Integrating Logic-level Power Management Techniques

L. Benini # G. De Micheli #

Stanford University
Computer Systems Laboratory
Stanford, CA 94305

Abstract— Pre-computation and gated clocks are
well-known design solutions for reducing power dissi-
pation in sequential circuits. Although it is clear that
the two techniques are based on similar principles, no
definite answer has been given on whether they are
equivalent formulations or two alternative approaches.
In this paper, we address this open question. We
show that pre-computation and gated clocks are not
equivalent, and that they can be concurrently applied.
We describe an architecture for merging the two tech-
niques, and we analyze its applicability to power op-
timization of different classes of sequential circuits.

I. INTRODUCTION

Complex digital systems usually contain portions of
logic which are not performing useful computations at
each clock cycle. Think, for example, of arithmetic units
and register files within a microprocessor or, more simply,
to state registers of an ordinary synchronous sequential
circuit. The idea, known since a long time in the com-
munity of IC designers, is to shut down the logic which
is not in use during some particular clock cycles, with
the objective of limiting power consumption. In fact, pre-
venting gates from performing useless transitions causes
a decrease in the overall switching activity of the circuit.

In the past, the implementation of power-down strate-
gies was carried out manually by the designers. With the
increased complexity of modern VLSI systems, the diffi-
culty of performing this task has grown as well. This has
motivated the development of automatic techniques for
inserting power management mechanisms into the designs
starting directly from the logic/RT-level descriptions of
the systems being synthesized.

Two successful solutions to the problem of reducing the
power dissipated by an IC through logic shut-down have
recently become available. The first one, identified as pre-
computation, is due to Alidina and co-workers 1, 2, 3,
4]. The method relies on the idea of duplicating part of
the logic with the purpose of pre-computing the circuit
output values one clock cycle before they are required,

E. Macii }

M. Poncino?! R. Scarsi !

! Politecnico di Torino
Dip. di Automatica e Informatica
Torino, ITALY 10129

and then use these values to reduce the total amount of
switching in the circuit during the next clock cycle. In
fact, knowing the output values one clock cycle in advance
allows the original logic to be turned off during the next
time frame, thus eliminating any charging and discharging
of the internal capacitances.

The second alternative, called gated clocks, has been
proposed by Benini et al. in [5, 6, 7]. The fundamental
idea of the method is to selectively stop the clock, and
thus force the combinational logic of the circuit to make
no transition, whenever the computation to be performed
at the next clock cycle is useless. In other words, the clock
signal is disabled in correspondence to the idle conditions
of the synchronous network. For reactive circuits, such
as most of the logic controllers employed in telecommu-
nication systems, the number of clock cycles in which the
design is stuck into a wait state (for example, monitoring
for a given event to occur) is usually large. Therefore,
avoiding the power waste corresponding to the states in
which the circuit is waiting may provide a significant im-
provement in the power figure of the overall system.

The use of pre-computation-based architectures has
shown to be particularly effective for the optimization
of pipelined circuits, whose structure consists of a com-
binational logic block with latched inputs and outputs.
Concerning synchronous sequential circuits, that is, cir-
cuits with latched state feedback whose behavior is usu-
ally modeled through a finite state machine, the theoreti-
cal applicability of the method has not been supported by
adequate experimental data. Gated clocks, on the other
hand, have proved to be particularly useful for power op-
timization of cirfluits with state feedback. To the best of
our knowledge, however, no results have been reported on
the application of the technique to pipelined circuits.

Although the two techniques have been applied to dif-
ferent classes of circuits, they have striking similarities. It
may be possible to think that pre-computation and gated
clocks are indeed the same optimization technique applied
to different types of circuits.

