On-Going Research on Address Bus Encoding for Low Power: A Status Report
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Abstract

This paper describes our research on bus encoding for low power
dissipation. We present two encoding schemes, namely, the T0
code and the Beach code, that sensibly reduce the switching ac-
tivity on address busses. The TO code exploits the high sequen-
tiality of the streams traveling on the address busses of general
purpose, microprocessor-based systems. The Beach code, on the
other hand, targets the reduction of the number of transitions on
the address bus lines of special purpose systems, where streams
usually have reduced sequentiality, and esploits the concept of
block correlation that may ezist between patterns being trans-
mitted over the communication channel.

1 Introduction and Motivation

It is well known that the intrinsic capacitances of system-level
busses are usually several orders of magnitude higher than for
the internal nodes of a circuit [1]. Consequently, a considerable
amount of power is required at the I/O pins of a processor when
binary patterns have to be transmitted over the communication
channels. Significant power savings can thus be achieved by
reducing the number of transitions (i.e., the switching activity)
at the processor’s I/O interface.

One way of accomplishing this task consists of encoding the
information transmitted over the busses. Depending on the
type of information to be exchanged, some low-power encod-
ing schemes have been introduced in the recent past.

The Bus-Invert code of (2] is a simple, yet effective, low-power
encoding scheme. It works as follows: The Hamming distance
between two successive patterns is computed; if it is larger than
N/2, where N is the bus width, the current address is trans-
mitted with inverted polarity; otherwise, it is transmitted as is.
Obviously, a redundant bus line is required to signal to the re-
ceiving end of the bus which polarity is used for the transmission
of the incoming pattern. The method guarantees a maximum
of N/2 transitions per clock cycle, and it has shown to perform
well when patterns to be transmitted are randomly distributed
in time and no information about their mutual correlation is
available; therefore, it is appropriate for data bus encoding.
Concerning address busses, the well-known fact that the ad-
dresses generated by processors in ordinary computing systems
are often consecutive has suggested the use of the Gray code
{3, 4] as encoding strategy. Unfortunately, it has been experi-
mentally observed that, while addresses generated by real micro-
processors running general purpose programs are usually char-
acterized by high sequentiality, streams for special purpose soft-
ware applications (e.g., image processing, matrix calculus) have
a much smaller percentage of in-sequence addresses.
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The above observations have motivated a deeper investigation
of possible bus encoding techniques that may improve the eff-
ciency of the existing approaches. In this paper, we report on
the status of our current research in this area.

We first consider the case of microprocessor-based, general pur-
pose systems, and we discuss possible schemes that achieve bet-
ter performance than the simple Gray code. The encoding mech-
anisms we propose rely on the idea of avoiding the transfer of
consecutive addresses on the bus by using a redundant line,
INC, to transfer to the receiving sub-system the information on
the sequentiality of the addresses. When two addresses in the
stream are consecutive, the INC line is set to 1, the bus lines are
frozen (to avoid unnecessary switchings), and the new addressis
computed directly by the receiver. On the other hand, when two
addresses are not consecutive, the INC line is driven to 0 and
the bus lines operate normally. The scheme above, called T0
code {5], guarantees an asymptotic performance of zero transi-
tions under the hypothesis of infinite streams of consecutive ad-
dresses. Several variants of the TO code are available (6], some of
which incorporate the Bus-Invert principle to exploit distinctive
spectral characteristics of the streams being transmitted.

We then move to special purpose systems, where the use of codes
such as the Gray and the TO are ineffective, due to the reduced
sequentiality of typical address streams. In spite of this, it may
still be the case that other types of temporal correlations exist
between the patterns that are being transmitted. In particu-
lar, we have noted that time-adjacent addresses usually show
remarkably high block correlations. Therefore, we propose to
exploit such correlations to come up with a scheme, called in the
following the Beach code [7]}, which minimizes the average ad-
dress bus switching activity. Starting from typical traces of the
N-bit address bus of the system being designed, we collect sta-
tistical information identifying possible block correlations. We
then group bus lines in clusters according to their correlations,
that is, lines belonging to the same cluster are highly correlated.
For each cluster of size k we automatically generate an encoding
function, namely, a one-to-one Boolean function E : B* = B*.
Each configuration of bits in the original cluster is translated
into a new bit configuration. The algorithm which finds func-
tion E targets the minimization of the switching activity; thus,
well established technology, initially developed for low-power
FSM state assignment and re-encoding, can be successfully ex-
ploited. The output of the transformation is an encoded stream
for which the average number of bus line transitions between
two successive k-bit patterns is minimized. At the receiving end
of the bus, the original encoding is obviously required. Then,
the inverse function, E~!, must also be calculated.



Since the motivation for using a bus encoding scheme is a reduc-
tion of the global power consumed by the system as a whole, it
is mandatory to guarantee that power savings achieved through
a decrease in the bus switching activity are not offset by the
extra power dissipated by the encoding and decoding circuitry
which is required at the bus terminals. In addition, bus latency
is usually a critical design constraint. Therefore, simultane-
ous power and timing optimization must be targeted during the
synthesis of the logic for address encoding/decoding. We have
proposed fast and low-power implementations for the encoders
and decoders related to the encoding techniques discussed in
this paper. However, for space reasons, we do not comment on
such implementations here.

