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Most electronic systems, whether self-contained or embedded,
have a predominant digital component consisting of a hardware
platform which executes software application programs. Hard-
ware/software co-design means meeting system-level objectives
by exploiting the synergism of hardware and software through
their concurrent design. Co-design problems have different flavors
according to the application domain, implementation technology
and design methodology.

Digital hardware design has increasingly more similarities to
software design. Hardware circuits are often described using mod-
eling or programming languages, and they are validated and
implemented by executing software programs, which are sometimes
conceived for the specific hardware design. Current integrated
circuits can incorporate one (or more) processor core(s) and
memory array(s) on a single substrate. These “systems on silicon”
exhibit a sizable amount of embedded software, which provides
flexibility for product evolution and differentiation purposes. Thus
the design of these systems requires designers to be knowledgeable
in both hardware and software domains to make good design
tradeoffs.

This paper introduces the reader to various aspects of co-design.
We highlight the commonalities and point out the differences in
various co-design problems in some application areas. Co-design
issues and their relationship to classical system implementation
tasks are discussed to help the reader develop a perspective on
modern digital system design that relies on computer-aided design
(CAD) tools and methods.

I. INTRODUCTION

Most engineering designs can be viewed as systems,
i.e., as collections of several components whose combined
operation provides useful services. Components can be
heterogeneous in nature and their interaction may be regu-
lated by some simple or complex means. Most examples
of systems today are either electronic in nature (e.g.,
information processing systems) or contain an electronic
subsystem for monitoring and control (e.g., plant control).
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Moreover, the implementation of electronic systems and
subsystems shows often a predominant digital component.

We focus in this paper on the digital component of
electronic systems, and refer to them as (digital) systems for
brevity. The majority of such systems are programmable,
and thus consist of hardware and software components. The
value of a system can be measured by some objectives that
are specific to its application domain (e.g., performance,
design, and manufacturing cost, and ease of programmabil-
ity) and it depends on both the hardware and the software
components.Hardware/software co-designmeans meeting
system-level objectives by exploiting the synergism of
hardware and software through their concurrent design.
Since digital systems have different organizations and ap-
plications, there are several co-design problems of interest.
Such problems have been tackled by skillful designers
for many years, but detailed-level design performed by
humans is often a time-consuming and error-prone task.
Moreover, the large amount of information involved in co-
design problems makes it unlikely that human designers
can optimize all objectives, thus leading to products whose
value is lower than the potential one.

The recent rise in interest in hardware/software co-
design is due to the introduction ofcomputer-aided design
(CAD) tools for co-design (e.g., commercial simulators)
and to the expectation that solutions to other co-design
problems will be supported by tools, thus raising the
potential quality and shortening the development time of
electronic products. Due to the extreme competitiveness
in the marketplace, co-design tools are likely to play a
key strategic role. The forecast of the worldwide revenues
of integrated circuit sales (Fig. 1), and in particular for
those used in dedicated applications (Fig. 2), explains the
high demand of electronic system-level design tools, whose
volume of sales is expected to grow at a compound annual
rate of 34% in the 1993–1998 time frame, according to
Dataquest.

The evolution of integrated circuit technology is also
motivating new approaches to digital circuit design. The
trend toward smaller mask-level geometries leads to higher
integration and higher cost of fabrication, hence to the need
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Fig. 1. Forecast of the growth of electronic components. (Source:
Dataquest.)

Fig. 2. Worldwide revenues for the sales of microcontrollers and
DSP integrated circuits. The bold line shows the total growth.
(Source: ICE.)

of amortizing hardware design over large production vol-
umes. This suggests the idea of using software as a means
of differentiating products based on the same hardware plat-
form. Due to the complexity of hardware and software, their
reuseis often key to commercial profitability. Thus complex
macrocells implementinginstruction-set processors(ISP’s)
are now made available as processorcores (Fig. 3 [38]).
Standardizing on the use of cores or of specific processors
means leveraging available software layers, ranging from
operating systems to embedded software for user-oriented
applications. As a result, an increasingly larger amount
of software is found on semiconductor chips, which are
often referred to assystems on silicon. Thus hardware (e.g.,
cores) and software (e.g., microkernels) can be viewed as
commodities with largeintellectual propertyvalues. Today
both the electronic market expansion and the design of
increasingly complex systems is boosted by the availability
of these commodities and their reuse as system building
blocks.

The recent introduction offield-programmable gate array
(FPGA) technologies has blurred the distinction between
hardware and software. Traditionally a hardware circuit
used to be configured at manufacturing time. The functions

of a hardware circuit could be chosen by the execution
of a program. Whereas the program could be modified
even at run-time, the structure of the hardware was in-
variant. With field-programmable technology it is possible
to configure the gate-level interconnection of hardware
circuits after manufacturing. This flexibility opens new
applications of digital circuits, and new hardware/software
co-design problems arise. For example, one (or more)
FPGA circuits may be configured on-the-fly to implement
a specific software function with better performances than
executing the corresponding code on a microprocessor.
Subsequently, the FPGA can bereprogrammed to perform
another specific function without changing the underlying
hardware. Thus from a user perspective, a reprogrammable
hardware board can perform a function indistinguishable
from that of a processor. Nevertheless the programming
mechanisms and the programmer’s view of the hardware
is very different.

Hardware/software co-design is a complex discipline, that
builds upon advances in several areas such as software
compilation, computer architecture andvery large scale
integration(VLSI) circuit design. Co-design is perceived as
an important problem, but the field is fragmented because
most efforts are applied to specific design problems. Thus
co-design has a different flavor according to the context in
which it is applied. For example, co-design can be seen as a
management discipline to achieve complex system products
[15].

It is the purpose of this special issue to shed some
light on the recent developments of co-design in different
application domains. In this paper, we want to put several
co-design problem in perspective, to show differences and
similarities, as well as to show the cross fertilization in
different scientific fields. For this reason, we describe first
distinguishing features of electronic systems that are useful
to classify co-design problems. We consider next system-
level co-design issues for different kinds of electronic
systems and components. Eventually, we review the fun-
damental algorithmic approaches for system-level design
and organization of hardware/software systems, that form
the foundations for system-level design tools.

II. DISTINGUISHING FEATURES OFELECTRONIC SYSTEMS

We associate co-design problems with the classes of
digital systems they arise from. We attempt to characterize
these systems using some general criteria, such as domain
of application, degree ofprogrammability, and implemen-
tation features.

A. Application Domains

A digital system may be providing a service as a self-
contained unit, or as a part of a larger system. A traditional
computer (with its peripherals) is an example of the first
kind of systems. A digital control system for a manufac-
turing plant is an example of the latter case. Systems that
fall in this second category are commonly referred to as
embedded systems.
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Fig. 3. Example of an integrated circuit with programmable cores. The VCP chip has two
processors: the VC core, which is based on the MIPS-X processor, is placed in the top right
corner, while the VP+ DSP processor occupies the top left part of chip above a memory array.
(Courtesy of Integrated Information Technology.)

The term embedded means being part of a larger unit
and providing a dedicated service to that unit. Thus a
personal computer can be made the embedded control
system for manufacturing in an assembly line, by providing
dedicated software programs and appropriate interfaces to
the assembly line environment. Similarly, a microprocessor
can be dedicated to a control function in a computer
(e.g., keyboard/mouse input control) and be viewed as an
embedded controller.

