
Address Bus Encoding Techniques for System-Level Power Optimization

Luca Benini $ Giovanni De Micheli $ Enrico Macii � Donatella Sciuto z Cristina Silvano #

z Politecnico di Milano

Dip. di Elettronica e Informazione

Milano, ITALY 20133

� Politecnico di Torino

Dip. di Automatica e Informatica

Torino, ITALY 10129

$ Stanford University

Computer Systems Laboratory

Stanford, CA 94305

Universit�a di Brescia

Dip. di Elettronica per l'Automazione

Brescia, ITALY 25123

Abstract

The power dissipated by system-level buses is the largest contri-

bution to the global power of complex VLSI circuits. Therefore,

the minimization of the switching activity at the I/O interfaces

can provide signi�cant savings on the overall power budget.

This paper presents innovative encoding techniques suitable for

minimizing the switching activity of system-level address buses.

In particular, the schemes illustrated here target the reduction

of the average number of bus line transitions per clock cycle.

Experimental results, conducted on address streams generated

by a real microprocessor, have demonstrated the e�ectiveness

of the proposed methods.

1 Introduction
The increasing performance requirements and the existing gap

between the speed of current microprocessors and the speed of

the systems interfaces has pushed the designers to increase the

bandwidth of the data transfers. For example, the PowerPC 620

processor can be con�gured with either a 64 or a 128-bit data

bus to support the transfer of the 64-byte cache block within

four clock cycles. Moreover, modern software applications span

a very large address space: The latest versions of existing pro-

cessors, such as the DEC Alpha AXP and the PowerPC 620,

support a 64-bit address space. Hence, both data and address

buses have become very wide for modern microprocessor-based

systems.

Due to the intrinsic capacitances of the bus lines, a considerable

amount of power is required at the I/O pins of a micropro-

cessor when data have to be transmitted over the bus. More

speci�cally, it has been estimated that the capacitance driven

by the I/O nodes is usually much larger (up to three orders of

magnitude [1]) than the one seen by the internal nodes of the

microprocessor. As a consequence, dramatic optimizations of

the average power consumption can be achieved by minimiz-

ing the number of transitions (i.e., the switching activity) on

system-level buses.

Encoding paradigms for reducing the switching activity on the

bus lines have been recently investigated. In [2], Stan and

Burleson have proposed the use of a redundant encoding scheme,

called the bus-invert code, to limit the average power. The bus-

invert method performs well when patterns to be transmitted

are randomly distributed in time and no information about pat-

tern correlation is available. Therefore, the method seems to

be appropriate for encoding the information traveling on data

buses.

Concerning address buses, other techniques have been explored.

They all rely on the well-known fact that the addresses gener-

ated by a microprocessor are often consecutive, due to the spa-

tial locality principle [3], which states that the memory elements

whose addresses are close to each other tend to be referenced

during successive clock cycles.

To exploit this peculiar characteristics of the address buses, Su,

Tsui, and Despain [4] have proposed to encode the patternswith

the Gray code, since it guarantees a single bit transition when

consecutive addresses are produced. The issue of modifying the

Gray code so as to preserve the one-transition property for con-

secutive addresses of byte-addressable machines is discussed in

[5].

The Gray code achieves the minimum switching activity among

irredundant codes; however, better performance can be obtained

by using redundant codes. In [6], we have proposed an encod-

ing technique, called T0 code, which is based on the idea of

avoiding the transfer of consecutive addresses on the bus by

adding a redundant line, INC, to communicate to the receiving

memory sub-system the information on the sequentiality of the

addresses. The increments between consecutive patterns can be

parametric, re
ecting the addressability scheme adopted in the

given architecture. The T0 code outperforms the Gray code

in the case of streams of consecutive addresses of limited and

unlimited lengths. Furthermore, savings are not o�set by the

power absorbed by the additional encoding/decoding circuitry.

The exploitation of the sequential behavior of addresses has also

been approached, at a high level of abstraction, by Panda and

Dutt [1]. That work introduces techniques for determining a

mapping of the data to the physical memory which reduces the

total switching activity on the address buses.

An additional contribution to the area of address bus encod-

ing is provided in [7]. The target of the Beach code is that

of reducing the bus activity in the cases where the percentage

of in-sequence addresses is limited. In this situation, it may

be possible to exploit other types of temporal correlations than

arithmetic sequentiality that may exist between the patterns

that are being transmitted over the address bus. More specif-

ically, it has been noted that time-adjacent addresses usually

show remarkably high block correlations. The encoding strat-

egy is then determineddependingon the particular streambeing

transmitted. Therefore, the Beach code best performs on spe-

cial purpose systems, where a dedicated processor (e.g., core,

DSP, micro-controller) repeatedly executes the same portion of

embedded code.

