
Reducing Coding Style E�ects in High-Level Speci�cations

Claudionor Jos�e Nunes Coelho Jr. Giovanni De Micheli
Antônio Ot�avio Fernandes

Computer Science Department Computer Systems Laboratory
Universidade Federal de Minas Gerais Stanford University
Belo Horizonte, MG 30380-260 Stanford, CA 94305
Brazil USA

Abstract

We present a technique to reduce the dependence of an implementation with respect to the coding style
of the speci�cation. This dependence in conventional high-level synthesis tools may cause unpredictable
implementation results, even for small code changes.

The dependence reduction is achieved by revisiting the control-
ow/data
ow model that is used for
synthesis. We incorporate register variables and exception handling in the control-
ow, which is later
translated into a control-unit implementation as a �nite-state machine. Due to the additional complexity
in the control-
ow with exception handling and register variables, the control-unit generation process is
implemented using symbolic techniques with Binary Decision Diagrams.

1 Introduction

Synthesis tools at higher levels of abstraction are a reality today. Several tools [6, 3, 22, 13, 18] have been
announced in the past years to perform high-level synthesis for systems described at an algorithmic level.
Despite their increased use, these tools have a large variance of the control-unit and datapath implementations
with respect to the coding style. This variance is the result of the strict line drawn between what is considered
to be a control-
ow and what is considered to be a data
ow.

In this paper, we characterize the limits between control-
ow and data
ow with respect to common
speci�cation styles in order to reduce the variance of the implementation. This is achieved by a careful
analysis and partitioning of the control-data
ow graph of the original speci�cation.

We consider speci�cations written in a hardware description languages supporting sequential, alterna-
tive, concurrent, repetition and exception handling behaviors [8]. Today, most of the hardware description
languages support these behaviors, including VHDL [15], Verilog HDL [20], HardwareC [14], StateCharts [7]
and Esterel [1]. Because the technique presented here will have a large impact on control-dominated speci-
�cations [12], we will focus on these types of speci�cations, although our technique could be equally applied
to data
ow intensive speci�cations.

This paper is outlined as follows. In the next section, we present a review of the control-data
ow model
that conventional synthesis tools use to represent design speci�cations. Then, we present the technique
of extending control-
ow by incorporating register variables and their values into the control-
ow. This
technique is useful only if a powerful control-unit synthesis tool is able to handle the increased complexity
of the control-
ow, which is presented next. Finally, we present some results and concluding remarks.

2 Modeling Synchronous Systems from Hardware Description Lan-

guages

We focus in this section on a model for control-dominated descriptions. Several models for speci�cations
have been proposed in the past that separate the behaviors in terms of their control-
ows and data
ows.

1

We refer the reader to [4, 16, 11] for an introduction to these models. In this paper, we consider a generic
model of the system in terms of these control-
ow and data
ow components. We assume the speci�cation
contains a single hierarchical control-
ow component, but it may contain multiple data
ow components,
each corresponding to a di�erent block of operations in the speci�cation.

In the following example, we show how a description language such as Verilog HDL can be modeled in
terms of its control-
ow and data
ow components.

output [...] dx,dy;
...
 while (a > 0)
 begin
 dx = !dx;
 a = a − 1;
 dy = a;
 if (dy == 1)
 dx = 0;
 end

source

dx

!

sink

dx

−

a

a

=

==

dy

c2

1

1

source

sink

=
dx

0

source

sink

>
a 0

c1

alt

loop

c2

c1

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

Control−Flow Dataflow

Figure 1: Partitioning of speci�cation into control-
ow/data
ow

Example 1 In Figure 1, we show the representation of a speci�cation in terms of its control-
ow and data
ow
graphs.

The vertices loop and alt in the control-
ow graph represent iterative and alternative behavior, respectively.
We labeled each operation in the data
ows by events a1; : : : ; a6. Such events are generated by the control-
ow

and determine when the corresponding operations will execute. Event a1, for example, triggers the execution of
the negation of dx. These events determine the dependency of the data
ow with respect to the control-
ow. Each
data
ow also contains two vertices, source and sink that do not correspond to any operation in the speci�cation.
They mark the beginning and end of execution of the data
ow, respectively.