Digital systems can be classified according to their prin-
cipal domain of application. Examples of self-contained
(i.e., nonembedded) digital systems are information pro-
cessing systems, ranging from laptop computers to super-

computers, as well as emulation and prototyping systems.
Applications of embedded systems are ubiquitous in the
manufacturing industry (e.g., plant and robot control), in
consumer products (e.g., intelligent home devices), in vehi-
cles (e.g., control and maintenance of cars, planes, ships),
in telecommunication applications, and in territorial and
environmental defense systems.

Digital systems can be geographically distributed (e.g.,
telephone network), locally distributed (e.g., aircraft control
with different processing units on a local area network), or
lumped (e.g., workstations). In this paper, we consider a
system to be lumped when it is concentrated in a physical
unit, although it may involve more than one processing unit.

DE MICHELI AND GUPTA: HARDWARE/SOFTWARE CO-DESIGN 351



Fig. 4. Some application domains of electronic systems.

B. Degree of Programmability

In most digital systems, the hardware is programmed by
some software programs to perform the desired functions.
(Nonprogrammable hardwired systems are few and not
relevant to this survey.) Hence the abstraction level used for
programming models is the means of interaction between
hardware and software. There are two important issues
related to programming: 1) who has access to program-
ming the system and 2) the technological levels at which
programming is performed.

1) Access to Programming:To understand the extent to
which system programmability has an effect on system
design, we distinguish end-users from application devel-
opers, system integrators, and component manufacturers.
Historically, each of these groups represents a separate
industry or a separate organization. The application devel-
oper requires systems to be retargetable so as to port a
given application across multiple hardware platforms. The
chief use of system programmability for a system integrator
is in ensuring compatibility of system components with
market standards. Finally, the component manufacturer is
concerned with maximizing component or module reuse
across its product lines.

Let us take the personal computer as an example. The
end-user programming is often limited to application-level
programming (such as a spreadsheet) or scripting. An
application developer relies on the programming language
tools, operating system, and the high-level programming
environment for application development. Most of these
ingredients have, to a large extent, become off-the-shelf
commodity products for the personal computer industry,
bringing programming closer to the end-user as well. Com-
ponent manufacturing for personal computers is driven
by interconnection bus and protocol standards. Increasing
semiconductor densities have resulted in coalescing system
components, even with very diverse functionalities, onto
single chips, leading to fewer but more versatile system
hardware components.

When considering embedded systems, the end-user has
limited access to programming because most software is
already provided by the system integrator, who is often also
the application developer. For example, the motion-control
system of a robot arm for use in manufacturing contains
embedded software for coordinating the movement of the

different mechanical parts. The user can program only the
moves and the actions.

2) Levels of Programming:Digital systems can be pro-
grammed at different levels, namely theapplication, in-
struction, or hardwarelevels. The highest abstraction level
is the application level, where the system is running ded-
icated software programs that allow the user to specify
desired functionality options using a specialized language.
Examples range from programming a videocassette recorder
(VCR) to setting navigation instructions in an automated
steering controller of a ship.

Most digital systems use components with aninstruction
set architecture(ISA). Examples of such components are
microprocessors, microcontrollers, and programmabledig-
ital signal processors(DSP’s). The instruction set defines
the boundary between hardware and software, by providing
a programming model of the hardware. Instruction-level
programming is achieved by executing on the hardware the
instructions supported by the architecture. It is important
to note that in some systems the end-user can compile
programs to execute on the ISA, as in the case of computers.
In other systems, such as in some embedded systems, the
ISA is not visible to the user because it runs embedded
software. In the former case, the compiler must have user-
friendly features (e.g., descriptive diagnostic messages) and
adequate speed of compilation, while in the latter case the
compiler algorithms can afford to be more computationally
expensive in the interest of a better final result [74] (i.e.,
more compact machine code).

Hardware-level programming means configuring the
hardware (after manufacturing) in a desired way. A
simple and well-known example is microprogramming,
i.e., determining the behavior of the control unit by a
microprogram, which can be stored in binary form in a
memory. Emulation of other architectures can be achieved
by altering the microprogram. Today microprogramming
is common for DSP’s, but not for general purpose
microprocessors using RISC architectures [52] mainly due
to performance reasons.

Reconfigurablecircuits are the limiting case of hardware-
level programming. Field-programmable technology allows
us to configure the interconnections among logic blocks
and to determine their personality. Reconfiguration can be
global or local (i.e., the entire circuit or a portion thereof can
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be altered), and may be applied more than once. Whereas
microprogramming allows us to (re)configure the control
unit, reconfigurable systems can be modified in both the
data path and controller. Moreover, such circuits need not
to be partitioned into data path and control unit, but they
can be organized with wide freedom.

Overall, reconfigurabilty increases the usability of a dig-
ital system, but it does not increase its performances
except on tailored applications. For general-purpose com-
puting, top performance is achieved today by superscalar
RISC architectures [52], which are programmed at the
instruction level. For dedicated applications, hard-wired
(nonprogrammable)application-specific integrated circuits
(ASIC’s) achieve often the best performance and the lowest
power consumption. In both cases, hardware design may
be expensive, because ofnonrecurrent engineering(NRE)
costs, and not flexible enough to accommodate engineering
changes and upgrades. Thus the challenge for reconfig-
urable design technologies is to arrive at a competitive level
of performance, while exploiting the hardware flexibility
in addressing other important system-level issues, such
as support for engineering changes, self-adaptation to the
environment, and fault-tolerance.

C. Implementation Features

System implementation deals with circuit design style,
manufacturing technology and integration level. We touch
briefly on these issues, because we want to maintain a high-
level view of the problem which is fairly independent of
the physical implementation.

Digital systems rely on VLSI circuit technology. The cir-
cuit design style relates to the selection of circuit primitives
(e.g., choice of library in a semicustom technology), clock-
ing strategy (e.g., single/multiple clocks and asynchronous),
and circuit operation mode (e.g., static and dynamic).

A system may have components with different scale
of integration (e.g., discrete and integrated component)
and different fabrication technologies (e.g., bipolar and
CMOS). The choice of hardware technology for the system
components affects the overall performance and cost, and
therefore is of primary importance.

System-level field programmability can be achieved by
storing programs in read/write memories and/or exploiting
programmable interconnections. In the former case, the
software component is programmed, while in the latter
the hardware is configured. With field-programmable tech-
nologies, circuit configuration is achieved by programming
connections using transistors driven by memory arrays
[110] or by antifuses [44]. Circuits of the first type are
reprogrammable and will be considered in this survey,
while the others can be programmed only once.

When considering co-design problems for lumped
systems, we can distinguish between systems consisting
of components (like ASIC’s, processors, and memories)
mounted on a board or chip carrier and single-chip systems
consisting of an ASIC with one or more processor cores
and/or memories. The programmable core is usually
a processor provided as a macro-cell in the ASIC

Fig. 5. Scheme of the essential parts of an embedded control
system with one (or more) ISP(s).

implementation technology [38, Fig. 3]. Whereas a core
may provide the same functionality as the corresponding
standard part, cost and performance considerations may bias
the choice of integration level. The advantages of higher
integration are usually higher reliability, lower power-
consumption budget, and increased performance. The last
two factors come from the lack of I/O circuitry in the
core and its direct connection to the application-specific
logic. The disadvantages are larger chip sizes and higher
complexity in debugging the system.

