-

Journal of VLSI Signal Processing 16, 117-130 (1997)

© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Clock Skew Optimization for Peak Current Reduction

L. BENINI, P. VUILLOD,*A. BOGLIOLO,'AND G. DE MICHELI
Computer Systems Laboratory, Stanford University, Stanford, CA 94305-9030

Received August 1, 1996; Revised October 21, 1996

Abstract. The presence of large current peaks on the power and ground lines is a serious concern for designers of
synchronous digital circuits. Current peaks are caused by the simultaneous switching of highly loaded clock lines
and by the signal propagation through the sequential logic elements. In this work we propose a methodology for
reducing the amplitude of the current peaks. This result is obtained by clock skew optimization. We propose an
algorithm that, for a given clock cycle time, determines the clock arrival time at each flip-flop in order to minimize
the current peaks while respecting timing constraint. Our results on benchmark circuits show that current peaks can
be reduced without penalty on cycle time and average power dissipation. Our methodology is therefore well-suited
for low-power systems with reduced supply voltage, where low noise margins are a primary concern.

1. Introduction

Clock skew is usually described as an undesirable phe-
nomenon occurring in synchronous circuits. If clock
skew is not properly controlled, unexpected timing
violations and system failures are possible. Mainly
for this reason, research and engineering effort has
been devoted to tightly control the misalignment in
the arrival times of the clock [1]. Although clock-skew
control is still an open issue for extremely large chip-
level and board-level designs, recently proposed algo-
rithms for skew minimization have reported satisfying
results [1-4]. For a large class of systems skew control
can therefore be achieved with sufficient confidence
margin.

Conservative design styles (such as those adopted
for FPGAs) explicitly discourage “tampering with the
clock” [5]. Nevertheless, the arrival time of the clock
is often purposely skewed to achieve high performance
in more aggressive design styles. In the past, several
algorithms for cycle-time minimization have been pro-
-posed [6-10]. The common purpose of these methods
was to find an optimum clock-skewing strategy that al-
lows the circuit to run globally faster. Average power

*On leave from INPG—CSI, Grenoble, France.
t Also with DEIS, Universita di Bologna, Italy.

dissipation can also be reduced by clock skewing cou-
pled with gate resizing [11].

In this work, we discuss the productive use of clock
skew in a radically new context. We target the mini-
mization of the peak power supply current. Peak current
is a primary concern in the design of power distribu-
tion networks. In state-of-the-art VLSI systems, power
and ground lines must be over-dimensioned in order
to account for large current peaks. Such peaks deter-
mine the maximum voltage drop and the probability of
failure due to electromigration [12]. In synchronous
systems, this problem is particularly serious. Since all
sequential elements are clocked, huge current peaks are
observed in correspondence of the clock edges. These
peaks are caused noi only by the large clock capaci-
tance, but also by the switching activity in the sequen-
tial elements and by the propagation of the signals to
the first levels of combinational logic.

In this paper, we focus application specific integrated
circuits implemented with semi-custom technology.
We do not address the complex issues arising in custom-
designed chips with clock frequencies over 150 MHz.
For such high-end circuits, achieving adequate skew
control is already a challenging task. We assume a
single-clock edge-triggered clocking style, because it
represents the worst case condition for current peaks.
We propose an algorithm that determines the clock

118 Benini et al.

arrival times at the flip-flops in order to minimize the
maximum current on the power supply lines, while sat-
isfying timing constraints for correct operation.

In addition, we propose a clustering technique that
groups flip-flops so that they can be driven by the same
clock driver. Since the number of sequential elements
is generally large, it would not be practically feasible to
specify a skew value for each one of them. In our tool,
the user can specify the maximum number of clock
drivers, and the algorithm will find a clustering that al-
ways satisfies the timing constraints while minimizing
the peak current.

Any optimization technique based on clock control
cannot neglect the structure and the performance of the
clock distribution network and clock buffers [13]. Im-

plementing skewed clocks with traditional buffer archi- -

tectures imposes sizable power costs that may swamp
the advantages obtained by clock skew. Our clocking
strategy is based on a customized driver that achieves
good skew control with negligible cost in power, area
and performance.

Our technique is particularly relevant for low-power
systems with reduced supply voltage, where the noise
margins on power and ground are extremely low. Ex-
perimental results show that our method not only re-
duces the current peaks, but it does not increase the
average power consumption of the system. We tested
our approach on several benchmark circuits. On aver-
age, current peak reduction of more than 30% has been
observed. Average power dissipation is unchanged and
timing constraints are satisfied.