The data
ow of Figure 1 generates input events c1 and c2 that trigger the execution of the loop and the execution
of the alternative path, respectively. These events determine the dependency of the control-
ow in terms of the
data
ow.

The reader should note that the control-
ow does not make any assumptions on the possible values of its input

events over time. In this example, we assume that entering the loop (when event c1 is generated) and exiting the

loop are equally probable, for example. 2

2

As pointed out in the previous example, the control-
ow does not make any assumptions on the possible
values of variables, nor does the data
ow make any assumption on the control-
ow. Since control-
ow and
data
ow follow di�erent paths in a synthesis tool, the higher the interaction between these two models, the
more redundancy in the �nal implementation. This interaction is a�ected by coding styles, which is usually
presented in commercial tools as application notes or guidelines for \good" synthesis tool usage. In the next
section, we present a method that reduces the relationship between coding style and implementation results
by moving register variables and their values to the control-
ow, and by symbolically traversing the resulting
�nite-state machine when we generate the control-unit implementation.

3 Control-Flow Register Variables

In order to evaluate the importance of adding register variables to the control-
ow of a speci�cation, let
us consider Figure 2. If we adopt the conventional control-
ow/data
ow partitioning paradigm, variable
state is placed into the data
ow. Note, however, that this variable is not connected with any other part
of the data
ow, yet it triggers the execution of some parts of a control-
ow expression. This means that
if we move variable state into the control-
ow, the communication between the control-
ow and data
ow
will be reduced. This has some advantages from a synthesis perspective. First, since the state variable is
now incorporated into the control-
ow, the redundancy of control in the data
ow can be eliminated, thus
reducing the size of the �nal implementation. Second, when imposing constraints to the design, we will
have a more accurate execution model for the control-
ow, which will be more independent on the data
ow
abstraction.

reg [4:0] state;
...
state = ‘RESET;
while (loop condition)

pn
cn

c

state

c1

cn

c

p1

pn

DATAFLOW

case (state)
 ‘RESET: begin

 state = ‘CASE1;
 end
 ‘CASE1: begin

 state = ‘CASE2;
 end

 ‘CASEn: begin

 state = ‘RESET;
 end
 endcase
end

c0

c1

...(c:(c0:p0 + c1:p1 + ... + cn:pn))*...

p0

p1

p0

c0

Figure 2: Program-State Machine Speci�cation

Control-
ow/data
ow transformations have been regarded in the past as useful transformations [5, 19, 4].
However, only ad hoc methods were presented, and it was claimed that these transformations would probably
increase the number of states of the control.

3

We will �rst de�ne a reduced dependency graph below, whose structure will allow us to determine which
variables should be moved to the control-
ow.

Let Df be the set of data
ows of a speci�cation.

De�nition 3.1 A reduced dependency graph is the undirected graph Gr = (Vr; Er), where Vr is the set of

non-constant variables, and an edge between two variables u and v exists if u depends on v or if v depends

on u in at least one of the data
ows of Df .

In this de�nition, a reduced dependency graph collapses all the dependencies occurring in the di�erent
data
ow graphs, thus disregarding the dependency of the data
ows with respect to the control-
ow. Recall
that a variable in a data
ow graph can generate events to the control-
ow; thus, the reduced dependency
graph can be easily annotated with the variables that are used to generate events to the control-
ow.

Because of the nature of speci�cations in programming languages, not all of the vertices in a reduced
dependency graph will be connected, i.e., in general, there will be some variables u and v for which no path
will exist between u and v. Let S = fS1; : : : ; Sng be a partition of the set of vertices Vr such that vertices u
and v belong to the same partition if they are connected in Gr.

if (c > 0) then
begin
 a = b + c;
 next = 3;
 d = e + f;
end
else
begin
 a = d + 2;
 next = 4;
end

a

b

c

d

e f next

S1 S2

(a) (b)

Figure 3: (a) Speci�cation and (b) Reduced dependency graph

Example 2 In Figure 3 we present a speci�cation and its reduced dependency graph. The data
ow blocks

corresponding to the then and else clauses of the if partitions the variables of the speci�cation into two sets,

S1 = fa; b; c; d; e; fg and S2 = fnextg. Note that if we considered the then clause of the if construct alone, vari-

ables fa; b; cg would be disconnected from variables fd; e; fg, because the edge between variables a and d can be

obtained only in the data
ow of the else clause. 2

What happens when one of the blocks Si of a partition S is connected to the control-
ow, but not con-
nected to remaining part of the data
ow? If this block of variables were moved to the control-
ow, the number
of edges crossing the control-
ow and data
ow boundaries (given by the relationships between operations
and possible control
ows in the speci�cation) would be reduced, thus giving a better data
ow/control-
ow
partitioning. By reducing this interaction between data
ow and control-
ow, we would make the system
more predictable.

