold function fh). Any Scrit;j is suitable for that pur-

pose, because its ON-set contains the one of Scrit .

Although it may appear that Recursion 3 provides a viable pro-

cedure for �nding a near-minimum solution of TS, two major

problems need to be addressed:

1. It is a well-known fact that the absence of static path

sensitization conditions (i.e., Scrit = 0) is not su�cient

to guarantee that a path does not propagate events with

delays that violate the timing constraint T �. This phe-

nomenon is known as dynamic sensitization [3]. Notice

that every valid solution to TS must include all patterns

with propagation longer than T �. Hence, the approach

based on simple static sensitizationmay lead to incorrect

implementations and must be augmented by some form

of dynamic sensitization test.

2. Recursion 3 has been obtained under the assumption that

there is only one path violating the timing constraint.

This is not generally true. In almost all practical ex-

amples there are multiple critical paths. Moreover, the

number of such paths can be exponential in the number

of gates in the network. The complexity explosion caused

by the number of critical paths must be addressed in a

conservative fashion.

In the next two sections we analyze and solve the above prob-

lems. We then describe in detail our strategy for �nding a near-

minimum TS solution in an e�cient and robust way.

4.2.1 Accounting for Dynamic Sensitization

In order to derive sensitization conditions which are correct and

conservative, let us consider the following situation at a crit-

ical gate gi on a potentially critical path P (i.e., a path for

which the topological delay estimate exceeds the time constraint

T �). Let W = fw1; : : : ; wpg denote the set of side inputs, and

AT (wi); i = 1; : : : ; p their topological arrival times.

For a given input value x, consider the propagation of signals

on the critical path and on the side paths. Two situations may

occur at gate gi:

1. Every side input wi arrives earlier than the critical input

yc, that is, AT(wi;x) < AT (yc;x);8i;

2. One or more side inputs arrive later than the critical in-

put yc, that is, 9i such that AT(wi;x) > AT (yc;x).

In the �rst case, we are safe, in the sense that when yc arrives,

all side inputs are already stable, and therefore the conditions of

Equation 1 correctly represent the conditions under which the

path P is sensitized.

In the second case, the situation is more uncertain. In fact, if

yc arrives earlier than any of the side inputs, it could propagate

through gate gi, and eventually get slowed down in such a way

that it arrives late at the output. In this case, therefore, the

conditions of Equation 1 may erroneously declare P as a false

path. To solve this ambiguity, we have developed the following

safe conditions for declaring a path as false.

Theorem 1

Given the topological arrival times, required times, and slacks

for all gates belonging to path P, the static sensitization condi-

tions of Equation 1 are correct if, for all gates gi of P:

(AT(yc) + ST(gi)) > AT (wi); 8wi 2W (4)

In essence, Theorem 1 states that, if the conditions of Inequal-

ity 4 hold, and SI(y) =
@fi(y)
@yc

= 0, then the path P is surely

false. If Inequality 4 does not hold for some side inputs of a

gate gi, the static sensitization conditions of the gate can not

be used for computing the path sensitization conditions.

This criterion may be extremely conservative in some cases, be-

cause it does not allow to use the sensitization conditions for

a gate gi if any of its side inputs does not satisfy Inequality 4.

In the vast majority of cases, only some of the inputs violate

the inequality. When the inputs that satisfy the inequality have

controlling value, the gate still �lters out events on the crit-

ical input. Therefore, we can relax the conditions stated by

Equation 1. This can be done by exploiting some of the results

available in the literature on timing analysis. A well-known cri-

terion which is particularly suitable for a BDD-based symbolic

implementation is the one introduced by Brand and Iyengar

[11]. In that work, the sensitization conditions (Equation 1) are

overestimated by abstracting a set of the local gate inputs. In

formula:

�i(y) = 9x0;:::;xk (
@fi(y)

@yc
) (5)

where (x0; : : : ; xk) are some of the local inputs of gate gi. When

k = 0, � is exactly the static sensitization condition of Equa-

tion 1, whose robustness can thus be guaranteed. At the other

extreme, when k equals the number of inputs of gi, �i = 1,

regardless of the static sensitization conditions.

