
Reducing Power Consumption of Dedicated Processors

Through Instruction Set Encoding

Luca Benini # Giovanni De Micheli # Alberto Macii z Enrico Macii z Massimo Poncino z

Stanford University

Computer Systems Laboratory
Stanford, CA 94305

z Politecnico di Torino

Dip. di Automatica e Informatica
Torino, ITALY 10129

Abstract

With the increased clock frequency of modern, high-performance

processors (over 500 MHz, in some cases), limiting the power

dissipation has become the most stringent design target. It is

thus mandatory for processor engineers to resort to a large vari-

ety of optimization techniques to reduce the power requirements

in the hot zones of the chip. In this paper, we focus on the

power dissipated by the instruction fetch and decode logic, a

portion of the processor architecture where a lot of capacitance

switching normally takes place. We propose a methodology for

determining an encoding of the instruction set that guarantees

the minimization of the number of bit transitions occurring in-

side the registers of the pipeline stages involved in instruction

fetching and decoding. The assignment of the binary patterns

to the op-codes is driven by the statistics concerning instruc-

tion adjacency collected through instruction-level simulation of

typical software applications; therefore, the technique is best ex-

ploited when applied to encode the instruction set of core pro-

cessors and microcontrollers, since components of these types

are commonly used to execute �xed portions of machine code

within embedded systems. We illustrate the e�ectiveness of the

methodology through the experimental data we have obtained on

an existing microprocessor.

1 Introduction

Power consumption is becoming one of the most relevant

design constraints for modern digital systems. Obviously,

the need of low-power electronics is even more stringent
for portable applications, such as laptop computers, mo-

bile phones, and personal digital assistants (PDAs). Usu-

ally, applications of this type carry on board devices such
as general-purpose microprocessors, dedicated core proces-

sors, microcontrollers, and DSP processors that, besides

reduced power dissipation, must ensure reasonably high
performance, and thus run at fairly high clock frequen-

cies [1].

There are several solutions that can be adopted at the
architectural-level to limit the power required by processor-

based systems. These include modi�cations of the proces-

sor's organization [2, 3], careful design of the memory and

I/O subsystems [4, 5, 6, 7], proper choice of the data rep-

resentation [8], adoption of power-management strategies
[9, 10, 11], and exploitation of bus encoding/decoding tech-

niques [12, 13, 14, 15, 16, 17].

In this paper, we focus our attention on the power dissipa-

tion within a processor. More precisely, we target the min-
imization of the power consumed by the instruction fetch-

ing and decoding circuitry. We move from the observation

that sequences of op-codes are stored into some registers
of the CPU's pipeline stages when a stream of machine in-

structions is fetched from the main memory and decoded.

Loading a binary pattern into an N -bit register is usually a
power consuming operation, since it may require to charge

or discharge the capacitances associated to the cells of the

register. To be more speci�c, up to N bit transitions can
occur inside the register any time a new value is stored.

Properly choosing the binary patterns to be assigned to

the instruction op-codes is then key to reduce the number
of transitions, and thus the switching component of the

power dissipated by the fetch and decode logic of a CMOS

processor.
The method for determining a near-optimal, low-power in-

struction set encoding we propose works as follows. First,

instruction-level simulation is performed on traces of typi-
cal software programs, and the information about the num-

ber of adjacencies between pairs of instructions is recorded.

Then, dlog2(K)e-bit binary codes are assigned to the var-
ious instructions using an encoding algorithm which tar-

gets the minimization of the Hamming distance between

the codes which are very likely to be adjacent in typical
machine instruction streams (K is the number of op-codes

in the processor's instruction set).

We show the e�ectiveness of our methodology through a
case study. In particular, we have taken the MIPS R4000

[18] as the target processor, and we have collected the

information on instruction adjacency when some general-
purpose programs, such as compilers, DBMSs, word pro-

cessors, and data compression tools are executed. Then,

we have used the low-power encoding schemes of [19] and
[20] to re-encode the binary op-codes implemented in real-

ity. Finally, we have calculated the reduction in switching

activity of the op-code bits in each register of the CPU
pipeline by simulating the execution of the re-encoded in-

struction streams. Savings are between 15% and 42%,

depending on the encoding algorithm and the benchmark
program.