This paper brings three contributions. First, we show
that pre-computation and gated clocks are not equivalent,

59 —

and they are not mutually exclusive. Second, we have
collected new data on the applicability of the two shut-
down strategies discussed above, and the outcome of the
experiments, presented here, has clearly indicated that
the use of gated clocks is beneficial also for pipelined cir-
cuits. On the contrary, power management based on pre-
computation has produced relatively disappointing results
in the case of sequential circuits. Third, we propose an
integrated power-down architecture which tries to exploit
the benefits of both pre-computation and gated clocks,
and we highlight the results we have obtained on stan-
dard benchmark circuits through the application of such
architecture.

II. A COMPARATIVE ANALYSIS
In this section we summarize the main characteristics
of the pre-computation and the gated clocks power-down
strategies; in addition, we present a comparative analysis
of the two methods.

A. Pre-Computation
The pre-computation approach has been proposed with

the objective of optimizing pipelined designs, that is, cir-
cuits having the structure depicted in Figure 1. The com-
binational block A implements a N-input Boolean func-
tion, f, and it has the I/O pins connected to registers R,
and R,. Notice that, for the sake of simplicity, but with-
out loss of generality, in the following we assume f to be
a single-output function.

X, ||
*—r,1 A Hr,—f
BT >

Fig. 1. Pipelined Circuit.

The method is based on the idea of duplicating part of
the original circuitry with the purpose of pre-computing
the circuit output values one clock cycle before they must
appear, and then use these values to decrease the total
amount of switching within the logic during the next clock
cycle. In fact, knowing the output values one clock cycle
in advance allows the original logic to be turned off during
the next time frame, thus eliminating any charging and
discharging of the internal capacitances.

Clearly, the size of the pre-computation logic must be
kept under control, since its contribution to the total
power balance may offset the savings achieved by block-
ing the switching inside the original circuit. To avoid this
problem, it is possible to select only a subset of the input
conditions for which the output values are pre-calculated.
However, the task of selecting such subset, which basically
corresponds to synthesizing the pre-computation logic, is
not trivial, the ideal target being a very compact circuit

— 60

whose corresponding Boolean function covers a large part
of the original function. Moreover, the synthesized pre-
computation logic must meet other design constraints, like
area and speed.

Two pre-computation architectures have been intro-
duced. The schematic of the first one is reported in Fig-
ure 2.

X, o
Xz R.[| A Rz—f
AL >
|
*%

Fig. 2. First Pre-Computation Architecture.

The distinguishing features of the architecture are the
two N-input, single-output predictor functions, g, and g;,
whose behavior is required to satisfy the following con-
straints:

a=1=>f=1 and g2=1=f=0 (1

If, at the present clock cycle, either g, or g, evaluates to 1,
the register load enable signal LE goes to 0, and the inputs
to block A at the next clock cycle are forced to retain
the current values. Hence, the number of gate output
transitions inside block A gets zeroed, while the correct
output value for the next time frame is provided by the
two registers located on the outputs of g, and g;. Notice
that, in this first pre-computation architecture, functions
g1 and g» may depend on all the inputs to block A.

Obviously, the choice of the predictor functions is a key
issue. The ideal target would be to have g, = f and
g2 = f'. From the practical stand-point, however, this
solution would not give any advantage in terms of power
consumption over the original circuit, since it would re-
quire the complete duplication of block A, and thus it
would provide the same number of switchings as before,
but with an area twice as large as the original network.
Consequently, the objective to be reached is the realiza-
tion of two functions for which the probability of their
logical sum (i., g1 + g2) to be 1 is as high as possible,
but for which the area penalty due to their implementa-
tions is very limited.

One way of guaranteeing functions g; and g, to be much
less complex than function f is to enforce the dependency
of the two predictor functions on a limited number of
inputs if compared to f. We have then the second pre-
computation architecture, shown in Figure 3, which differs
from the first one in two main aspects: First, the set of
inputs to A is partitioned into two subsets, and only one
of them feeds the predictor functions g, and g,. Second,

We can divide the states of a Mealy-type FSM into two
classes [6]. States where self-loops are not idle conditions
(unless taken twice), are called Mealy-states, while states
where self-loops are idle conditions are called Moore-
states. For Mealy-states it is not possible to stop the
clock of the circuit by just observing the state and input
lines. It is then possible to apply an algorithm that oper-
ates on the state transition graph (STG) of the FSM to
transform Mealy-states into Moore-states, thus allowing
the exploitation of more self-loops as idle conditions where
the clock can be stopped. Since it is generally computa-
tionally infeasible to extract the STG representation for
large sequential circuits, the transformation from Mealy-
states to Moore-states is not applicable and we must re-
strict ourselves to the Moore-states of the Mealy FSMs.