III. GENERAL CO-DESIGN PROBLEMS

AND DESIGN APPROACHES

We consider now different facets of co-design. Namely,
we present first the major objectives in embedded system
design. We describe next the design of ISA’s and their use
in both self-contained information processing systems and
embedded systems. Last but not least, we address the major
co-design issues for reconfigurable systems.

A. Co-Design of Embedded Systems

Embedded systems are elements of larger systems.
Some embedded systems provide monitoring and con-
trol functions for the overall system (e.g., vehicular
control, manufacturing control), while others perform
information-processing functions within a network (e.g.,
telecommunication systems).

Embedded control systems usually regulate mechanical
components viaactuators and receive input data pro-
vided bysensors. Single-chip implementation of embedded
controllers often integrate on the same chip analog to
digital conversion (and vice versa) of some I/O signals and
sometimes the sensors themselves (e.g., accelerometer for
airbag control). Often embedded control systems have also
a data-processing component (Fig. 5).
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Control systems arereactive systems, because they are
meant to react to stimuli provided by the environment.Real-
time control systems [99] implement functions that must
execute within predefined time windows, i.e., satisfy some
hard or soft timing constraint [117], [118]. Timers are thus
important components of real-time controllers.

The required functions and size of embedded controllers
may vary widely. Standard programmable microcontrollers
and microcontroller cores provide usually low-cost and
flexible solutions to a wide range of problems. Neverthe-
less, control systems that are either complex (e.g., avionic
controls) or that require high-throughput data processing
(e.g., radio navigation) need specific designs that leverage
components or cores such as microprocessors or DSP’s.

Whereas performance is the most important design crite-
rion for information processing systems,reliability, avail-
ability, and safety are extremely important for control
systems. System reliability measures the probability of
correct control operation even in presence of failures of
some component, whereas availability contemplates the
on-line repair of faulty components. Safety measures the
probability of avoiding catastrophic failures. For example,
the availability of a nuclear steam supply system is the
probability (as a function of time) that a nuclear reactor
can produce energy under a scheduled maintenance, while
its safety is the probability that the system has no failure
leading to a hazardous situation for the operators and the
environment.

Since control functions can be implemented both in
hardware and in software, specific design disciplines must
be used to insure reliability, availability, and safety. Some
formal verification techniques for embedded controllers
are nowadays available to insure design correctness by
comparing different representation levels and assessing
system properties. System-level testing techniques must be
used to check the correctness of operation of the physical
system implementation. Functional redundancy may be
used to enhance reliability.

Specific co-design problems for embedded systems
include modeling, validation, and implementation. These
tasks may be complex because the system function may
be performed by different components of heterogeneous
nature, and because the implementation that optimizes the
design objectives may require a specific hardware/software
partition. The design of embedded control systems is
surveyed in [36].

Embedded systems for telecommunication applications
involve data processing, where data can be a digital form
of audio and video information. Data compression, de-
compression, and routing is often performed with the aid
of programmable processors of various kinds. Co-design
issues in this domain are described in [17], [43], and [88].

B. Co-Design of ISA’s

The concept of ISA plays a fundamental role in digital
system design [52]. An ISA provides a programmer’s view
of hardware by supporting a specific programming model.
The definition of an instruction set permits the parallel

development of the hardware and of the corresponding
compiler. Components based on ISA’s, i.e., (e.g., micro-
processors, DSP’s, and programmable microcontrollers)
are commonly used in (self-contained) information pro-
cessing systems and in embedded systems. Therefore a
good ISA design is critical to achieving system usability
across applications. In addition, increasing applications
now demand processor performance that pushes the limits
of semiconductor technology. Performance critical design
of processors requires combined design of hardware and
software elements.

The primary goal of co-design in ISP development is
to optimize utilization of the underlying hardware. This
is done by customizing the software development rang-
ing from application programs to operating systems. The
operating system is the software layer closest to the un-
derlying hardware, and its role is different in computing
and embedded systems (see Section IV-B3) The extent of
the operating system layer in embedded systems varies
from specialized real-time kernels [99] to lightweight run-
time schedulers [45], according to the design goals and
requirements.

Compiler development should start as early as ISA defini-
tion. Indeed, compilers are needed for the evaluation of the
instruction-set choices and overall processor organization,
in order to verify whether the overall performance goals
are met [53]. Whereas retargetable compilers are useful
in the architectural development phase, optimizing com-
pilers are key to achieving fast-running code on the final
products. In addition, speed of compilation is important
for information processing applications (e.g., computers),
where the end-user programs the system at the instruction-
level (i.e., via programs in programming languages). Such
a requirement is less important for applications of ISA’s
within embedded systems, where the user has limited access
to programmability, as mentioned in Section II-B.

The organization of modern general-purpose processors
exploits deep pipelines, concurrency, and memory hierar-
chies. Hardware/software trade-off is possible in pipeline-
control [57] and cache-management mechanisms [53]. The
selection of an instruction set is usually guided by perfor-
mance and compatibility goals. This task is generally based
on experience and on the evaluation of software simulation
runs, although recent efforts have aimed at developing tools
for computer-assisted instruction set selection [55].

Let us now consider the use of components based on
ISA’s for embedded data-processing systems. Such sys-
tems often use dedicated software programs with spe-
cific instruction profiles. Therefore significant performance
improvements may be achieved by selecting particular
instruction sets which match the application requirements.
In some application domains, such as data processing for
telecommunications (see Fig. 4), it has been shown prac-
tical to replace standard processors byapplication-specific
instruction set processors(ASIP’s), which are instruction-
level programmable processors with an architecture tuned
to a specific application [43], [88]. In an ASIP design, the
instruction set and hardware structure are chosen to support
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efficiently the instruction mix of the embedded software of
the specific application. For example, ASIP’s feature par-
ticular register configurations and specific interconnections
among the registers, busses, and other hardware resources.

It is possible to view ASIP’s as intermediate solutions
between ISP’s and ASIC’s. ASIP’s are more flexible than
ASIC’s, but less than ISP’s. Nevertheless, they can be
used for a family of applications in a specific domain.
The performance of an ASIP on specific tasks can be
higher than an instruction-set processor (because of the
tuning of the architecture to the instruction mix) but it
is usually lower than an ASIC. Opposite considerations
apply to power consumption. The ASIP design time and
nonrecurring engineering costs can be amortized over a
larger volume than an ASIC, when the ASIP has multiple
applications. Moreover, engineering changes and product
updates can be handled graciously in ASIP’s by repro-
gramming the software and avoiding hardware redesign.
Unfortunately, because an ASIP is a specific architecture,
it requires a compiler development which adds to the
nonrecurring engineering costs. Such a compiler must also
produce high-quality machine code to make the ASIP
solution competitive. On the other hand, compilation speed
is not a major requirement, since most ASIP-based system
programmed (once only) by the manufacturer and not by
the end-user.

Differently from general-purpose and digital-signal pro-
cessors, ASIP’s may be designed to support fairly different
instruction sets, because compatibility requirements are
less important and supporting specific instruction mixes
is a desired goal. Unfortunately the price of the flexi-
bility in choosing instruction sets is the need of devel-
oping application-specific compilers. Despite the use of
retargetable-compilertechnology [79], the computer-aided
development of compilers that produce high-quality code
for specific architectures is a difficult problem and solved
only in part to date, namely for fixed-point arithmetic oper-
ations. Problems and solutions in retargetable compilation
are addressed by [43] and [88] in this issue.

