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Abstract

Embedded systems are composed of interacting hardware components such as general-purpose processors and applica-
tion-specific circuits and software components that execute on the general-purpose hardware. The software component
consists of application-specific routines that must deliver the required system functionality under constraints on timing and
memory storage available. In this paper, we consider two main problems in the synthesis of the software component in
embedded system designs: (a) generation of software and (b) conditions to ensure correct behavior of the generated software
from an HDL-modeled input. Generation of embedded software requires operation linearization under constraints to ensure
timely interaction with concurrent hardware. We describe our procedure to achieve constrained software generation and the
utility of our approach by examples. Experimental results show that the proposed algorithm is substantially faster than
conventional methods and yields efficient schedules for the embedded software.
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1. Introduction

Embedded systems are targeted for specific appli-
cations under constraints on the relative timing of
their actions. In recent years there has been a surge
in embedded system designs that use commodity
processors along with memory and logic chips [1-5].
The primary motivation for using predesigned pro-
cessors is to reduce the design cost and time by
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using software to implement system functionalities.
However, a purely software implementation often
fails to meet the required timing performance for
embedded systems. Thus, dedicated hardware is
needed to implement the time-constrained portions
of system functionality.

While there have been several advances in the
design of individual hardware and software compo-
nents, the combined design of systems using these
components to achieve a specific functionality is still
pretty much a manual and time-consuming task. This
work considers a synthesis approach to systematic
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exploration of mixed system designs that is driven
by the constraints. It is built on the high-level syn-
thesis techniques for digital hardware [6,7] and the
program compilation techniques. An overview of the
sub-problems and our approach can be found in [5S].
In this paper, we focus on the problem of software
synthesis under constraints in a co-synthesis frame-
work.

This paper is organized as follows. We briefly

define the input description and target architecture
followed by a cost model of the processor in Section
2. We then review the steps used in software synthe-
sis. In Section 3, we present our model of software
that is useful in determination of satisfaction of the
timing constraints. In Section 4, we present an algo-
rithm for software linearization under timing con-
straints. We address the issue of correctness in soft-
ware generation in Section 5. In Section 6, we
present results from the implementation of our soft-
ware synthesis procedure. We summarize contribu-
tions and discuss open issues in Section 7.

2. The inputs and synthesis flow

The input to our co-synthesis system consists of a
description of system functionality in a hardware
description language (HDL) called HardwareC [8).
Our choice of an HDL for system description is due
to its ability to specify detailed timing relationship
between concurrent sets of operations. In addition,
the simpler programming model using only static
data types makes it possible to do complete opera-
tion dependency analysis that is essential to synthesis
tasks. This input description is compiled into a flow
graph model [9] consisting of a set @ of acyclic
polar graphs G(V, E, x) with unique source and
sink vertices. The vertex set V represents language-
level operations and special link vertices are used to
encapsulate hierarchy. A link vertex induces (single
or multiple) calls to another flow graph model that

may, for instance, be body of a loop operation. The
edge set E in flow graph represents dependencies
between the operation vertices. Function y associ-
ates a Boolean (enabling) expression with every
edge. The enabling expression for a condition vertex
refers to the condition under which its successor
nodes are enabled. In case of a multiple in-degree
vertex, the vertex is enabled by evaluating an input
expression consisting of logical AND and OR opera-
tions over the enabling expression of its fanin edges.
We consider here only well-formed flow graphs
where the enabling expressions use either AND or
OR operations, but not both, in the same expression.
Such a flow graph is a bilogic flow graph where a
vertex may have conjoined or disjoined inputs/out-
puts. Bilogic flow graphs occur frequently in pro-
gram control graphs [10]. A flow graph with only
conjoined vertices is referred to as a unilogic flow
graph.

Operations in a flow graph present either a fixed
or variable delay during execution. The variation in
delay is caused by the dependence of operation delay
on either the value of the input data or on the fiming
of the input data. Example of operations with value-
dependent delay are loop (link) operations with a
data-dependent iteration count. In a unilogic flow
graph only the link operations present value-depen-
dent delays, whereas in a bilogic flow graph any
operation can present a value-dependent delay. The
second category of operations with variable delay are
operations that depend upon a response from the
environment. An operation presents a timing-depen-
dent delay only if it has blocking semantics. The
only operation in the flow graph with a block seman-
tics is the wait operation that models synchroniza-
tion events at system ports. The loop (link) and
synchronization operations introduce uncertainty over
the precise delay and order of operations. Due to
concurrently executing flow graph models, these op-
erations affect the order in which various operations
are invoked. A system model containing such opera-
tions is called a non-deterministic model [11] and
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operations with variable delays are termed as non-
deterministic delay or /' operations.

We define a rate of an execution p, at invocation
k of an operation as the inverse of the time interval
between its k and (k — 1)-th execution. Thus, the
rate of execution of an operation is defined only at
times when the operation is executed. For a flow
graph we define a rate of reaction, o, as the rate of
execution of its source operation. The reaction rate
of a flow graph represents the frequency at which the
graph is executed and is typically used to determine
the throughput at its ports.

The timing constraints are of two types: (a) bounds
on the time interval between initiation of any two
operations (min/max delay constraints), and (b)
bounds on the successive initiation interval of the
same operation (rate constraints). For constraint anal-
ysis, the rate constraints are translated into one or
more min/max delay constraints using constraint
propagation techniques [9]. The resulting min/max
constraints are represented as additional weighted
edges on the flow graph model. The flow graph
model with constraint edges is called a constraint
graph model, G(V, E;U E,, A), where the edge set
contains forward edges E, representing minimum
delay constraints and backward edges E, represent-
ing maximum delay constraints. An edge weight
8,;€ A on edge (v;, v;) defines constraint on the
operation start times as £,(v;,) + §;; < ,(v)) for all
invocations k. The timing constraints are specified in
the input HDL description as annotations using tags
on individual operations.

It is important to note that while min/max timing
constraints can be used to capture the durational and
deadline timing constraints [12], ' our constraint

! For a given operation, v, release time, r(v) is indicated by a
min delay constraint of r(v) from source to v. Similarly, a
deadline of d(v) is indicated by a max delay constraint of
d(v)— 8(v) from v to source operation where 8(v) is the execu-
tion delay of the operation v.

analysis procedure does not guarantee satisfaction of
deadline constraints. Due to the non-deterministic
delay operations, our timing constraint analysis only
considers bounds relative operation intervals that are
verified in view of the operation delay estimates.
Also, in the presence of both minimum and maxi-
mum delay constraints between a pair of operations,
the validity of constraint satisfiability analysis is
limited by the accuracy of the delay estimation pro-
cedure.

2.1. Flow graph implementation attributes

A hardware or software implementation of a flow
graph, G, refers to assignment of delay and size
properties to operations in G and a choice of a
runtime scheduler T to enable the execution of
source operation in G. For non-pipelined hardware
implementations, the runtime scheduler is trivial as
the source operation is enabled once the sink opera-
tion completes. For software implementation, the
runtime scheduler is more complex and is discussed
further in next section.

The size attributes refer to the physical size and
pinout of implementation of operations and graphs.
The hardware size, S, of an operation refers to its
size as a sum of sizes of hardware resources required
to implement the operation, the associated control
logic and the storage registers. The size of a graph
model is computed as a bottom-up sum of the size of
its operations. The size of a hardware implementa-
tion is expressed in units of gates or cells (using a
specific library of gates) required to implement the
hardware. The size of a software implementation
refers to the size of the program and the data por-
tions.

In general, it is a difficult problem to accurately
estimate the size of the resulting hardware or soft-
ware from flow graph models, since the process of
compilation and synthesis consists of optimizations
at several levels of abstractions not captured by the
flow graph model. The purpose of estimation in our



560 R.K. Gupta, G. De Micheli / Journal of Systems Architecture 43 (1997) 557-586

context is to determine the relative sizes for different
implementations of different flow graphs, to be used
in making trade-offs between hardware and software
implementations of a flow graph model. This allows
for simplifications in the estimation procedure as
discussed later.

We note that the effect of resource usage con-
straints for hardware is to limit the amount of avail-
able concurrency in the flow graphs. The more con-
straints on available hardware resources, the more
operation (control) dependencies are needed to en-

sure constraint satisfaction. The timing constraints,

on the other hand, are used to explore alternative
implementations at a given level of concurrency. We
assume that the expressed concurrency in the flow
graph models can be supported by the available
hardware resources. That is, the serialization re-
quired to meet hardware resource constraints has
already been performed. This is not a strong assump-
tion, since the availability of major data-path re-
sources such as multipliers is usually known in
advance.

2.2. Capturing the memory side-effects of a software
implementation

A graph model captures the functionality of a
system and the system behavior on its ports. The
operational semantics of the graph model requires
use of an internal storage to describe multiple as-
signments in the HDL model. Whereas additional
variables can be created that avoid multiple assign-
ments to the same variable, because of their struc-
tural nature ports must still be kept multiply assigned
in a flow graph model. Further, a port is often
implemented as a specific memory location (that is,
as a shared variable) in software. Thus, during the
execution of operations in a graph model, the inter-
nal storage may be 'modified more than once. The
memory side-effects created by graph models are
captured by a set M(G) of variables that are refer-

enced by operations in a graph model, G. M(G) is
independent of the cycle-time of the clock used to
implement the corresponding synchronous circuitry
and does not include the storage specific to structural
implementations of G (for example, control latches).
Further, M need not be the minimum storage re-
quired for correct behavioral interpretation of a flow
graph model.