The activation function F,(z,s) is then given by the
union of all self-loops of Moore-states (z and s are the
input and state variables). The set of all self-loops in the
FSM includes F,, since it contains also the self-loops of
Mealy-states. Explicit and implicit (i.e., BDD-based) al-
gorithms have been proposed to automatically determine
F,(z, s) from either the STG or the gate-level descriptions
of the original circuit.

Obviously, if a circuit is an implementation of a Mealy
FSM with no Moore-states, the activation function will
be empty, thus implying no chance of stopping the clock
at any time. Fortunately, it may still be possible to de-
termine some stopping conditions associated to Mealy-
states. Intuitively, self-loops on such states are not idle
conditions because it cannot be guaranteed that output
transitions will not be required, even if the next state
does not change. However, if the outputs of the sequen-
tial circuit are taken as inputs of the activation function
as well as the state and primary inputs, the problem can
be solved. The gated clock architecture can be modified
as shown in Figure 6.

s T

- 1 .
&
Q. .
Qs
:

CLK

Fig. 6. Modified Gated Clock Architecture.

If all outputs are taken as inputs of the activation func-
tion, all self-loops can be exploited to stop the clock (7).
It may be observed that, since the number of outputs in
a sequential circuit is often very large, the size of the ac-
tivation logic may increase too much. However, it may
be the case that we do not need to use all the outputs as
inputs of F, [7].

There is clearly a trade-off between the number of ad-
ditional self-loops that can be considered in the activation

function by including one or more outputs to its support

—~— 62

and its size (and power dissipation). The selection of an
optimal subset of outputs for inclusion in the support
of the activation function is usually performed heuristi-
cally [7}.

After the Boolean expression of the activation function
is determined, it must be synthesized and optimized. The
problem to be faced here is that the size (and the power
dissipation) of the combinational block corresponding to
F, may be unacceptably large. The idea is then to synthe-
size a simplified function, f,, contained into the original
F,, which dissipates the minimum possible power, and
stops the clock with maximum efficiency.

Formally speaking, the problem of computing the sim-
plified activation function can be formulated as follows.
Given a Hoolean function, F,, find a new function f, C F,
such that its probability, P(f,), satisfies the inequality
P(f.) > aP(F,) (where 0 < a < 1is a user-specified scale
factor and aP(F,) represents the probability constraint)
and the number of literals in a two-level implementation
of function f, is minimum.

An effective approach to the simplification of the ac-
tivation function is based on symbolic Boolean functions
manipulation. The algorithm works as follows. First, a
pseudo-Boolean function, Pf,, is constructed, which im-
plicitly represents the probability of the minterms in the
ON-set of F,. Then, some of the minterms of F, are re-
moved until a given cost criterion breaks the loop. Clearly,
both the minterm removal and the stopping condition
must be guided by a combination of the size improvement
in the implementation of F, and the probability decrease
of the ON-set of F,.

C. Extending Pre-Computation to Sequential Circuits

In {3], the authors have made the claim that the appli-
cability of the pre-computation architectures of Figures
2 and 3 is not restricted to the case of pipelined circuits
but, instead, it can be easily extended to designs having
an arbitrary structure. In particular, they have shown in
detail how the second pre-computation architecture can
be adapted to synchronous sequential circuits with tradi-
tional topology (see Figure 4). The proposed modifica-
tions are depicted in Figure 7.