Clearly, the choice of an existing processor, such as the
MIPS R4000, as our case study has been made only for

the sake of illustration of the goodness and usefulness of

our approach, whose applicability is thought for the early
phases of the design ow of new processors. In particular,

it is self-evident that the output of the op-code assign-

ment procedure is heavily inuenced by the speci�c soft-
ware programs which are used to compute the frequency

of instruction adjacency; therefore, our technique is best

suited for dedicated processors, since they are commonly
used within embedded systems to execute the same por-

tion of code over and over. The use of such components,

commonly identi�ed as intellectual proprietary (IP) cores,
as basic blocks for the development of special-purpose dig-

ital systems is becoming a well-established design strategy

in the microelectronics industry. This is the reason why
we believe that the proposed power optimization strategy

could be of interest for IP core engineers and vendors.

2 Low-Power Instruction Set Encoding

As mentioned in the introduction, the procedure for the

assignment of the binary patterns to the various op-codes
consists of two phases. In the �rst one, instruction-level

simulation is executed on typical instruction streams to

collect the information concerning the adjacency of pairs of
op-codes. Assuming an instruction set consisting of a total

of K distinct op-codes, we store the adjacency statistics

into a K�K matrix, called A, whose entries ai;j represent
the number of times op-code i immediately precedes op-

code j.

From matrix A, we can derive a weighted undirected graph,
GA(V;E;W), with jV j = K vertices. Each vertex, vi,

represents op-code i, and each edge ei;j is labeled wi;j =

ai;j + aj;i and connects vertex vi to vertex vj. If wi;j 6=
0; 8i 6= j, GA(V;E;W) is completely connected, i.e., it is

a clique.

Given graph GA(V; E;W), the target is to assign to each
vertex vi a binary code of length dlog2(K)e in such a way

that the following cost function gets minimized:

C (GA(V; E;W)) =
X

ei;j

wi;j �Hi;j (1)

where Hi;j is the Hamming distance between the two codes

of vertices vi and vj. The ultimate objective is to assign

closer (in the Hamming sense) codes to vertices joined by

\heavy" edges. In this way, pairs of op-codes which are

likely to be adjacent in the instruction stream, when stored
in the same register at two consecutive clock cycles will

require a small number of switchings within the register's

bits, thus reducing the total switching power.

Example 1

Consider the graph GA(V; E;W) of Figure 1-a. If we en-

code the vertices v0; : : : ; v3 as in Figure 1-b, the cost is

1710. On the other hand, with the encoding of Figure 1-c,

the value of the cost function is 1300.

388 212
110

110

210

v0 v1

v2 v3
80

(a)

388 212
110

110

210

80

00 01

11 10

C = 1710

(b)

388 212

110

210110

00 11

01 1080

C = 1300

(c)

Figure 1: Example of GA(V;E;W) Encoding.

The problem we are facing (i.e., �nding a minimum-length

encoding for the vertices of graph GA(V;E;W) which min-

imizes the cost function of Equation 1) has been deeply in-
vestigated in the context of FSM encoding for low power,

and e�cient solutions can be found in the recent literature

(see [21] for a comprehensive survey).
Exact encoding algorithms only work for very small graphs

(a few tens of vertices), since the encoding problem is NP-

hard. This is the reason why we propose to adopt two
heuristic procedures. The �rst one [19], more accurate, is

based on the solution of an integer liner programming prob-

lem, it relies on explicit enumeration of all the vertices in
the graph, and it is applicable to mid-sized examples. The

second procedure [20], on the other hand, is less accurate,

but it is fully based on implicit representations of Boolean
and pseudo-Boolean (i.e., real-valued) functions by means

of BDDs [22] and ADDs [23], and solves the encoding prob-

lem as a maximum weighted matching problem; therefore,
it is of interest for larger graphs (more than a few hundreds

of vertices).