The size, S(G), of a software implementation
consists of the program size and the static storage to
hold variable values across machine operations. The
static data storage can be a specific memory location
or an on-chip register. This static storage is, in
general, upper bounded by the size of the variables
in M(G) mentioned above. To estimate the software
size, a flow graph model is not enough. In addition,
knowledge of the processor to be used and the type
of runtime system used is needed as discussed in the
next section. Pinout, P(G) refers to the size of inputs
and outputs in units of words or bits. A pinout does
not necessarily imply the number of ports required
since a port may be bound to multiple input/output
operations in a flow graph model.

2.2.1. Synthesis flow

The flow graph model is input to a set of parti-
tioning transformations that generates a set of flows
graphs to be implemented in hardware and software.
The hardware implementation is carried out by
high-level synthesis tools [6]. The objective of soft-
ware implementation is to generate a sequence of
processor or machine instructions from the set of
flow graph models. Due to significant differences in
processor abstractions at the levels of graph model
and machine instructions, this task is performed in
steps. The task of synthesis of software from flow
graphs is divided into the following four steps as
shown in Fig. 1. We first create a linearized set of
operations collected into program threads. The de-
pendencies between the program threads is built into
the threads using (additional) enabling operations for
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Marked flow graphs

Generate program threads l

- convexity linearization
- generate program flow graph (@)
- add thread dependencies

Program Threads
- thread transformations
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- add scheduler operations

- generate code for thread
dependency operations

Generate program routines ‘

Generate C code Program Routines

- variable binding
- generate main program

DLX COMPILER

Compile C code

Simulation code

Fig. 1. Steps in generation of the software component.

dependent threads. Further overhead operations are
added to implement the concurrency between the
program threads either by subroutine calling, or as
co-routines or as a program with case descriptions.
Finally, the routines are compiled into machine code
using compiler for the processor. We assume that the
processor is a predesigned general-purpose compo-
nent with available compiler and assembler. There-
fore, the important issue in software synthesis is
generation of the source-level program. Most of this
paper is devoted to this step of software synthesis.
For details on assembly, linking and loading issues
the reader is referred to [13].

2.2.2. Target architecture

The target architecture for hardware—software im-
plementation consists of a single processor assisted
by application-specific chips and a single-level mem-
ory. The presence of a memory hierarchy leads to a
significant variability in the timing properties of the
program. An analysis of software performance in the
presence of an instruction cache is presented in [14].
For the choice of a processor, we assume the DLX
processor [15] for which simulation and compilation
tools have been integrated into our synthesis system.

As mentioned earlier, an implementation of a
flow graph in software is characterized by the as-
signment of delays to operation vertices and choice
of a runtime scheduler. The delay of an operation is
dependent on the set of processor instructions and
delays associated with these instructions. The in-
struction set and associated delays are determined by
the choice of the processor. We capture processor-
specific information into a cost model described
below. This model is general and provides flexibility
to use processors other than the DLX.

2.3. Processor cost model

A processor can be described at different levels of
detail such as the internal machine organization of
blocks, or its instruction set architecture (ISA) which
is commonly used by software compilers. We take
the latter view for its ease and applicability in the
context of our flow graph model even though it
sacrifices accuracy in our estimations. Thus, a pro-
cessor is characterized by its instruction set architec-
ture which consists of its instructions and the mem-
ory model. We make the following assumptions on
the ISA:

- The processor is a general-purpose register ma-
chine with only explicit operands in an instruction
(no implied accumulator or stack). All operands
must be named. This refers to the most general
model for code generation. A general-purpose
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Table 1
Basic instruction set
Instruction type Meaning DLX Example
load Load from memory Ib, by, Th, Ihu, lw, Iwl, lwr, *la, " li
store Store to memory sb, sh, sw, swl, swr, " ulh, * ulhu, * ulw, * ush, * usw
move Move registers mfhi, mthi, mflo, mtlo, * mov
xchange Exchange registers -
alu ALU operations addi, addiu, andi, ori, xori
add, addu, sub, subu, and, or, xor, nor"
sll, srl, sra, sllv, srlv, srav
lui, * abs, * neg, “negu, " not, " rol, * ror
*seq, " sle, "sleu, "sgt, *sgtu, * sge,
* sgeu, " sne
mpy Integer multiply mult, multu
div Integer divide div, divu, " rem, * remu
comp Compare slti, sltiu, slt, sltu
call Call -
jump Jump J» jal, jr, jalr
branch Branch beq, bne, * bgt, * gge, * bgeu, * gbtu,
* blt, * ble, * bleu, * bltu
bc_true Branch taken el
bc_false Branch not taken -
return Call return -
seti Set interrupt sicTae
cli Clear interrupt -
int_response Interrupt response -
halt ’ Halt -

* Synthesized /macro instruction.

register machine is the most dominant architec-
ture in use today and is expected to remain so in
foreseeable future [15]. 2
- The memory addressing is based on byte-level
addressing. This is consistent with the prevailing
practice in the organization of general-purpose
computer systems.
A processor instruction consists of an assembly
language operation and a set of operands on which

2Tra,ditionally accumulator-based instruction sets have also
lately adopted this programming model, with the exception of
Intel floating-point which continues to use a stack-based program-
ming model due to compatibility reasons.

to perform the specified operation. These instructions
usually correspond to instructions in the processor
instruction set. While the actual instruction sets for
different processors are different, a commonality can
be established based on the types of instructions
supported. We assume a basic set of instructions
listed in Table 1. This set of basic instructions
groups together functionally similar operations. In
addition, it also contains macro-operations that may
not be available as single instructions but as a group
of processor instructions, for example, call and re-
turn. These macro-assembly instructions are often
needed for compilation efficiency and to preserve the
atomicity of certain operations in the flow graph
model. These operations also help in software delay



R.K. Gupta, G. De Micheli / Journal of Systems Architecture 43 (1997) 557586 563

estimation by providing additional information which
may not be readily available purely from looking at
the instruction set of a processor.

There is a significant variation in the types of
operands supported on different processors. Follow-
ing the taxonomy in [15] we distinguish processors
by either a Load-Store (LS) ISA where memory
operations are confined to only two instructions, or
Register-Memory (RM) ISA where all instructions
may have at most one memory operand or by Mem-
ory-Memory (MM) ISA which allows all operands to
be memory operations.

Thus, the target processor is described using the
following cost model,

= (7,,, Togs tys ;) (1)
where the execution time function, Top> APS assem-
bly language instructions to positive integer delays.
The address calculation function, 7,,, maps a mem-
ory addressing mode to the integral delay (in cycles)
encountered by the processor in computing the effec-
tive address. An addressing mode specifies an imme-
diate data, register or memory address location. In
the last case, the actual address used to access the
memory is called the effective address. When gener-
ating programs from HDL descriptions only limited
addressing modes are used. For example, a computed
reference (register indirect) usually occurs when the
data value is created dynamically or a local variable
(stack) is referred to by means of a pointer or an
array index. Neither of these conditions occur when
generating code from HDL. Further, not all the
addressing modes may be supported by a given
processor. For example, the DLX processor supports
only immediate and register addressing modes. ¢,
represents the memory access time. Finally, the in-
terrupt response time, t;, is the time that the proces-
sor takes to become aware of an external hardware
interrupt in a single interrupt system (that is, when
there is no other maskable interrupt running). For the
cost model, this parameter can be specified as a part

of the operation delay function (as shown by entry
int_response in Table 1).

We note our delay estimation procedure is limited
by the choice IT for the processor cost model at the
instruction level. A more detailed model would be
needed to include machine organization-specific ef-
fects such as pipeline interference. To circumvent the
problems due to inaccuracy in estimations, the Vul-
can system also provides a mechanism to analyze the
compiler output and feedback aggregate program
delays for program constraint analysis.

3. A model for software and runtime system

The concept of a runtime system applies to sys-
tems containing a set of operations or tasks and a set
of resources that are used by the tasks. Operations
may have dependencies that impose a (partial) order-
ing in which the tasks can be assigned to resources.
In general a runtime system consists of a scheduler
and a resource manager. The task of the runtime
scheduler is to pick up a subset of tasks from the
available set of tasks to run at a particular time step.
The resource manager can be thought of consisting
of two components: a resource allocator and a re-
source binder. The allocator assigns a subset of
resource to a subset of tasks, whereas a binder makes
specific assignments of resources to tasks. The re-
sults of the scheduling and resource management
tasks are interdependent, that is, a choice of a sched-
ule affects allocation/binding and vice versa. De-
pending upon the nature and availability tasks and
resources some or all of these activities can be done
either statically or dynamically. A static schedule,
allocation or binding makes the runtime system sim-
pler.