The results were further validated by accurate post-
layout electrical simulation of circuits of practical size
(over 100 flip-flops). The power dissipation due to
the clock network and buffers was taken into account.
The post-layout results confirm the practical interest
of our method and the effectiveness of our clustering
heuristic.

2. Skew Optimization

It is known that clock skew can be productively
exploited for obtaining faster circuits. Cycle borrow-
ing is an example of such practice: if the critical path
delay between two consecutive pipeline stages is not
balanced, it is possible to skew the clock in such a
way that the slower logic has more time to complete its
computation, at the expense of the time available for
the faster logic. For large and unstructured sequential
networks, finding the best cycle borrowing strategy is
a complex task that requires the aid of automatic tools.

2.1. Background

We will briefly review the basic concepts needed for
the formal definition of the skew optimization prob-
lem. The interested reader can refer to [1, 7, 9] for fur-
ther information. Clock-skew optimization is achieved
by assigning an arrival time to the local clock signals
of each sequential element in the circuit. We con-
sider rising-edge-triggered flip-flops and single clock.
The clock period is T.x. For the generic flip-flop i
(i = 1,2,...,N, where N is the number of flip-
flops in the network) we define its arrival time T;,
0 < T; < T,. The arrival time represents the amount
of skew between the reference clock and the local clock
signal of flip-flop i. A clock schedule is obtained by
specifying all arrival times T;. Obviously not all clock
schedules are valid. The combinational logic between
the flip-flops has finite delay. The presence of delays
imposes constraints on the relative position of the ar-
rival times. -

The classical clock-skew optimization problem can
be stated as follow: find the optimal clock schedule
T = [T1, Ty, ..., Tn] such that no timing constraint
is violated and the cycle time T is minimized. This
problem has been analyzed in detail and many solutions
have been proposed. Here we follow the approach pre-
sented in [7] where edge-triggered flip-flops are con-
sidered.

We assume for simplicity that all flip-flops have the
same setup and hold times, respectively called Tsy and
Tyxo. If there is at least one combinational path from the
output of flip-flop i to the input of flip-flop j, we call
the maximum delay on these paths §;";*. The minimum
delay &")" is similarly defined. If no combinational
path e)gists between the two flip-flops, §77* = —o0
and §7"}" = +o0. For each pair of flip-flops i and j,
two constraints must be satisfied.

First, if a signal propagating from the output of i
reaches the input of j before the clock signal for j
is arrived, the data will propagate through two con-
secutive sequential elements in the same clock cycle.
This problem is called double clocking and causes
failure. The first kind of constraints prevents double
clocking:

Ti+ 8" > Tj + Tuo t))

On the other hand, if a signal propagating from i to
j arrives with a delay larger than the time difference
between the next clock edge on j and the current clock
edge on i, the circuit will fail as well. This phenomenon

is called zero clocking. Zero clocking avoidance is
enforced by the following constraint:

T; + Tsuy + 5,-'?]"-“ -3 T; + Tei 2)

Input and output impose constraints as well. Input
constraints have the same format as regular constraints,
where the constant value of the input arrival time Tj,
replaces the variable T;. For output constraints the vari-
able 7; is replaced by the constant output required time
Tout.

The total number of constraint inequalities con-
structed by this method is O(N% + I + O), where,
I and O are the number of inputs and outputs respec-
tively. In practice, this number can be greatly reduced.
Techniques for the reduction of the number of con-
straints are described in [6, 8] and are not discussed
here for space reasons.

Example. 'We obtain the constraint equations for the
circuit in Fig. 1. There are two variables T} and T, rep-
resenting the skew of the clocks CLK1 and CLK2. The
clock period is Tox. We assume that Tsy = Tyo =0.
The constraints for variable T} are the following:

T+ & <Th+ T
Ti+87% 2T
TI + s < Tout + Tclk

1,out —

Moreover, 0 < T} < T.k. Similar constraints hold
for T,.. We have eliminated one input constraint and
one output constraint because we assume that skews
are positive and that the circuit with no skews was
originally satisfying all input and output constraints.
Notice that all constraints are linear. The feasibility of
a set of linear constraints can be checked in polynomial
time by the Bellman-Ford algorithm [14].

i out out
- - cok__—1 | —
Combinational

logic
aki__'— r

T2
CLK2 I 1 |
CLK1 . Tin__,
n ¥

|y
[edreve

(a) (b)

Figure 1. (a)Examplecircuit, with two flip-flops. (b) Timing wave-
form representing the skewed clocks.

