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Automatic Synthesis of Low-Power
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Abstract— The automatic synthesis of low power finite-state
machines (FSM’s) with gated clocks relies on efficient algo-
rithms for synthesis and optimization of dedicated clock-stopping
circuitry. We describe a new transformation for incompletely
specified Mealy-type machines that makes them suitable for
gated-clock implementation with a limited increase in complexity.
The transformation is probabilistic-driven, and identifies highly-
probable idle conditions that will be exploited for the optimal
synthesis of the logic block that controls the local clock of the
FSM. We formulate and solve a new logic optimization problem,
namely, the synthesis of a subfunction of a Boolean function that
is minimal in size under a constraint on its probability to be
true. We describe the relevance of this problem for the optimal
synthesis of gated clocks. A prototype tool has been implemented
and its performance, although influenced by the initial structure
of the FSM, shows that sizable power reductions can be obtained
using our technique.

1. INTRODUCTION

HE MAJORITY of the currently published papers in the

area of automatic synthesis for low power focus on the
reduction of the level of activity in some portion of the circuit
[51-18], since in CMOS technology the largest fraction of the
power is dissipated during switching events.

In synchronous circuits, it is possible to selectively stop the
clock in portions of the circuit where active computation is not
being performed. Local clocks that are conditionally enabled
are called gated clocks, because a signal from the environment
is used to qualify (gate) the global clock signal. Gated clocks
are commonly used by designers of large power-constrained
systems [11], [16] as the core of dynamic power management
schemes. Notice, however, that it is usually the responsibility
of the designer to find the conditions that disable the clock.

Three different approaches to the automatic synthesis of
logic circuits that can be conditionally disabled by environ-
mental signals have been reported so far. In [1], Alidina et al.,
have described a precomputation-based approach that focuses
mainly on data-path circuits, while the authors have described
a method to generate gated clocks for systems described as
Moore-type finite-state machines (FSM’s) [3]. The methods
in [1] have been extended to deal with general combinational
circuits: in [2], Tiwari et al, showed that it is possible to
selectively disable parts of a combinational logic network
without being restricted to stop the computation only at latch
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boundaries. This extended precomputation strategy has been
called guarded evaluation.

Our paper is based on the observation that during the
operation of a FSM, there are conditions such that the next
state and the output do not change. Therefore, clocking the
FSM only wastes power in the combinational logic and in the
registers. If we are able to detect when the machine is idle, we
can stop the clock until a useful transition must be performed
and the clocking must resume. The presence of a gated clock
has a two-fold advantage. First, when the clock is stopped, no
power is consumed in the FSM combinational logic, because
its inputs remain constant. Second, no’ power is consumed in
the sequential elements (flip-flops) and the gated clock line
(differently from the scheme proposed in [1] where enabling
signals are used).

Obviously, detecting idle conditions requires some computa-
tion to be performed by additional circuitry. This computation
dissipates power and requires time. Sometimes, it will be too
expensive to detect all idle conditions. Therefore, it is very
important to select a subset of all idle conditions that are taken
with high probability during the operation of the FSM. We
have shown in [3] that idle conditions correspond to self-loops
of Moore FSM’s and, therefore, it is relatively easy to detect
them. Idle conditions in Mealy FSM’s can also be detected,
but with more effort.

In [3], two problems were left open. First, our method was
applicable only to Moore-type FSM’s. Second, the synthesis
of the clock-stopping circuitry was based on a simple and fast
heuristic. In this paper, we remove the limitation to Moore-
type FSM’s, extending the applicability of our approach to
the more general class of incompletely specified Mealy-type
FSM’s.

We then address the synthesis of the clock-stopping logic.
More in detail, we formulate and solve a new logic synthesis
problem, namely the choice of a minimum-complexity sub-
function F, of a given Boolean function f,, such that its
probability of being true is larger than a predefined fraction of
the total probability of f,. This is the main theoretical result of
our paper, and it is applicable to a variety of dynamic power
management schemes, such as precomputation or guarded
evaluation. From a practical point of view, our algorithm
chooses a subset of all idle conditions such that the clock-
stopping circuitry dissipates minimum power, but stops the
clock with high efficiency.