C. Co-Design of Reconfigurable Systems

Reconfigurable systems exploit FPGA technology, so that
they can be personalized after manufacturing to fit a spe-
cific application. The operation of reconfigurable systems
can either involve a configuration phase followed by an
execution phase or have concurrent (partial) configuration
and execution. In the latter case, the systems are called
evolvable.

We consider first nonevolvable systems and their applica-
tions to the acceleration of computation and to prototyping.
In both cases, the overall digital systems include a reconfig-
urable subsystem that emulates the software or the hardware
execution, and sometimes a combination of both.

Let us turn our attention to co-design techniques that can
accelerate software execution. There are often bottlenecks
in software programs that limit their performance (e.g.,
executing transcendental floating-point operations or inner
loops where sequences of operations are iterated). ASIC

coprocessors can reduce the software execution time, when
they are dedicated to support specific operations (e.g.,
floating-point or graphic coprocessors) or when they im-
plement the critical loops in hardware while exploiting the
local parallelism. Whereas ASIC coprocessors accelerate
specific functions, coprocessors based on reconfigurable
hardware can be applied to the speedup of arbitrary soft-
ware programs with some distinctive characteristics (e.g.,
programs with parallelizable bit-level operations).

One of the first examples of programmable coprocessors
is provided by theprogrammable active memories(PAM’s)
[13], which consist of a board of FPGA’s and local memory
interfaced to a host computer. Two models of PAM’s,
namedPeRLe-0and PeRLe-1, were built. They differ in
the number and type of FPGA used, as well as operating
frequency. The hardware board forPeRLe-1is shown in
Fig. 6 [112].

To accelerate the execution of a program with a PAM,
the performance-critical portion of the program is first
extracted and compiled into the patterns that configure
the programmable board. Then, the noncritical portion of
the program is executed on the host, while the critical
portions are emulated by the reconfigurable subsystem.
Experimental results show a speedup of one to two orders of
magnitude, on selective benchmark programs, as compared
to the execution time on the host [13].

The major hardware/software co-design problems consist
of identifying the critical segments of the software programs
and compiling them efficiently to run on the programmable
hardware. The former task is not yet automated for PAM’s
and is achieved by successive refinement, under constraints
of communication bandwidth and load balancing between
the host and the programmable hardware. The latter task
is based on hardware synthesis algorithms, and it benefits
from performance optimization techniques for hardware
circuits [13], [30]. Several other systems for software
acceleration have been implemented [7], [86].1

A different application of reconfigurable systems is in
computer-aided prototyping. In this case, we are inter-
ested in validating a target system yet to be manufactured
by configuring and executing a prototype implemented
with a reconfigurable medium. Prototypes provide design
engineers with more realistic data on correctness and per-
formance than system-level simulation [81], thus reducing
the likelihood of an expensive redesign of the target system.

Prototyping of complex digital systems including mul-
tiple hardware components and software programs is ap-
pealing to designers, because it allows testing software
programs on hardware, while retaining the ability to change
the hardware (and software) implementation concurrently.
Once the hardware configuration has been finalized, it can
be mapped onto a “hard” silicon implementation using syn-
thesis systems [30] that accept as inputs hardware models
compatible with those used by the emulation systems (e.g.,
VHDL [91] and Verilog HDL [107] models).

1See URL http://www.io.com/˜guccione/HW_list.html for a comprehen-
sive list.
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Fig. 6. The PeRLe-1implementation. (Courtesy of P. Bertin.)

Evolvable systems [97] are digital systems where recon-
figuration of one of its parts is concurrent with execution.
One of the goals of evolvable systems is to adapt auto-
matically to the environment. As an example, consider a
network interface unit, that receives and retransmits data
with different formats. Upon sensing the protocol and
format of the incoming data, such a unit configures itself to
optimize data translation and transmission. Whereas such a
unit could be implemented with nonevolvable technology,
the ability to reconfigure the hardware may be the key to
sustain higher data rates.

Fault tolerance in evolvable systems can be obtained by
detecting the malfunctioning unit, and by reconfiguring a
part of the system to regenerate a fault-free replacement
of the faulty unit. This can be achieved under several
assumptions, some of which are typical of fault-tolerant
system design, including that of having enough spare re-
configurable circuits to implement the faulty unit on-the-fly.

Evolvable systems are the subject of several research
efforts [97]. An interesting application of reconfigurable
hardware for fault-tolerance applications isembryonics
(embryological electronics) [28], [78], a discipline where
biological models of organization are used for electronic
system design. There are a few implementations of em-
bryonic systems, relying on this general implementation
strategy [78]. The underlying hardware is a memory-based
field-programmable circuit that uses a decision diagram
structure. The hardware is organized as a rectangular matrix

of cells, each one addressable by its coordinates and com-
municating with its neighbors. The overall system function
is mapped onto the programmable cells. Circuit configu-
ration is performed by feeding each cell with a compiled
software program (bit stream) containing the functionality
of the entire system. This parallels the organization of
multicellular living beings, where the genome of each cell
is a repository of information of the entire being. The
program is transmitted from an initial cell to the others.
Then each cell extracts the portion of the overall program
pertinent to its operation (using the coordinate information)
and configures itself. This parallels the synthesis of a living
cell from the gene structure.

After a boot phase in which the information is transmitted
to all cells and the cells self-configure, the system can start
operating. Upon failure of a cell in providing the required
function, the neighboring cells readapt their operations so
that the faulty cell is replaced by a working clone, and the
overall system function is preserved. This reconfiguration,
called cicatrization, allows the system to recover from
failures after a finite delay.

Interesting applications of embryological circuits include
embedded system applications with high reliability require-
ments, such as control of unmanned spacecrafts or of robots
operating in hostile environments. Hardware/software co-
design problems relate to how software programs are used
to configure and program the underlying hardware circuit,
as well as to how the reconfigurable circuit is organized.
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IV. DESIGN OF HARDWARE/SOFTWARE SYSTEMS

We consider here the high-level (i.e., technology inde-
pendent) steps in the design of hardware/software systems.
We consider the problem in its breadth, rather than in its
depth, to highlight similarities and differences in co-design
of digital systems of different nature. We also draw parallels
among techniques applicable to hardware and software
(e.g., scheduling). We refer the interested reader to the other
articles in this issue for an in-depth analysis applicable to
different domains.

The design of hardware/software systems involvesmod-
eling, validation, andimplementation. We call modeling the
process of conceptualizing and refining the specifications,
and producing a hardware and software model. We call
validation the process of achieving a reasonable level of
confidence that the system will work as designed, and we
call implementation the physical realization of the hardware
(through synthesis) and of executable software (through
compilation).

When considering embedded systems, different modeling
paradigms and implementation strategies may be followed
[36]. We exclude here pure hardware (e.g., ASIC) and
pure software (e.g., embedded software running on an ISA)
implementations, because we concentrate on co-design.
Therefore, the overall model of an embedded system in-
volves both hardware and software. The modeling style
can behomogeneousor heterogeneous. In the former case,
a modeling language (e.g., the C programming language)
or a graphical formalism (e.g., Statecharts [51]) is used
to represent both the hardware and software portions. A
hardware/softwarepartitioning problem can then be stated
as finding those parts of the model best implemented in
hardware and those best implemented in software. Parti-
tioning can be decided by the designer, with a successive
refinement and annotation of the initial model, or deter-
mined by a CAD tool. We will consider computer-aided
partitioning in more detail in Section IV-A.