Clock Skew Optimization 119

An important practical consideration that is often
overlooked in the literatures is the generation of the
skewed clocks. Although generating delays is a rel-
atively straightforward task, the cost (in power, area
and signal quality degradation) of the delay elements
is an important factor in the evaluation of optimization
techniques based on clock skewing. We will first con-
centrate on the theory of clock skew optimization for
the sake of simplicity. Circuits for the generation of
skewed clocks will be discussed in a later section.

Cycle time minimization is an optimization problem
targeting the minimization of a linear cost function (i.e.,
F(h,Th,...,Ty, Tx) = [0,0,...,0,1] - [Ty, T3,
..., Tn, Tg]) of linearly constrained variables. It is
therefore an instance of the well-known linear pro-
gramming (LP) problem. Several efficient algorithms
for the solution of LP have been proposed in the past
[15]. Our problem is radically different and substan-
tially harder. It can be stated as follows: find a clock
schedule such that the peak current of the circuit is
minimum. The cost function that we want to minimize
is not linear in the variables 7;. In the following sub-
section, we discuss this issue in greater detail.

2.2. Cost Function

In peak current minimization, the constraints are
exactly the same as for the traditional cycle time min-
imization, the only difference being that we consider
Tex as a constant. Unfortunately, our cost function is
much more complex. Ideally, we would like to min-
imize the maximum current peak that the circuit can
produce. This is however a formidable task, because
such peak can be found by exhaustively simulating the
system for all possible input sequences (and a circuit
level simulation would be required, because traditional
gate-level simulators do not give information on cur-
rent waveforms). To simplify the problem, we make
two important assumptions. First, we only minimize
the current peak directly caused by clock edges (i.e.,
caused by the switching of clock lines and sequential
elements’ internal nodes and outputs). This approx-
imation is justified by experimental evidence. In all
circuits we have tested, the largest current peaks are
observed in proximity of the clock edges. The current
profile produced by the propagation of signals through
the combinational logic is usually spread out and its
maximum value is sensibly smaller.

Notice that we are not neglecting the combinational
logic, but we consider its current as a phenomenon on

120 Benini et al.

which we have no control. Again, this choice is mo-
tivated by experimental evidence: our tests show that
in most cases, the current profile of the combinational
logic is not very sensitive to the clock schedule. For
some circuits, the combinational logic may be domi-
nant and strongly influenced by the clock schedule. We
will discuss this case in a later section.

The second approximation regards the shape of the
current waveform. Each sequential element produces
two peaks, one related to the rising edge of the clock,
and the other to the falling edge. For a given flip-flop,
the shape of the current peaks is weakly pattern de-
pendent. We approximate the current peaks produced
by each sequential element (or group of sequential ele-
ments) with two triangular shapes, that are fully charac-
terized by four parameters: starting time #,, maximum
time t,,, maximum value current /,,-and final time .

To compute these parameters we run several current
simulations [16] (see Section 4) and we obtain current
waveform envelopes Iy (¢) (Iov(t) is obtained by aver-
aging the current at ¢ on different input patterns). For
each peak of the curve I,,, we define the four parame-
ters as shown in Fig. 2: t, is the time at which the current
first reaches 1% of the maximum value, #; is the time
at which the current decreases below 1% of the max-
imum value, /,, and t,, are respectively the maximum
current value and the time when it is reached. Experi-
mentally we observed that the triangular approximation
is satisfactory for the current profiles of the sequential
elements. For combinational logic, this approximation
is generally inaccurate. The current profile of combina-
tional logic is more adequately modeled by a piecewise
linear approximation. Fortunately, any piecewise lin-
ear function can be decomposed in the sum of one or
more triangular functions.

The total current is the sum of the current con-
tributions represented as triangular shapes. Every

v L]
current peak —
Ime0.99 % rriangls. oo
- 0.8 boerremmrevinniedenn e N, -
g
€ 0.6 b= -
o
w
H
(¢} 0.4 p~ PR
L T e T N U RPN -t
o
1 Ts=1.18 Tm=1.3 Tt=1.58 2

Time (ng)

Figure 2. The four parameters characterizing the triangular approx-

imation of the average current profile. £, and 1, are the times at which
the current reaches 1% of its maximum value.

flip-flop i has two associated contributions Af(z, T;)
and A,-f (¢, T;), representing respectively the current
drawn on the raising and falling edge of the clock. No-
tice that such contributions are functions of time ¢ and
of the clock arrival time T;. In fact, the curve translates
rigidly with T;. The current drawn by the combinational
logic is approximated with a sum of triangles (i.e., a
piecewise linear waveform) Ac (). Note that Ac(t) is
not a function of the arrival time of any clock. The total
current is the sum of the contributions due to flip-flops
and combinational logic:

N N
la(t,T) = Ac(t) +) A, T+ Y _ Al @,T)

i=l i=l

(3)
‘We clarify this equation through an example.

