
DECISION DIAGRAMS AND
PASS TRANSISTOR LOGIC SYNTHESIS

V. Bertacco
S. Minato
P. Verplaetse
L. Benini
G. De Micheli

Technical Report No.: CSL-TR-97-748

December 1997

This research was sponsored in part by ARPA, under grant No. DABT63-95-C-0049.

Decision Diagrams and Pass Transistor Logic Synthesis

V. Bertacco S. Minato P. Verplaetse L. Benini G. De Micheli

CSL-TR-97-748

December 1997

COMPUTER SYSTEMS LABORATORY

Departments of Electrical Engineering and Computer Science

Gates Computer Science Building, #408

Stanford University

Stanford California 94305-9040

Abstract

Since the relative importance of interconnections increases as feature size decreases, standard-

cell based synthesis becomes less e�ective when deep-submicron technologies become available.

Intra-cell connectivity can be decreased by the use of macro-cells. In this work we present methods

for the automatic generation of macro-cells using pass transistors and domino logic. The synthesis

of these cells is based on BDD and ZBDD representations of the logic functions. We address spe-

ci�c problems associated with the BDD approach (level degradation, long paths) and the ZBDD

approach (sneak paths, charge sharing, long paths). We compare performance of the macro-cells

approach versus the conventional standard-cell approach based on accurate electrical simulation.

This shows that the macro-cells perform well up to a certain complexity of the logic function.

Functions of high complexity must be decomposed into smaller logic blocks that can directly be

mapped to macro-cells.

Keywords & Phrases: logic synthesis, technology mapping, pass transistor logic, domino

logic, BDD, ZBDD, low power design.

i

Copyright c 1997

V. Bertacco S. Minato P. Verplaetse L. Benini G. De Micheli

1 Introduction and motivation

Logic synthesis has been an enabling technology for the design of Very Large Scale Integration

(VLSI) circuits and systems. The logic abstraction of a circuit is usually in terms of logic gates

(later mapped into cells). Most current synthesis tools assume that the key cost metrics (i.e., delay,

area and power) depend mainly on the cells, and model interconnect as a parasitic e�ect a�ecting

the cell performance (i.e., delay and power).

As deep-submicron technologies become available, the cell-based design style loses modeling

precision: active cell area shrinks and the relative importance of interconnections increases. The

cost metrics are dominated by parasitic e�ects. Therefore it is increasingly di�cult to optimize

interconnect-dominated circuits at the logic level of abstraction.

In this work we investigate a design style that exploit automatically generated macro-cells

based on pass transistors. Such macro-cells may have a larger size than usual semi-custom cells,

and their cost parameters can be inferred from the transistor topology. The use of macro-cells

gives us two advantages: �rst, the number of primitive elements to be instantiated and connected

decreases. Second, the relative importance of interconnection between such blocks decreases as

well. Consequently logic synthesis is at least partially relieved from the burden of managing a huge

number of instances of small atomic primitives, and from some of the uncertainty caused by the

high relative impact of wiring-related costs.

We want also to have some insight in the internal connecting structure of the macro-cells.

To this end we leverage the close a�nity between abstract structures known as Binary Decision

Diagrams (BDDs) and Zero-suppressed Binary Decision Diagrams (ZBDDs) and transistor-level

implementations based on pass transistor logic.

Several approaches to direct synthesis of pass transistor networks have been proposed. In their

pioneering work [1], Yano et al. proposed a BDD-based pass transistor synthesis tool. More recent

work [2] proposed FBDD-based pass transistor synthesis, but no experimental results on transistor-

level implementations are provided. Konishi et al. in [3] proposed a BDD-based synthesis tool for

low-power pass transistor logic.

Di�erently from the work in [1][2][3] we focus on synthesizing one logic block at a time, and we

do not assume that BDDs should be used to represent the complete speci�cation. No weak pull-up

devices are used to restore the level of degraded signals, instead the use of an asymmetric threshold

technology to mitigate level degradation is being explored. Based on accurate electrical simulation

the relative performance of several alternative implementation styles are compared.

2 BDD-based synthesis

Given a multi-output Boolean function of n inputs, f(x) = [f1(x); f2(x); � � � ; fno(x)], we can rep-

resent f with a multi-rooted BDD, as shown in Figure 1 (a). The BDD is levelized and there is a

one-to-one correspondence between levels and input variables.