In this paper, we propose innovative encoding techniques tar-

geting the reduction of the average number of transitions on

the address buses of microprocessor-based systems. Here, the

data and address buses are at the core of the interface between

the processor and the memory and I/O sub-systems. In par-

ticular, they are used, on-processor, to access the �rst and the

second-level caches, as well as, o�-processor, to access the ex-

ternal lower level caches, the main memory (usually through a

memory controller), and the I/O sub-systems (to support di-

rect memory accesses from the I/O controllers). Our goal is to

avoid any modi�cation to the standard memory components,

hence adding the encoding circuitry inside the processor, and

the decoding logic inside the memory and the I/O controllers.

In the next section, we summarize the main characteristics of

currently available codes, and we compare their performance

through analytical and experimental analysis. In Section 3 we

propose new encoding schemes that combine the properties of

existing approaches. This with the ultimate objective of exploit-

ing the advantages o�ered by each technique, and thus identify-

ing the best method for the speci�c microprocessor, the MIPS

RISC [8], we have used for the experiments. Power and tim-

ing e�cient implementations of the encoding/decoding logic for

such encoding technique are also presented.

2 Previous Work

2.1 Bus-Invert Encoding

In [2], Stan and Burleson have proposed a redundant code, called

the bus-invert code, to decrease the average power. A redun-

dant bus line, called INV, is needed to signal to the receiving

end of the bus which polarity is used for the transmission of

the incoming pattern. The encoding depends on the Hamming

distance (i.e., the number of bit di�erences) between the value

of the encoded bus lines at time t� 1 (also counting the redun-

dant line at time t � 1) and the value of the address bus lines

at time t. The Hamming distance is compared to N=2, where

N is the bus width (assuming N even without loss of general-

ity). If the Hamming distance between two successive patterns

is larger than N=2, the current address is transmitted with in-

verted polarity and the redundant line is asserted; otherwise,

the current address is transmitted as is, and the INV line is

de-asserted. The bus-invert method can be expressed by the

following equation:

(B
(t)

; INV
(t)

) =

n
(b(t); 0) if H(t) � N=2

(�b(t); 1) if H(t) > N=2
(1)

whereB(t)
is the value of the encoded bus lines at time t, INV(t)

is the additional bus line, b(t) is the address value at time t,

H(t)
= (B(t�1)

jINV(t�1)
;b(t)j0) is the Hamming distance, and

N is the bus width of b(t).
The corresponding decoding scheme is simply de�ned as:

b
(t)

=

n
B
(t) if INV = 0

�B
(t) if INV = 1

(2)

2.2 Asymptotic Zero-Transition Encoding

As mentioned in Section 1, the Gray code achieves its asymp-

totic best performance of a single transition per emitted address

when in�nite streams of consecutive addresses are considered.

However, the code is optimum only in the class of irredundant

codes, that is, codes that employ exactly N -bit patterns to en-

code a maximum of 2
N

data words. Adding redundancy to the

code, better performance can be achieved by adopting the T0

code [6]. The T0 method requires a redundant line, INC, to

signal with value one that a consecutive stream of addresses is

output on the bus. If INC is high, all other lines on the bus

are frozen, to avoid unnecessary switchings. The new address

is computed directly by the receiver. On the other hand, when

two addresses are not consecutive, the INC line is low and the

remaining bus lines are used as standard binary codes for the

new addresses.

Obviously, this redundant code outperforms the Gray code on

unlimited streams of consecutive addresses. Since all addresses

are consecutive, the INC line is always asserted, and the bus

lines never switch. As a consequence, the asymptotic perfor-

mance of the T0 code is zero transitions per emitted consecu-

tive address. The increments between consecutive patterns can

be parametric, re
ecting the addressability scheme adopted in

the given architecture. In this respect, our code has the same

capabilities of the Gray schemes reported in [5].

The T0 encoding scheme can be formally speci�ed as follows:

(B(t) ; INC(t)) =

n
(B(t�1); 1) if b(t) = b

(t�1) + S

(b(t); 0) otherwise
(3)

where B(t)
is the value on the encoded bus lines at time t,

INC(t)
is the additional bus line, b(t) is the address value at

time t and S is a constant power of 2, called stride.

The corresponding decoding scheme can be formally de�ned as

follows:

b
(t)

=

n
(b(t�1) + S) if INC = 1

B
(t) if INC = 0

(4)

2.3 Analytical Performance Comparison

Let us compare the two bus encoding techniquesdiscussed so far,

considering the binary code as the reference for the comparison.