Example. The current profiles for the flip-flops of the
circuit in Fig. 1 are shown in Fig. 3 for one assign-
ment of T) and T5. The current profile of the combina-
tional logic for this example is shown in Fig. 4 with its
approximation.

The contribution of a flip-flop is approximated by
two triangular shapes. The first corresponds to the

3

I B T T
i i H Current of 1 —
Current of 2i=--

o
I
-

Carrent (mA)

___—F"'_-_
[V

-
°
o
-

.5 2 2.5 3 3.
Time (ns)

Figure 3. Current profiles for the two flip-flops 1 and 2 from sim-
ulation of our example circuit.

! T T 1 T T T
H : H H i Current of legic: —
: Approximation; ===

Current (mA)

] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 -4
Time (ns)

Figure 4. Current profile corresponding to the combinational logic

from simulation of our example circuit. The dashed line is its piece-
wise linear approximation.

rising edge of the clock, the second to the falling edge.
Here we have T} = O ns and T, = 1.07 ns. Notice that
the current profile of flip-flop 2 is shifted to the right.
The profiles for the two flip-flop do not have exactly the
same shape because they are differently loaded. No-
tice that when T} = T the two current profiles of the
flip-flops are perfectly overlapped. When T # T, the
two contributions are skewed.

The cost function F that approximates the peak cur-
rent is the maximum value of the (approximate) current
waveform over the clock period Tgk: '

F(T) = ,e%flrﬁk]{]'m(t')} C))
For the above example, the value of the cost func-
tion F(Ty, T7) is the maximum value of the sum of
the five triangles over the clock period T'. In this case
F(0, 1.07) = 2.7, whereasiinitially F (0, 0) = 4.2.Our
target is to find the optimum clock schedule Top, Which
minimizes the cost function F, while satisfying the
timing constraints for correct operation of the circuit.

3. Peak Current Minimization

We now describe our approach to the minimization of
the cost function described in the previous section. The
first key result of this section is summarized in the
following proposition.

Theorem 1. The cost function F of Eq. (4) can be
evaluated in quadratic time (in the number of triangu-
lar contributions).

Proof: The proof of this theorem is given in a con-
structive fashion, by describing a O(N3) algorithm
(N, is the number of triangular current contributions)
for the evaluation of the cost function. The algorithm is
based on the observation that the maximum of the cost
function can be attained in a finite number of points,
namely the points of maximum of the triangles that
compose it. In order to evaluate the value of F in one
of such points, we must check if the corresponding tri-
angle is overlapping with any of the other contributions.
The quadratic complexity stems from this check: for
each maximum value v; (val in the pseudo-code), we
check if its corresponding triangle A; is overlapping
with any other triangle. In case there is overlap, v;
is incremented by the value of the overlapping wave-

form at the maximum point. Thus, we have two nested

Clock Skew Optimization 121

/% Let T(i] (i..F) be the variable vector */
/% Deltaoriglil (i..2N+1) are the 2N+1 contributions when T[il=0 »/
float evaluate (T)
/* computes the contributions for the vector T */
Delta = translate.triangles (Deltaorig, T);
max = 0;
foreach (ci in [0..2N])
val = max(Delta([c1]));
toreach (c2 in [0..2N])
if (¢2 != c1) then
if (overlap (Deltalc1], Delta[c2])) then
/* we look if the 2 triangles overlap and add the value #/
/% of c2 at the maximum point of c1 +/
val += get_value (Deltalc2], time.max (Deltalc1]));
endif;
endif;
endfor;
it (val > max) then max = val;
endfor;
return (max);
end evaluate;

Figure 5. O(N?) algorithm for the computation of the cost func-
tion F.

loops with iteration bound N,. The pseudo-code of
the algorithm is shown in Fig. 5.]

The second key result is summarized by the follow-

_ing theorem:

Theorem 2. The peak current minimization problem
is an instance of the constrained DC optimization
problem (DC optimization problems are those where
the cost function can be expressed as the difference of
two concave functions [17]).