3 A Case Study

3.1 MIPS R4000 Architecture

The MIPS R4000 is a 64-bit microprocessor which provides

a 64-bit on-chip Floating-Point Unit (FPU), a 64-bit inte-
ger Arithmetic Logic Unit (ALU), 64-bit integer registers,

a 64-bit virtual address space, and a 64-bit system bus.

Figure 2 shows a block diagram of the R4000 processor
internal.

The R4000 processor realizes instruction parallelism by us-

ing an 8-stage superpipeline; each stage takes one PCycle

(one cycle of PClock, which operates at twice the frequency

of the MasterClock). The execution of each instruction

takes at least eight PCycles. Normally, two instructions
are issued at each MasterClock cycle. Once the pipeline

has been �lled, eight instructions are executed simultane-

ously. The processor achieves high throughput by pipelin-

ing cache accesses, reducing register access times, and al-

lowing the latency of functional units to span more than

one pipeline cycle. Figure 3 shows the 8-stages of the in-

struction pipeline.

64−bit System Bus

P−cache
Control

System
Control

S−cache
Control Cache

Data Instruction
Cache

CP0 CPU FPU

Exception/

Control

Registers

Memory

Management

Registers

Translation

Lookaside

Buffers

 CPU Registers

Load Aligner/
Store Driver

ALU

Integer
Multiplier/Divider

Address Unit

PC Incrementer

FPU Registers

Pipeline Bypass

FP Multiplier

FP Divider

FP Add, Convert

Square Root

Pipeline Control

Figure 2: R4000 Processor Internal Block Diagram.

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

MasterClock
Cycle Pcycle

(8−Deep)

Current
 CPU
 Cycle

Figure 3: Instruction Pipeline Stages.

3.2 Instruction Set Summary

Each CPU instruction is 32 bits long. There are three
instruction formats, shown in Figure 4:

� Immediate (I-type);

� Jump (J-type);

� Register (R-type).

OP RS RT IMMEDIATE I−Type (Immediate)

OP TARGET J−Type (Jump)

OP RS RT RD SA FUNCT R−Type (Register)

31 26 25 21 20 16 15 0

31 26 25 0

31 26 25 21 20 16 15 0561011

Figure 4: CPU Instruction Formats.

Instruction decoding is greatly simpli�ed by limiting the

number of formats to these three. This limitation means

that the more complicated and less frequently used opera-
tions and addressing modes can be synthesized by the com-

piler, using sequences of these same simple instructions.

Concerning the functions they perform, instructions can
be grouped into seven categories: Load and Store, Com-

putation, Jump and Branch, Coprocessor, Coprocessor 0,

Special, and Exceptions.
The instruction op-codes are 6-bit long; their binary en-

codings are shown in Table 1 (rows are labeled with bits

[31..29], and columns are labeled with bits [28..26]).

3.3 Low-Power Instruction Set

To show the e�ectiveness of the low-power instruction set
encoding methodology of this paper, we present results we

have obtained on the MIPS R4000 microprocessor.

We have selected a total of eight software applications; for
each of them we have built matrix A and the corresponding

graph GA; �nally, we have constructed the global graph,

GG
A =
P

GA, and we have run on it the explicit and the
implicit encoding algorithms of [19] and [20]. Tables 2 and

3 show the new binary patterns for all the op-codes.

By inspection of the two tables, it can be observed that the
application of the explicit encoding algorithm has modi-

�ed almost all the op-codes; on the other hand, a lower
number of changes has been introduced by the implicit al-

gorithm. This behavior was somehow expected, since the

explicit algorithm introduces fewer approximations in the
computation of the near-optimal codes, and therefore it

more heavily modi�es the initial encoding. The simulation

results of the next section demonstrate that the op-codes
of Table 2 are substantially better than the ones of Table

3. On the other hand, as already mentioned, the use of

the algorithm of [19] may not be feasible in the case of
op-codes longer than 6 bits.