2 General Purpose Systems

The Gray code achieves its asymptotic best performance of a
single transition per emitted address when infinite streams of
consecutive addresses are considered. However, the code is op-
timum only in the class of irredundant codes, that is, codes
that employ exactly N-bit patterns to encode a maximum of
2V data words. If we allow the addition of some redundancy
to the code, better performance can be achieved by adopting
the TO solution, which requires a redundant line, INC, to signal
with value one that a consecutive stream of addresses is output
on the bus. If INC is high, all other bus lines are frozen to avoid
unnecessary switchings. The new address is computed directly
by the receiver. On the other hand, when two addresses are not
consecutive, the INC line is low and the remaining bus lines are
used as standard binary codes for the new addresses.

For infinite streams of consecutive addresses, the TO code en-
joys the zero transition property. Therefore, it outperforms the
Gray code since, under the same assumption, Gray addressing
requires one line switching per each pair of patterns. In addi-
tion, experimental results have shown the superiority of the TO
code even in the more realistic case of streams of consecutive
addresses of limited length.

The TO encoding scheme can be formally described by the fol-
lowing equation:
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where B(*) is the value on the encoded bus lines at time ¢,
INC(?) is the additional bus line, b(*) is the address value at
time t, and S is a constant power of 2, called stride.

The corresponding decoding scheme can be formally defined as
follows:
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For architectures like the MIPS (8], two streams, « and 8, with
quite different spectral characteristics, are time-multiplexed on
the same address bus. Stream a, corresponding to instruction
addresses, has high probability of having two consecutive ad-
dresses on the bus in two successive clock cycles; on the con-
trary, stream S, corresponding to data addresses, has almost
no in-sequence patterns. The control signal, SEL, available in
the standard bus interface to de-mulitiplex the bus at the re-
ceiver side, is asserted when stream o is transmitted; otherwise,
SEL is de-asserted. An extension of the TO approach, called
Dual_T0_BI code, can be effective in these cases. This scheme
provides the application of the TO code and the updating of the
encoding/decoding registers whenever SEL is asserted; other-
wise, it uses the Bus-Invert code.

3 Special Purpose Systems

When the sequentiality of the address streams is low, solutions
as the Gray and the TO are not effective. However, it may well be
the case that other types of correlations exist between patterns
being sent on the bus. To identify such correlations, we propose
the Beach code, which differs from available low-power encoding
schemes in that it is strongly application oriented. In fact, the
encoding and decoding functions are properly determined for a
given program based on the analysis of the address streams pro-
duced by one or more executions of such program. Therefore, it
is particularly suitable for special purpose machines, where the
same application code is executed repeatedly by an off-the-shelf
core processor or microcontroller. Since the use of components
of this type as basic blocks for the development of digital systems
is becoming a well-established design strategy in the microelec-
tronics industry, we believe that the Beach code could provide
a valuable option when power minimization has to be achieved.
A high-level block diagram of the basic operations required to
determine the Beach code is depicted in Figure 1.

Figure 1: The Beach Encoding.

The entry point is the address stream produced by one or more
runs of the code executed by the embedded processor. Such
stream is fed to the tool, called BCC (Bit Correlation Computer),
whose task is to perform the statistical analysis of the patterns
appearing in the stream. In this phase, the target is to ex-
tract the information on the correlations that may exist between
groups of bits. For obvious reasons, it is impossible to compute
this information exactly, since the length of the stream can be
in the order of millions; therefore, we measure the block corre-
lations using a pairwise approximation.
Three different types of correlations are of interest to us:
o Spatial correlation, expressing the likelihood of correctly
predicting the value of one bit of a pattern knowing the
value of another bit in the same pattern;

e Spatio-temporal correlation, expressing the likelihood of
correctly predicting the value of one bit of a pattern by
observing its value in the previous pattern and by know-
ing the value of another bit in the same pattern;

o Switching correlation, expressing the likelihood of cor-
rectly predicting the occurrence of a transition of one bit
of the bus by observing the occurrence of a transition on
another bit when a pair of patterns is transmitted.

For each of these measures, a matrix C is constructed, whose
entries ¢;; represent the pairwise correlation between bit i and
bit j.

The pairwise correlation information is then processed by pro-
gram PART, whose objective is to cluster together bits that have
a high pairwise correlation, since this is an indication that the
probability distribution of bit patterns in the cluster is highly
non-uniform. Clearly, we cannot allow excessively large clus-
ters, because the hardware cost of the encoding/decoding logic
rapidly increases with the cluster size, and so does the complex-
ity of the data collection and the encoding procedure. Clusters
are currently computed either as strongly connected components
of the graph G representing matrix C, or with a greedy algo-
rithm that allows to specify a bound on the size of the clusters.