A prototype tool has been implemented and applied to a
number of benchmark circuits. In the current implementation,
our tool assumes an explicit state-based description of a FSM
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(state table or equivalent formalism) as a starting point. This
may be a limiting factor because state tables are not suitable for
the description of very large sequential systems. Nevertheless,
controllers for large data path circuits are often specified as
state tables (or equivalent representations) and efficient state
table extraction procedures exist within synthesis tools [20].
Detecting idle conditions on the controller may lead to detect
(and exploit) idle conditions for the controlled data path,
obtaining much larger power savings.

In order to verify our results, we embedded our tool in
a complete synthesis path from state-table specification to
transistor-level implementation and we employed accurate
switch-level simulation [27], because gate-level power esti-
mation has limited accuracy. Since the glock-gating logic
may add its delay to the critical path, particular care must
be taken in detecting and eliminating timing violations that
may arise when the cycle time closely matches the critical
path of the original FSM. For some circuits more than 100%
improvement [computed as 100( P, i,/ Pjarea — 1)] in average
power dissipation has been obtained, but quality of the results
is strongly dependent on the type of FSM we start with. In
particular, our method is well suited for FSM’s that behave as
reactive systems: they wait for some input event to occur and
they produce a response, but for a large fraction of the total
time they are idle. Practical examples of such machines can
be found for instance in microprocessors [10] and real-time
systems.

II. BACKGROUND

In this paper, we will assume a single clock scheme with
edge-triggered flip-flops, shown in Fig. 1(a). This is not a
limiting assumption. We have indeed applied our methods to
different clocking schemes in [3] (where we used transparent
latches and multiphase clocks). The FSM model of Fig. 1(a)
is different from the FSM structure commonly used in CAD
literature [22] where the inputs are connected directly to the
combinational logic. Although the FSM model without input
flip-flops is useful for discussing the properties of a FSM in
isolation, it is seldom used in the design practice. In a large
system, control logic and data-path are always decomposed in
interacting subunits, for obvious reasons of complexity man-
agement. The interface between subunits (interacting FSM’s
in our case) is usually composed by sequential elements
[12] (in our case, D flip-flops). If such boundary does not
exist, there is a combinational path between adjacent subunits.
This is seldom allowed in industrial design methodologies
(it makes timing analysis harder and increases the risk of
timing violations). Even if we consider a design that is simple
enough to be described by a single FSM, flip-flops are usually
inserted on the inputs to obtain better signal quality and
synchronization.

From a more theoretical point of view, the FSM with latched
inputs differs from its counterpart because the outputs in our
model lag the outputs of the model without flip-flops by one
clock cycle. The input-output behavior of the two models is
therefore equivalent modulo a translation in time of the output
stream (assuming that the flip-flop on the inputs are reset at the
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Fig. 1. (a) Single clock, flip-flop based FSM. (b) Gated-clock version.

same values assumed in the first clock cycle by the primary
inputs of the machine without input flip-flops).

A gated clock FSM is obtained modifying the structure in
Fig. 1(a). We define a new signal called activation function
(f.) whose purpose is to selectively stop the local clock of
the FSM, when the machine does not perform state or output
transitions. When f, = 1, the clock will be stopped. The
modified structure is shown in Fig. 1(b). The block labeled
“L” represents a latch, transparent when the global clock signal
CLK is low. Notice that the presence of the latch is needed
for a correct behavior, because f, may have glitches that must
not propagate to the AND gate when the global clock is high.
Moreover, notice that the delay of the logic for the computation
of f, is on the critical path of the circuit, and its effect must
be taken into account during timing verification.

The modified circuit operates as follows. We assume that
the activation function f, becomes valid before the raising
edge of the global clock. At this time the clock signal is low
and the latch L is transparent. If the f, signal becomes high,
the upcoming edge of the global clock will not filter through
the AND gate and, therefore, the FSM will not be clocked and
GCLK will remain low. Note that when the global clock is
high, the latch is not transparent and the negated input of the
AND gate cannot change at least up to the next falling edge
of the global clock.