For the analysis we consider a stream of unlimited length whose

addresses have a random uniform distribution, and a stream

of unlimited length whose addresses are consecutive. Table 1

reports the results of the comparison, where N is the address

bus width. Notice that, in the case of the bus-invert code, the

average number of transitions per clock cycle, TN , is given by:

TN =
1

2N
�

N=2X
k=0

kC
k
N+1 (5)

where C
k
N

is the binomial coe�cient.

Stream Code Avg. Trans. Avg. Trans. Avg. I/O
Type per Clock per Clock Pow. Diss.

per Line

Out-of-Seq Binary N=2 0:5 1
Addresses T0 N=2 0:5 1

Bus-Inv TN TN=N
TN
N=2

In-Seq Binary N=2 0:5 1
Addresses T0 0 0 0

Bus-Inv TN TN=N
TN
N=2

Table 1: Analytical Performance Comparison.

2.4 Experimental Performance Comparison

In this section, we �rst analyze the behavior of the addresses

generated by a RISC microprocessor, then we provide experi-

mental results for comparing the above discussed encoding tech-

niques. The number of transitions occurring on the address

bus during the execution of benchmark programs, derived from

di�erent application domains, has been used as the metric to

estimate the power consumption.

Benchmark Stream In-Seq Binary T0 Bus-Invert

Length Addr. Trans. Trans. Savings Trans. Savings

gzip 119102 60.16% 232587 140845 39.44% 232586 0.00%

gunzip 63884 64.94% 118409 81433 31.23% 118094 0.27%

ghostview 404595 57.28% 678295 470949 30.57% 678236 0.01%

espresso 1751673 60.17% 3014854 2239400 25.72% 3014649 0.01%

nova 544994 52.99% 959912 836708 12.83% 959334 0.00%

jedi 14690249 53.96% 23145174 18521606 19.98% 23145174 0.00%

latex 700317 71.42% 1400540 200490 85.68% 1400540 0.00%

matlab 6400326 76.56% 12000527 5800465 51.66% 12000527 0.00%

oracle 500326 69.99% 880547 680485 22.72% 880547 0.00%

Average 63.04% 35.52% 0.03%

Table 2: Experimental Comparison of Existing Encoding Schemes for Instruction Address Streams.

Benchmark Stream In-Seq Binary T0 Bus-Invert
Length Addr. Trans. Trans. Savings Trans. Savings

gzip 34393 52.47% 131651 97157 26.20% 118184 10.23%

gunzip 14602 10.59% 92349 91739 0.66% 81953 11.26%

ghostview 112689 10.74% 554499 542323 2.20% 507987 8.39%

espresso 570750 5.56% 3956543 3945485 0.28% 3426699 13.39%

nova 220050 10.56% 1381975 1368763 0.95% 1204694 12.82%

jedi 6145049 12.67% 47268786 47156168 0.24% 41114510 13.02%
latex 200109 0.01% 763 771 -1.05% 558 26.87%

matlab 1204110 0.00% 5400375 5400385 0.00% 5351262 0.91%

oracle 120111 0.01% 466606 466616 0.00% 466039 0.12%

Average 11.39% 3.37% 10.78%

Table 3: Experimental Comparison of Existing Encoding Schemes for Data Address Streams.

Benchmark Stream In-Seq Binary T0 Bus-Invert
Length Addr. Trans. Trans. Savings Trans. Savings

gzip 153495 57.43% 833799 738693 11.41% 809194 2.95%

gunzip 78486 52.81% 482093 427145 11.40% 406744 15.63%

ghostview 517284 58.25% 3067635 2795525 8.87% 2911494 5.09%

espresso 2322423 54.39% 15147444 13958602 7.85% 13404439 11.51%
nova 765045 56.63% 5526484 5325856 3.63% 5412030 2.07%

jedi 20835298 57.88% 152427486 142947798 6.22% 137950083 9.50%

latex 900426 55.55% 7002828 6202750 11.43% 5202521 25.71%

matlab 7604436 65.37% 42405967 34005893 19.81% 39474425 6.91%

oracle 620437 59.13% 3939551 3479461 11.68% 3594330 8.76%

Average 57.62% 10.25% 9.79%

Table 4: Experimental Comparison of Existing Encoding Schemes for Multiplexed Address Streams.