The key point with this approach is selecting which and how

many inputs should be abstracted. Inequality 4 provides the

criterion to do that. If we call eW � W = (ew0; : : : ; ewk) the set

of side inputs that do not satisfy Inequality4, the comprehensive

criterion for robustly and correctly detecting a false path, at a

gate gi, becomes:

�i(y) = 9ew0;:::;ewk

(
@fi(y)

@yc
) (6)

Similarly to the static sensitization conditions, we can extend

�i(y) to the global support of the combinational block, and

compute �i(x) as a function of the primary inputs x. The sen-
sitization conditions for the entire path are then given by the in-

tersection of all sensitization conditions of the gates g1; : : : ; gm.

In formula:

�crit(x) =

mY

i=1

�i(x) (7)

In summary, the correct and conservative sensitization condi-

tions �crit(x) for a single path P are obtained through the

procedure summarized in Figure 2.

Compute Sigma (P) f

�crit(x) = 1;
for (each gate gi 2 P) f

/* yc = critical input; /*

/* AT = arrival times; ST = slacks */

si(y) =
@fi(y)
@yc

;

for (each side input wi of gi)

if ((AT (yc) + ST (gi)) � AT (wi))

si(y) = 9wisi(y);
�i(y) = si(y);
�i(x) = Extend(�i(y);x);
�crit(x) = �crit(x) ��i(x);

g

g

Figure 2: Algorithm for Computing �crit(x).

Procedure Extend expresses the sensitization conditions in the

global support x. Inequality 4 is used to decide which side

inputs arrive too late and should be quanti�ed out from the

sensitization conditions. It is important to notice that the pro-

cedure does not solve MTS exactly, because conservative and

pattern-independent topological estimates of the arrival times

and slacks are used. In other words, Inequality 4 is a su�cient

but not necessary condition for deciding whether a side input

stabilizes before the arrival of the critical input.

4.2.2 Dealing With Multiple Paths

So far, we have described a robust, yet simple algorithm for

�nding a near-minimum TS solution which is applicable to the

cases where a single critical path is present in the circuit. In

this section, we present an algorithm (see the pseudo-code in

Figure 3) to �nd a near-minimal solution to TS (i.e, the hold

function fh for a telescopic unit) in the case of multiple critical

paths.

procedure ComputeF h(B;T �) f

1 StaticTimingAnalysis(B);

2 Levels[] = Levelize(B);

3 foreach (level l = 0; : : : ; L) f

4 foreach (critical gate n 2 Level[l]) f

5 PAFn(x) = 0;
6 foreach (critical fanin i of gate n) f

7 PAFn(x) = PAFn(x) + (PAFi(x) ��i(x)) ;
g

g

g

fh(x) = 0;
8 foreach (critical gate n 2 Output gates) f

9 fh(x) = fh(x) + PAFn(x);
g

g

Figure 3: Algorithm for Computing the Hold Function.

The procedureComputeF h receives, as inputs, the combinational

block description, B, and the desired cycle time, T �, either as

an absolute time value, or as a percentage of the actual criti-

cal delay of the circuit, in the case this is not known a priori.

It initially performs (Line 1) a static timing analysis of the cir-

cuit, computingarrival times, required times, and slacks for each

gate. Then, the network is levelized (Line 2), that is, the gates

are grouped into the list Levels[] according to their topological

level, starting from the primary inputs, which are assumed to

be at level 0. Starting from level 0, the critical gates (i.e., gates

with negative slack) at each level are processed (Line 4), and

a local Boolean function PAF(x) (Path Activation Function)

is computed as follows: At each gate, the function is obtained

by summing, over its critical fanins, the product of two quanti-

ties: The path activation function of the i-th fanin (PAF i(x) in
Line 7), and the sensitization conditions �i(x), computed with

Equation 7. Clearly, the path activation function for each pri-

mary input is assumed to be 1. The output of the procedure is

a near-minimum solution of TS, or equivalently, the hold func-

tion fh of a telescopic unit. It is computed in Lines 8 and 9, by

accumulating the PAFs of all critical gates that are connected

to an output.

The rationale of the algorithm is that every critical gate �lters

the activation conditions of a critical input i by AND-ing the

�i of the input to the conditions for which an event propagates

up to input i (i.e., PAF i). If a gate has more than one critical

input, its PAF is the sum of the �ltered PAFs of its critical

inputs.

An important feature of the algorithm is that it is based on a

traversal of the critical gates, and not of the critical paths. In

fact, the number of (critical) paths can be exponential in the

number of gates in the network, whereas the number of critical

gates is guaranteed to be smaller than the number of gates.