Against this general framework, most synthesized
hardware uses static resource allocation and binding
schemes, and static or relative scheduling techniques
[8]. Due to this static nature, operations that share



564 R.K. Gupta, G. De Micheli / Journal of Systems Architecture 43 (1997) 557-586

Bus
Processor IT
Reaction rate
pl p2  p3 P
O O Of 4
M A3 2 ASIC
3
" Latency A2 ;
L] e —— |
SW model Size, S'! HW model
Processor utilization, P= Z A.p Size, Sy

Bus utilization,B=Z r

Fig. 2. Software model to avoid creation of A#'Z cycles.

resources are serialized and the binding of resources
is built into the structure of the synthesized hard-
ware, and thus there are always enough resources to
run the available set of tasks. Consequently, there is
no runtime system in hardware. Similarly, in soft-
ware, the runtime system depends upon whether the
resources and tasks (and their dependencies) are
determined at compile time or runtime.

Since our target architecture contains only a sin-
gle processor, the tasks of allocation and binding are
trivial, i.e., the processor is allocated and bound to
all routines. However, a static binding would require
determination of a static order of routines, effec-
tively leading to construction of a single routine for
the software. This would be a perfectly natural way
to build the software given that in our case both
resources and tasks and their dependencies are all
statically known. However, in presence of A#Z
operations in software, a complete serialization of
operations may lead to creation of /< cycles in the
constraint graph, that is, cycles containing 42
operations, which would make satisfiability determi-
nation impossible [5]. One way to avoid this problem
is to ensure that the constraints do not span 4/
operations. However, this condition is restrictive and
it may not always be possible to guarantee a lin-

earization that meets this condition. As an alternative
we construct software as a set of concurrent program
threads as sketched in Fig. 2. A thread is defined as a
linearized set of operations that may or may not
begin by an /9 operation. Other than the begin-
ning 'Y operation, a thread does not contain any
NP operations. The latency A; of a thread i is the
sum of the delay of its operations without including
the initial #9 operation whose delay is merged
into the delay of the runtime scheduler. The reaction
rate O; of thread i is the rate of invocation of the
program thread per second. In presence of concurrent
multiple threads of operation, a hardware—software
system is characterized by following two parameters:
(1) Processor utilization, & indicates utilization of
the processor. It is defined as

«97’%"2 A;c Q- (2)
i=1

In general, & is upper-bounded by unity. How-

ever, under certain runtime conditions, a lower

upper bound may be necessary. These are dis-

cussed in Section 4.5. :

(2) Bus utilization, & is a measure of the total
amount of communication taking place between
the hardware and software. For a set of m
variables to be transferred between hardware and
software, '

B AL i:lr., (3)

where r; is the inverse of the minimum time
interval between two consecutive samples for
variable j. This interval is determined by the rate
constraint on the input/output operation associ-
ated with the variable. In general, £ is limited
by the available bus bandwidth as a function of

the bus cycle time and memory access time.
The utilization parameters & and & are global
functions that are used to select operations for imple-

mentation into software. The resulting set of opera-
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tions organized as marked flow graphs (Fig. 1) is
implemented into multiple program threads by the
linearization algorithm described in Section 4.3. The
use of multiple concurrent program threads instead
of a single program to implement the software avoids
a complete serialization of all operations which may
create unbounded (i.e., #'9) cycles. In this model
of software, satisfiability of constraints on operations
belonging to different threads can be checked for
marginal or deterministic satisfiability [9], assuming
a bounded delay on scheduling operations associated
with /9D operations. Constraint analysis for soft-
ware depends upon first arriving at an estimate of the
software performance and size of register/memory
data used for the software. We discuss these two
issues next.

4. Estimation of software performance

A program is compiled into a sequence of ma-
chine instructions. Therefore, timing properties of a
program are related to the timing properties of the
machine instructions to which it is eventually trans-
lated. Any variability in machine instruction timings
is reflected on the variability of timing of program-
ming-language statements. One approach to software
estimation would be to generate such estimates di-
rectly from synthesized and compiled machine in-
structions for a given graph model. However, the
process of compilation of high-level language pro-
grams is time intensive and may not be a suitable
step when evaluating trade-offs among software and
hardware implementations. Further, analysis of a
compiled program can give timing properties of the
entire programs, but not at the level of individual
operations which is needed to exploit scheduling
freedom in generating software. Therefore, alterna-
tive methods are sought for estimating software tim-
ing properties_directly from programs written in
high-level languages. Attempts have been made to
annotate programs with relevant timing properties

[16,17]. Syntax-directed delay estimation techniques
have been tried [18,19] which provide quick  esti-
mates based on the language constructs used. How-
ever, syntax-directed delay estimation techniques rely
solely on the structure of the programming lan-
guages, and thus lack timing information that is
relevant in the context of the execution semantics of
operations. (This distinction is, however, subtle since
it is always possible to encode the context dependent
timing information by choice appropriate syntactical
structures.) More importantly, in our co-synthesis
system, since flow graphs are central to constraint
analysis, and hardware /software partitioning trade-
offs, therefore, we develop delay estimation on flow
graph models using the semantic interpretation of
flow graphs in our estimation procedures. A software
delay consists of two components: delay of the oper-
ations in the flow graph model, and delay of the
runtime environment. The effect of runtime environ-
ment on constraint satisfiability is considered in terms
of operation schedulability for different types of
runtime environments discussed further in Section
4.5. For now it suffices to say that the effect of
runtime can be modeled as a constant overhead delay
to each execution of the flow graph. We first focus
on the delay due of a software implementation of the
operations in the flow graph model. For this purpose,
it is assumed that a given flow graph is to be
implemented as a single program thread. Multiple
program thread generation is achieved similarly by
first identifying subgraphs corresponding to program
threads [13]. Software delay then depends upon the
delay of operations in the flow graph model and
operations related to storage management. Calcula-
tions of storage management operations are de-
scribed in Section 4.4.

4.1. Operation delay in a software implementation
Estimation of software performance is done under

simplifying assumptions that tradeoff modeling accu-
racy against speed. We assume that the system bus is
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always available for instruction /data reads and writes
and that all memory accesses are aligned. The effect
of storage alignment is considered in Section 4.4.1.
Each operation v in the flow graph is characterized
by the read accesses, m,(v), the write accesses,
m,(v) and the assembly-level operations, n,(v). The
software operation delay function, 7, is computed as
follows:

n(v)
n(0) = L 1, + (m,(0) +m,(0)) Xm,  (4)

i=1
where the operand access time, m;, is the sum of
effective address computation time and memory ac-
cess time for memory operands. For some instruction
sets, not all possible combinations of ALU opera-
tions and memory accesses are allowed and often
operand access operations are optimized and over-
lapped with ALU operation executions, thus, reduc-
ing the total execution delay. Due to this non-ortho-
gonality in ALU operation execution and operand
access operations, the execution time function of
some operations is often overestimated from real
execution delays. Nevertheless, in the one-level
memory model, the number of read and write ac-
cesses of an operation can be estimated from its
fanin and fanout (see Example 4.1).

Use of operation fanin and fanout to determine
memory operations provides an approximation for
processors with very limited number of available
general-purpose registers. Most processors Wwith
load-store (LS) instruction set architectures feature a
large number of on-chip registers. Therefore, this
procedure must be refined to include the effect of
on-chip registers. A model of register usage and its
effect is described later in Section 4.4. Based on this
model, we determine the memory access operations
and their contribution to the software delay.

4.1.1. /D operations
Wait operations in a graph model induce a syn-
chronization operation in the corresponding software

model. Thus, the software delay of wait operations is
estimated by the synchronization overhead which is
related to the program implementation scheme being
used. One implementation of a synchronization oper-
ation is to cause a context switch in which the
waiting program thread is switched out in favor of
another program thread. It is assumed that the soft-
ware component is computation intensive, and thus
the wait time of a program thread can always be
overlapped by the execution of another program
thread. After the communication operation associated
with the wait operation is complete, the waiting
program thread is resumed by the runtime scheduler
using a specific scheduling policy in choosing among
available program threads. Alternatively, the comple-
tion of communication operation associated with wait
operation can also be indicated by an interrupt opera-
tion to the processor. In this case, the synchroniza-
tion delay is computed as follows:

nintr(v) =ti+ts.+to’ (5)

where ¢; is interrupt response time, f, is interrupt
service time, which is typically the delay of the
service routine that performs the input read operation
and ¢, is concurrency overhead [13] which consti-
tutes a 19-cycle delay for the simplified co-routine
implementation on the DLX processor. Both schemes
have been implemented in our co-synthesis system.

Finally, the link operations are implemented as
call operations to separate program threads corre-
sponding to bodies of the called flow graphs. Thus,
the delay of these operations is accounted for as the
delay in the implementation of control dependencies
between the program threads.

Example 4.1. For the graph model shown in Fig. 3,
assuming addition delay 1 cycle, multiplication delay
is 5 cycles and memory delay 3 cycles. Assuming
that each non-NOP operation produces a data, that is,
m,(v)=1 and that the number of memory read
operations are given by the number of input edges,
the software delay associated with the graph model
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is 3Xt,+1t, +(5+4) Xm,;=35 cycles. By com-
parison, the VULCAN generated code when assem-
bled takes 38 cycles (not including setup operations
that are accounted for later) that includes an addi-
tional 3-cycle delay due to return conventions.