The addresses generated by a microprocessor obey to the spa-

tial locality principle, that is, they are often in-sequence and,

in general, they present a very high correlation. However, the

things are quite di�erent if the addresses correspond to instruc-

tions or data. In fact, addresses corresponding to instructions

usually show a more sequential behavior with respect to data

addresses. Instructions are usually stored in adjacent locations

of the memory space, while only structured data such as ar-

rays are generally stored in consecutive memory locations to

achieve better locality. Clearly, there are exceptions to this

behavior: Control-
ow instructions cause interruptions in the

sequence of consecutive addresses on the instruction
ow, and

data not stored in arrays are often accessed without any regu-

lar pattern. Nevertheless, sequential addressing dominates on

average.

These considerations are supported by the data contained in

Tables 2 to 4, where we report the percentage of in-sequence

addresses measured on real address streams occurring on the

32-bit address bus of the MIPS microprocessor, when di�erent

benchmark programs are executed. Three distinct cases have

been considered:

� The instruction address bus;

� The data address bus;

� The instruction/data multiplexed address bus.

The tables report also the number of transitions on the address

bus, for the above mentioned classes of codes, and the percent-

age of transitions saved with respect to binary encoding.

The average percentage of sequential addresses in the bench-

mark streams is higher for instructions addresses (63:04%) than

for data address streams (11:39%). This behavior can be due

to the fact that references to automatic variables such as loop

counters destroy the sequentiality of the address streams even

if array data structures are accessed sequentially. As expected,

when the probability of consecutive addresses is high, as for in-

struction addresses, a scheme such as T0 can be e�ective to re-

duce the transitions count, o�ering an average savings of 35:52%

(see Table 2), while the bus-invert approach does not introduce

any savings.

On the other hand, when the probability of in-sequence ad-

dresses is very low, as in the case of the data addresses reported

in Table 3, the T0 code can provide only marginal advantages

with respect to binary encoding (3:37%). The binary encoding

can thus represent a good alternative for data addresses, since it

does not require any redundancy and therefore no encoding and

decoding circuitry. Among redundant codes, another alterna-

tive for data address buses can be represented by the bus-invert

code, that is advantageous for the minimization of the average

number of transitions (10:78% savings on average).

When the address bus is multiplexed (i.e., mixed instructions

and data addresses), as in the MIPS architecture, the sequential

behavior is often interrupted, when the selection signal switches

from instruction to data and vice versa. Hence, the multiplexed

address bus shows an intermediate behavior (48:64%) for the

data in Table 4. As a matter of fact, the sequentiality of the ad-

dresses on the bus is somewhat reduced by the timemultiplexing

and by the inherent randomness of the data addresses.

3 Mixed Bus Encoding Techniques
The di�erent e�ects of the encoding schemes discussed in Sec-

tion 2 on the number of bus transitions have suggested us the

use of combined techniques which may exploit the best proper-

ties of each method to further improve the overall system-level

power budget. In this section, we introduce some novel encod-

ing options, and we present transition count results collected

during the execution of the usual benchmark programs.

3.1 T0 BI Encoding

For architectures based on a single address bus used to transmit

both instruction and data addresses, as in the case of external

second-level uni�ed data and instruction caches, a new encoding

can be applied to exploit the advantages provided by the T0 and

bus-invert approaches. The combined code, called T0 BI code,

reduces the average power and requires two redundant lines,

INC and INV. The formal de�nition of the code is the following:

(B
(t)

; INC
(t)

; INV
(t)

)=

8><
>:

(B(t�1) ; 1; 0) if b(t) = b
(t�1) + S

(b(t); 0; 0) if b(t) 6= b
(t�1) + S ^

H
(t)

� (N + 2)=2

(�b(t); 0; 1) if b(t) 6= b
(t�1) + S ^

H
(t) > (N + 2)=2

(6)

whereB(t)
is the value of the encoded bus lines at time t, INV(t)

and INC(t) are the additional bus lines, b(t) is the address value
at time t, H(t)

= (B(t�1)
jINC(t�1)

jINV(t�1)
;b(t)j0j0) is the

Hamming distance, and N is the bus width of b(t).
The corresponding decoding scheme is given by:

b
(t)

=

(
B
(t) if INC = 0 ^ INV = 0

�B
(t) if INC = 0 ^ INV = 1

b
(t�1) + S if INC = 1

(7)

3.2 Dual T0 Encoding

For architectures based on multiplexed address buses, such as

the one of the MIPS microprocessor, two address streams � and

�, with quite di�erent behavior, are time-multiplexed on the

same address bus. Stream �, corresponding to instruction ad-

dresses, has high probabilityof having two consecutiveaddresses

on the bus in two successive clock cycles; on the contrary, stream

�, corresponding to data addresses, has almost no in-sequence

patterns. The control signal, SEL, available in the standard bus

interface to de-multiplex the bus at the receiver side, is asserted

when stream � is transmitted; otherwise, SEL is de-asserted.