[28..26]

[31..29] 000 001 010 011 100 101 110 111
000 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ
001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
010 COP0 COP1 COP2 RESRVD1 BEQL BNEL BLEZL BGTZL
011 DADDI DADDIU LDL LDR RESRVD2 RESRVD3 RESERVD4 RESRVD5

100 LB LH LWL LW LBU LHU LWR LWU
101 SB SH SWL SW SDL SDR SWR CACHE
110 LL LWC1 LWC2 RESRVD6 LLD LDC1 LDC2 LD
111 SC SWC1 SWC2 RESRVD7 SCD SDC1 SDC2 SD

Table 1: Original Instruction Set Encoding.

[28..26]
[31..29] 000 001 010 011 100 101 110 111

000 LW SB J XORI REGIMM LDR LL BLEZL
001 LUI LWU SWL SDR LWR RESRVD3 BGTZL BEQL
010 SW RESRVD6 ADDI SDC1 SLTIU LDC1 RESRVD1 SCD
011 LWC1 SDC2 COP2 RESRVD7 LWL RESRVD5 LDC2 LDL

100 SPECIAL ANDI JAL ORI BNE BGTZ LH LWC2
101 ADDIU SH BLEZ SC LBU SDL DADDIU RESRVD2
110 BEQ SLTI LB LD LHU COP0 SWC2 CACHE
111 COP1 SD SWR RESRVD4 SWC1 LLD BNEL DADDI

Table 2: Low-Power Instruction Set Encoding (Explicit Algorithm).

[28..26]
[31..29] 000 001 010 011 100 101 110 111
000 BLEZ BGTZ REGIMM SLTIU BNE SLTI BEQ ANDI

001 ORI XORI JAL LUI SPECIAL LW ADDIU SW
010 ADDI LB LWL LWR SWL SWR LH CACHE
011 J SB LHU SH COP1 LWC1 SC SWC1
100 DADDI DADDIU LDL LDR RESRVD2 RESRVD3 RESRVD4 RESRVD5
101 BEQL BNEL BLELZ BGTZL LBU LWU SDL SDR

110 COP0 LL LWC2 RESRVD6 LLD LDC1 LDC2 LD
111 COP2 RESRVD1 SWC2 RESRVD7 SCD SDC1 SDC2 SD

Table 3: Low-Power Instruction Set Encoding (Implicit Algorithm).

3.4 Results for Real Software Applications

The end result we expect from the application of our tech-
nique is a reduction of the switching activity in the op-

codes bits of some registers of the pipeline stages when
sequences of machine instructions are executed. To make

sure that this is actually what happens, we have taken

the machine code of eigth di�erent software programs, and
for each of them we have monitored the average switch-

ing activity per op-code bit that occurs inside the fetch

and decode registers when the program is executed. Then,
for each application, we have determined the low-power

instruction set encoding using both the explicit and the

implicit algorithm, we have re-encoded the original instruc-
tion stream using the new op-codes, and we have calculated

the average switching activity per op-code bit that would

occur inside the fetch and decode registers when the re-
encoded instruction stream were executed. Table 4 shows

the results of the comparison. Savings are considerably

high: Between 30% and 42% for the explicit encoding al-

gorithm, and between 15% and 33% for the implicit one.