When using a heterogeneous modeling style, the hard-
ware/software partition is often outlined by the model
itself, because hardware and software components may
be expressed in the corresponding languages. Neverthe-
less, system designers may want to explore alternative
implementations of some components. For example, the
first release of a product may contain a sizable software
component (for time to market and flexibility reasons)
while later releases may implement part of this software
in hardware for performance and/or cost reasons. Tools
which support implementationretargetinghelp the designer
avoiding manual translation of the models or parts thereof.
A few CAD environments for heterogeneous design and
retargeting have been realized [8], [24], [26], [29], [64],
[114].

ISA’s are modeled at different levels. Instruction sets
provide the essential information about the architecture,
supporting both hardware and software development. The
processor organization is usually described in ahardware
description language(HDL) for hardware synthesis pur-

poses, while processor models (e.g., bus functional models)
are often used for cosimulation.

In the case of reconfigurable systems, we need to distin-
guish between modeling the target application and modeling
the host. The first task is pertinent to the system user, while
the second to its developer. Thus, these two modeling tasks
are very different aspects of co-design.

As systems become more complex, validation is nec-
essary to insure that correct functionality and required
performance levels are achieved in the implementation
of a system model. Moreover, validation takes different
flavors according to the system’s application domain. For
example, satisfaction of performance objectives (in addition
to correctness) is extremely important in processor design.
Performance validation is often based on cosimulation of
hardware and software [53]. On the other hand, embedded
controllers may have less stringent performance require-
ments to be validated, but their correctness of operation
must be verified under all possible environmental condi-
tions, to insure overall system safety levels [36].

The implementation of a hardware/software system may
involve several subtasks, the major being hardware syn-
thesis and software compilation. Both topics are complex
and several references describe them in depth [2], [30].
We review in Sections IV-A–B techniques affecting the
macroscopic system implementation characteristics, and in
particular the boundary between hardware and software.
Namely, we focus our attention on: 1) partitioning and
allocation of system functions to hardware and software and
2) scheduling hardware operations, program instructions
and software processes. These two topics addresswhereand
whenthe system functions are implemented respectively.

A. Hardware/Software Partitioning

The partition of a system into hardware and software is
of critical importance because it has a first order impact
on the cost/performance characteristics of the final design.
Therefore any partitioning decision, performed either by
a designer or by a CAD tool, must take into account the
properties of the resulting hardware and software blocks.

The formulation of the hardware/software partitioning
problem differs according to the co-design problem being
confronted with. In the case of embedded systems, a
hardware/software partition represents a physical partition
of system functionality into application-specific hardware
and software executing on one (or more) processor(s).
Various formulations to this partitioning problem can be
compared on the basis of the architectural assumptions,
partitioning goals and solution strategy. We consider each
of these issues in detail in the next subsections.

When considering general purpose computing systems,
a partition represents a logical division of system func-
tionality, where the underlying hardware is designed to
support the software implementation of the complete system
functionality. This division is elegantly captured by the
instruction set. Thus instruction selection strongly affects
the system hardware/software organization.
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In the case of reconfigurable systems, the flavor of
the partitioning problem depends on the available prim-
itives. For systems consisting of arrays of FPGA chips
only, partitioning the system function into the components
corresponds to performing technology mapping [16]. On
the other hand, for systems consisting of processors and
FPGA components, partitioning involves both a physical
partition of system functionality (as in the case of embedded
systems) and mapping.

1) Architectural Assumptions:Since usually embedded
systems are implemented by processors and application-
specific hardware, the most common architecture in these
systems can be characterized as one ofcoprocessing, i.e., a
processor working in conjunction with dedicated hardware
to deliver a specific application. The particular implemen-
tation of the coprocessing architecture varies in the degree
of parallelism supported between hardware and software
components. For instance, the coprocessing hardware may
be operated under direct control of the processor, which
stalls while the dedicated hardware is operational [37], or
the coprocessing may be done concurrently with software
execution [47]. Similarly, the choice of one (or more than
one) processor(s) for the target architecture strongly affects
the partitioning formulation [11]. As an example [77],
an evaluation of possible coprocessing architectures for
a three-dimensional (3-D) computer graphics application
leads to an architecture where a processor controls
the application-specific coprocessor which maintains its
independent data storage. The reported speedup varies
from 1.32 to 2.0 across different benchmarks.

The hardware/software interface defines another architec-
tural variable that strongly affects the partitioning problem
formulation. It is common to assume that communication
operations are conducted using memory-mapped I/O by
the processor [26], [49]. However, memory-mapped I/O
is often an inefficient mechanism for data transfer [63].
More efficient methods, including dedicated device drivers,
have been considered for co-processing architectures [21],
but their relation to partitioning has not been articulated
yet. Yen and Wolf [119] developed analysis and synthesis
methods of bus-oriented communication schemes among
processing elements. Other researchers [84] use explicit
scheduling of the communication operations in the parti-
tioning loop to improve the quality of the resulting partition
in terms its ability to satisfy external timing constraints.

2) Partitioning Objectives:Coprocessing architectures
are often chosen to improve the system performance in
executing specific algorithms [5], [34]. Accordingly, in
some approaches partitioning seeks to maximize the overall
speedup for a given application [13], [37], [63], [108]. The
speedup estimation is almost always done by a profiling
analysis that takes into account typical data sets over
which the application behavior is estimated. Due to this
data dependence, in some application areas the overall
speedup may not be a well-defined metric. Furthermore, in
some applications and particularly in those with real-time
response requirements, it may not be a useful metric either.
In such cases, metrics such as size of implementation

and timing constraint satisfaction are used to drive the
partitioning subtask. For instance, partitioning is used to
improve the hardware utilization by pipelining multiple
functions [14].

Constrained partitioning formulations often use capacity
constraints, such as size of individual hardware or software
portions, to generate a physical division of functionality
such that each block can be implemented in a single compo-
nent. This capacity-constrained partitioning formulation is
commonly used in system prototyping applications, where
an application is mapped onto multiple FPGA components
by a partitioning method [16].

Performance-constrained partitioning formulations focus
either on global constraints (such as overall latency) [65], or
on the satisfaction of local timing constraints between op-
erations [45]. In this case the partitioning goal is to reduce
system cost by migrating part of the system functionality to
software, thus reducing the application-specific hardware to
implement, while satisfying the performance requirements.

3) Partitioning Strategies:A common misconception in
partitioning formulations is that automated methods are
the only viable approach to solving partitioning prob-
lems when using CAD tools. Often a determination of
hardware versus software implementation of a specific
functionality is done at levels of abstraction that are not
even modeled in system specifications. In the absence
of requisite modeling capability, the system partitioning
simply can not be carried out using automated tools. Thus
there exists a strong relationship between the models used
for capturing system functionality and the abstraction level
at which the partitioning is carried out. Even when it
is possible to create a detailed mathematical model of
the partitioning problem, the complexity of the resulting
formulation renders it useless for conventional algorithmic
methods. Thus we will consider in this section both heuris-
tic approaches and a problem decomposition strategy to
handle the complexity of the partitioning problem under
some architectural assumptions.