The activation function is a combinational logic block with
inputs the primary input IN and the state lines STATE of the
FSM. No external information is used, the only input data
for our algorithm is the behavioral description of the FSM
and the probability distribution of the input signals. In the
following subsections, we will describe some basic concepts
from automata and probability theory that will be useful for
the understanding of our algorithms. Refer to [13], [22] for a
more detailed treatment.

A. Models of Finite State Systems

A Mealy-type FSM can be described by a six-tuple
(X, Y, S, s0, 6, A) where X is the set of inputs, Y is the
set of outputs, S is the set of states, and s is the initial (reset)
state. The next state function ¢ is given by s;4; = 6(X. 5¢).
The output function A is defined as: y; = A(X. s;).

The definition of Moore-type FSM is similar, with the only
exception of the output function. For a Moore FSM the output
does not depend on the input. Therefore we define Ay, as
y: = Aar(sy). Conceptually, Mealy and Moore machines
are equivalent, in the sense that it is always possible to
specify a Moore machine whose input-output behavior is equal
to a given Mealy machine behavior, and vice versa [17].
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Fig. 2. (a) STG of a Mealy machine. (b) STG of the equivalent Moore
machine.

However, there is an important difference. The Mealy model
is usually more compact than the Moore model. Indeed the
transformation from Mealy to Moore involves a state splitting
procedure that may significantly increase the number of states
and state transitions [17]. When don’t care conditions (DC)
are present, the FSM is called incompletely specified, A and
b are partial functions.

Example 1: In Fig. 2(a), a Mealy machine is represented
in form of state transition graph (STG). It is transformed into
the equivalent Moore machine (using the procedure outlined
in [17]) and the new STG is shown in Fig. 2(b). The STG
of the Moore machine has the output associated with the
states, while in the Mealy model, the outputs are associated
with the edges. The higher complexity in terms of states and
edges of the Moore representation is evident. Notice that both
FSM’s are incompletely specified, because of output don't
cares, represented with “—"" in the output fields.

B. Probabilistic Models of FSM’s

We model the probabilistic behavior of a general FSM
using a Markov chain [13] (as done in [8], [14], [24], [25]),
whose structure is a weighted directed graph isomorphic to
the STG of the machine. For a transition from state s, to state
;. the weight p; ; on the corresponding edge represents the
conditional probability of the transition (i.e., the probability of
a transition to state s; given that the machine was in state s;).
Symbolically this can be expressed as

pi.j = Prob(Neat = s;|Present = s;). (N

The conditional probabilities p;, ; are collected in a matrix P
and depend on the probability distribution of the inputs, that is
initially known.! However, using the conditional probability as
an estimate of the total transition probability can lead to large
errors, because the probability of a transition strongly depends
on the probability for the machine to be in the state tail of
the transition.

In order to find the probability of a transition without any
condition, we need to know the state probabilities q; that
represent the probability for the machine to be in a given state
s;. Namely, the total transition probabilities we are looking
for are

Tij = Di G- )

"The input probabilities of a FSM embedded in a digital system can be
found by simulation.

Many methods have been proposed to calculate the state
probabilities [13], [14]. In this paper, we have used the Power
Method. Using this approach, the state probability vector

a=lq, q, -, q|5‘]T can be computed using the iteration
T
441 = a4, P 3)
with the normalization condition E[:l q; = 1 until conver-

gence is reached. The convergence properties of this method
are discussed in [15]. The power method has been chosen
because of its simplicity and its applicability (if sparse matrix
manipulation or symbolic formulation are used [14]) to FSM’s
with a very large number of states. In the following sections,
we assume that the state probability vector and the total
transition probabilities have already been computed using the
power method and (2).

The knowledge of input and state probability distribution
allows us to compute the probability of a Boolean function f
whose support are the state and input variables of the machine
in an exact fashion. Notice that this calculation is of vital
importance in our algorithm, that performs a search based on
the probability of the activation function.