As mentioned, the results in the table are obtained us-

ing ad-hoc instruction encodings. Therefore, they clearly

show the usefulness of the proposed approach as a tool for

helping in determining the most suitable encoding for a

special-purpose machine on which a well-established piece
of embedded code will be repeatedly executed. However,

the proposed methodology can be bene�cial also to design-

Program Average Switching Activity Per Op-Code Bit
Explicit Algorithm Implicit Algorithm

Before After Savings After Savings

espresso 0.3025 0.1752 42.06% 0.2045 32.39%

gs 0.2995 0.2017 32.64% 0.2449 18.22%

gunzip 0.2989 0.1941 35.07% 0.2337 21.80%

gzip 0.3206 0.2062 35.67% 0.2582 19.45%

jedi 0.2861 0.1779 37.80% 0.1898 33.65%

latex 0.3036 0.2097 30.91% 0.2576 15.14%

matlab 0.3340 0.2062 38.25% 0.2576 22.86%

oracle 0.3443 0.2117 36.83% 0.2684 22.05%

Global 0.3012 0.1950 35.23% 0.2091 30.57%

Table 4: Average Switching Activity Reduction.

ers of general-purpose microprocessors. For devices of this

type, the goal would be to determine the best average en-

coding, that is, the one which minimizes the power for most

of the applications whose execution on the processor is the

most likely to happen. The approach to be followed is then
that of collecting the statistics on instruction adjacency for

all such applications, and then use this information to de-

termine the new encoding. To show the applicability of our
technique also to the case of general-purpose machines, we

have re-encoded the instruction stream of each program us-

ing the op-codes of Tables 2 and 3, and we have determined
the average switching activity per op-code bit before and

after re-encoding. The last row of Table 4, named Global,

reports the average of these values taken over the eigth pro-
grams we have considered. Savings are larger than 30%.

4 Conclusions

It is well established that modern microprocessors, includ-
ing application-speci�c products (e.g., embedded cores and

microcontrollers), are performance-critical devices, since

they tend to run at very high clock frequencies; conse-
quently, they normally consume a considerable amount of

power. Designers are thus constrained to resort to opti-

mization techniques to keep the available power budget
under control.

In this paper, we have directed our attention to the power

dissipated by the fetch and decoding logic of a processor.
We have demonstrated that the choice of the instruction bi-

nary codes plays a key role in the minimization of the power

consumed by this portion of the chip. We have therefore
presented a methodology that can be fruitfully exploited

by processor engineers to determine a near-optimal, low-

power assignment of the op-codes for special-purpose ma-
chines, and we have supported our claims concerning the

viability and the e�ectiveness of the proposed technique

through experimental results collected on a real-life micro-
processor, namely, the MIPS R4000.

Acknowledgments

This work is supported, in part, by a grant from SGS-
Thomson Microelectronics.

References

[1] A. P. Chandrakasan, S. Sheng, R. W. Brodersen, \Low-Power

CMOS Digital Design," IEEE Journal of Solid-State Circuits,

Vol. 27, No. 4, pp. 473-484, April 1992.

[2] S. Gary, \Low-Power Microprocessor Design," Low Power De-

sign Methodologies, J. M. Rabaey and M. Pedram Editors,

Chapter 9, Kluwer Academic Publishers, 1996.

[3] D. Dobberpuhl, \The Design of a High Performance Low-

Power Microprocessor," ISLPED-96: ACM/IEEE Interna-

tional Symposium on Low-Power Electronics and Design,

pp. 11-16, Monterey, CA, August 1996.

[4] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, \Global

Communication and Memory Optimizing Transformations for

Low Power Design," IWLPD-94: ACM/IEEE International

Workshop on Low Power Design, pp. 203-208, Napa Valley,

CA, April 1994.

[5] P. R. Panda, N. D. Dutt, \Reducing Address Bus Transitions

for Low Power Memory Mapping," EDTC-96: IEEE Euro-

pean Design and test Conference, pp. 63-67, Paris, France,

March 1996.

[6] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man,

\Power Exploration for Data Dominated Video Applications,"

ISLPED-96: ACM/IEEE International Symposium on Low

Power Electronics and Design, pp. 359-364, Monterey, CA,

August 1996.

[7] J. P. Diguet, S. Wuytack, F. Catthoor, H. De Man, \Formal-

ized Methodology for Data Reuse Exploration in Hierarchical

Memory Mappings," ISLPED-97: ACM/IEEE International

Symposium on Low Power Electronics and Design, pp. 30-35,

Monterey, CA, August 1997.