We can map the BDD of f to a pass transistor circuit with a straightforward transformation.

BDD nodes are mapped to pass transistor multiplexers, as shown in Figure 1 (b).

We use only NMOS transistors in the pass transistor network. Advantages of this choice is that

the input load capacitance is minimized (faster circuits, and lower power dissipation), and that

1

(a) (b)

x1

x2

x3

x4

1 0

1 0

1 0

0

0

x1’ x1 x1’ x1

x3’ x3x3 x3’

x4’ x4

f1 f2 f1 f2

x2 x2’ x2’ x2 x2’ x2

Figure 1: Multi-rooted BDD and its pass transistor mapping

the area is reduced as well. However, we need both input polarities to drive the pass transistor

multiplexer.

2.1 Asymmetric thresholds

Unfortunately, NMOS devices have poor driving characteristics for the \high" logic value: they

turn o� as Vds (drain-source voltage) gets close to Vt. As a result raising transition are remarkably

slower than falling transitions on the pass gate nodes. The full output swing can be restored by

inserting a CMOS bu�er on each output of the pass transistor network. Even though Vt0 (the

zero bias threshold voltage) is usually bigger (in absolute value) for PMOS devices than for NMOS

devices, the actual voltage degradation can be close to or even surpass Vt0P due to the body e�ect.

When the bu�er is driven by a degraded high voltage the PMOS transistor will not be fully o�,

and there will be some leakage current through the bu�er.

A �rst solution to this problem is to use a weak pull-up devices to restore the degraded

value [1][3], as is shown in Figure 2 (a). Note that this only decreases the power dissipation,

but does not improve the noise margin. The resulting logic is ratioed, which makes it hard to

generate longer chains of pass gates with optimal sizing (often minimal). A more advanced solution

involves adopting asymmetric thresholds (Figure 2 (b)). There are two types of NMOS transistors:

for the static CMOS gates we use transistors with the usual thresholds, but for the pass gates

NMOS transistors with reduced threshold (usually close to 0) are applied. This technology adjust-

ment reduces the leakage problem on the bu�ers at no area cost and increases the speed of the

rising transitions. An extra mask and extra ion-implantation step is required during fabrication to

adjust the threshold for the NMOS devices.

2.2 Bu�er insertion

Another problem with the pass transistor network is the presence of long paths: the delay of a chain

of n pass transistors is proportional to n2. The path length can be reduced by inserting bu�ers,

2

LT

LT

W
ea

k

(a) (b)

Figure 2: (a) Weak pull-up (b) Asymmetric thresholds

but this increases area. The optimum path length depends on the delay of the pass transistors and

the bu�er delay, as well as the speed-area trade-o� point that one wants to obtain.

When a BDD with complemented edges [4] is mapped to a pass transistor circuit, each comple-

mented edge corresponds to an inverter, which acts as an implicit bu�er. Unfortunately, we cannot

guarantee that implicit bu�ers solve all long-path problems, and explicit bu�ers must be inserted

as well. Algorithms similar to those in [3] can be applied. One more type of bu�ering is required.

When mapping large BDDs, some nodes may have a large number of ancestors. In the pass tran-

sistor network, this translates into a large node capacitance on the output of the corresponding

multiplexer. This e�ect is mitigated by bu�ering high fanout nodes.

In the current implementation the bu�er insertion procedure �rst traverses the BDD once and

inserts bu�ers on the output of nodes with fanout larger than FOmax. Then, the node traversal is

repeated and additional bu�ers are inserted such that the maximal unbu�ered path length is Lmax.

The complexity of the bu�ering algorithm is O(Nnodes).

Bu�ering can improve the performance of the circuit, but other transformations have a strong

inuence on the quality of the �nal pass transistor implementation. It is known that the complexity

of BDDs is very sensitive to the ordering of the input variables. In the current implementation, we

perform variable reordering based on sifting [5] and we select for mapping the order that produces

the BDD with the smallest number of nodes. This choice is based on the observation that node

count has a high correlation with number of transistors (although there is some uncertainty due to

bu�ering) and some correlation with the speed of the circuit.

3 ZBDD-Based synthesis

Zero-suppressed BDDs [6] are well-suited for representing Boolean functions in sum-of-products

(SOP) form. Figure 3 (a) shows a SOP representation of a function and its ZBDD. Notice that

this representation labels nodes with literals instead of variables. Thus x and x0 nodes can both be

present in the same ZBDD.