Given a specific architecture, partitioning of a system-
level functional description results in a labeling of its
tasks as hardware or software operations. The exact solu-
tion of such a partitioning problem, even in the simplest
cases, requires a solution to computationally intractable
problems [41]. In an attempt to mathematically model
the variables affecting the partitioning problem,integer
programming(IP) and integer linear programming(ILP)
formulations have been proposed recently [11], [42], [84].
Comparison of mathematical programming approaches to
hardware/software partitioning is difficult, because the qual-
ity of results is often strongly affected by the parametric
accuracy of the variables used and by the complexity of
the cost/performance model.

Heuristic approaches to partitioning consist primarily of
two strategies:constructive methods such as clustering
techniques [9], [33] anditerative methods such as network
flow [101], binary-constraint search [111], and dynamic
programming [63]. By far, the most used methods are based
on variable-depth search methods such as variants of the
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Kernighan–Lin (KL) migration heuristics, or probabilistic
hill-climbing methods such as simulated-annealing or ge-
netic algorithms. Ernstet al. [37] used profiling results
on a C-like description to estimate the potential speedup
in extracting blocks of code for hardware implementation.
The actual selection of code blocks for hardware is done by
a simulated annealing algorithm that is used to maximize
overall speedup. Reported results indicate speed-up of up
to a factor of three on achromakeyalgorithm for HDTV
[37]. Design space search methods, such as using KL’s
algorithm, are often used following a constructive initial
solution to arrive at a feasible solution that meets imposed
cost/performance constraints. Reference [45] presents a
KL-based algorithm that is used to drive the partition
toward meeting timing constraints. Vahidet al. [111] use
a combination of clustering followed by binary-constraint
search that dynamically adjusts the optimization function
balance between performance and hardware size as the
algorithm progresses to minimize size of hardware while
meeting constraints. Another similar approach [65] uses
a composite objective function (taking time criticality and
local affinity into account) to drive the partition. The results
are shown to be qualitatively close to optimal while taking
much less computing time.

Let us now examine what makes the problem of parti-
tioning hard. The partitioning and synthesis subtasks are
closely interrelated. The cost function of a partitioning
problem needs to be evaluated using estimates of the
resulting hardware and software. However, the abstrac-
tion level at which partitioning is carried out is so high
that only rough estimates are available. As an example,
consider a hardware/software partitioning problem whose
objective is to maximize the application speedup under a
constraint on the hardware size. The results of operation
scheduling can be used to better estimate the effect of
partitioning on the overall latency, and more importantly on
the communication cost. This information can be used to
select operations for partitioning that results in maximum
overall speedup. On the other hand, partitioning a set of
scheduled tasks would sacrifice the flexibility of optimizing
the communication cost. This dilemma is addressed directly
[84] using an integer programming formulation for the
partitioning problem that uses an approximate schedule of
operations. Solution to this IP programming is followed by
a solution to the IP formulation of the scheduling problem
that updates the schedule.

The above solution points to a problem decomposition
strategy that is a straightforward extension of the decou-
pling of scheduling and binding in high-level synthesis [30].
In principle, task partitioning, scheduling, and binding to
resources should be performed concurrently. Nevertheless,
most practical approaches serialize these tasks, while some
suggested interactive and iterative approached to partition-
ing and synthesis [62], [68].

Let us consider first the case where scheduling is fol-
lowed by concurrent binding/partitioning subtasks. An ex-
ample of this approach targets pipelined ASIP’s [14]. Parti-
tioning is done simultaneously with binding, and the clock-

cycle constraint of partitioning is derived from pipeline
scheduling done prior to partitioning. This approach works
well in cases where the objective of partitioning is to
minimize hardware resource requirements. A scheduled
input identifies the temporally mutually exclusive oper-
ations that can be implemented on a common resource.
The partitioner can use the schedule information to divide
operations into compatible groups such that binding subtask
is able to maximize resource utilization. Such designs are
typically resource dominated, therefore, an optimal resource
utilization results in reduction of overall size.

The approach of applying partitioning prior to sched-
uling/binding is fairly common. A difficulty with this
approach is the loss of parametric accuracy and controlla-
bility of the final result since the partitioning decisions are
made early on. As a result most methods in this category
either rely on extensive profiling or preprocessing of the
input in order to make intelligent decisions about the hard-
ware versus software implementations. Eles [35] presents
a two-stage partitioning approach where a prepartitioning
of VHDL input is followed by a detailed partitioning
using simulated annealing. Constructive methods are quite
popular to derive initial hardware/software grouping. For
instance, different forms of clustering methods based on
similarity measures [9] or closeness criteria [4], [8] are used
to group together operations into hardware and software
parts.

In addition to handling the strong relationship between
different implementation subtasks, a partitioning problem
formulation faces the classical dilemma of having to choose
between accurate performance/cost measures on partition
results versus the efficiency of the partitioning algorithm
that determines the extent of design space search. While
good estimation methods for hardware performance and
size exist, the software component is generally character-
ized by a significant variability in performance parameters
primarily due to architectural features such as caches and a
very strong dependence of delay on the input data values.
Recent research effort in this direction has been directed
at accurate modeling of software delay using analysis of
control paths [72], [87], [93], and program annotations
[82]. Architectural modeling for software uses pipelining
[120], instruction caches [73] and bus-activity using DMA
[60]. These continuing efforts have successfully improved
the estimation accuracy to be within 50–100% of the
actual worst-case delay. The need for timing predictability
continues to adversely affect the design of tightly con-
strained systems to such an extent that many systems use
distressingly simple architectures (such as turning off cache
memories), thus rarely exploiting the peak performance of
the underlying hardware in real applications.

B. Scheduling

The schedulingproblem has many facets. Scheduling
algorithms have been developed in both the operation
research and computer science community, with different
models and objectives. The techniques that are applicable
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today to the design of hardware and software systems draw
ideas from both communities.

Generally speaking, hardware and software scheduling
problems differ not just in the formulation but in their
overall goals. Nevertheless, some hardware scheduling al-
gorithms are based on techniques used in the software
domain, and some recent system-level process schedul-
ing methods have leveraged ideas in hardware sequenc-
ing.

Scheduling can be loosely defined as assigning an ex-
ecution start time to eachtask in a set, where tasks are
linked by some relations (e.g., dependencies, priorities,).
The tasks can be elementary (like hardware operations or
computer instructions) or can be an ensemble of elementary
operations (like software programs). When confusion may
arise, we will refer to tasks asoperationsin the former case,
and to processesin the latter. The tasks can beperiodic
or aperiodic, and task execution may be subject toreal
timeconstraints or not. Scheduling under timing constraints
is common for hardware circuits, and for software ap-
plications in embedded control systems. Tasks execution
requires the use ofresources, which can be limited in num-
ber, thus causing the serialization of some task execution.
Most scheduling problems are computationally intractable
[41], and thus their solutions are often based on heuristic
techniques.

We consider next scheduling algorithms as applied to the
design of hardware, compilers, and operating systems.