Note that the algorithm relies on topologic delay estimates. It is

a well-known fact that such estimates can be very conservative.

In the limit case, if the topologic delay is longer than the true

delay, and the true delay is shorter than T �, we may actually

synthesize useless hold logic and make the throughput worse.

This is due to the fact that our procedure is conservative and

it may actually ag as belonging to fh some input conditions

that do not propagate any perturbation to the output. Observe,

however, that the accuracy of the procedure can be improved

if more powerful algorithms for the computation of the arrival

times are used (see, for example, [12, 13]). The modi�cation of

the pseudo-code in Figure 3 is straight-forward: It is su�cient

to replace the StaticTimingAnalysis call with the call to an

advanced timing analysis procedure. On the other hand, the

computational burden of obtaining accurate delay information

for all gates in the network may be substantially higher than

that required by simple static timing analysis. In summary,

the StaticTimingAnalysis should be replaced by the procedure

that is used for timing analysis in the design ow.

4.2.3 Cutting Heuristics

Although the algorithm of Figure 3 does not su�er the com-

putational bottleneck of the exact method of [1], there may be

circuits for which constructing the BDDs for the sensitization

function is still not feasible. In these cases, an approximate

solution is required, that allows to compute partial timing in-

formation.

A simple solutionmay be that of stopping procedure ComputeF h

after a desired number of levels or, alternatively, when the sizes

of the BDDs grow beyond a given threshold. Unfortunately,

this would result in incomplete timing information, since some

critical paths could be incorrectly left out of the computation. In

fact, computing the hold function by levels does not necessarily

take into account all critical paths, unless we guarantee that last

level (i.e., the primary outputs) is reached.

The observation above suggests a criterion for computing the

timing information incrementally. Intuitively, the key for such

criterion should be to progressively select sets of critical gates,

hereafter called cuts, such that the gates in a set cut all critical

paths. If we can compute the BDDs (in the global support) of

the path activation functions of all gates in a cut G, a solution

of TS (i.e., a valid fh) is simply:

fh =
X

n2G

PAFn(x) (8)

A good cutting heuristics is obviously essential for an e�ective

realization of the fh computation algorithm. The one we pro-

pose starts from the critical inputs (cut G0), and consists of

the repeated application of three phases, until no gate in the

combinational block is left.:

1. From a cut Gi, we reach the critical gates in the fanout

of any gate in Gi. Only critical connections (i.e., con-

nections from the output of a critical gate to the critical

input of another critical gate) are explored. A newly

reached gate is marked as belonging to the new cut Gi+1

only if all its critical fanins belong to a previous cut Gj ,

j = 0; 1; :::; i, or to cut Gi+1 itself.

2. If at least one gate has been marked, we check if all criti-

cal fanins of some additional gates reached from Gi have

been reached. If this is the case, such gates are marked

as belonging to Gi+1. This step is repeated until no new

gate is marked. In other words, all gates for which all the

critical fanins belong to Gj, j � i+ 1 are marked.

3. The remaining critical gates reachable from Gi do not

belong toGi+1 and are discarded. However, to guarantee

that all critical paths are cut, we insert inGi+1 all critical

fanins of the discarded nodes which belong to previous

cuts (or to cut Gi+1 itself).

The set of gates Gi+1 is the new cut. Notice that, if an output

is reached during traversal at cut Gj , such output is inserted

in all successive cuts Gk, k > j. In addition, it can be easily

observed that, in general, cuts are not disjoint.

After the computation of Gi+1, the path activation functions of

its gates and fh are computed. The termination conditions of

the traversal algorithm are the following:

� If the BDD of a PAF for a gate in Gi+1 blows up, the

computation is aborted and the BDD of the fh of the

previous cut is returned.

� Once all PAFs have been computed, fh is obtained by

taking the Boolean sum of all PAFs. If the BDD of fh
blows up during the Boolean sum, the computation is

aborted and the BDD of the fh of the previous cut is

returned.

� If the computation of fh in the global support succeeds,

and the cut is the last one, fh is returned. Conversely, if

the cut is not the last one, fh is stored and the next cut

is generated.

The fh for G0 is obviously the most conservative TS solution,

that is, fh = 1. In the worst case, if PAF or fh computation

fails at the �rst cut, the value of fh returned is the tautology.