An extension of the T0 code, called dual T0 code, can be ef-

fective in these cases, providing the application of the T0 code

and the updating of the encoding/decoding registers whenever

SEL is asserted; otherwise, the binary code is applied and the

encoding/decoding registers hold.

Analytically, the dual T0 encoding can be expressed as:

(B(t); INC(t)) =

n
(B(t�1); 1) ifSEL = 1 ^ b

(t) = ~b
(t) + S

(b(t); 0) otherwise

(8)

where B(t)
is the value on the encoded bus lines at time t,

INC(t) is the additional bus line, b(t) is the address value at

time t, S is the stride, SEL is the selection signal, and ~b(t) is
given by:

~b
(t)

=

n
~b
(t�1) if SEL = 0

b
(t�1) if SEL = 1

(9)

The corresponding decoding scheme follows:

b
(t)

=

n
(~b(t) + S) if INC = 1

B
(t) if INC = 0

(10)

3.3 Dual T0 BI Encoding

Similarly to what we have done for the T0 BI code, we can de�ne

the the dual T0 BI code. With this scheme, which is expected

to work well on multiplexed buses, the overall switching activity

can be reduced by resorting the T0 code anytime stream � is

transmitted on the bus, while the bus-invert is used for stream

�. As for the T0 BI code, the dual T0 BI can o�er signi�cant

savings for the average power. The dual T0 BI encoding is de-

�ned as:

(B
(t)

; INCV
(t)

)=

(
(B(t�1); 1) if SEL = 1 ^ b

(t) = ~b
(t) + S

(�b(t); 1) if SEL = 0 ^ H
(t) > N=2

(b(t); 0) otherwise

(11)

where B(t)
is the value on the encoded bus lines at time t,

INCV(t)
is the additional bus line, b(t) is the address value

at time t, S is the stride, SEL is the selection signal, H(t)
=

(B(t�1)jINCV(t�1);b(t)j0) is the Hamming distance, N is the

bus width of b(t), and ~b(t) is de�ned as before.
The decoding scheme can be summarized with the following

equation:

b
(t)

=

(
(~b(t) + S) if INCV = 1 ^ SEL = 1

�B
(t) if INCV = 1 ^ SEL = 1

B
(t) if INCV = 0

(12)

3.4 Experimental Performance Comparison

In order to test out the performance of the newly proposed en-

coding techniques, we have used again the MIPS microprocessor

as reference architecture on which measuring the number of ad-

dress bus transitions required by the execution of the usual set

of benchmark programs.

Tables 5 to 7 summarize the results, in terms of number of tran-

sitions and transitions savings with respect to the pure binary

encoding.

When the percentage of in-sequence addresses is high, as in the

case of instruction address streams (see Table 5), the savings

provided by the T0 BI, the dual T0 and the dual T0 BI codes

are very remarkable (35:52%, on average, with respect to pure

binary). However, the same savings have been obtained by using

the simple T0 code. Thus, the latter seems to be the most

preferable solution in this case, due to the relatively low cost of

the T0 encoding/decoding circuitry.

Regarding the data address streams, shown in Table 6, no sav-

ings are provided by the dual T0 code, while the T0 BI and the

dual T0 BI o�er some advantages with respect to binary en-

coding (12:82% and 10:66%, respectively). By comparing these

results to the ones provided by the bus-invert method, we can

claim that the T0 BI represents the most e�ective solution for

average power minimization.

If we consider multiplexed address buses (see Table 7), the

dual T0 BI code shows the best savings (22:25% on average) if

compared to the T0 BI and dual T0 codes (19:56% and 12:15%

over pure binary, respectively). Furthermore, the dual T0 BI

provides the absolute best savings, thus being the most e�ective

code, concerning the average power, for the address bus of the

MIPS microprocessor.

Benchmark Stream In-Seq Binary T0 BI Dual T0 Dual T0 BI
Length Addr. Trans. Trans. Savings Trans. Savings Trans. Savings

gzip 119102 60.16% 232587 140845 39.44% 140845 39.44% 140845 39.44%

gunzip 63884 64.94% 118409 84003 29.06% 81433 31.23% 81433 31.23%

ghostview 404595 57.27% 678295 481845 28.96% 470949 30.57% 470949 30.57%

espresso 1751673 60.17% 3014854 2286402 24.16% 2239400 25.72% 2239400 25.72%

nova 544994 52.99% 959912 838481 12.65% 836708 12.83% 836708 12.83%

jedi 14690249 53.96% 23145174 18521606 19.98% 18521606 19.98% 18521606 19.98%

latex 700317 71.42% 1400540 200490 85.68% 200490 85.68% 200490 85.68%

matlab 6400326 76.56% 12000527 5800465 51.66% 5800465 51.66% 5800465 51.66%

oracle 500326 69.98% 880547 680485 22.72% 680485 22.72% 680485 22.72%

Average 63.05% 34.92% 35.52% 35.52%

Table 5: Experimental Comparison of Mixed Encoding Schemes for Instruction Address Streams.