4.2. Estimation of software size

A software implementation of a flow graph model
G is characterized by a software size function S
that refers to the size of program S” and static data
Sd necessary to implement the correspondmg pro-
gram on a given processor I1. We assume the gener-
ated software to be non-recursive and non-reen-
trant, therefore, the size of the software can be
statically computed. For a system model @,

sT(®)= Y s7(G)= Z [s"(G)+s,5’(G)]

GeP
(6)

We postpone the discussion on estimation of pro-
gram size to later in this section. Sj! consists of
storage required to hold variable values across opera-
tions in the flow graph and across the machine
operations. > This storage can be in the form of
specific memery locations or the on-chip registers. In

*To be precise, S) also includes the initialized data storage.

general, S7(G) would correspond to a subset of the
variables used to express a software implementation
of G, that is,

87 (G) <IM(G)| +IP(G)|, (7)

where M(G) refers to the set of variables used by
the graph G and P(G) is the set of input and output
ports of G. This inequality is because not all vari-
ables need be live at the execution time of all
machine instructions. At the execution of a machine
instruction, a variable is considered live if it is input
to an future machine instruction. Interpretation of
variables in relation to flow graph is discussed in
Section 4.4.

In case ST(G) is a proper subset of the variables
used in software implementation of G, that is, M(G),
additional operations (other than the operation ver-
tices in G) are needed to do the data transfer be-
tween variables and their mappings into the set
S(G). In case SM(G) is mapped onto hardware
registers, this set of operations is commonly referred
to as register assignment / reallocation operations.
Due to a single-processor target architecture, the
cumulative operation delay of V(G) would be con-
stant under any schedule. However, the data set
SH(G) of G would vary according to scheduling
technique used. Accordingly, the number of opera-
tions needed to do the requisite data transfer would
also depend upon the scheduling scheme chosen.
Typically in software compilers a schedule of opera-
tions is chosen according to a solution to the register
allocation problem.

The exact solution to the register assignment
problem requires solution to the vertex coloring
problem for a conflict graph where the vertices
correspond to variables and an edge indicates simul-
taneously live variables. The number of available
colors corresponds to the number of available ma-
chine registers. It has been shown that this problem
is NP-complete for general graphs [20]. Hence,
heuristics solutions are commonly used. Most popu-
lar heuristics for code generation use a specific order
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of execution of successor nodes (e.g., left-neighbor
first) to reduce the size of ST [21].

In contrast to the register assignment in conven-
tional software compilers which carry out simultane-
ous register assignment and operation linearization,
we devise a two-step approach to help estimate the
effect of data storage and software delays resulting
from additional memory operations. We first lin-
earize operations followed by an estimation of the
register/memory operations. This two-step approach
is taken to preserve the flexibility in operation
scheduling which must take into account timing con-
straints not present in traditional software compilers.
Fig. 4 illustrates the steps in estimation of software
performance.- Since spill operations add delay to a
linearized set of operations, the timing analysis must
ensure constraint satisfiability in view of the spill-re-
lated operations. It is also possible to combine the
two steps into a single procedure where vertex lin-
earization estimates for possible spill operations
based on a given constraint on available registers and
variable life-times. For sake of clarity we first de-
scribe the two steps individually.

4.3. Operation linearization
Linearization of G refers to finding a complete

order of operations in V(G), that is a consistent
enumeration of the partial order in G. This complete

order corresponds to a schedule of operations on a
single resource, that is, the processor. In the presence
of timing constraints, the problem of linearization
can be reduced to the problem of ‘‘task sequencing
of variable length tasks with release times and dead-
lines’” which is shown to be NP-complete in the
strong sense [20]. It is also possible that there exists
no linearization of operations that satisfies all timing
constraints. An exact ordering scheme under timing
constraints is described in [8] that considers all possi-
ble valid orders to find the one that meets the
imposed timing constraints. It also suggests a heuris-
tic ordering technique that solves all-pair shortest
path for each iteration of the linearization operation.
In [22] the authors present an operation ordering
scheme for a static non-preemptive software model
using modes. We use a heuristic ordering based on a
vertex elimination scheme that repetitively selects a
zero in-degree vertex (i.e., a root vertex) and outputs
it. The following procedure linearize outlines the
algorithm. The input to the algorithm is a constraint
graph model consisting of forward and backward
edges as mentioned earlier. Recall, a backward edge
represents a maximum delay constraint between the
initiation times of two operations, whereas a forward
edge represents a minimum delay constraint between
the operation initiation times. By default, a non-zero
operation delay leads to a minimum delay constraint
between the operation and its immediate successors.
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The algorithm consists of following three steps indi-
cated by the symbol (> ):

linearize(G = (V, E;UE))) {
8(s) = 0; Q = {source vertex of G};
if positive_cycle(G)

exit;
repeat {
>I v = extract head(Q);
G =G;

add edge (s, v) in G’ with weight = 8(s);
forall we Q and w+#v
add edges (v, w) in G’ with weight = 8(v);
{determine spill set for the linearized set of ops}
>1I if positive_cycle(G')
mark and move v to tail of Q;
else {
if v is head of an edge, (u, v) EE,
8(u, v) = 6(u, v) — 6(s);
for all w € succ(v) s.t. pred(w) =
0=0+{w}
remove v from Q; output v;
8(s) = 8(s) + 8(v);
G=G,;
sort O by urgency labels;
}
} until 0 = &;
}

(2) Perform timing constraint analysis to deter-
mine if the addition of the selected root operation to
the linearization constructed thus far leads to a feasi-
ble complete order, else select another root vertex;

(3) Eliminate selected vertex and its dependen-
cies, update the set of root operations.

The main part of the heuristic is in selection of a
vertex to be output from among a number of zero
in-degree vertices. This selection is based on the
criterion that the induced serialization does not cre-
ate a positive-weight cycle in the constraint graph.
Among the available zero in-degree vertices, we
select a subset of vertices based on a two-part crite-
ria. One criterion is that the selected vertex does not

>III

(1) Select a root operation to add to the lineariza-
tion,

/" initialize * /

*

no valid linearization exists * /

*

vertex with smallest urgency label * /
construct new constraint graph * /
select a candidate vertex * /

linearize candidates’ siblings * /

*

*

*

discussed later " /

not a feasible linearization * /
discard candidate "/

we have a good candidate * /

* *

*

NN EINENENGNT SN

/" update Q with new root vertices * /
/" delete vertex v and its successor- */
/" -edgesin G */

create any additional dependencies or does not mod-
ify weights on any of the existing dependencies in
the constraint graph. For the second criterion, we
associate a measure of wurgency with each source
operation and select the one with the least value of
the urgency measure. This measure is derived from
the intuition that a necessary condition for existence
of a feasible linearization (i.e., scheduling with a
single resource) is that the set of operations has a
schedule under timing constraints assuming unlim-
ited resources. A feasible schedule under no resource
constraints corresponds to an assignment of opera-
tion start times according to the lengths of the longest
path to the operations from the source vertex. Since a
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program thread contains no /9 operations, the
length of this path can be computed. However, this
path may contain cycles because of the backward
edges created by the timing constraints. A feasible
schedule under timing constraints is obtained by
using the operation slacks to determine the longest
path delays to operations. The length of the longest
path is computed by applying an iterative algorithm
based on the Liao—Wong algorithm [23] that repeti-
tively increases the path length until all timing con-
straints are met. This has the effect of moving the
invocation of all closely connected sets of operations
to a later time in the interest of satisfying timing
constraints on operations that have been already
linearized. This scheduling operation is indicated by
the procedure positive_cycles() that either fails when
it detects a positive cycle in the constraint graph or
returns a feasible schedule. In case the algorithm
fails to find a valid assignment of start times, the
corresponding linearization also fails since the exis-
tence of a valid schedule under no resource con-
straints is a necessary condition for finding a sched-
ule using a single resource. In case a feasible sched-
ule exists, the operation start times under no resource
constraints define the urgency of an operation.

The two criteria for vertex selection are applied in
reverse order if a linearization fails. At any time, if a
vertex being -output creates a serialization not in the
original flow graph, a corresponding edge is added in
the constraint graph with weight equals delay of the
previous output vertex. With this serialization, the
constraint analysis is performed to check for positive
cycles, and if none exists, the urgency measure for
the remaining vertices is recomputed by assigning
the new start times, else the algorithm terminates
without finding a feasible linearization.

Since the condition for a feasible linearization
used in the urgency measure is (necessary but) not
sufficient, therefore, the heuristic may fail to find
any feasible linearization while there may exist a
valid ordering. Under such conditions a (computa-
tion-intensive) exact ordering search that considers

all possible topological orders can be applied as a
last resort. The following example graphically illus-
trates the linearization procedure (Fig. 5).

Example 4.2. Consider the flow graph shown in Fig.
5. We initialize @ = {v,} and 8(s) = 0. Successive
iterations of the linearization algorithm are shown in
Fig. 6. At each iteration, operation label o is ob-
tained by application of procedure positive_cycle()
on the constraint graph. The operation linearization
returned by the algorithm is v,, v,, vs, U5, U,, Ug, V.