Proof: The proof of the theorem is straightforward.
The cost function F(T) is the maximum over a finite
interval of I,,, which is obtained by summing trian-
gular current contributions. Hence, I, is piecewise-
linear. The maximum of a piecewise-linear function
is piecewise-linear [17]. The Theorem is there-
fore proven, because piecewise-linear functions are
DC [17]. O

An important consequence of Theorem 2 is the
NP-completeness of the current minimization problem
(since DC optimization is NP-complete). Our solution
strategy is heuristic and it is based on a genetic algo-
rithm (GA) [18]. We will briefly discuss the application
of the genetic algorithm for the solution of the problem
at hand. Refer to [18] for a more in-depth treatment of
genetic search and optimization techniques.

3.1. Heuristic Peak Current Minimization

The minimization of a multi-modal cost function such
as the one representing the current peak is a difficult

122 Benini et al.

task. Gradient-based techniques [17] are fast and well-
established, but they tend to rapidly converge to a local
minimum. The genetic algorithm is a global optimiza-
tion technique that mimics the dynamics of natural evo-
lution and survival of the fittest.

A set of initial random solutions (a population)
is generated. For each solution (an individual of the
population) the cost function is evaluated. From the
initial population a new population is created. The best
individuals in the old population have a high probabil-
ity of either becoming member of the new population or
participating in the generation of new solution points.
New solutions are created by combining couples of
good solutions belonging to the old population. This
process is called crossover. Weak individuals (i.e.,
points with a high value of the cost function) have
a low probability of being selected for crossover or
replication.

The creation and cost evaluation of new sets of
solutions is carried on until no improvement is ob-
tained on the best individuals over several successive
generations. Alternatively, a maximum number of cost
function evaluations is specified as a stopping rule. The
basic genetic algorithm and many advanced variations
have been applied to a number of hard optimization
problems for which local search techniques are not
successful. The interested reader can refer to [18] for
several examples and theoretical background.

The GA approach is attractive in our case because
we have an efficient way to compute the cost function
(with low-order polynomial complexity). GA-based
functional optimization requires a very large number
of function evaluations (proportional to the number of
generations multiplied by the size of the population).
Since F can be efficiently evaluated, large instances of
the problem can be (heuristically) solved.

Notice two important facts. First, our algorithm
heavily relies on the triangular approximation. If we
relax this assumption, the evaluation of F becomes an
extremely complex problem (finding the maximum of a
multi-modal function), and the GA approach would not
be practical. Second, we consider the contribution of
the combinational logic as function of time only (inde-
pendent from the clock schedule). As aconsequence, if
the maximum current is produced by the combinational
logic, F(Ty, ..., Ty) isaconstant, and no optimization
is achievable.

Although the experimental results seem to confirm
that the GA is an effective optimization algorithm

for peak current minimization, there are margins of

10

improvement. First, the GA does not provide any in-
sight on how far is the best individual from the absolute
minimum of the cost function over the feasible region.
Moreover, the quality of the results can be improved
if the GA is coupled with gradient techniques that are
applied starting from the GA-generated solutions and
lead to convergence towards local minima.

3.2. Clustering

Up to now, we have assumed that the arrival time T;
of each individual flip-flop can be independently con-
trolled. This is an unrealistic assumption. In VLSI
circuits the clock is distributed using regular structures
such as clock trees [1, 19]. Usually, sub-units of acom-
plex system have local clocks, connected with buffers
(drivers) to the main clock tree. The buffers are the
ideal insertion points for the delays needed for skew
optimization (a practical implementation of such de-
lays will be discussed later). In general it would not
be feasible to provide each flip-flop with its own buffer
and delay element, for obvious reasons of layout com-
plexity, routability and power dissipation.

Since clock-skew optimization is practical only if
applied at a coarser level of granularity, we have de-
veloped a strategy that allows the user to specify the
number of clusters (i.e., the number of available clock
buffers with adjustable delay), and heuristically finds
flip-flops that can be clustered without large penalty on
the cost function. Here we assume that no constraints
on the grouping of flip-flops have been previously
specified. This is often the case for circuits generated
by automatic synthesis. Structured circuits (data-path,
pipelined systems) with pre-existing clustering con-
straints are discussed later.