Hence, the procedure is guaranteed to return a valid solution to

TS, but it may return the trivial one.

The algorithm for near-minimum TS solution described in Sec-

tion 4.2.2 is modi�ed by replacing a level-based traversal with

a cut-based traversal. In this way, ComputeF h is guaranteed to

always return a valid solution to TS, even in the case of BDD

blow-up.

Circuit I O G T P Prob(fh) G� T
�

P
�

T (fh) �P �G Time

c1908 33 25 1339 23.51 0.04253 0.05761 1410 20.08 0.04836 17.46 13.7% 5.2% 63.2

c2670 233 140 1617 52.43 0.01907 0.15902 1723 44.50 0.02068 41.30 8.4% 6.5% 29.2

c3540 50 22 1876 29.28 0.03414 0.08666 2007 25.35 0.03773 24.94 10.5% 6.9% 402.9

c5315 178 123 3286 29.49 0.03391 0.24112 3443 24.06 0.03655 23.61 7.8% 5.3% 45.0
c7552 207 108 5439 23.16 0.04317 0.37500 5817 16.84 0.04824 16.52 11.8% 6.9% 2329.0

s3271 142 130 1393 41.63 0.02402 0.09180 1485 36.54 0.02611 35.85 8.7% 6.6% 6.0

s3330 172 205 1434 16.36 0.06112 0.01721 1511 14.56 0.06809 14.42 11.4% 5.3% 89.7

s3384 226 209 2307 32.91 0.03038 0.01294 2474 30.15 0.03295 29.14 8.5% 7.2% 166.0

s4863 153 120 3684 34.83 0.02871 0.06831 3828 27.63 0.03495 27.06 21.7% 3.8% 472.4

s5378 199 213 2078 36.80 0.02771 0.07885 2229 30.60 0.03139 28.89 13.2% 7.2% 138.5

s6669 322 294 4975 52.54 0.01903 0.04002 5210 45.93 0.02133 42.98 12.1% 4.7% 302.0
s9234 247 250 2821 19.32 0.05175 0.10112 3119 15.43 0.06153 15.34 18.9% 10.5% 2248.3

s13207 700 790 3554 22.61 0.04422 0.38551 3968 15.83 0.05099 15.05 15.3% 11.6% 76.7

s15850 611 684 4850 165.25 0.00605 0.08029 5377 132.20 0.00726 91.70 20.1% 10.8% 219.2

s35932 1763 2048 12944 874.98 0.00114 0.00001 13367 838.10 0.00119 133.11 4.4% 3.1% 15.6

s38417� 1664 1742 10326 60.31 0.01658 0.42663 10615 44.91 0.01751 39.28 5.6% 2.8% 1317.1

Average 12.0% 5.8%

Table 1: Experimental Results.

5 Experimental Results
We have implemented the algorithms for TS solution described

in Section 4 within the tool for telescopic units synthesis of

[1]. The underlying logic synthesis system is SIS [4] which uses

CUDD [5] as BDD package. Experiments have been run on a

DEC AXP 1000/400 with 256 MB of memory.

We have considered ALL the circuits in the Iscas'85 [6] suite

with more than 1000 gates. Since only 6 examples were avail-

able, we have also experimented with the combinational logic of

the 12 largest Iscas'89 [7] (addendum included) benchmarks.

The library used for mapping consisted of 2 to 4-input NAND

and NOR gates, plus inverters and bu�ers, each of which had

�ve di�erent driving strengths. The gates are non-symmetric,

that is, they have di�erent pin-to-pin delays, as well as di�erent

rise and fall delays. The delay model used is the SIS real delay.

The original circuits have been �rst optimized for speed using

a modi�ed version of script.delay, where the full simplify,

and sometimes the rr commands have been removed to allow

the optimization to complete on the large examples, and then

mapped for speed with either map -m1 or map -n1 -AFG.

Table 1 reports the experimental data. Columns Circuit, I, O,

G, T and P give the name, number of inputs, outputs, and gates,

the static delay (in nsec), and the throughput of the original

circuit. Column Prob(fh) shows the probability of fh, column

G� gives the total number of gates of the telescopic unit, column

T � reports the cycle time (in nsec) at which the telescopicunit is

clocked to achieve the increased throughput of column P �, and

column T (fh) tells the (static) arrival time of the hold signal (in

nsec). Columns �P and �G give the throughput improvement

and the area overhead (in terms of gates) of the telescopic unit.