The time complexity of linearize() is dominated
by positive_cycle() that takes O(|V |* - k) time where
k is the number of backward edges. Since after each
iteration a vertex is removed, therefore, the complex-
ity is O([V|* - k) where & is typically a small num-
ber.

4.4. Estimation of regi&ter, memory operations

The number of read and write accesses is related
to the amount and allocation of static storage, Sf (G).
Since it is difficult to determine actual register allo-
cation and usage, some estimation rules must be
devised. Let G2 =(V, EP) be the data-flow graph
corresponding to a flow graph model, where every
edge, (v;, vj)EED represents a data dependency,
that is, v, > V). Vertices with no predecessors are
called source vertices and vertices with no succes-
sors are defined as sink vertices. Let i(v), o(v) be
the indegree and outdegree of vertex v. Let n;=
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@ Q={v1}->{v3,v2}

(e)

9 Q={v2, v6, vd} -> {v6, v4}
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Fig. 6. Example of operation linearization under timing constraints.

l(source vertices}| and n, = [(sink vertices}|. Let r,
and r, be the number of register read and write
operations, respectively. Finally, recall that m, rep-
resents the number of memory read operations and
m,, represents the number of memory write opera-
tions.

Each data edge corresponds to a pair of read,
write operations. These read and write operations can
be either from memory (Load) or from already regis-
ter-stored values. Register values, in turn, are either
a product of load from memory or a computed result.
Clearly, all values that are not computed need to be
loaded from memory at least once (contributing to
m,). Further, all computed values that are not used

must be stored into the memory at least once (and
thus contribute to m,,). Let R be the total number of
unrestricted (i.e., general-purpose) registers available
(not including any registers needed for operand stor-
age). In case the number registers R is limited, it
may cause additional memory operations due to reg-
ister spilling. A register spill causes a register value
to be temporarily stored to and loaded from the
memory. This spilling is fairly common in RM/MM
processors and coupled with non-orthogonal instruc-
tion sets, which results in a significant number of
data transfers either to memory or to register opera-
tions (the latter being the most common). The actual
number of spills can be determined exactly given a



572 R.K. Gupta, G. De Micheli / Journal of Systems Architecture 43 (1997) 557-586

schedule of machine-level operations. Since this
schedule is not under direct control, therefore, we
concentrate on bounds on the size of the spill set, =

Case 1. R=0. In this limiting case, for every in-
struction, the operands must be fetched from mem-
ory and its result must be stored back into the
memory. Therefore,

m, =|E|, (8)
m, =|V|. (9)

Note that each register read results in a memory read
operation and each register write results in a memory
write operation, (r, = m,) and (r,, = m,).

Case 2. R > R, where R, is the maximum number
of live variables at any time. In this case no spill
occurs as there is always a register available to store
the result of every operation.

m,=n,<|V|<|El (10)
m,=n,<|V|. (11)

Case 3. R <R,. At some operation v; there will not
be a register available to write the output of v;. This
implies that some register holding the output of
operation v; will need to be stored into the memory.
Depending upon the operation v; chosen, there will
be a register spill if output of v; is still live, that is, it
is needed after execution of operation v,. Of course,
in the absence of a spill, there will be no effect of
register reallocation on memory read/write opera-
tions. Let 5 CV be the set of operations that is
chosen for spill.

m, =+ Do) < TolBy =Kl (12)
E v
m,=n,+|5|<|V|. (13)

Clearly, the choice of the spill set determines the
actual number of memory read and write operations
needed. The optimization problem is then to choose

Vol

a spill set, Z such that ¥z o(v) is minimized. This
is another way of stating the familiar register alloca-
tion problem. As mentioned earlier, the notion of
liveness of an output o(v) of an operation, v, can be
abstracted into a conflict graph. The optimum color-
ing of this graph would provide a solution to the
optimum spill set problem. This problem is shown to
be NP-complete for general graphs [24]. In case of a
linearized graph with no conditionals, nodes in the
corresponding conflict graph correspond to intervals
of time and an edge indicates an overlap between
two intervals. Therefore, the conflict graph is an
interval graph. For linearization purposes, operations
on conditional paths are treated as separate sub-
graphs that are linearized separately. It is possible to
do so since no timing constraints are supported on
operations that belong to separate conditional paths.
However, note that the use of separate graphs for
conditional branches limits the quality of lineariza-
tion solutions since only a subset of the possible
linearizations is ever examined. For interval graphs,
the coloring problem can be solved in polynomial
time. That is, a coloring of vertices can be obtained
that uses the minimum number of colors, for exam-
ple, by using the left-edge algorithm. However, a
problem occurs when the number of registers avail-
able is less than the minimum number of registers
needed. In this case, outputs from a set of vertices
should be spilled to memory and the conflict graph
modified accordingly so that the new conflict graph
is colorable. We use the following heuristic to select
operations for the spill. First, a conflict graph, G, for
a given schedule is built by drawing an edge be-
tween v; and v; if any of the output edges of v; span
across v;. From this conflict graph, we select a
vertex, v with outdegree less than R. This vertex is
then assigned a register different from its neighbors.
From this we construct a new conflict graph G; by
removing v and its fanout edges from G,. The
procedure is then repeated on G; until we have a
vertex with outdegree greater than or equal to R. In
this case, a vertex is chosen for spilling and the
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process is continued. Example 4.3 illustrates the
procedure.

For these calculations, we assume that each v is
implemented as a closed sequence of assembly lan-
guage instructions, though it is possible that the
source language compiler may rearrange operations.
The effect of this rearrangement, however, can be
assumed only to reduce the total register usage re-
quirements.

4.4.1. Storage alignment

Storage alignment is a side-effect of the byte-level
addressing scheme assumed for the processor/mem-
ory architecture. Because the smallest object of a
memory reference is a byte, references to objects
smaller than a byte must be aligned to a byte.
Further, for memory efficiency reasons, the objects
that occupy more than a byte of storage are assigned
an integral number of bytes, which means their
addresses must also be aligned. For example, ad-
dress of a 4-byte object (say integer) must be divisi-
ble by 4.

Table 2 lists data types and alignment require-
ments which are taken into account in the determina-
tion of the data size. The size of a structure is
determined by the total of size requirements of its
members. In addition, the structure must end at an
address determined by the most restrictive alignment
requirement of its members. This may result in extra
storage (up to a maximum 3 bytes per member) for
padding. In the case of a structure consisting entirely
of bit fields, there is no padding if the total number

Table 2
Variable types and alignment used

Data type Size Address alignment
int 32 %04

short 16 %2

char 8 %1

pointer 32 %4

struct variable. see text.

of bits is less than 32 bits. In case of structure widths
greater than 32 bits, additional 32-bit words are
assigned and members that lie on the boundary of
two words are moved to the subsequent word leaving
a padding in the previous word. It is assumed that no
member takes more than 32-bits. Variables with size
greater than 32-bits, are bound to multiple variables
represented by an array. The size and alignment
requirements are then multiplied by the number of
array elements.

Example 4.3. Variable storage assignments.

The following shows the set of variables used in
the definition of a flow graph and the corresponding
storage assignments in the software implementation
of the graph (as generated by VULCAN).

af[l], b[2], c[3], d[4], e[5]
struct{a:1; b:2; c:3; d:4;
e:5}

£[33] int £[2]

Minimum storage used in the flow graph model is 6
bytes. However, due to alignment requirements the
actual data storage is 12 bytes.

4.4.2. Effect of multiregister nodes

The register usage of compilers is determined by
the generation of r-value and [-value [21] for each
statement in the generated C code. The r-value is the
result or value of evaluation of an expression (or
simply the right-hand side of an assignment). In the
case of logic nodes, the (recursive) organization of
equations gives an estimate of the number of r-val-
ues needed. Note that logic operations frequently
need shift operations. A shift operation is modeled as
an additional r-value that is accounted for in compu-
tation of the total number of r-values associated with
the logic operation. For most assignment statements,
the left side generates a l-value and the right side
generates a r-value. However, in case of pointer
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assignments (such as those using variables bound to
ports and multiword data, e.g., £[] in Example 4.3)
and structure and indirect member references (com-
mon in logic nodes), the left-hand side also generates
r-values which are subsequently assigned to the ap-
propriate [-value also generated by the left side. This
generation of a r-value by the left side happens in
two cases: write and logic operations. In both cases,
the left-hand side generates a r-value that is assigned
to a left-hand generated I-value.

We extend our estimation procedure for the spill
set in the case of operation vertices with multiple

Input: flow graph model, G(V, E)i

register usage simply by using a weighted graph
model where the weight of each vertex is given by
the number of r-values it generates, that is, G? = (V,
E, w) where w(v) =|r-value(v)| and w(e=v,> v))
= w(v;). The above relations hold by replacing |V|
=X, w(v) and |E| = L w(e). The following proce-
dure single_thread_static_storage(G) determines the
maximum number of live variables, R,, in a lin-
earized graph model, G. We assume that each opera-
tion vertex requires at least one cycle, and hence any
data transfer across operation vertices in the flow
graph requires a holding register.