An important property of ZBDDs is that they allow sharing of subgraphs. Subgraph sharing

has a precise meaning when ZBDDs are used to represent SOPs: it is equivalent to factoring [7].

Intuitively, ZBDDs do not only represent Boolean functions, but also their factored forms. This

is a paramount property in the application of ZBDDs to direct mapping of Boolean functions to

transistor-level net lists.

3

GND

a

b
b’

c
d’

(precharge)

F

VDD

a

b
b’

c

0 1

d’

F = a b + c + b’ d’

(1−edge)

(0−edge)

(b)(a)

Figure 3: (a) A ZBDD representing a cube set (b) Corresponding ZBDD-based mapping

3.1 Mapping ZBDDs into Domino Logic

The logic functionality of a ZBDD node is fd + xfx, where fd (0-edge) represents the subset of f

which does not depend on x, and where fx (1-edge) is the cofactor of f w.r. to x. Implementation

of such a function in pass transistor logic requires a single transistor, as shown in Figure 4. The

1-edge connection is realized with a transistor, the 0-edge is just a wire.

x x

1

GND

0 (open)

f xf f f xdd

Figure 4: Basic rules of ZBDD-based mapping

As a consequence, mapping a ZBDD to pass transistors produces a switch network. We cannot

use the network to drive both \high" and \low" values to the output, as in the pass transistor

approach of Section 2. Instead, only the \low" values are driven, which makes the network ideal for

dynamic logic families such as the well-known domino logic [8]. All output nodes are precharged

during one phase of the clock and conditionally discharged by a switch network during the opposite

phase (the two phases are known as precharge and evaluation). Based on these observations it is

easy to conclude that ZBDDs are well suited to be directly mapped into domino logic (Figure 3 (b)).

NMOS transistors implement the switch networks in domino logic because they have smaller

e�ective resistance than PMOS transistors. Since NMOS transistors drive strongly and without

voltage degradation the \low" logic value, the natural choice is to assume that the sink of the switch

4

network is always connected to GND.

The advantages of the ZBDD mapping to domino logic are: (i) the exploitation of the high speed

and low input load of domino logic, (ii) the possibility of leveraging traditional logic minimization

tools to reduce the number of literals in a SOP representation [9] that directly translates to reducing

the number of transistors, (iii) the sharing of common sub-factors that further reduces the transistor

count.

3.2 Sneak paths

The mapping of ZBDDs to transistors is not completely straightforward, mainly because of the

possible unwanted conductive paths (sneak paths) in the switch network due to the bidirectional

behavior of transistors (Figure 5).

F = a’ c d’ + a’ c’ d + b’ c’ d

b’
c

0 1

d’

a’

c’

d

GND

b’

c

d’

c’

d

a’

Figure 5: Sneak path problem

To avoid wrong direction ows, we insert bu�ers on each multiple fan-out node. Bu�er insertion

is shown in Figure 6. Bu�er insertion increases the number of transistors and a�ect the delay. How-

ever, the delay can sometimes be improved because bu�ering reduces the length of long transistor

chains. It is important to note that in this case bu�ering is required for functional correctness and

not for performance enhancement like in the BDD case.

There are some cases where we can omit bu�er insertion in a multiple-fanout node. For example,

the circuit shown in Figure 7 (a) contains two fanout nodes, but there are no sneak paths. As shown

in Figure 7 (b), when there is no bypath of the fanout node P , we do not have to insert a bu�er at

P because all the paths from the root node F to GND should pass through P in the same direction.

This condition can be checked simply by the formula F%P = 0, where % means the remainder

of the algebraic division of the cube sets F and P . This formula indicates that the cube set P is

exactly a factor of F , in other words, every cubes in F includes one of the cube in P . So, every

path of F should pass through the node P . Notice that algebraic division can be executed quickly

exploiting recursive ZBDD manipulation [7]. If the circuit has multiple output functions, we can

omit bu�er insertion if the formula is satis�ed for all the output functions which are relevant to

the node P .