Although in theory we could move all of the data
ow into the control-
ow, or vice-versa, in practice
this becomes infeasible for two reasons. First, the techniques for analyzing and synthesizing data
ows and
control-
ows are di�erent, and as a result, optimization techniques would be applied in the wrong places.
Second, indiscriminately making everything a control-
ow may potentially cause an exponential blow-up
in the number of states. Thus, any move from data
ow to control-
ow and vice-versa must be performed
with caution. For a limited set of operations which uses constant operands, variables can be moved into the
control-
ow without a large penalty to the complexity of the control-
ow. We call such variables control-
ow
variables, and their corresponding variable blocks (Si) control-
ow blocks.

4

Let S be a partition on the vertices of Gr, a reduced dependency graph, and let Si be a block of S such
that no vertex v 2 Si corresponds to an I/O port of the speci�cation. Then, we can say that Si is useless or
it is a control-
ow block.

The basic idea relies on the fact that Si is disconnected from the remaining part of the control-
ow.
Thus, if Si is not connected to the control-
ow, it will be useless, since all the values assigned to its variables
will not be used anywhere. On the other hand, if this block of variables is connected to the control-
ow,
then it will be a control-
ow block.

In the sequel we denote by � = fv; c1; : : : ; cmg a generic connected component of Vr when ci are Boolean
variables. We also denote by R = f=; 6=; <;>;�;�g the set of relational operations and by � a generic
element of R. We also denote by
 a constant. The following corollary is used in our extension to control-

ow expressions.

Corollary 3.1 Let v and c be variables of the connected component �. Let also f be either an identity

function, an increment or a decrement, and let cj �(v1; : : : ; vn) and v f(v) be the only operations of

the speci�cation de�ned over cj and v. Then, either Si is a control-
ow block or it is useless.

It remains to be seen that such transformations are useful by showing that these types of speci�cations
occur in real designs. It is not hard to see that the variable state from Figure 2 satis�es the conditions of
Corollary 3.1. We present in Figure 4 (a) the di�erent data
ows for the description of Figure 2, and in
Figure 4 (b) the reduced dependency graph for these data
ows. Other variables that often occur in the
speci�cations of control-dominated speci�cations are counters, for example.

state

‘RESET ‘CASE1

state

‘CASE2

state

...

state ‘RESET

c0

==

state

==...

‘CASEn

cn

(a)

state

c0 cn...

(b)

Figure 4: (a) Data
ow graphs for program-state machine and (b) reduced dependency graph

The observations shown in this section lead to the de�nition of register variables and register operations
into the control-
ow. Note that we only incorporated assignment to constants, increments and decrements.
We could have incorporated more of the data
ow operations into the control-
ow. However, introducing
more variables into the control-
ow could easily increase complexity in the internal representation of the
control-
ow.

Note also that every register variable v 2 Vr is �nite, since the corresponding speci�cation has �nite
memory in the number of variables. As a result, every operation performed on the register variable v will
be computed over the range f0; : : : ; jvj � 1g, where jvj is the number of possible values for the register.

4 Building Finite-State Machines from the Extended Control-

Flow

Exception handling and register variables make the control-
ow much harder to be analyzed and synthesized.
In order to cope with this additional complexity, we have developed a Binary Decision Diagram [2] based tool
that encapsulates all the design decisions and design choices from the control-
ow and scheduling information

5

from the data
ow. Due to the lack of space, we will only present the procedure used to obtain the �nite-
state machine from the control-
ow representation. This �nite-state machine is represented symbolically as
a transition relation [21]. The reader should refer to [10] for a throughout explanation of the subject.