Output: S(G), static storage for a linear code implementation of G

single_thread_static_storage(G) {
H = linearize(G)
count = storage = 0;
YueV(H){
Vv € succ(u)

count = count + w(u > v); F 2

Vv € pred(u)
count = count — w(v > u);
storage = max(count, storage);
}

return storage

}

Finally, the program size, S;’ is approximated by
the sum over r-values associated with operation
vertices. This approximation is based on the observa-
tion that the number of instructions generated by a
compiler is related to the number of r-values. This is
only an upper bound since global optimizations in
general may reduce the total number of instructions
generated.

4.4.3. RM ISA architectures

Practical RM ISA architectures feature small reg-
ister sets with non-orthogonal instructions. That
makes register spills a very common occurrence in
the compiled code. But more importantly, due to
non-orthogonality of instructions, a substantial num-

/" linearize vertices "/
/" determine max live variables * /
add new registers * /

/ * subtract registers for completed operations * /

ber (up to 27%) of inter-register data transfer in-
structions is generated to position data to appropriate
registers from other registers [15]. These instructions
do not affect the data storage, S,f’, but alter the size
of the program thread and its delay. It is hard to
model such instructions since these are dependent
upon actual algorithms used in software compilation.
At this time, to our knowledge, there is no analytic
model available for this problem. As a first step, the
following conjecture is suggested to estimate a bound
on the additional operations.

Conjecture 4.1. For a given graph model, G = (V,
E), the following sum

F'=m, +m, +r,=|V|+|E| (14)
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is constant for all architectures. Here, r,, represents
the number of inter-register transfer operations.

The intuitive reasoning behind this conjecture is
that for a machine with no general-purpose registers,
there will be no inter-register operations since
operands can be loaded directly into the required
operand registers, and thus r,, = 0. This corresponds
to the first case discussed earlier. In the other two
cases, the total number of data movement operations
can not be worse than the case with no registers.
Based on this conjecture, we can estimate the inter-
register transfer operations by first computing m, +
m,, = f(R) as a function of the number of available
registers, R and then applying Eq. (14) above.

Example 4.4. Consider the flow graph, G, shown in
Fig. 7 consisting of 11 vertices and 12 edges with
n;=3and n,=2.

Each vertex produces an output variable that is
named by the vertex label. Vertices a, b, ¢ are input
read operations, and vertices x, y are output write
operations. The linearization results in the following
order c, f, b, e, a, d, h, i, y, j, xwhich gives the
maximum number of live variables, R, = 4 accord-
ing to algorithm single_thread_storage. R, is the
size of the largest clique in the interval graph shown
in Fig. 8. In the interval graph, G,, vertices represent

& widh. G
R

Bl
gﬂ
®

Fig. 7.

NN

S @

O,

Fig. 8.

edges of G and an edge between two vertices in G,
indicates overlap between the corresponding edges in
G.

For R > R, = 4, register assignment can be done
in polynomial time. The spill set, 5 = &. Therefore,
m,=n;,=3 and m,=n,=2. Total number of
memory operations = 5. For R = 3, the largest clique
in G, should be of cardinality 3 or less. For &= {9},
the total number of memory operations = 7. For
==1{9, 3, 11}, the maximum number of live regis-
ters is reduced to 2, while the number of memory
operations increases to 11. Note that in the worst
case of static storage assignment for all variables in
G, there would be 11 + 12 = 23 memory operations:

R, Spillset, Z Memory operations, m, +m,,

>4 {} 5
3 {9} 7
2 {9,3,11} 11

Note that we are not directly trying to minimize
total register usage by the object program since
operations at that abstraction level belong to the
software compiler. The objective of spill set enumer-
ation is to arrive at an estimate of memory opera-
tions assuming that the program is compiled by a
reasonably sophisticated software compiler that
achieves optimum register allocation when the maxi-
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mum number live variables is less than the number
of available registers. This is only an estimate since
the actual register allocation will vary from compiler
to compiler. However, the situation is not entirely
hopeless since many of the compiler optimizations
are accounted for by the HDL compiler itself, and
thus reflected on the flow graphs. The common
optimizations performed by most software compilers
are: source-level optimizations such as procedure
in-lining and basic-block and structure-preserving
optimizations such as common subexpression elimi-
nation, constant propagation, tree-height reduction,
dead-code elimination, variable renaming. All of
these optimizations are taken care of by the HDL
compiler and, hence, are reflected in the flow graphs.
Among the remaining optimizations are copy propa-
gation, code motion, induction variable elimination,
machine register allocation, operator strength reduc-
tion, pipeline scheduling, branch offset minimiza-
tion. Of these, the most significant is machine regis-
ter allocation that accounts for the most increase in
efficiency (20-50%) [15]. Register allocation is pos-
sible and most effective for local variables. These

locals are defined by the storage M(G) associated

with the flow graph model. Therefore, much of our
delay estimation is focused on understanding this
aspect of compilation.

4.5. Effect of runtime scheduler

The runtime scheduler refers to the main program
in software that integrates calls to various program
threads implemented as co-routines [25]. As ex-
plained earlier, the runtime system used here mainly
consists of a scheduler that invokes program threads
at runtime.

We assume a non-preemptive runtime scheduler
where a program thread executes either to its com-
pletion or to the point when it detaches itself volun-
tarily (for example, to observe dependence on an-
other program thread). Most common examples of
non-preemptive schedulers are first-in-first-out

(FIFO) or round-robin (RR) schedulers. FIFO sched-
ulers select a program thread strictly on the basis of
the time when it is enabled. A RR scheduler repeti-
tively goes through a list of program threads ar-
ranged in a circular queue. A non-preemptive sched-
uler may also be prioritized or non-prioritized. Pri-
ority here refers to the selection of program threads
from among a set of enabled threads. Both FIFO and
RR maintain the order of data arrival and data
consumption and, therefore, avoid starvation. A pri-
oritized discipline may, however, lead to starvation.
Alterations in scheduling discipline are then sought
to ensure fairness, that is, the best prioritized disci-
pline leads to least likelihood of a starvation.

. A preemptive runtime scheduler provides the
ability to preempt a running program thread by
another program thread. Preemption generally leads
to improved response time to program threads at
increased cost of implementation. This ability to
preempt is tied to an assignment of priorities to
program threads. The primary criterion in design of a
preemptive scheduling scheme is in selection of an
appropriate priority assignment discipline that leads
to most feasible schedules.

We have so far implemented only non-preemptive
runtime scheduling techniques. The implementation
of multiple program threads in a preemptive runtime
environment leads to additional states (in addition to
being detached or running) for the program threads
which adds to the overhead delay caused by the
runtime scheduler. Additional work is needed to
ensure constraint satisfaction in presence of a pre-
emptive runtime system. This is not to say that
non-preemptive scheduling techniques are always
sufficient for embedded systems. However, the very
ability to do runtime scheduling of operations pro-
vides a substantial departure from static scheduling
schemes used in hardware synthesis, and for the
co-synthesis approach formulated here as an exten-
sion of high-level synthesis techniques, the choice of
a non-preemptive runtime system provides a first
step towards synthesizing embedded systems. In the
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sequel, we consider only non-preemptive schedulers
which may or may not be prioritized.

A necessary condition to ensure that the reaction
rates of all program threads can be satisfied by the
processor is given by the constraint that processor
utilization is kept below unity, i.e., & < 1. However,
this condition is not sufficient. Consider, for exam-
ple, the case when the software contains a program
thread with a long latency but very low reaction rate.
Such a program thread will bound the achievable
reaction for all program threads below the inverse of
its latency even though from processor utilization
point of view higher reactions rates may be possible.
For a program thread in a non-preemptive non-
prioritized FIFO runtime scheduler, a sufficient con-
dition to ensure satisfaction of its reaction rate, o is
given by the following condition:

for thread, T,
1 1 1 z
—= Y M2>——>2 Y A,

O thread k=1 maxX; O;  (hread k=1

(15)

where n is the total number of program threads. This
condition is also necessary and sufficient for inde-
pendent threads. In case of dependent program
threads, only a subset of the total program threads is
enabled for execution, that is, those threads that do
not depend upon execution of the current thread.
Therefore, the necessary condition will be weaker
and can be estimated by summation over enabled
program threads in Inq. 15. It is interesting to note
that the same condition for worst case reaction rate
also applies for RR schedulers, though the average
case performance differs.

4.5.1. Prioritized runtime scheduler

A prioritized FIFO scheduler consists of a set of
FIFO buffers that is prioritized such that after the
completion of a thread of execution the scheduler
goes through the buffers in the order of their priority.

The program threads are assigned a specific priority
¢ and are enqueued in the corresponding FIFO
buffer. Thus, among two enabled program threads,
the one with the higher priority is selected. The
effect of this priority assignment is to increase the
average reaction rates for the program threads with
higher priority at the cost of decrease in the average
reaction rate for the low priority threads. Recall that
in a non-prioritized scheduler the supportable reac-
tion rate is fixed for all threads as the inverse of the
sum over all thread latencies. Unfortunately, the
worst case scenario gets considerably worse in case
of a prioritized scheduler since it is possible that a
low priority thread may never be scheduled due to
starvation.