5

VDD

(precharge)

F1 F2 F3

P

F1 F2 F3

P

multiple
fanout

fanout
buffer

Figure 6: Bu�er insertion

P

F

no bypath

F = ace+acf+ade+adf+bce+bcf+bde+bdf
 = (a+b)(c+d)(e+f)

c

0 1

d

a

b

e

f

a

c
d

b

e
f

(a) (b)

Figure 7: (a) An example when no bu�er is needed (b) Condition for bu�er elimination

The above condition does not cover all the cases where we can omit bu�ers. However, testing the

additional cases is more involved and the current implementation of our mapper does not support

advanced bu�er elimination tests.

After checking the bu�er insertion condition, even if there no multiple fanout nodes, we force

bu�er insertion to split excessively long chains of transistors. Finally, in order to minimize charge

sharing problems, we insert internal precharge transistors every Lpre transistors in series.

As for BDDs, variable ordering has a strong impact on the size of ZBDDs. However, in the

current implementation we use the same ordering for both decision diagrams.

4 Experimental results

We have implemented the BDD and ZBDD mapping procedure described in the previous sections

and tested them on a small set of benchmarks. Macro-cells with 8{50 inputs and 1{40 outputs

are used. Note that most current semi-custom library cells have 2{20 transistors and that 90%

6

of the cells have 1{8 inputs and a single output. For BDD mapping we used a BDD package

developed at University of Padova, Italy, while ZBDD mapping was built on top of CUDD [11].

Both mapping tools read slif �les and produce SPICE net lists. The ZBDD mapping procedure

uses ESPRESSO [9] as a preliminary optimization step before mapping. Accurate circuit level

simulation was performed using HSPICE. We used delay estimation to generate input patterns for

the BDDs that would reveal the true maximum delay of the circuits. Delay estimation is also useful

for critical path analysis, and can be used in bu�er insertion algorithms.

In order to get an idea on the relative performance of BDD- and ZBDD-based circuits we com-

pared the performance with a commercially available tool using a simple standard-cell containing

12 basic gated primitives and bu�ers. The net list generated was replaced by the transistor-level

implementation (static CMOS) of each gate. We used the same CMOS technology for all the

transistor-level implementations (a 0:5� CMOS technology). We used asymmetric thresholds for

the BDD-based implementation, once with minimum sized and once with double sized pass tran-

sistors. The values for Lmax and FOmax are 6 and 4 respectively. Charge sharing is prevented by

using a conservative internal precharge scheme: Lpre = 2.

Bench Inputs Outputs Muxes Delay (ns)

DT DT2 Std

b1 3 4 10 0.667 0.628 0.487

daio 5 6 15 0.681 0.679 0.811

cm150a 21 1 32 0.835 0.903 1.049

s208 19 10 76 1.477 1.497 1.426

b9 41 21 157 2.004 1.789 1.187

s832 23 24 286 3.038 3.575 2.374

alu4 14 8 472 3.903 4.549 3.243

s1238 32 32 771 3.743 4.315 2.714

s641 54 42 810 4.622 4.998 2.400

term1 34 10 1039 8.250 7.072 1.425

Table 1: BDD size and performance measures

Table 1 summarizes the results for the BDDs. For each benchmark we report the number of

inputs and outputs, followed by the number of internal nodes in the BDD after reordering. The

delays for both minimum sized (DT) and double sized (DT2) pass transistor circuits, and the delays

for the standard-cell implementation are reported.

It appears that the node count is a good measurement for the complexity of the BDD: for a

node count up to at least 500 the direct mapping of BDDs to layout seems feasible. Generally

functional blocks of this complexity would be mapped in several standard cells. With our approach

a single macro-cell will be generated. For higher node counts decomposition into smaller blocks is

required for optimal results.

When using double-sized pass transistors the results are sometimes better, but not always. This

indicates that the optimum size for the pass transistors is not always the minimal size, but should

be chosen according to the performance/area trade-o�.

Table 2 shows data on ZBDD mapping. The columns report the number of literals in the

attened and minimized two-level implementation of each benchmark, the number of ZBDD nodes

7

Bench Literals Nodes Bu�ers Delay (ns)
ZBDD Std

b1 11 12 0 0.386 0.487
daio 21 20 2 0.434 0.811

cm150a 81 47 0 0.625 1.049
s208 172 103 10 0.964 1.426

b9 439 194 26 1.047 1.187
s832 887 388 53 1.385 2.374

term1 1953 427 65 2.459 1.425
s641 8277 827 150 1.877 2.400
s1238 12020 1207 185 1.878 2.714

alu4 18347 1784 320 3.077 3.243

Table 2: ZBDD size and performance measures

and the number of bu�ers inserted because of either excessively long chain of transistors or sneak

path elimination. The next two columns show the delays for the ZBDDs and the corresponding

delays for the standard-cell implementation.