1) Operation Scheduling in Hardware:We consider now
the major approaches to hardware scheduling. These tech-
niques have been implemented (to different extent) in CAD
tools for the design of ASIC’s and DSP’s [32], [66], [85],
[106], which are modeled with a behavioral-level HDL
(e.g., VHDL, Verilog HDL, and DFL [115]). The behav-
ioral model can be abstracted as a set of operations and
dependencies. The hardware implementation is assumed
to be synchronous, with a given cycle-time. Operations
are assumed to take a known, integer number of cycles
to execute. (We will consider removing this assumption
later). The result of scheduling, i.e., the set of start times
of the operations, is just a set of integers. The usual goal
is to minimize the overall executionlatency, i.e., the time
required to execute all operations.

Constraints on scheduling usually relate to the number
of resources available to implement each operation and
to upper/lower bounds on the time distance between start
times of operation pairs. Usually, the presence of resource
constraints makes the problem intractable [30], [41].

The scheduling problem can be cast as an integer linear
program [30], [42], [50], where binary-valued variables
determine the assignment of a start time to each operation.
Linear constraints require each operation to start once,
to satisfy the precedence and the resource constraints.
Latency can also be expressed as a linear combination of
the decision variables. The scheduling problem has a dual
formulation, where latency is bounded from above and the
objective function relates to minimizing the resource usage,
which can also be expressed as a linear function. Timing

and other constraints can be easily incorporated in the ILP
model [42].

The appeal of using the ILP model is due to the uniform
formulation even in presence of different constraints and
to the possibility of using standard solution packages. Its
limitation is due to the prohibitive computational cost for
medium-large cases. This relegates the ILP formulation
to specific cases, where an exact solution is required and
where the problem size makes the ILP solution viable.

Most practical implementations of hardware schedulers
rely on list scheduling, which is a heuristic approach
that yields good (but not necessarily optimal) schedules
in linear (or overlinear) time. A list scheduler considers
the time slots one at a time, and schedules to each slot
those operations whose predecessors have been scheduled,
if enough resources are available. Otherwise the operation
execution is deferred. Ties are broken using a priority list,
hence the name.

Another heuristic for scheduling isforce-directedsched-
uling [89], which addresses the latency-constrained sched-
uling problem. Here, operations are scheduled into the time
slots one at a time, subject to time-window constraints
induced by precedence and latency constraints. Ties among
different time slots for each operation are broken using a
heuristic based on the concept offorce, which measures
the tendency of the operation to be in a given slot, to
minimize overall concurrency. The computational cost of
force-directed scheduling is quadratic in the number of
operations.

When resource constraints are relaxed, the scheduling
problem can sometimes be solved in polynomial time. For
example, scheduling with timing constraints on operation
time separation can be cast as a longest-path problem [30].
On the other hand, scheduling under release times and
deadlines is intractable, unless the operations take a single
cycle to execute [41].

There are several generalizations of the scheduling prob-
lem. In some cases, operations are not restricted to take
an integral number of cycles to execute, and more than
one operation can bechained into a single time slot.
Pipelined circuits require specific constraints on data rates,
and additional resource conflicts have to be taken into
account due to the concurrent execution of operations in dif-
ferent pipestages. Periodic operation subsets, e.g., iteration
construct bodies, may be advantageously scheduled using
loop pipeliningtechniques [30], which is an example of a
method borrowed from software compilers [116]. Chaining
and pipelining can be incorporated in ILP, list, and force-
directed schedulers.

The synchronizationof two (or more) operations or
processes is an important issue related to scheduling. Syn-
chronization is needed when some delay is unknown in
the model.Relative schedulingis an extended scheduling
method to cope with operations with unbounded delays [67]
called anchors. In this case, a static schedule cannot be
determined. Nevertheless, in relative scheduling the opera-
tions are scheduled with respect to their anchor ancestors.
A finite-state machine can be derived that executes the
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operations in an appropriate sequence, on the basis of
the relative schedules and the anchor completion signals.
The relative scheduling formulation supports the analysis
of timing constraints, and when these are consistent with
the model, the resulting schedule satisfies the constraint for
any anchor delay value. Scheduling withtemplates[70] is
a similar approach, where operations are partitioned into
templates that can be seen as single scheduling units. Thus
templates are useful for hierarchical scheduling and sched-
uling multicycle resources (e.g., pipelined multipliers).

2) Instruction Scheduling in Compilers:Compilers are
complex software tools, consisting of a front-end, a suite
of optimization routines operating on an intermediate
form, and a back-end (called alsocode generation) which
generates the machine code for the target architecture.
In the context of compilation, instruction scheduling on
a uniprocessor is the task of obtaining a linear order of
the instructions. Thus it differs from hardware scheduling
because the resource constraints typically refer to storage
elements (e.g., registers) and the hardware functional
resource is usually one ALU. In the more general case,
scheduling can be viewed as the process of organizing
instructions into streams.

Instruction scheduling is related to the choice of in-
structions, each performing a fragment of the computation,
and to register allocation. When considering compilation
for general-purpose microprocessors, instruction selection
and register allocation are often achieved by dynamic pro-
gramming algorithms [2], which also generate the order of
the instructions. When considering retargetable compilers
for ASIP’s, the compiler back-end is often more complex,
because of irregular structures such as inhomogeneous
register sets and connections. As a result, instruction selec-
tion, register allocation and scheduling are tightly-coupled
phases of code generation [43]. In both cases, scheduling
objectives are reducing the code size (which correlates with
the latency of execution time) and minimizingspills, i.e.,
overflows of the register file which require memory access.

Optimizing compiler algorithms for ASIP’s and general-
purpose DSP’s has been a subject of recent research ac-
tivities [79]. Instruction selection, instruction scheduling,
and register spilling problems for ASIP’s are addressed by
Liao et al. [71]. The same group formulates the instruction
selection problem as a binate covering problem, that is
solved using a branch-and-bound algorithm [74]. Sched-
uling has been modeled by resource and instruction set
conflicts and solved by bipartite matching algorithms [109].
Araujoet al. [6] considered code generation for basic blocks
in heterogeneous memory-register DSP processors and used
register-transfer paths to convert basic block graphs into
expression trees which are used in code generation.

The co-design of deeply pipelined microprocessors can
leverage the coupling between instruction scheduling and
hardware organization. Pipeline hazard avoidance can be
achieved by hardware means (e.g., stall) or by software
means (e.g., instruction reorder and NOP insertion). Recent
research [57] has addressed the problem of the concur-
rent synthesis of the pipeline control hardware and the

determination of an appropriate instruction reorder that
the corresponding back-end compiler should use to avoid
hazards. The same group [59] has also proposed a method-
ology for synthesizing instruction sets from application
benchmarks.

3) Process Scheduling in Different Operating Systems:
Process scheduling is the problem of determining when
processes execute and includes handling synchronization
and mutual exclusion problems. Algorithms for process
scheduling are important constituents of operating systems
and run-time schedulers [104].

The model of the scheduling problem is more gen-
eral than the one previously considered. Processes have a
coarser granularity and their overall execution time may
not be known. Processes may maintain a separate context
through local storage and associated control information.
Scheduling objectives may also vary. In amultitasking
operating system, scheduling primarily addresses increas-
ing processor utilization and reducing response time. On
the other hand, scheduling inreal-time operating systems
(RTOS) primarily addresses the satisfaction of timing con-
straints.