5. Correctness of the software synthesis procedure

As mentioned earlier in Section 3, the concur-
rency between the program threads is achieved by
using an interleaved execution model. For a func-
tionally correct execution in software it is essential
that the execution of operations in a program thread
yields the same result (modulo timing) as would the
execution of the operations in the input flow graph
model. We formulate this condition as a serializabil-
ity condition on the flow graphs. Serializability is a
necessary (but not sufficient) condition for generat-
ing a single-processor embedded software.

Serializability is a concern, for instance, when
two operations in a program thread belong to two
graphs or they are specified within the same graph
using the ‘‘forced parallel’’ semantics in HardwareC
(see example below).

We consider the interleaved executions of two
program threads speed independent if the actions
performed by a program thread have no influence on
the rate at which it proceeds. The reaction rate of a
program thread depends on the presence of other
threads and the concurrency structures. A sufficient
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condition for speed independence is that the program
threads implement pure functions [26], that is, pro-
gram threads be functional. However, the require-
ment for a functional behavior is only an abstraction
and need not imply an implementation of program
threads as functions. In practice, it is sufficient if the
storage common to program threads is accessed se-
quentially. This introduces the notion of critical
sections in program threads, that is, operations that
access or modify the shared storage. One way to
achieve the functional property for a thread is by
blocking on critical sections such as by using
semaphores.

From a practical point of view, the functionality
property is not very useful due to excessive overhead
incurred in implementation of blocking and the re-
sulting loss of timing certainty in software. There-
fore, we focus on methods to achieve speed indepen-
dence of program threads by a close examination of
the thread side-effects on storage and input/output.
As mentioned earlier the operational semantics of a
flow graph, G, uses a set of variables, M(G), that
are associated with the operations. An operation in
V(G) can take the following actions on a given
variable, u in M(G):

Defines u. When the operation corresponds to an
assignment statement where the variable u appears
on the left-hand side (lhs) of the assignment, for
instance u = {rhs);

Uses u. When the operation corresponds when u
appears in an expression or the right-hand side (rhs)
of an assignment;

Tests u. When u is a part of a conditional or loop
exit condition. Typically, we consider a variable that
is tested also as a used variable. However, a distinc-
tion between the two is made if the variable in

question is used solely as an argument of a condition
testing. Example 5.1 illustrates the difference.

Example 5.1. Variable definition, use, and testing.
Consider the HDL fragment below:

process vars (inpl,inp2,outp)
in port inpl([size], inp2[size];
out port outp[size];

{ int a,b;
boolean c;

1: a=read(inpl);
2: b=read(inpl);
Fr=E
3.1: c=fun(a,b);
3.2: if (c) [
3.2.1: write outp=a;
3.2.2: write outp=b;
]
]
4: c=b+c;
}

The above HDL program has the following seman-

tics:

« Steps 1, 2, 3, 4 are data parallel. These steps
may execute in parallel, at different possible
speeds, as long as all the data dependencies are
not violated.

- Step 3 is forced parallel. This means that the
sub-steps 3.1 and 3.2 must be initiated at the
same time.

- Step 3.2 is sequential. The semantics of this
statement is that sub-steps 3.2.1 and 3.2.2 must
execute sequentially.

From the semantics of forced-parallel executions,
note that the value of variable ‘‘c’’ tested in 3.2 may
be different from the one computed by 3.1.

First two assignments (statement 1 and 2) define
variables a and b whereas assignment 3.1 uses both
these variables and defines variable c. Operation 3.2
tests variable c where as operation 4 uses and de-
fines this variable.
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We note that the distinction between variable use
and test operations is new and specific to the prob-
lem of hardware—software co-synthesis. A variable
that is only tested (and not used) is considered a
control variable. This distinction between use and
test is made to model different strategies for control
and data transfer across a hardware—software parti-
tion [27].

5.1. Testing serializability

We assume that each operation (vertex) in G is
implemented as an atomic operation in hardware or
software. We explore conditions for operation serial-
izability by examining the interactions of variables
used in concurrent operations. We consider a vari-
able private to an operation if it is used or tested by
that operation alone. A variable that is used or tested
in multiple (concurrent) operations is considered a
shared variable.

From our discussion of speed independence .of
program threads, a sufficient condition for serializ-
ability is to check if program threads are functional
such that there are no shared variables. In presence
of shared variables the program threads will contain
critical sections. Any interleaving of operations in
the critical sections must ensure that the definition
and use ordering relations on shared storage are not
interfered by competing concurrent operations. For
concurrent operations that both define and use a
variable, the ordering between operations will affect
the output, and thus make any interleaving of opera-
tions impossible.

Therefore, a flow graph is serializable if the stor-
age M(G) can be partitioned into shared and private
variables such that only the private variables can be
both used and defined by the same operation. How-
ever, note that variables that are both used and tested
can be shared between concurrent operations. Thus,
the serializability of a graph is checked by examina-
tion of definition and use operations for its variables,

to ensure that no shared variables are both defined
and used by the same operation.

As mentioned earlier, for concurrent operations
across process graph models, the communication is
only by message-passing operations. In absence of
any shared storage program threads created from
separate flow graphs are always functional. For pro-
gram threads created from the same flow graph, the
condition of serializability requires examination of
concurrent operations (i.e., operations without any
transitive dependencies) that may belong to the same
or different program threads.

5.2. Unserializable flow graphs

There are two situations when a flow graph is not
serializable. First condition is when two operations
are required to execute in parallel regardless of the
operation dependencies, i.e., using ‘‘forced-parallel’’
semantics of HardwareC. Forced-parallel semantics
is often used to specify behavior of hardware blocks
declaratively, and for correct interaction with the
environment assuming a particular hardware imple-
mentation. For instance, assuming a master—slave
flip-flop for a storage variable, concurrent read—write
operations to the variable may refer to operations on
two separate values of the variable corresponding to
the master and slave portions of the flip-flop. Flow
graphs with forced-parallel operations are made seri-
alizable using the following procedure:

1. Decompose concurrent operations into a multiple
simple operation using intermediate variables; a
simple operation either uses, defines or tests a
shared variable;

2. Add dependencies between simple operations that
observe polarization of the acyclic flow graph
from its source to sink;

3. Find a linearization of the new flow graph assum-
ing each simple operation to be an atomic opera-
tion.

Example 5.2 shows the transformation.
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Fig. 9. Creation of serializable flow graphs.

Example 5.2. Creation of serializable flow graphs.
Consider the following fragment representing a
swap operation:

static int a, b;
(a=b; b=a;)

This is translated into two sets of simple operations
as shown in Fig. 9. For the new graph model, any of
the four valid serializations lead to correct imple-
mentation of the original concurrent operations.

A second situation arises in the case of dedicated
loop operations. A hardware implementation of a
loop operation is by use of shared memory [8]. The
operations in the loop body have access to the
storage defined in the calling graph. Here, the pro-
gram thread corresponding to the loop body may
have access to storage in the program thread corre-
sponding to the parent graph. We address this case
by making explicit all data transfers between the
loop graph and the parent graph and then performing
the serializability tests as in the case of concurrent
processes.

6. Results

The linearization heuristic presented here was tried
on a number of constraint graphs. The constraint

graph input to the linearization algorithm is charac-
terized by the number of min and max constraints.
Among feasible linearizations, the quality of a lin-
earization is defined by the size of the spill set, &,
that is, the number of variables that must be spilled
to meet a given limitation on maximum number of
registers available. Table 3 compares the efficiency
of the proposed heuristic linearization and an exact
linearization algorithm that uses backtracking to ar-
rive at a feasible linearization. ‘‘Optimum’’ explores
all possible linear order to generate a solution that
uses a smallest spill set. Note that the exact method
guarantees a feasible linearization if one exists,
whereas ‘‘Optimum’’ method selects the best lin-
earization from the set of all possible of feasible
linearizations. In contrast, a heuristic linearization
may result in no feasible solution when in fact there
exists one. It is difficult to precisely characterize
cases where this heuristic fails, but from our experi-
ments we could derive a correlation between the
topology of the constraints and the likelihood of a
feasible solution. We call a timing constraint of
sequencing type if the constraint is represented be-
tween two operations that are directly or transitively
related. In contrast, synchronization type constraints
are indicated between operations that do not have
any dependency relation between them. The heuristic

Table 3

Comparison of efficiency of linearization algorithms
Constraints Exact Heuristic Optimum
min, max

8,4 31 6 78
14,2 152 9 585
12,2 35 9 266
19,1 74 11 738
19,3 643 11 2069
16,3 25 12 31
20,8 334 9 758
242 i 23 13 42
343 18168 18 144735
Spill set size 79 86 76




R.K. Gupta, G. De Micheli / Journal of Systems Architecture 43 (1997) 557-586 581

favors feasible solutions for “‘tall and thin’’> con-
straint graphs that are dominated by synchronization
type constraints, and ‘‘short and obese’’ graphs that
are dominated by sequencing type constraints. Over-
all the heuristic works well in practice, and the
infeasible solution situation is rarely encountered in
cases where the graphs are dominated by tight se-
quencing and synchronization constraints.