Our clustering algorithm can be summarized as fol-
lows. The user specifies the number of clusters Np.
First, we solve the peak current minimization problem
without any clustering (every flip-flop may have a dif-
ferent arrival time). We then insert the flip-flops in a
list ordered by clock arrival times. The list is parti-
tioned in Np equal blocks. New constraint equations
and new current profiles are obtained for the blocks
of the partition. A new peak current minimization is
solved where the variables are the arrival times TjP ;
Jj=1,2,..., Np,oneforeach cluster. We alsorecom-
pute the delays from cluster i to cluster j. The number
of equations reduces to O (N2 + I + O). The pseudo-
code of the clustering algorithm is shown in Fig. 7.

——:No skew
——:Two clusters

0.6 0.6 0.7 o8 0.9 1
Time (sec)

Figure 6. Current profile for benchmark s208 before and after
skew optimization with two clusters. The current profiles are ob-
tained by accurate current simulation.

/* Let F[il (i..N) be the instances of the flip-flops */
/% Let T[i] (i..¥) be the values given by the MA for instance i +/
/* Let H_p be the number of clusters to obtain */
F.sort[i] = sort.by.skew (F[il, T[il);
sizecluster = ¥ / N.p;
tum.cluster = 0;
foreach (i in Fsort[il)

if (size (Cluster [num.cluster] == size cluster)) then

num.cluster++;

endif;

add.in_cluster (Cluster [numcluster], Fsort(il);
endfor;
return (Cluster);

Figure 7. Clustering algorithm.

The complexity of the clustering algorithm is dom-
inated by the complexity of the ordering of the
clock arrival times. Thus, the overall complexity is
O(N log N). Clearly, the overall computational cost of
our procedure is not dominated by the clustering step.

Using clustering, we can control the granularity of
the clock distribution. The first step of our partition-
ing strategy is based on the optimal clock schedule
found without constraints on the number of partitions.
Clustering implies loss in optimality, because some de-
grees of freedom in the assignment of the arrival times
are lost. Our clustering strategy reduces the loss by
trying to enforce a natural partitioning. The second
iteration of current peak optimization guarantees cor-
rectness and further reduces the optimality loss.

Example. Consider the small benchmark s208. It
consists of 84 combinational gates and 8 flip-flops. The
cycle time is 10 ns, the clock has 50% duty cycle. The
current profile for the circuit is shown in Fig. 6 with the
dashed line. Observe the two current peaks synchro-
nized with the raising and falling edge of the clock.
The irregular shape that follows the first peak shows
the current drawn by the combinational logic.

Clock Skew Optimization 123

The skew is then optimized with the constraint of
2 partition blocks (i.e., two separate clock drivers al-
lowed). The current profile after skew optimization is
shown in Fig. 6 with continuous line. The beneficial
effect of our transformation is evident. The two current
peaks due to the two skewed clusters of switching flip-
flops have approximatively one half of the value of the
original peaks. The irregular current profile between
peaks is due to the propagation of the switching activity
through the combinational logic. Notice that skewing
the clock does not have a remarkable impact on the
overall current drawn by the combinational logic.

Several different clustering heuristics could be tried.
In our experiments we observed that our heuristic pro-
duced consistently good results, and did notexcessively
degrade the quality of the solution with no clustering.
However, notice that our heuristic can be applied only
if an optimal clock schedule with fine granularity has
already been found. For large circuits this preliminary
step may become very computationally intensive. In
these cases, the user can specify clusters using a differ-
ent heuristic. In the following sub-section a clustering
technique is discussed for dealing with large and struc-
tured data-path circuits.

3.3. Clustering for Staged Circuits

In the previous discussion, we have solved the cur-
rent peak optimization problem assuming that we can-
not control the current profile of the combinational
logic. For many practical circuits this is an overly pes-
simistic assumption, because the data path of large syn-
chronous systems is often staged. In a staged structure,
a set of flip-flops A feeds the inputs of a combinational
logic block. The outputs of the block are connected
to the inputs of a second set of flip-flops B. The sets
A and B are disjoint. The flip-flops in A and the block
of combinational logic are called a stage. Pipelined cir-
cuits are staged, and most data paths have this structure,
that makes the design easier and the layout much more
compact.

If the circuit has a staged structure, the behavior of
the combinational logic is much more predictable. If
we cluster the flip-flops at the input of each stage, by
imposing the same arrival time (i.e., assigning the same
clock driver) to their clock signal, we can guaran-
tee that all inputs of the combinational logic of the
stage are synchronized. As a consequence, the cur-
rent profile of the combinational logic translates rigidly

11

124 Benini et al.

with the arrival time of the clock of the flip-flops at its
inputs.