In spite of the nice theoretical formulation of the solu-
tion, no experimental evidence of its practical usefulness
has been presented in the literature. We have thus con-
ducted a deeper investigation on this subject. In Sections
IIIand IVwe report considerations and experimental data
on the outcome of our analysis.

D. Extending Gated Clocks to Pipelined Circuits

Gated clocks can obviously be applied to pipelined cir-
cuits. In fact, this kind of designs differentiate from the
finite state machine model of Figure 4 only by the absence
of the state feedback. Hence, the only constraint for the
gated clock architecture to work properly is that all out-
put lines must be considered simultaneously. Also for this

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi

x, — +——&
X\ R — ——
X _‘;,__——__,,H | — — I
1 I— — r
| BE==
| :l ,{ﬁ__.,A_
| [IR —— 1l
T
} - ,:R‘ 7?}
| le < Ij
5
L ug#
[

Fig. 7. Second Pre-Computation Architecture for a Synchronous
Sequential Circuit.

extension, a discussion and some experimental results are
provided in Sections IIland IV.

E. Comparison and Discussion

Pre-computation and gated clocks are both based on
the concept of synthesizing a logic function that stops
the clock of a sequential circuit in a subset of all possible
input conditions. Although the clock stopping circuitry
for pre-computation (i.e., enable signals) and gated clocks
(i.e., latch-based clock shut-down) appear to be different,
it is easy to realize that the difference is only a matter
of implementation style. Moreover, we have just shown
in the previous sections that the two techniques can be
applied to the same classes of circuits.

These observations may lead to the conclusion that pre-
computation and gated clocks are equivalent. In fact, they
are not. Pre-computation detects clock-stopping oppor-
tunities based on lack of observability. If for some input
conditions a large number of inputs is not observable at
the outputs, there is no need to clock the flip-flops asso-
ciated to the un-observable inputs. The purpose of the
pre-computation logic in the first architecture is precisely
to detect when the pre-calculated inputs are unobserv-
able.

On the contrary, gated clocks are based on the intrinsic
memory-retaining property of CMOS circuitry. If there
are conditions for which we can pre-determine that the
outputs are not going to change, there is no need to clock
the circuit, because the input activity does not propagate
to the outputs. Moreover, we can stop the clock indefi-
nitely, as long as the outputs do not need to be updated.

From these observations, we may also conclude that
there are circuits for which pre-computation is completely
ineffective, namely those for which a large fraction of the
inputs is always observable. On the other hand, gated
clocks are not effective for systems where at least one
output changes every clock cycle. The non-equivalence of
gated clocks and pre-computation, and thus the possibil-
ity of merging the two techniques, is investigated in the
next sections.

III. APPLYING PRE-COMPUTATION AND GATED
CLOCKS

In this section, we describe an architecture that inte-
grates the pre-computation and the gated clock mecha-
nisms into a unique shut-down scheme. The motivation
for this solution is that the conditions that enable the
power management of some or all circuit (primary and/or
present-state) inputs are not necessarily the same for the
two approaches, and thus some advantages may result
from the simultaneous use of the two techniques. Fig-
ure 8 shows the integrated architecture for the case of
pipelined designs.

i

o =

Cik

Fig. 8. Integrated Architecture.

The solid box identifies the global shut-down logic:
Block F, implements the activation function of the
gated clock scheme, and block Fy,. implements the pre-
computation conditions, that is, (g1 + ¢2)’.

From Figure 8 it seems clear that, whenever the condi-
tions for which Fp,. is 1 are a subset of those for which
F, is 1, the integrated architecture provides no benefit
with respect to the pure gated clock scheme. However, if
some of the pre-computation conditions are not included
in those of the gated clock, joining the two networks al-
ways results in a potential power improvement. As a mat-
ter of fact, this situation indicates that a subset of the
circuit inputs can be stopped more often if the integrated
approach is taken.