Each cluster, represented by a graph G, is finally processed
by the ENC program, whose purpose is to encode the bus lines
belonging to the clusters so that the number of bus transitions
occurring when the embedded code is executed again gets min-
imized. The encoding algorithm we have adopted is the one
proposed in [9] for re-encoding the states of a finite state ma-
chine. The procedure is fully based on implicit representations
of Boolean and pseudo-Boolean (i.e., real-valued) functions by
means of BDDs [10] and ADDs [11], and it solves the re-encoding
problem, whose exact solution is NP-hard, in a heuristic way;
this is acceptable, since our purpose is to handle graphs whose
sizes are larger than the ones that can be managed by traditional
(i.e., based on explicit representation of the graph) methods,
rather than obtaining an exact solution. Two heuristics are
available, both pursuing the objective of pairing together the
vertices of G; having highest edge weights, and assigning them
pairs of codes at the closest possible Hamming distance. The
first heuristics is based on maximum weighted matching [12],
the second one relies on a recursive variant of the Kernighan-
Lin mincut partitioning algorithm [13].

The output of the EBC program is a set of encoding and decoding
functions, one for each bus line, whose implementation in logic
originates the encoder and decoder circuitry.

4 Experimental Results

We have applied the codes introduced in Sections 2 and 3 to the
address streams generated by the MIPS microprocessor, and we
have simulated the encoded traces to determine the total num-
ber of bus transitions. Concerning the Dual_TO.BI code, the se-
lected benchmarks are common utilities, such as data compres-
sors and word processors, as well as logic synthesis tools. For the
Beach code, we have chosen a set of software functions which
are often implemented in hardware as parts of dedicated sys-
tems for image processing, automotive control, DSP, robotics,
plant control, and so on.

Tables 1 and 2 show the experimental data. For each exam-
ple, we give the length of the address streams considered for the
experiment, the percentage of in-sequence addresses, the num-
ber of bus transitions when no encoding is used, the number of
bus transitions after encoding, and the savings achieved with
respect to the unencoded case. For the general purpose pro-
grams, whose address streams are characterized by quite high
sequentialities, results obtained by using the Gray code are also
reported.

The results are highly satisfactory; in fact, an average savings
in switching activity of 23.3% has been obtained for general
purpose programs using the Dual_ T0.BI code, and an average
switching activity reduction of 41.9% has been achieved for spe-
cial purpose applications using the Beach code.

5 Directions for Future Research

Although the savings in switching activity that can be obtained
using the proposed encoding schemes are satisfactory, several
issues are still open, in particular for what concerns the Beach
code.

The procedure for finding clusters of bits suitable for encoding
is highly heuristic and driven by approximate information (only
pairwise correlations are considered). Several experiments re-
vealed that clustering is paramount to achieve good results. If
clusters are not chosen properly, the quality of the results is
poor independently from the effort spent in computing the best
codes. We conjecture that more powerful clustering strategies
may greatly increase the power savings.

The synthesis procedure for encoder and decoder can be im-
proved; one direction could be resorting to ZDDs [14] for directly
incorporating some synthesis-oriented criteria in the translation
from the functional representation to the circuit description, as
done in [15].

The applicability of the code to symbolic encoding problems,
such as the selection of power-optimal op-codes for instructions
or microcode power minimization deserves some attention. In
fact, in these applications, a power-conscious choice of which
binary codes are to be assigned to symbolic instructions may
greatly influence the overall power dissipation of the instruction
decoding logic and the registers in the instruction processing
pipelines. '

The TO code is based on a fixed scheme and is less relevant from
the synthesis point of view. However, it points to an interesting
direction of investigation. In fact, it proves that the introduction
of a limited amount of redundancy can be helpful in reducing
the average switching. The usefulness of redundant codes is well
known to researchers working on state assignment for finite state
machines [16]. We conjecture that redundant codes may achieve
very low switching activity. However, only limited redundancy
should be allowed in bus encoding, because pin count on modern
VLSI chips is usually highly constrained.

6 Conclusions

Bus encoding for low power has high practical relevance in to-
day's VLSI design because off-chip bus lines are loaded with
capacitances that can be orders of magnitude larger than the
internal ones. For this reason, it may be worthy to encode (and
decode) the data transmitted on the bus to reduce its average
switching activity. The area, speed, and power cost of the en-
coder and decoder are compensated by a sizable reduction of
the overall chip power consumption.

We have described two different encoding schemes that reduce
the switching activity on the lines of address busses. The first
one, called TO code, is based on the introduction of limited re-
dundancy and exploits the high sequentiality of address streams.
The second one, called Beach code, exploits the presence of block
correlations between bit lines. While the TO code adopts a fixed
encoding/decoding scheme, the Beach encoding synthesizes ded-
icated encoding/decoding circuitry based on the statistics of the
streams to which it will be applied. Hence, TO is more suitable
to general-purpose applications, while Beach targets specialized
applications like the ones running on embedded processors and
microcontrollers.

There are strong analogies between bus encoding and the clas-
sical state encoding problem that has been studied for a long
time by the synthesis community (17, 18, 19]. We believe that
several concepts and intuitions developed for state encoding can
be fruitfully exploited in the new domain of application.
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