Benchmark Stream In-Seq Binary T0 BI Dual T0 Dual T0 BI
Length Addr. Trans. Trans. Savings Trans. Savings Trans. Savings

gzip 34393 52.47% 131651 83540 36.54% 131651 0.00% 118184 10.23%

gunzip 14602 10.59% 92349 82928 10.20% 92349 0.00% 81953 11.26%

ghostview 112689 10.74% 554499 500750 9.69% 554499 0.00% 507987 8.39%

espresso 570750 5.56% 3952944 3471146 12.27% 3956543 0.00% 3426699 13.39%
nova 220050 10.56% 1381975 1233051 10.77% 1381975 0.00% 1218763 11.81%

jedi 6145049 12.67% 47268786 42116937 10.90% 47268786 0.00% 41114510 13.02%

latex 200109 0.01% 763 577 24.38% 763 0.00% 558 26.87%

matlab 1204110 0.00% 5400375 5369926 0.56% 5400375 0.00% 5351262 0.91%

oracle 120111 0.01% 466606 466293 0.07% 466606 0.00% 466039 0.12%

Average 11.40% 12.82% 0.00% 10.66%

Table 6: Experimental Comparison of Mixed Encoding Schemes for Data Address Streams.

Benchmark Stream In-Seq Binary T0 BI Dual T0 Dual T0 BI
Length Addr. Trans. Trans. Savings Trans. Savings Trans. Savings

gzip 153495 57.44% 833799 715717 14.16% 736373 11.68% 709769 14.88%

gunzip 78486 52.81% 482093 356057 26.14% 426705 11.49% 343335 28.78%

ghostview 517284 58.25% 3067635 2661381 13.24% 2785341 9.20% 2785341 14.29%
espresso 2322423 54.39% 15147444 12349832 18.47% 13586402 10.31% 11883056 21.55%

nova 765045 56.63% 5526484 5218195 5.57% 5254072 4.92% 5054617 8.53%

jedi 20835298 57.88% 152427486 131617956 13.65% 141103112 7.43% 126132486 17.25%

latex 900426 55.55% 7002828 4202462 39.99% 6202718 11.43% 4002340 42.85%

matlab 7604436 65.37% 42405967 32257681 23.93% 34005845 19.81% 30775139 27.43%

oracle 620437 59.13% 3939551 3116685 20.89% 3479391 11.68% 2964637 24.75%

Average 57.62% 19.56% 12.15% 22.25%

Table 7: Experimental Comparison of Mixed Encoding Schemes for Multiplexed Address Streams.

4 Encoding and Decoding Logic
The results of Section 3.4 show that, for a muxed bus, the

dual T0 BI code is the most e�ective in terms of transition

count. It is now necessary to evaluate if the power savings

achievable through activity reduction is not o�set by the cir-

cuitry required to implement the code on a system bus. After

describing the the basic encoder/decoder architecture, we ana-

lyze their power consumptionwhen the encoding scheme is used

to minimize the power of on-chip and o�-chip buses.

4.1 Architectures

The encoder architecture can be derived directly from Equa-

tion 11. It consists of a section for the T0 encoding which gen-

erates the INC signal, a section for the bus-invert logic providing

the INV signal, and the output multiplexor, which is controlled

by the input signal SEL and by signal INCV = INC + INV.

While the architecture of the T0 section was fully described

in [6], the bus-invert section has been realized by a Hamming

distance evaluator of the encoded bus lines at time t � 1 con-

catenated with the INCV signal and the address value at the

present time t, followed by a majority voter to decide if the com-

puted Hamming distance is greater than half of the bus width.

Besides the encoded bus lines, the circuit outputs the INCV sig-

nal (the SEL signal, needed by the decoder, is already present

on the bus). The circuit has been synthesized using Synopsys

Design Compiler, and implemented onto a 0:35�m, 3:3 Volt li-

brary from SGS-Thomson. Its critical path is 5:36 nsec, and it

is through the bus-invert section and the output mux.

Concerning the decoder, its architecture can be obtained eas-

ily from Equation 12, and it is reminiscent of the T0 decoder

detailed in [6] (SEL and INCV are the control signals of the

multiplexer).