For better area optimization, functions F, and Fp,.
should be synthesized and optimized concurrently as a
unique, two-output circuit. This is because the amount
of logic shared among the two blocks may be substantial.
Notice that, in the proposed scheme, we did not resort to
registers with an enable input. Rather, we have used the
output of the pre-computation circuitry to gate the clock
of registers R;. The advantage of this scheme is that it
avoids useless transitions on the gated clock distribution
network when F,,. takes on the value 1. Consequently,
further power savings can be achieved.

It is important to observe that, even though, in princi-
ple, the combined architecture may be applicable to syn-
chronous sequential networks, the reduced efficiency of the
pre-computation paradigm for this type of circuits makes

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi

in addition to the combinational blocks implementing g,
and g2, only one extra NOR gate is required, as opposed
to the first architecture, where two further registers, plus
a NOR gate and an OR-AND gate were necessary.

X, R 1
Xk 1=
. A HRrt
ikd R |
2
b P>

Fig. 3. Second Pre-Computation Architecture.

Similarly to the first architecture, the predictor func-
tions ¢ and g, must satisfy the constraints posed by
Equations 1. When either g; or g2 evaluates to 1, the out-
puts of register R, are not allowed to make any switching
at the next clock cycle. However, since the outputs of
register R) can be updated (the load enable signal, LE,
does not feed register R,), some activity is allowed within
block A, and function f will evaluate to the correct logic
value. In contrast with the first pre-computation archi-
tecture, the second solution never calculates and stores in
advance the output values for the subsequent clock cycle.
The circuits implementing the predictor functions g, and
g: only determine whether the selected subset of inputs
to block A can be frozen, thus possibly reducing the to-
tal number of transitions inside the combinational logic.
Therefore, we can say that the operating mode of this
structure is somehow similar to the one of the gated clock
architecture that will be covered in detail in the next sec-
tion.

Two problems still have to be addressed. First, how to
compute the subset z,,...,z of inputs to block A to be
fed to the predictor functions. Second, how to synthesize
functions ¢, and g2 in such a way that Equations 1 are
satisfied and that the probability of g + g2 = 1 is high.

Exact and heuristic procedures have been devised for
the purpose of computing the z,,...,z; inputs which are
most convenient for this particular application. The com-
mon assumption to all these methods is that such subsct
s the one for which the probability of g; + go = 1 gets
the maximum value for a fixed k. Since, by definition, g,
and g, cannot be 1 for the same input vector, the max-
imum probability of g, + g» to be one occurs only when
the probabilities of g, = 1 and ¢g» = 1 simultaneously get
their maximum values. This cost function is used to re-
cursively explore the (possibly pruned, when the heuristic
methods are used) search space of all possible subsets of
cardinality k.

After the subset z,,...,z; has been determined, func-
ions ¢) and g2, which only depend on z,,...,z; and

which have the maximum probability of being 1, can be
computed as:

' (2)

where ¥;. f = [z, - fz; is the universal quantification of
f with respect to variable z;, and f;; = f(z; = 1) and
fz; = f(zi = 0) are the positive and the negative cofactors
of f with respect to z;.

N = Vzu+|.---.lnf and gy = Vzue

B. Gated Clocks

Gated clocks [6, 7] are an effective alternative to the
pre-computation-based power-down strategy described in
the previous section. They have been proposed as a
power-management strategy for synchronous sequential
circuits having the structure of Figure 4.

1

ouT

S

X R A

CLK

Fig. 4. Synchronous Sequential Circuit.

The fundamental idea of the method is to selectively
stop the clock, and thus avoid transitions within the
combinational logic, anytime the computation to be per-
formed at the next clock cycle is useless. In other words,
the clock signal is disabled in correspondence to the idle
conditions of the synchronous network.

The gated clock version of the circuit of Figure 4 is
depicted in Figure 5. Signal F,, called activation function,
selectively stops the local clock (i.e., F, = 1) when the
circuit does not perform state or output transitions.

S

|
. E

|
o)L

ig. 5. Synchronous Sequential Circnit with Gated Clock.