We consider first scheduling without real-time con-
straints. The scheduling objective involves usually a
variety of goals, such as maximizing CPU utilization and
throughput as well as minimizing response time. Scheduling
algorithms may be complex, but they are often rooted on
simple procedures such asshortest-job first(SJF) orround
robin (RR) [92]. The SJF is a priority-based algorithm that
schedules processes according to their priorities, where the
shorter the process length (or, more precisely, its CPU burst
length) the higher the priority. This algorithm would give
the minimum average time for a given set of processes, if
their (CPU-burst) lengths were known exactly. In practice,
predictive formulas are used. Processes in a SJF may be
allowed to preempt other processes to avoid starvation.

The round-robin scheduling algorithm uses a circular
queue and it schedules the processes around the queue for
a time interval up to a predefined quantum. The queue
is implemented as afirst-in/first-out (FIFO) queue and
new processes are added at the tail of the queue. The
scheduler pops the queue and sets a timer. If the popped
process terminates before the timer, the scheduler pops the
queue again. Otherwise it performs acontext switchby
interrupting the process, saving the state, and starting the
next process on the FIFO.

Process scheduling in real-time operating system [100]
is characterized by different goals and algorithms. Sched-
ules may or may not exist that satisfy the given timing
constraints. In general, the primary goal is to schedule
the tasks such that all deadlines are met: in case of
success (failure) a secondary goal is maximizing earliness
(minimizing tardiness) of task completion. An important
issue is predictability of the scheduler, i.e., the level of
confidence that the scheduler meets the constraints.

The different paradigms for process scheduling in RTOS
can be grouped as static or dynamic [100]. In the former
case, a schedulability analysis is performed before run
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time, even though task execution can be determined at run
time based on priorities. In the latter case, feasibility is
checked at run time [100]. In either case, processes may be
considered periodic or aperiodic. Most algorithms assume
periodic tasks and tasks are converted into periodic tasks
when they are not originally so.

Rate monotonic(RM) analysis [76] is one of the most
celebrated algorithms for scheduling periodic processes on
a single processor. RM is a priority-driven preemptive
algorithm. Processes are statically scheduled with priori-
ties that are higher for processes with higher invocation
rate, hence the name. Liu and Layland showed that this
schedule is optimum in the sense that no other fixed-
priority scheduler can schedule a set of processes which
cannot be scheduled by RM [76]. The optimality of RM is
valid under some restrictive assumptions, e.g., neglecting
context-switch time. Nevertheless, RM analysis has been
the basis for more elaborate scheduling algorithms [21],
[27].

Let us consider now hardware/software system imple-
mentations obtained by partitioning a system-level specifi-
cation, as mentioned in Section IV-A. The implementation
consists of a set of software fragments executing on a
processor in parallel with the execution of other tasks in
dedicated hardware. A relevant problem is to determine
the execution windows for both the hardware and software
tasks. Since the partition depends on the specific applica-
tion and design objectives, a run-time scheduler for the
system is required that fits the hardware/software partition.
Conversely, a given partition may be chosen because a run-
time scheduler can assign schedule tasks while satisfying
given deadline and rate constraints.

We summarize an approach fully described in [45].
Software tasks are represented bythreads, each thread
being a set of operations with known execution, except
possibly the head of the thread. Operations within threads
are statically scheduled (with respect to the head of the
thread), so that timing constraints aremarginally satisfied,
i.e., within the limits of the lack of knowledge of the
delay of the thread head operation. Threads execution is
then dynamically determined by a nonpreemptive run-time
scheduler whose task is to synchronize the execution of
hardware and software. Thread-based scheduling can be
seen as an application and extension of relative scheduling
to the hardware/software domain, thus showing the cross-
fertilization of the hardware and software fields.

We briefly describe now process scheduling inChinook, a
CAD environment for designing reactive real-time systems
[21]. The overall system can have differentmodes of
operation, each having a schedule. Timing watchdogs can
disable modes and cause mode transitions. Upon changing
of mode, the system starts running the corresponding sched-
ule. Timing constraints may be intermodal or intramodal.
Each mode has a periodic set of tasks, which is unrolled
and scheduled under timing constraints, using an exten-
sion of the relative scheduling formulation [21]. With this
scheduling technique, Chinook supports the mapping of
an embedded system model to one (or more) processor

and peripherals while ensuring the satisfaction of timing
constraints.

In summary, process scheduling plays an important role
in the design of mixed hardware/software systems, because
it handles the synchronization of the tasks executing in both
the hardware and software components. For this reason, it
is currently a subject of intensive research.

V. ACCOMPLISHMENTS

We underline here briefly the major accomplishments in
this field, and we refer the readers to the other articles of this
issue for specific results. Hardware/software co-design has
attracted the attention of several research groups worldwide,
as documented by books [29], [39], [95], journal articles,
and publications in symposia. Some of the research ad-
dresses incremental changes to system-level design tools, to
cope with software components in predominantly hardware
designs. The need for addressing practical problems and for
fitting into existing design methodologies where modeling
styles and languages are not negotiable, limits significantly
the power of these tools to search creatively the co-
design solution space. Other research contributions propose
paradigm shifts in system-level design, by assuming a wide
freedom in the way systems are modeled and designed.
While these approaches will probably provide the basis
for long-term innovation, they often lead to design tools
which are not readily usable by system designers because
disconnected from existing design practices.

Several research computer-aided co-design environments
have been released, and some of these are used for research
and/or product development, e.g.,Castle [105], Chinook
[24], Cosmos[61], Cosyma[37], Coware[114], Polis [26],
Ptolemy [64], Siera [103], Specsym[40], and Tosca [8].
(See [29] for additional information on some of these
systems.)

Commercial co-design tools are available to address some
of the problems mentioned in this survey. Some CAD
vendors provide design entry systems and co-simulation
environments. Cosimulation is widely applicable to general-
purpose and digital-signal processor design, as well as to
embedded system design. For the telecommunication do-
main, specialized environments support the vertical design
of systems from design entry to physical realization. System
emulators, based on field-programmable technology, have
proven to be successful for validating large systems.

Commercial products in the software domain include
compilers for general-purpose and dedicated processors
with standard and application-specific architectures, as well
as real-time operating systems and microkernels. Such
products find several applications in embedded systems.

VI. CONCLUSION

Hardware/software co-design presents an enormous chal-
lenge, as well as an opportunity, for system designers.
Use and reuse of hardware and software macro blocks can
lead to products of superior quality (i.e., performance/cost,
flexibility, ) with a shorter design and development
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time as compared to traditional integrated circuit design
methodologies. The progress in electrical system design
will depend, among other factors, on the level of support
provided by CAD tools. In particular, digital system prod-
ucts will benefit from concurrent hardware/software design
which exploits the synergism of hardware and software
in the search for solutions that use at best the current
manufacturing technology and the availability of hardware
components and software programs.

Scientific and commercial interest in hardware/software
co-design methods and tools has risen significantly in the
recent years. Product-level use of co-design tools has been
reported in some application domains, (e.g., co-simulation,
emulation, synthesis for embedded controllers, retargetable
compilers). The sector of computer-aided co-design tools
is growing at a rapid pace because the potential payoffs
make it an attractive area for research as well as an exciting
business opportunity.

Overall, hardware/software co-design is a wide field of
research, because of the diversity of applications, design
styles and implementation technologies. Since this area is
still not completely defined, we can expect some evolu-
tionary and some revolutionary changes in the way digital
systems are designed. Thus hardware/software co-design is
the key design technology for digital systems.
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