(out,states,disable) cfe2cffsm(in,kill,p) f

kill = kill _ p.disable();

switch (p.type()) f

case OPERATION:

out = create new register();

out.guard() = in ^ kill';

p:operation() = p:operation() _ out;

return (out,out);

case DISABLE:

p.block().disable() = p.block().disable() _ in;

return (0,0);

case SEQUENTIAL:

states = empty set();

foreach (pi sequential) f

(out[i],states[i]) = cfe2cffsm(in,kill,pi);

in = out[i] _ pi.disable();

states.union(states[i]);

g

return (out[n] _ p.disable(),states);

case PARALLEL:

states = empty set();

or = false;

foreach (pi parallel) f

(out[i],states[i]) = cfe2cffsm(in,kill,pi);

out[i] = wait all branches(p,out[i]);

out = out ^ out[i];

states.union(states[i]);

g

return (out,states);

case ALTERNATIVE:

states = empty set();

or = false;

foreach (case ci: pi in an alternative construct) f

(out[i],states[i]) = cfe2cffsm(in ^ ci,kill,pi);

out = out _ out[i] _ pi.disable();

states.union(states[i]);

g

return (out,states);

case INFINITE:

net = create new net(in);

(out,states) = cfe2cffsm(net,kill,pi);

net = net _ out;

return (0,states);

case LOOP:

net = create new net(in ^ ci);

(out,states) = cfe2cffsm(net,kill,pi);

net = net _ out ^ ci;

return ((in _ out) ^ ci',states);

case BASIC BLOCK:

states = empty set();

for(i=1; i�ALAP; i++) f

out = create new register();

out.guard = in ^ kill' ^Fi;

in = out;

states.union(out);

g

return (out,states);

g

g

Figure 5: Procedure for the translation of a Control-Flow into a Finite-State Machine

Upon receiving the execution guards in and kill, procedure cfe2cffsm depicted in Figure 5 signals the
execution for a control-
ow block p, by computing symbolically the FSM for p, and returning the condition
(out) representing when the FSM exits the execution of p and a collection of the states created in block p.
We assume that each block contains a disable 1 mechanism (p.disable()) that collects all the guards of a
disable command to that block. The mechanism p.disable() tells us when the block is forced to exit due
to an exception handling condition.

In basic blocks, we generate a state for each possible execution time of the basic block, given by its as soon
as possible and as late as possible schedules. Then, for each operation i that can be scheduled in the basic
block, we create a Boolean decision variable xij whose value will be determined during synthesis. Whenever
xij is 1, action i is scheduled to be executed in state j. We assume here single cycle actions, although this
procedure could be easily extended to include multi-cycle actions [11]. A transition from a state j to state
j + 1 in the FSM of a basic block can occur only if some action can be scheduled after j, which is captured
by Fj =

W
k>j xik .

1the disable mechanism is used here to denote an exception handling mechanism like the exception mechanism used in
Verilog HDL or StateCharts

6

5 Experimental Results

In this section, we present how e�cient this technique is in handling di�erent styles of coding along by
allowing exception handling mechanisms and register variables.

Unless otherwise stated, all execution times reported in this section will be for an Silicon Graphics INDY
4400 at 200 Mhz with 64 Mbytes of RAM.

5.1 Protocol Synthesis in an Ethernet Coprocessor

Host
CPU

Memory

System
Bus

DMA−RCVD

RCVD−FRAME RCVD−BUFFER RCVD−BIT

DMA−XMIT XMIT−FRAME XMIT−BIT

ENQUEUE EXEC−UNIT

RXE

RXD

TXD

TXE

CRS

CDT

Receive Unit

Transmit Unit

Execute Unit

Ethernet Coprocessor

Figure 6: Ethernet controller block diagram

The block diagram of an ethernet coprocessor is shown in Figure 6. This coprocessor contains three units:
an execution unit, a reception unit and a transmission unit. These three units are modeled by thirteen
concurrent processes. We will present here how two di�erent code styles of the process xmit frame lead to
the same control-unit implementation.

Process xmit frame interacts with two other processes, dma xmit and xmit bit. It was speci�ed as a
program state machine written in Verilog HDL, as shown in Figure 7 [9].

This process works as follows. Upon receiving a byte from process xmit frame, xmit bit sends the cor-
responding bit streams over the line TXD. Thus, xmit bit must receive each byte eight cycles apart, which
constraints the rate at which the bytes are transmitted from xmit frame.