Given the gate-level deseription of the original circuit,
we need to identify the conditions under which the clock
may be stopped. I is known that the behavior of a syn-
chronous sequential ciceuit can be modeled by a finite
state machine (FSM). Determining the wdle conditions is
then a simple task for cireuits whose FSM models are of
Moore-type. In fact, when the present state and the in-
puts are such that the next state does not change, the
Moore FSM is idle [6]). Unfortunately, this property does
not hold for Mealy FSMs.

Circuit | PI | PO Original Gated Clocks Pre-Computation Integr. Arch.
Power Power | Savings | Power | Sauvings | Power | Savings
9sym 9 1 123 62 49% 134 —9% 67 45%
apex2 | 39 3 286 286 0% 114 60% I14 60%
cm138 6 8 35 13 63% 29 17% 25 28%
cm150 21 1 94 60 36% 74 21% 48 49%
cmb 16 4 66 15 T7% 45 32% 1 79%
comp 32 3 144 116 19% 68 53% 75 48%
cordic 23 2 111 38 66% 81 27% 44 60%
mux 21 1 99 61 38% 70 29% 60 39%
sao2 10 4 93 58 37% 48 48% 37 60%
TABLE 1
ResuLrs: PIPELINED CIRCUITS.
Circuit | Pl | PO | FF | Original Gated Clocks Pre-Computation Integr. Arch.
Power | Power | Sawings | Power | Savings | Power | Savings
5208.1 10 1 8 75 49 34% 71 5% 52 31%
5298 3 6 14 89 72 19% 120 -35% 112 —26%
5386 7 7 6 63 58 8% 70 -11% 65 —-3%
5400 3 6 21 90 63 30% 77 14% 71 21%
s420.1 10 1 16 106 66 36% 97 8% 72 32%
s444 3 6 21 101 76 25% 86 15% 77 24%
s510 19 7 6 95 81 15% 99 -4% 85 11%
5526 3 6 21 119 114 4% 147 —-23% 136 —-14%
ninmax4 $] 15 5 40 5% 06 2% 34
TABLE 11

RESULTS: SYNCHRONOUS SEQUENTIAL CIRCUITS.

this solution of limited practical interest, as shown by the
data presented in Section IV.

IV. RESULTS

In this section, we present the results we have obtained
by ap-lying the three power-down strategies (i.e., sec-
ond pre-computation architecture, gated clocks, and in-
tegrated architecture) discussed in this paper on a set
of standard benchmarks. Such results have two conse-
quences. First, they experimentally confirm the indica-
tions given by the analysis of Section IIE. Pre-computation
and gated clocks are both efficient for pipelined circuits,
but the former fails for most of the sequential exam-
ples. Second, they demonstrate the usefulness of the in-
tegrated architecture when the target of the optimization
are pipelined designs.

Tables I and II report the experimental data. Pipelined
circuits have been constructed by adding input and out-
put latches to some combinational circuits taken from the
Mcnc’91 [8] suite. In particular, we have chosen the exam-
ples for which the best power savings have been obtained
in [4]. Synchronous designs, on the other hand, are taken
from the Iscas’89 set [9], and are the same as the ones
we have used for the experiments in {7).

The selected circuits have been initially optimized us-
ing the standard SIS script . rugged [10], and mapped for
delay with the SIS command map -n 1 -AFG. The opti-
mized netlists have been used as the starting point for

the experiments. The technology library used for map-
ping includes buffers and inverters with three different
strengths, and NAND/NOR gates with up to four inputs.
The power estimates, measured in uW, have been calcu-
lated using the IRSIM-CAP simulator [11].

The use of gated clocks on the pipelined circuits has
shown to be more effective than pre-computation in six of
the nine examples we have considered; in the remaining
cases, pre-computation has worked better, with a peak
performance on benchmark apex2, where gated clocks
have not given any advantage. From an absolute point of
view, the integrated architecture has produced the best
savings in four cases.