4.2 Power Analysis: On-Chip Busses

The analysis is carried out for three codes: Binary, T0, and

dual T0 BI. The binary encoder and decoder consist only of

internal bu�ers, the T0 circuitry is the one presented in [6],

and the dual T0 BI encoding/decoding logic has the structure

described in Section 4.1.

The same reference input switching activities (derived from the

benchmark address streams) are applied to the inputs of the

three encoders, and the power consumption is estimated using

the probabilisticmode of Synopsys Design Power at a frequency

rate of 100 MHz.

Concerning the decoders, the reference switching activities de-

rived from the benchmark streams cannot be used to estimate

the power of the T0 and the dual T0 BI decoders; this is be-

cause the circuits receive, as input, the encoded address streams

whose switching activities are reduced. Therefore, the switching

activities used for the estimation are derived from such streams.

Table 8 reports the total power consumption results. The power

value of the dual T0 BI encoder is approximately one order of

magnitude worse than the one of the T0 encoder for on-chip

loads up to 0:4 pF, while for higher values the di�erence is re-

duced. On the other hand, the power values of the decoders

for the T0 and dual T0 BI codes are comparable, due to the

similarity in their architectures.

Load Binary T0 Dual T0 BI
(pF) Enc/Dec Encoder Decoder Encoder Decoder

(mW) (mW) (mW) (mW) (mW)

0.01 0.1319 6.2891 3.1422 60.3139 3.6518

0.02 0.1660 6.3786 3.2043 60.4658 3.7238

0.04 0.2342 6.5579 3.3284 60.6372 3.8687

0.06 0.3023 6.7393 3.4525 60.8119 4.0176

0.08 0.3704 6.9219 3.5766 60.9895 4.1665

0.10 0.4381 7.1048 3.7088 61.1708 4.3163

0.16 0.6398 7.6538 4.1084 61.7393 4.7664

0.20 0.7742 8.0198 4.3772 62.1226 5.0682

0.30 1.1104 8.9376 5.0523 63.1054 5.8232

0.40 1.4465 9.8562 5.7274 64.1040 6.5785

0.50 1.7827 10.7749 6.4025 65.1125 7.3337

0.60 2.1188 11.6935 7.0776 66.1232 8.0889

0.70 2.4549 12.6122 7.7527 67.1388 8.8441

0.80 2.7911 13.5309 8.4278 68.1622 9.5993

0.90 3.1272 14.4496 9.1029 69.2003 10.3545

1.00 3.4633 15.3682 9.7780 70.2499 11.1098
2.00 6.8246 24.5550 16.5289 80.8256 18.6619

3.00 10.1859 33.7418 23.2798 91.5777 26.2141

4.00 13.5472 42.9286 30.0308 102.4174 33.7663

5.00 16.9085 52.1154 36.7817 113.2670 41.3184

10.00 33.7150 98.0493 70.5364 167.7545 79.0793

Table 8: Enc/Dec Power Consumption for On-Chip Loads.

4.3 Power Analysis: O�-Chip Busses

When a o�-chip system bus is considered, it is necessary to

introduce input and output pads at the chip interface. Pads

usually represent the most power consuming part of the entire

chip. The binary encoder is thus constituted only by the output

pads driving typical output loads. This same structure must be

added at the outputs of the T0 and dual T0 BI encoders. Con-

cerning the decoding circuitry, only the power dissipated by the

logic is considered in the analysis, since the power consumption

due to the input pads has shown to be negligible with respect

to the one consumed by the output pads seen by the encoders.

The reference input switching activities are applied to the three

encoders. In the binary encoder, the output pads commute at

the reference switching activities. Conversely, the T0 and the

dual T0 BI encoders receive, as input, the reference switching

activities, which are reduced at their outputs in the same man-

ner as for the on-chip case. The encoders outputs drive the

typical input capacitances of the output pads (0:01 pF for a 8

mA output pad). The reduced encoders output switching activ-

ities constitutes the switching activities applied to the output

pads, which drive huge external loads. Therefore, the major

power gains of the proposed codes derive from such reduction

in the switching activities applied to the output pads.

The T0 and the dual T0 BI decoders receive, as input, the re-

duced switching activities resulting at the corresponding output

pads, and drive typical on-chip capacitances.

Power results are reported in Table 9. By looking at the data,

we can see that the use of the T0 code is convenient for loads

between 20 and 100 pF, while for larger values the use of the

dual T0 BI code is recommended.