As most protocols behave, there is a few number of states in which exception handling mechanisms must
be ensured. As a result, we can also specify process xmit frame with an exception handling mechanism,
i.e., the disable command of Verilog HDL. In the former implementation, because we have to abort the
transmission of a frame if CCT becomes true, we implemented the program state machine with a while loop
which pools signal CCT, and a case statement on variable state, which determines the next state of the
program state machine to be executed. Note that this state variable is not part of data
ow and it should be
incorporated into the control-unit for xmit frame.

Since the execution of the while loop should be aborted if CCT becomes true, we re-implemented the
speci�cation for the program state machine of process xmit frame. In this new speci�cation, we execute a
sequential code that traverse the di�erent program states of Figure 7, and we execute a watchdog in parallel
with the new sequential code. If condition CCT becomes true, then the watchdog will disable the execution

7

CCT’

CCT’

CCT’

CCT’

CCT’

CCT’

discon_b = 0;
xmitidle = 1;
wait (txstart);
xmitidle = 0;
wait(DMAxmit);

st = ‘PREAMBLE;
counter = 1;
parity = 8’hff;

ether_xmit = preamble;
txrestart = 0;
discon_b = 1;
if (counter < npreamble)
 counter = counter + 1;
else
 state = SFD;

ether_xmit = sfd;
b = DMAxmit;
state = DEST1;

ether_xmit = b;
parity = parity ^ b;
b = DMAxmit;
state = DEST2;

ether_xmit = b;
parity = parity ^ b;
b = DMAxmit;
if (counter < length)
 counter = counter + 1;
else
 state = DATAEND;

Figure 7: Program state machine for process xmit frame

of the concurrent block containing both the sequential code and the watchdog. A graphical representation
of the speci�cation can be seen in Figure 8.

States Trans. Rel. Time

xmit-frame (except.) 178 90 3022 4.3s
xmit-frame 178 90 24439 32.21s

Table 1: Results for the control-unit generation of xmit frame

Table 1 presents the results for the generation of the control-unit for xmit frame from its control-
ow
model. The �rst column shows the number of states of xmit-frame before scheduling the operations. The
second column shows the number of states after state minimization. The third column shows the size of the
transition relation in terms of BDD nodes. The fourth column shows the execution time taken to synthesize
the control-unit. Note that by having a �nite-state representation of the behavior of the system in two
di�erent speci�cations, we were able to obtain two comparable implementations with the same number of
states.

In Table 1, note the di�erence between the sizes of the transition relation of both implementations.
Although the complexity of the control-
ow in the program state machine case is larger than the complexity of

8

always @ (l1 or l2 or l3 or ... or l13 or l14)
 if (CCT) disable fork_block;

fork : fork_block

join

repeat
 ether_xmit = preamble;
 txrestart = 0;
 discon_b = 1;
 counter = counter + 1;
until (counter >= npreamble);

ether_xmit = sfd;
b = DMAxmit;

ether_xmit = b;
parity = parity ^ b;
b = DMAxmit;

...

repeat
 ether_xmit = b;
 parity = parity ^ b;
 b = DMAxmit;
 counter = counter + 1;
until (counter >= length);

discon_b = 0;
xmitidle = 1;
wait (txstart);
xmitidle = 0;
wait (DMAxmit);

counter = 1;
parity = 8’hff;

l1:

l2:

l3:

l13:

l14:

Figure 8: Implementation of program state machine with exception handling

the speci�cation using the disable construct, it would still not account for this large di�erence. Another reason
for this discrepancy is due to the variable ordering chosen for the BDD variables. Binary Decision Diagrams
are very sensitive to variable ordering and a bad choice for variable ordering can result in exponentially large
BDDs. When computing the transition relation, we placed the conditionals and register variables on the
top, and we grouped the Boolean variables belonging to basic blocks together.

States Trans. Rel. Time

xmit-frame (except.) 178 90 3022 4.35s
xmit-frame 178 90 14149 402.64s

Table 2: Control-unit generation with dynamic variable ordering

The reader should recall that the program state machine implementation of xmit frame has a state
variable that was incorporated into the control-unit of xmit frame. This variable interacts with all basic
blocks representing the states of the program state machine, as it can be seen in Figure 7. As a result, no
good variable ordering can be found for this variable with respect to the ordering of variables created for
each basic block.