Overall we can conclude that the direct mapping of ZBDDs to domino style logic gates produces

good results.

Bench BDD-dt BDD-dt2 Std ZBDD

alu4 30.482 36.623 23.616 0.490

b1 0.527 0.527 0.423 0.252
b9 3.202 3.371 2.061 1.202

cm150a 0.419 0.466 0.843 0.106
daio 0.625 0.637 0.545 0.377
s208 1.424 1.581 1.434 0.145

s641 28.992 33.559 6.720 2.706
s832 7.483 9.737 4.575 0.246

s1238 30.866 34.924 18.947 1.574
term1 83.423 85.116 2.681 0.350

Table 3: Average power (in mW at 100MHz)

Data on average power consumption (on the same patterns used for timing) is reported in

Table 3. Here, the results are less predictable.

5 Conclusions and future work

In this paper we presented some preliminary results on the applicability of direct BDD mapping to

pass transistor networks or domino circuits. Such direct mapping procedure is the core of a new

synthesis paradigm that tackles the complexity and the uncertainties caused by excessive wiring

by adopting a coarse-grain \virtual library" whose cells are automatically generated by fast BDD

mapping of functions with many inputs and outputs.

8

From the results obtained so far, it is quite clear that BDD size is the most important factor in

determining the quality of the �nal implementation. Optimizations such as bu�ering have bene�cial

e�ect for implementations that are not competitive with standard-cell alternatives.

There are many directions of improvement to be investigated. First we need a better bu�er

insertion algorithms to improve the performance without excessive overhead. Second, automatic

transistor sizing for performance enhancement could be explored. Third, when the layout mapping

tool for the BDD- and ZBDD-based net lists is available, a more careful analysis of the performance

after placement and routing can be done. We expect that the area comparison will be favorable for

the BDD and ZBDD mappings, especially for deep-submicron technologies where most of the area

is spent on wires.

Acknowledgments

This research was sponsored in part by ARPA, under grant No. DABT63-95-C-0049. We would

like to thank Fabio Somenzi for providing the CUDD package used for ZBDD mapping.

References

[1] K. Yano, Y. Sasaki et al., \Top-down pass-transistor logic design," IEEE Journal of Solid-State Circuits,
vol. 31, no. 6, pp. 792{803, 1996.

[2] M. Tachibana, \Heuristic algorithms for FBDD node minimization with application to Pass-Transistor-

Logic and DCVS synthesis," Workshop on Synthesis and System Integration of Mixed Technologies,
pp. 96{101, 1996.

[3] K. Konishiki, S. Kishimoto et al., \A logic synthesis system for the pass-transistor logic SPL,"Workshop

on Synthesis and System Integration of Mixed Technologies, pp. 32{39, 1996.

[4] K. S. Brace, R. L. Rudell and R. E. Bryant, \E�cient Implementation of a BDD Package," Design

Automation Conference, pp. 40{45, 1990.

[5] R. Rudell, \Dynamic variable ordering for ordered binary decision diagrams," International Conference
on Computer-Aided Desing, pp. 42{47, 1993.

[6] S. Minato, \Zero-suppressedBDDs for set manipulation in combinational problems,"Design Automation

Conference, pp. 272{277, 1993.

[7] S. Minato, \Fast weak-division method for implicit cube set representation," IEEE Transactions on

CAD/ICAS, vol. 15, n. 4, pp. 377{384, 1996.

[8] N. Weste and K. Eshraghian, Principles of CMOS VLSI design. A systems perspective, Addison Wesley,
1992.

[9] R. Rudell and A. Sangiovanni-Vincentelli, \Multiple-valued minimization for PLA optimization," IEEE
Transactions on CAD/ICAS, vol. CAD-6, n. 5, pp. 727-750, 1987.

[10] V. Bertacco and M. Damiani, \Boolean function representation based on disjoint-support decomposi-
tions," International Conference on Computer Design, pp. 27{32, 1996.

[11] F. Somenzi. The CUDD package User's guide. Version 1.0.5 November 1995.

9