Finally, column Time reports the CPU time (in sec) required to

perform the automatic synthesis of fh for a given T �. A symbol

* beside the circuit name indicates that the heuristics of Section

4.2.3 was required to complete the calculation of fh. This has

happened only on example s38417, where the computation of

fh stopped after 19 cuts (out of 28).

Only two benchmarks are missing from the table: c6288 and

s38584. The former is a 32-bit multiplier, for which it is well

known that the computation of the BDDs for all outputs is in-

feasible [14]. The application of the algorithmof Figure 3 there-

fore failed; we thus resorted to the heuristic method discussed in

Section 4.2.3; also in this case, however, the result was negative,

since the computation of fh stopped after 41 cuts (out of 103)

with T � = 0:95T = 70:40 nsec and Prob(fh) = 0:99999. The

application of our algorithm to the latter example, on the other

hand, has not been tried since a mapped version of it could not

be obtained for the selected gate library.

The results are quite satisfactory, since an average throughput

improvement of 12% has been achieved, with an average area

penalty of 5:8%. The proposed approach thus demonstrates its

scalability and applicability to the largest available benchmarks.

Needless to say, all circuits examined here are well beyond the

capability of the exact MTS solution algorithm of [1], which,

for this library and delay model, fails for circuits larger than a

few hundreds of gates. On small circuits, for which exact MTS

solution is possible, our tool still achieves improvements around

10-15%, while the exact minimum solution allows average im-

provements around 26% [1].

6 Conclusions
We have addressed the timed supersettingproblem, and we have

contributed an algorithm for its solution which is well suited for

the automatic synthesis of telescopic units. Results obtained on

the largest benchmarks available in the literature are satisfac-

tory, and con�rm that the use of telescopic units represents a

robust and exible alternative for improving the performance of

delay-critical digital applications.

References
[1] L. Benini, E. Macii, M. Poncino, \Telescopic Units: Increasing the

Average Throughput of Pipelined Designs by Adaptive Latency Con-
trol," DAC-34, pp. 22-27, 1997.

[2] R. I. Bahar, et al., \Timing Analysis of Combinational Circuits using
ADDs," EDTC-94, pp. 625-629, 1994.

[3] P. C. McGeer, R. K. Brayton, Integrating Functional and Temporal
Domains in Logic Synthesis, Kluwer Academic Publishers, 1991.

[4] E. M. Sentovich, et al., \Sequential Circuits Design Using Synthesis
and Optimization," ICCD-92, pp. 328-333, 1992.

[5] F. Somenzi, CUDD: University of Colorado Decision Diagram Pack-
age, Release 2.1.2, Tech. Report, Univ. of Colorado, 1997.

[6] F. Brglez, H. Fujiwara, \A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran," ISCAS-
85, pp. 785-794, 1985.

[7] F. Brglez, D. Bryan, K. Ko�zmi�nski, \Combinational Pro�les of Se-
quential Benchmark Circuits," ISCAS-89, pp. 1929-1934, 1989.

[8] R. Bryant, \Graph-Based Algorithms for Boolean Function Manip-
ulation," IEEE Trans. on Computers, Vol. 35, pp. 79-85, 1986.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, An Introduction to
Algorithms. McGraw-Hill, 1990.

[10] R. I. Bahar, et al., \Algebraic Decision Diagrams and their Appli-
cations," Formal Methods in System Design, Vol. 10, pp. 171-206,
1997.

[11] D. Brand, V. S. Iyengar, \Timing Analysis Using Functional Analy-
sis," ICCAD-86, pp. 126-129, 1986.

[12] H. C. Chen, D. H. C. Du, \Path Sensitization in Critical Paths,"
IEEE Trans. on CAD, Vol. 12, pp. 196-207, 1993.

[13] S. Devadas, K. Keutzer, S. Malik, \Computation of Floating Mode
Delay in Combinational Circuits: Theory and Algorithms," IEEE
Trans. on CAD, Vol. 12, pp. 1913-1923, 1993.

[14] R. E. Bryant, \On the Complexity of VLSI Implementations and
Graph Representations of Boolean Functions with Application to In-
teger Multiplication," IEEE Trans. on Computers, Vol. 40, pp. 205-
213, 1991.