5 Conclusions and Future Work
A comparativeanalysis of existing low-power bus encoding tech-

niques, such as the T0 and the bus-invert codes, has allowed us

to come up with mixed encoding schemes which exploit the best

characteristics of the codes above. More speci�cally, we have

proposed the T0 BI, the dual T0, and the dual T0 BI codes,

and we have discussed their performance concerning the reduc-

tion in switching activity obtained on the multiplexed address

bus (i.e., instruction and data addresses travel on the same bus)

of the MIPS microprocessor when real programs are executed.

Load Binary T0 Dual T0 BI
(pF) Global Pads Global Pads Global

(mW) (mW) (mW) (mW) (mW)

5 43.4593 38.3835 47.8148 31.9732 95.9389

10 60.1896 53.1597 62.5910 44.2817 108.2474

15 76.9198 67.9360 77.3673 56.5902 120.5559

20 93.6501 82.7123 92.1436 68.8988 132.8645

25 110.3804 97.4885 106.9198 81.2073 145.1730

30 127.1107 112.2648 121.6961 93.5158 157.4815

40 160.5713 141.8174 151.2487 118.1329 182.0986

50 194.0318 171.3699 180.8012 142.7500 206.7157

60 227.4924 200.9224 210.3537 167.3670 231.3327

70 260.9530 230.4750 239.9063 191.9841 255.9498

80 294.4135 260.0275 269.4588 216.6012 280.5669

90 327.8741 289.5801 299.0144 241.2182 305.1839

100 361.3347 319.1326 328.5639 265.8353 329.8010

110 394.9327 348.8066 358.2379 290.5535 354.5192

120 428.5308 378.4806 387.9119 315.2718 379.2375

130 462.1288 408.1546 417.5859 339.9900 403.9557
140 495.7270 437.8285 447.2598 364.7082 428.6739

150 529.3250 467.5026 476.9339 389.4265 453.3922

Table 9: Enc/Dec Power Consumption for O�-Chip Loads.

The dual T0 BI has shown to be themost e�ective scheme, since

it has produced a 22:25% savings over the pure binary encoding,

while the T0 code| the best approach known so far | has only

given a 10.25% switching activity reduction.

We have implemented the dual T0 BI encoding/decoding logic,

and we have compared its power performance to the ones of the

binary and T0 encoders and decoders when on-chip and o�-chip

buses with di�erent capacitive loads have to be driven.

Concerning future work, we are now looking into the problem

of identifying the most appropriate encoding schemes for di�er-

ent types of memory hierarchies (e.g., main memory, L1 and L2

caches), address bus connections and I/O subsystems. As a �rst

step in this direction, we are thus working on the characteriza-

tion of existingmicroprocessors (e.g., MIPS, SPARC, PowerPC,

DEC-Alpha, PA-RISC, Intel) with respect to these architectural

options.

References

[1] P. R. Panda, N. D. Dutt, \Reducing Address Bus Transitions
for Low Power Memory Mapping," EDTC-96: IEEE Euro-
pean Design and test Conference, pp. 63-67, Paris, France,
March 1996.

[2] M. R. Stan, W. P. Burleson, \Bus-Invert Coding for Low-Power

I/O," IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 3, No. 1, pp. 49-58, March 1995.

[3] J. L. Hennessy, D. A. Patterson, Computer Architecture - A
Quantitative Approach, II Edition, Morgan Kaufmann Pub-
lishers, 1996

[4] C. L. Su, C. Y. Tsui, A. M. Despain, \Saving Power in the Con-
trol Path of Embedded Processors," IEEE Design and Test of
Computers, Vol. 11, No. 4, pp. 24-30, Winter 1994.

[5] H. Mehta, R. M. Owens, M. J. Irwin, \Some Issues in Gray
Code Addressing," GLS-VLSI-96: IEEE 6th Great Lakes
Symposium on VLSI, pp. 178-180, Ames, IA, March 1996.

[6] L. Benini, G. De Micheli, E. Macii, D. Sciuto, C. Silvano,
\Asymptotic Zero-Transition Activity Encoding for Address

Busses in Low-Power Microprocessor-Based Systems," GLS-
VLSI-97: IEEE 7th Great Lakes Symposium on VLSI, pp. 77-
82, Urbana-Champaign, IL, March 1997.

[7] L. Benini, G. De Micheli, E. Macii, M. Poncino, S. Quer,
\System-Level Power Optimization of Special Purpose Appli-
cations: The Beach Solution", ISLPED-97: IEEE/ACM In-
ternational Symposium on Low Power Electronics and De-
sign, pp. 24-29, Monterey, CA, August 1997.

[8] G. Kane and J. Heinrich, MIPS RISC Architecture, Prentice
Hall, 1994.