Concerning sequential designs, the application of pre-
computation has always given worse results than those
obtained with®he gated clocks alone; in some cases, it
has even resulted in a higher power consumption than
the original circuit. The reason for this poor behavior lies
in that the pre-computation function never attempts to
stop the present-state inputs, which represent the major-
ity of the inputs to the combinational logic for sequential
circuits with a realistic number of memory elements. As
a consequence, also the results obtained with the inte-
grated solution are not satisfactory, except for the case
of benchmark minmax4 (and this was somehow expected,
since minmax4 contains quite many comparators).

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi

V. CONCLUSIONS
It is well known that pre-computation and gated clocks

enable substantial power savings through logic shut-down.
However, the way they achieve this goal is quite different.
In this paper, we have investigated the conditions un-
der which the use of each method is more advantageous
from the power stand-point. We have also proposed an
integrated architecture which best exploits the character-
istics of the two techniques. In fact, it may well be the
case that a combination of the two approaches results in a
better global optimization. We have preseﬁted experimen-
tal results showing that the integrated architecture is, for
some pipelined circuits, superior to pre-computation and
gated clocks. For sequential examples, on the other hand,
pre-computation has proved to be ineffective, because of
its intrinsic inability of blocking the present-state input
lines. Obviously, this has had a negative impact on the
integrated solution; in fact, the best power savings have
been achieved by resorting to the gated clock alternative.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low
Power,” IWLPD-94: IEEE Intl. Workshop on Low-Power De-
sign, pp. 57-60, Napa Valley, CA, April 1994.

[2] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low
Power,” ICCAD-94: ACM/IEEE Intl. Conf. on Cormputer-Aided
Design, pp. 74-81, San Jose, CA, November 1994.

[3] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou,
“Precomputation-Based Sequential Logic Optimization for Low
Power,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. VLSI-2, No. 4, pp. 426-436, December 1994.

[4]) J. Monteiro, J. Rinderknecht, S. Devadas, A. Ghosh, “Optimiza-
tion of Combinational and Sequential Circuits for Low Power Using
Precomputation,” 1995 Chapel Hill Conf. on Advanced Research
in VLSI, pp. 430-444, Chapel Hill, NC, March 1995.

{5] L. Benini, P. Siegel, G. De Micheli, “Automatic Synthesis of Gated
Clocks for Power Reduction in Sequential Circuits,” IEEE Design
and Test of Computers, Vol. 11, No. 4, pp. 32-40, Winter 1994.

[6] L. Benini, G. De Micheli, “Automatic synthesis of low-power gated-
clock finite-state machines,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. CAD-15,
No. 6, pp. 630-643, June 1996.

[7] L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi, “Sym-
bolic Synthesis of Clock-Gating Logic for Power Optimization
of Control-Oriented Synchronous Networks,” EDTC-97: IEEE
European Design and Test Conf., Paris, France, pp. 124-130,
March 1997.

[8) S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide Version 3.0, Technical report, Microelectronics Center of
North Carolina, Research Triangle Park, NC, January 1991.

{9] F. Brglez, D. Bryan, K. Koéminski, “Combinational Profiles of Se-
quential Benchmark Circuits,” ISCAS-89: Intl. Symp. on Circuits
and Systems, pp. 1929-1934, Portland, OR, May 1989.

{10] E. M. Sentovich, K. J. Singh, C. W. Moon, H. Savoj, R. K. Bray-
ton, A. Sangiovanni-Vincentelli, “Sequential Circuits Design Us-
ing Synthesis and Optimization,” ICCD-92: IEEE Inil. Conf. on
Computer Design, pp. 328-333, Cambridge, MA, October 1992.

(11} A. Salz, M. Horowitz, “IRSIM: An Incremental MOS Switch-Level

Simulator,” DAC-26: ACM/IEEE Design Automation Conf.,
PP. 173-178, Las Vegas, NV, June 1989.