As shown in Table 3, the heuristic linearization
based on operation urgency proposed in this paper
provides substantial improvement in runtime over
both exact and optimum linearization methods. Oper-
ations are selected for spilling based on a heuristic
that the latest definitions in the partially linearized
set of operations are spilled first. This choice reduces
the likelihood of spilling variables that have been
live over relatively longer times, thus reducing the
fragmentation of a long live range into smaller ranges.
Comparing the spill set size, the heuristic algorithm
results in a spill set size that is 8—13% larger than
the optimum.

We now consider practical design examples. to
illustrate the nature of the software component in
co-synthesis designs.

Sensor

Wheel

Vehicle

6.1. Vehicle cruise controller

The cruise controller monitors vehicle cruising
speed, a record of average speed, monitors fuel
consumption and provides vehicle status and mainte-
nance feedback to the driver through a display con-
troller. Fig. 10 shows an overview of the controller.

The controller does velocity regulation by making
sure that the valve is completely closed (0 volts)
when the vehicle speed is 5 mph over the desired
speed. It is completely open (8 volts) when the
vehicle speed is 5 mph under the desired speed.
Between these two extremes the valve- ctrl value
is proportional to the difference between the actual
and desired speed. Acceleration control depends
upon whether the driver is accelerating or not. If the
current acceleration (computed by difference be-
tween consecutive speed values) is greater than 5
mph/sec then the valve is completely closed, if
current acceleration is less than 1 mph/sec then the
valve is completely open, else the valve is propor-
tionally opened. The valve position should be
changed no faster than 1 per second. Finally, the
controller reaction time for driver requests must be

display

Controller o =
control
N\

Driver

Fig. 10. Controller specification diagram.
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Fig. 11. Controller implementation block diagram.

less than 1 second, except for braking which must be
as fast as possible (at most 1 ms).

This controller was described modularly as a col-
lection of 7 blocks using a total of approximately
1000 lines of hardware description language (HDL)
code. The final implementation through use of co-
synthesis techniques is shown in Fig. 11. A hard-
ware—software implementation that considers imple-
mentation of the STATE block into software while
the rest is implemented into hardware. The worst
case delay of the program estimated from the flow
graph of the STATE block is 1968 cycles (362
cycles for best case) which corresponds to a software
delay of 0.1 ms for a 20 MHz DLX processor. The
actual delay of the compiled software is 750 clock
cycles. The size of the software is 3.6KB. The
following table summarizes prominent implementa-
tion alternative points where the size of hardware is
expressed in terms of cells using LSI logic 10K
library of gates. All three implementations meet the
timing constraints on the state update and valve
control block.

Implementation Hardware size Software size
All hardware 5247 cells -

Mixed implementation 13032 cells 3.6 KB
Mixed implementation 2 582 cells 7.5 KB

6.2. Graphics controller

Fig. 12 shows a mixed implementation of a graph-
ics controller for generating pixel coordinates for
specified geometries. The input to the controller is a
specification of the geometry and its parameters,
such as end points of a line. The current design
handles drawing of lines and circles. However, it is a
modular design where additional drawing capabili-
ties can be added. The controller is intended for use
in a system where the graphics controller accepts
input geometries at the rate of 2 X 10° per second
and outputs at about 2 million pixel coordinates per
second to a drawing buffer that is connected to the
display device controller. Typically the path from
drawing buffer to the device runs at a rate of about
40 million samples per second.

The mixed implementation of the system design
consists of line and circle drawing routines in the
software while the ASIC hardware performs the
initial coordinate generation and data transfer to the
drawing buffer. The software component consists of
two threads of execution corresponding to the line
and circle drawing routines. Both program threads
generate coordinates that are used by the dedicated
hardware. The data-driven dynamic scheduling of
program threads is achieved by a 3-deep control
FIFO buffer as a part of the interface synchroniza-
tion block. For details on interface synchronization
the reader is referred to [13].

Table 4 compares the performance of different

PROCESSOR ASIC Hardware

linc data queue
...... {I1T-
0
ﬂ]rlmlc data queue

A
Generator

FIFO Control
Interface o
Synchronization

Fig. 12. Graphics co-processor implementation.
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Table 4

System performance under different software implementation
schemes

583

Scheme Software size Runtime overhead Input data rate™' (cycles/coordinate) Output data rate~ ' (cycles/coordinate)
line circle
(bytes) ave. peak ave. peak
Hardware interface 5972 19 81 535.2 330 76.4 30
Software interface ~ 6360 19+84 =103 95 651 407 94 31

program implementations using hardware and soft-
ware interfaces. The hardware interface implementa-
tion uses a FIFO queue with associated control logic
that is synthesized into 228 gates using LSI 10K
library of gates. A software implementation uses
predefined interrupt lines to input data to the proces-
sor. Such an implementation adds 388 bytes to the
overall program size of the software component and
increases the runtime overhead by 84 cycles. Note

that data input and output rates have been expressed
in terms of number of cycles it takes to input or
output a coordinate. Due to a data-dependent behav-
ior of the program threads, the actual data input and
output rates would vary with respect to the value of
the input data. In this example simulation, the input
rate has been expressed for a simultaneous drawing
of a line and 5 pixel radius with width of 1 pixel
each and the results are accurate to one pixel. An

#include "transfer_to.h"

#include "transfer_to.h"

int lastPCMAXCOROUTINES] = {scheduler, circle, line,main};
int current=MAIN;

int *controlFIFO_out = (int *) 0xaa0000;
int *controlFIFO = (int *) 0xab0000;
int *controlFIFO_outak = (int *) 0xac0000;

int controlFIFO[16];
int queuein=0, queueout=0, empty=1, full=0;

int *int1_ak = (int *) 0xb00000;
int *int2_ak = (int *) 0xc00000;

int lastPCIMAXCOROUTINES] =\
{scheduler, circle, line,main};

. int current=MAIN;
enqueue(id)
#include "line.c” intid; #include "line.c"
#include "circle.c' { i S #include "circle.c”
: . ueuein = (queuein xf;
void m:eusl‘(l)n(Ic o ULER); 2ontrolFlF(()][queuein] =id; void main(){
k > resume (SCHEDULER);

empty =0;
full = (queuein == queueout);

int nextCoroutine;

void schedleii 1 } int nextCoroutine;
e R dequeue() void scheduler() {
while ('RESET) { { resume (LINE);
do ( queout = (queout + 1) & Oxf; resume (CIRCLE);
) lrl'xelxtguro?(t:inf: = fcolj&u'gilil)F'O;oﬂ) ik while (1) {
while ((nextCoroutine 1= 5 =0; . N
resume (nextCoroutine & 0x3); while (empty);

POLLED PROGRAM THREADS

empty = (queuein == queueout);
} return controlFIFO[queueout];

transfer_to (dequeue());

INTERRUPT-DRIVEN PROGRAM THREADS

Fig. 13. Graphics controller software component.
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input rate of 81 cycles/coordinate corresponds to
approximately 0.25 million samples/sec for a pro-
cessor running at 20 MHz. Similarly, a peak circle
output rate of 30 cycles/coordinate corresponds to a
rate of 0.67 million samples/sec. Fig. 13 shows
implementation of the main program that provides
runtime scheduling of threads for the two cases of
interface implementations.

7. Summary

The algorithms for software generation described
here are implemented in C programming language as
a part of the VULCAN co-synthesis system. This
paper presents important issues in software genera-
tion from our experience in building this system.
There are two main problems in generating software
from flow graphs. First, since the program genera-
tion necessarily requires serialization of operations in
the flow graph, one must ensure that it is indeed
possible to preserve the HDL-modeled behavior
through such serialization. We have developed con-
ditions that are sufficient to ensure that such a
serialization is possible based on variable definition
and the use of analysis on the flow graphs. The
actual code generation is a fairly straightforward
procedure and is omitted from discussions here. The
second problem relates to presence of .#'9 opera-
tions. We have presented a model for the software
and the runtime system that consists of a set of
program threads which is initiated by synchroniza-
tion operations. Use of multiple program threads
avoids a complete serialization of operations which
may otherwise create /9 cycles in the constraint
graph.

Under timing constraints, linearization of a part of
a flow graph may also not be possible. We have
presented a heuristic linearization algorithm to do
operation linearization using a vertex elimination
scheme. This scheduling scheme uses a measure of
urgency based on timing constraint analysis on an

unconstrained implementation. This heuristic is sub-
stantially faster than exact ordering search algo-
rithms. Since the quality of a final solution is deter-
mined by the existence of a feasible schedule under
timing constraints, the suggested heuristic is a better
match for solving the linearization problem for mixed
system designs.

Our current implementation does not consider the
delay due to alignment operations in case of packed
implementations which can be significant. Variable
packing techniques are needed to minimize the align-
ment operations and their effect on the software
performance. We are considering ways to do soft-
ware estimation and code generation in view of the
internal organization of the processor being used
using a HDL model of the target processor to im-
prove the effectiveness of code-generation for em-
bedded systems.
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