For staged circuits our algorithm is more effective,
because the clock schedule controls the current profile
of the combinational logic as well. The current peak
can therefore be reduced even if it is entirely depen-
dent on the combinational logic. Interestingly, the ap-
plication of clock skew to pipelined circuits has been
investigated in [20], where the authors describe a high-
performance design style called counter-flow clocked
pipelining based on multiple skewed clocks. Although
the methodology in [20] was not developed to reduce
current peaks, the authors observe that clock skewing
has beneficial effects on peaks for practical chip level
designs.

4. Layout and Clock Distribution

To make our methodology useful in practice, several
issues arising in the final steps of the design pro-
cess need to be addressed. First, pre-layout power and
delay estimates are inaccurate and constraints met be-
fore layout may be violated. in the final circuit. Sec-
ond, and more importantly, the impact of the clock
distribution scheme is not adequately considered when
performing pre-layout estimation. Any optimization
exploiting clock skew is not practical if the skew can-
not be controlled with sufficient accuracy or the cost of
generating skewed clocks swamps the reductions that
can be obtained.

In the following discussion we assume that the layout
of the circuit is automatically generated by placement
and routing tools starting from structural gate-level
specification. Clusters are specified by providing dif-
ferent names for clock wires coming from different
buffers. Flip-flops connected to the same buffer will
have the same clock wire name.

To overcome the uncertainty in pre-layout power
and delay estimation, two different approaches can
be envisioned. We can apply our methodology as a
post-processing step after layout. In this case, the con-
straints can be formulated with high accuracy, and the
clock schedule computed with small uncertainty. Af-
ter finding the optimal clock scheduling and clustering,
we need to iterate placement and routing, specifying
the new clock clusters and their skews. Alternatively,
we can find the clock schedule using pre-layout esti-
mates and allowing a safety margin on the constraint

equations. This can be done by increasing the length of
the longest paths estimates and decreasing that of the

12

shortest paths, and considering some delay inaccuracy
on the computed skews. The effect of the margins is to
potentially decrease the effectiveness of the optimiza-
tion, but in this approach the lay out has to be generated
only once. '

We chose the second approach for efficiency reasons.
For large circuits, the automatic layout generation step
dominates the total computation time. The first ap-
proach was disregarded because it requires the iteration
of the layout step, with an unacceptable computational
cost. Notice that this is not always the best choice: if
an advanced and efficient layout system is avail-
able, which allows incremental modifications (local re-
wiring of the clock lines) at low computational cost, the
firstapproach becomes preferable. Moreover, if cluster-
ing is user-specified and consistent with the partitioning
of the clock distribution- implemented in the layout,
there would be no need of re-wiring at all, and the first
approach would always lead to better results.

4.1. Clock Distribution

After placement and routing, we have complete and
accurate information on the load that must be driven by
the clock buffer of each cluster. Although many algo-
rithms have been developed for the design of topologi-
cally balanced clock trees considering wire lengths and
tree structure, for the technology targeted by this work
such algorithms are an overkill. Algorithms based on
wire length and width balancing become necessary for
clock frequencies and die sizes much larger than the
ones we deal with [19]. In our case, clock distribution
design is simply a buffer design problem.

We assume that we have no control on how the clock
tree will be routed, once we specify the clock clusters
(i.e., the flip-flops to be connected to the same buffer).
From layout we extract the equivalent passive network
representing the clock tree for each cluster. We need to
design a clock buffer that drives the load with satisfac-
tory clock waveform and skew. The clock waveform
must have fast and sharp edges (to avoid short circuit
power dissipation on the flip-flops and possible timing
violations), and the skew must be as close as possible
to the one specified by our algorithm.

Numerous techniques for buffer sizing have been
proposed [1, 21] and empirical formulas are available.
We used computer-aided optimization methods based
on iterative electrical simulation (such as those imple-
mented in HSPICE [22]) that have widespread usage in

real-life designs. The main advantage of this approach

SN

/
Wp(big) -~
Load \
cLO\ Network'y

Wn(big) -~

\
CLK |

~—

Wp2, R2
Wwn2

I
CLK I 1|

G fime: RN
2] |] |
cLo _| ! I

Tskew .Tskew

Figure 8. Buffer for gege{ngﬁ of skewed clock and signal wave-
forms. o

is that no simplifying assumptions are made on the
transistor models and on the buffer architecture. Al-
though the basic clock buffer architecture (a chain of
scaled inverters) is well-suited for driving large loads
with satisfactory clock waveform, its performance for
generating controlled clock skew is poor. There are
two standard ways to generate clock skews using the
basic buffer: i) add an even number of suitably scaled
inverters ii) add capacitance and/or resistance between
stages to slow down the output.