In order to smooth out the e�ects of a bad variable ordering for the state variable, we ran both speci-

9

�cations on our program with the BDD using dynamic variable ordering [17]. The results are reported in
Table 2.

6 Conclusions

We considered in this paper the e�ect of introducing register variables into the control-
ow of a speci�cation
in order to smooth out the e�ects of coding style of the speci�cations. At the higher levels of abstraction,
these e�ects tend to cause a large variance in the �nal implementation of control-dominated speci�cations.

We also presented a technique to obtain a control-unit implementation from the control-
ow based on
Binary Decision Diagrams. This technique was necessary in order to reduce the increased complexity of
dealing with extended control-
ow.

As future work, we are currently considering the application of these techniques to reduce the activity of
the circuit, and thus reducing the power consumption.

References

[1] G. Berry and G. Gonthier. The Esterel Synchronous Programming Language: Design, Semantics, Implementation. Ecole
Nationale Sup�erieure des Mines de Paris and Institut National de Recherche en Informatique et Automatique.

[2] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys, pages
293{318, September 1992.

[3] R. Camposano, R. A. Bergamaschi, C. E. Haynes, M. Payer, and S. M. Wu. The ibm high-level synthesis system. In
R. Camposano and Wayne Wolf, editors, High-Level VLSI Synthesis, pages 79{104. Kluwer Academic Publishers, June
1991.

[4] A. Wu D. Gajski, N. Dutt and S. Lin. High-Level VLSI Synthesis - Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

[5] M. Davio, J.-P. Deschamps, and A. Thayse. Digital Systems with Algorithm Implementation. John Wiley & Sons, 1983.

[6] G. DeMicheli, D. C. Ku, F. Mailhot, and T. Truong. The olympus synthesis system for digital design. IEEE Design and

Test Magazine, pages 37{53, October 1990.

[7] D. Drusinsky and D. Harel. Statecharts as an abstract model for digital control-units. Technical Report CS86-12, Weizmann
Institute of Science, 1986.

[8] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Speci�cation and Design of Embedded Systems. Prentice Hall, 1994.

[9] Benchmarks of the 1992 high-level synthesis workshop.

[10] C. N. Coelho Jr. and G. De Micheli. Modeling and synthesis of synchronous system-level speci�cations. (to appear in
current issues in electronic modeling) 001, UFMG, 1994.

[11] C. N. Coelho Jr. and G. De Micheli. Analysis and Synthesis of Concurrent Digital Circuits Using Control-Flow Expressions.
PhD thesis, Stanford University, February 1996.

[12] K. Keutzer. Three competing design methodologies for asics: Architectural synthesis, logic synthesis, and module genera-
tion. In Proceedings of the Design Automation Conference, pages 308{313, June 1989.

[13] D. Knapp, T. Ly, D. MacMillen, and R. Miller. Behavioral synthesis methodology for hdl-based speci�cation and validation.
In Proceedings of the Design Automation Conference, pages 286{291, June 1995.

[14] D. C. Ku and G. DeMicheli. Hardwarec - a language for hardware design (version 1.0). CSL Technical Report CSL-TR-
88-362, Stanford, August 1988.

[15] R. Lipsett, C. Schaefer, and C. Ussery. VHDL: Hardware Description and Design. Kluwer Academic Publishers, 1989.

[16] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill, 1994.

[17] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In International Workshop on Logic Synthesis,
Lake Tahoe, CA, April 1993.

[18] A. Seawright. Grammar-Based Speci�cation and Synthesis for Synchronous Digital Hardware Design. PhD thesis, UC
Santa Barbara, 1994.

[19] E. Stabler. Microprogram transformations. IEEE Transactions on Computers, c-19:908{916, 1970.

[20] D. E. Thomas and P. R. Moorby. The Verilog hardware description language. Kluwer Academic Publishers, 1991.

[21] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state enumeration of �nite state
machines using bdd's. In Proceedings of the International Conference on Computer-Aided Design, pages 130{133, Santa
Clara, November 1990.

[22] W. Wolf, A. Takach, C. Huang, and R. Manno. The Princeton university behavioral synthesis system. In Proceedings of

the 29thDesign Automation Conference, pages 182{187, June 1992.

10