[8] S. Chandrakasan, R. W. Brodersen, \Minimizing Power Con-

sumption in Digital CMOS Circuits," Proceedings of the

IEEE, Vol. 83, No. 4, pp 498-523, April 1995.

[9] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Pa-

paefthymiou, \Precomputation-Based Sequential Logic Op-

timization for Low Power," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. VLSI-2, No. 4,

pp. 426-436, December 1994.

[10] L. Benini, P. Siegel, G. De Micheli, \Automatic Synthesis of

Gated Clocks for Power Reduction in Sequential Circuits,"

IEEE Design and Test of Computers, Vol. 11, No. 4, pp. 32-

40, Winter 1994.

[11] M. B. Srivastava, A. Chandrakasan, R. W. Brodersen, \Predic-

tive System Shutdown and Other Architectural Techniques for

Energy E�cient Programmable Computation," IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems,

Vol. VLSI-4, No. 1, pp. 42-55, January 1996.

[12] C. L. Su, C. Y. Tsui, A. M. Despain, \Saving Power in the Con-

trol Path of Embedded Processors," IEEE Design and Test of

Computers, Vol. 11, No. 4, pp. 24-30, Winter 1994.

[13] M. R. Stan, W. P. Burleson, \Bus-Invert Coding for Low-Power

I/O," IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 3, No. 1, pp. 49-58, March 1995.

[14] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,

\Asymptotic Zero-Transition Activity Encoding for Address

Busses in Low-Power Microprocessor-Based Systems", GLS-

VLSI-97: IEEE 7th Great Lakes Symposium on VLSI, pp. 77-

82, Urbana, IL, March 1997.

[15] L. Benini, G. De Micheli, E. Macii, M. Poncino, S. Quer,

\System-Level Power Optimization of Special Purpose Appli-

cations: The Beach Solution," ISLPED-97: ACM/IEEE In-

ternational Symposium on Low Power Electronics and De-

sign, pp. 24-29, Monterey, CA, August 1997.

[16] E. Musoll, T. Lang, J. Cortadella, \Exploiting the Locality

of Memory References to Reduce the Address Bus Energy,"

ISLPED-97: ACM/IEEE International Symposium on Low

Power Electronics and Design, pp. 202-207, Monterey, CA,

August 1997.

[17] A. Kalambur, M. J. Irwin, \An Extended Addressing Mode for

Low Power," ISLPED-97: ACM/IEEE International Sym-

posium on Low Power Electronics and Design, pp. 208-213,

Monterey, CA, August 1997.

[18] J. Heinrich,MIPS R4000Microprocessor User's Manual, Sec-

ond Edition, MIPS Technologies, Mountain View, CA, 1994.

[19] L. Benini, G. De Micheli, \State Assignment for Low Power

Dissipation," IEEE Journal of Solid State Circuits, Vol. 30,

No. 3, pp. 258-268, March 1995.

[20] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F. Somenzi,

\Re-Encoding Sequential Circuits to Reduce Power Dissipa-

tion," ICCAD-94: IEEE/ACM International Conference on

Computer-Aided Design, pp. 70-73, San Jose, CA, Novem-

ber 1994.

[21] E. Macii, \Sequential Synthesis and Optimization for Low

Power," Low Power Design in Deep Submicron Electronics, J.

Mermet and W. Nebel Editors, Chapter 5.3, Kluwer Academic

Publishers, 1997.

[22] R. Bryant, \Graph-Based Algorithms for Boolean Function

Manipulation," IEEE Transactions on Computers, Vol. C-35,

No. 8, pp. 79-85, August 1986.

[23] R. I. Bahar, E. Frohm, C. Gaona, G. D. Hachtel, E. Macii,

A. Pardo, F. Somenzi, \Algebraic Decision Diagrams and their

Applications," Formal Methods in System Design, Vol. 10,

pp. 171-206, 1997.