Both methods have considerable area and power dis-
sipation overhead. The first method adds stages that
dissipate additional power (and use additional area),
the second method is probably even worse for both cost
measures, because it produces slow transitions inside
the buffer, that imply a large amount of short circuit
power dissipation. We briefly discuss a clock buffer
architecture that has a limited overhead in area and al-
most no penalty in power dissipation. Our architecture
is shown in Fig. 8 for a simple two-stage buffer. The
key intuition in this design is that the two large transis-
tors in the output stage are never on at the same time,
thus eliminating the short circuit dissipation. The clock
skew is obtained by dimensioning the resistances of the
two inverters in the first stage.

The transition that controls the output edge is always
produced by the transistor in series with the resistance
and it can be slowed down using large values R1 and
R2. The penalty is in less sharp output edges (although
the gain of the output inverter mitigates this effect) and
in the presence of a period when both output transistors
are off (the clock line is prone to the damaging effect of

Clock Skew Optimization 125

cross-talk). Both these effects are greatly reduced by
adding another output stage (i.e., two inverters). The
complete discussion of this buffer, its dimensioning
and its comparison with standard implementation is
outside the scope of this paper. However, our HSPICE
simulations show that the power overhead of this buffer
is negligible and the area overhead is very small.

5. Implementation and Results

The implementation of a program for peak current min-
imization depends on the availability of a tool that
provides accurate current waveforms for circuits of suf-
ficiently large size. Electrical simulators such as SPICE
are simply too slow to provide the needed information.
In our tool, pre-layout current waveforms are estimated
by an enhanced version of PPP [16], a multi-level sim-

~ ulator specifically designed for power and current esti-

mation [23] of digital CMOS circuits. PPP has perfor-
mance similar to logic level simulators, it is fully com-
patible with Verilog XL and provides power and current
data with accuracy comparable to electrical simulators.
Input signal and transition probabilities for all the sim-
ulations are set to 50%. .

The starting point for our tool is a mapped sequential
network (we accept Verilog, SLIF and BLIF netlists).
First, the sequential elements are isolated and current
profiles are obtained. Alternatively, pre-characterized
current models of all flip-flops in the library can be
provided. The combinational logic between flip-flops
is then simulated and its average current profile is ob-
tained. The first simulation step assumes no skews.

Timing information is extracted from the network.
Maximum and minimum delays are estimated with safe
approximations (i.e., topological paths). Input arrival
times and output required times are provided by the
user. The uncertainties in pre-layout estimates are ac-
counted for by specifying a safety margin of 15% on the
delay values. The constraint inequalities are generated
taking the margin into account. In this step several
optimizations, such as those described in [6, 8], are
applied to reduce the number of constraint inequali-
ties. Data needed for the evaluation of the cost func-
tion are produced: the triangular approximations are
extracted from the current profiles and passed to the
GA solver [24]. ' »

The GA solver is then run to find the optimal
schedule that minimizes the peak current. The initial
population is generated by perturbing an initial feasi-
ble solution (zero skew). The GA execution terminates

13

130 Benini et al.

Giovanni De Micheli is Professor of Electrical Engineering, and
by courtesy, of Computer Science at Stanford University. His re-
search interests include several aspects of the computer-aided design

18

of integrated circuits and systems, with particular emphasis on au-
tomated synthesis, optimization and validation. He is author of:
Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994,
and co-author or co-editor of three other books. He was co-director
of the NATO Advanced Study Institutes on Hardware/Software Co-
design, held in Tremezzo, Italy, 1995 and on Logic Synthesis and
Silicon Compilation, held in L’ Aquila, Italy, 1986.

Dr. De Micheli is a Fellow of IEEE. He was granted a Presiden-
tial Young Investigator award in 1988. He received the 1987 IEEE
Transactions on CAD/ICAS Best Paper Award and two Best Paper
Awards at the Design Automation Conference, in 1983 and in 1993.
He is the Program Chair (for Design Tools) of the 1996/97 Design
Automation Conference. He was Program and General Chair of In-
ternational Conference on Computer Design (ICCD) in 1988 and
1989 respectively.
nanni@stanford.edu