III. PROBLEM FORMULATION

Given the specification of the FSM and its probabilistic
model, we first want to identify the idle conditions when the
clock may be stopped. This is a simple task for Moore-type
FSM’s. For each state s;, we identify all input conditions
such that 6(x, s;) = s;,. We define for each state s;. i =
1,2, <+, |S|. a self-loop function Self., : X — {0. 1} such
that Self,, =1 Va € X where 6(z, s;) = s;.

We then encode the machine. After the encoding step, every
state s; has a unique code ¢; and e; = [e; 1. €2, -+, € vl
where V' is the set of the state variables used in the encoding.

The activation function is defined as f, : X x V. — {0. 1}

fu = Z

i=1.2,, S|

Selfs. - e. 4)

Example 2: For the Moore machine in Example 1, the self-
loop function for state M2a is Selfar2, = inging Similarly,
all other self-loop state functions can be obtained. We encode
the states using three state variables, v;, vz, v3. The encodings
are: MOa — vijvhvl, Mla — vivgvy, M2b — vjugul.
MOb — wvyvgvy, M1b — vivevs, M2a — vjvhvs. The
activation function is therefore: f, = insvjvhvs+ingvivevh+
inyinyvivevh +inginbvvevh+inginbvivaus +iny inov vhus.

If the machine is Mealy-type, the problem is substantially
more complex. The knowledge of the state and the input is
not sufficient to individuate the conditions when the clock
can be stopped. If only the next state lines and the inputs
are available for the computation of the activation function,
we do not have a way to determine what was the output at
the previous clock cycle. This is a direct consequence of the
Mealy model: since the outputs are on the edges of the STG,
we may have the same next state for many different outputs.
The important consequence is that, even if we know that the
state is not going to change, we cannot guarantee that the



BENINI AND DE MICHELIL: AUTOMATIC SYNTHESIS OF LOW-POWER GATED-CLOCK FSM’S 633

output will remain constant as well, and therefore we cannot
safely stop the clock.

Example 3: Consider the Mealy FSM in Example 1, and
refer to Fig. 1 for the implementation. If we use only the lines
IN and STATE as inputs for the calculation of the activation
function, we may for example observe state .52 on the next
state lines, and input 10. Observing the STG, we know that
for this state and input configuration the state will not change.
Unfortunately, we do not have any way to know what is the
output value in the current clock cycle (it could be either 10
or —1). The Moore model does not have this problem, since
we know the output when we know what the state is.

There are two ways to solve this problem. The simpler
way is to use the outputs of the FSM as additional inputs
to the activation function. The other approach is to transform
the STG in such a way that the FSM will be functionally
compatible with the original one, but only the input and state
lines will be sufficient to compute the activation function.

We decided to investigate the second method for two main
reasons. First, since for many FSM’s, the number of output
signals is large, it is likely that adding all output signals to
the inputs of the activation function will produce poor results
because of the high complexity of the activation function itself.
Second, in the present implementation, our tool uses state
transition tables as input, therefore we still have the freedom
to modify the number of states and the STG structure (this is
not the case if we start from a synchronous network that is an
implementation of the STG).

The simplest transformation that enables us to use only
input and state signals as inputs of the activation function
fa, 18 a Mealy to Moore transformation. The algorithm that
performs this conversion is well known [17] and its implemen-
tation is simple, but it may sensibly increase the number of
states and edges (correlated with the complexity of the FSM
implementation).

A. Locally-Moore Machines

We now define and study a new kind of FSM transformation
that enables us to use a Moore-like activation function without
a large penalty in increased complexity of the FSM. We define
a Moore-state as a state such that all incoming transitions have
the same output. Formally, the subset of Moore-states of a
Mealy machine is {s € S|Vz € X,Vr € S, 6(z,7) =
s = Az, r) = const}. States that are not Moore-states will
be called Mealy-states.

Proposition 1: A Mealy-state s with £ different values of
the output fields on the edges that have s as a destination can
be transformed in k& Moore-states. No other state splitting is
required.

We could transform the FSM by simply applying the Mealy
to Moore transformations locally to states that have self-
loops. The local Moore transformation has the advantage that
it allows us to concentrate only on states with self-loops,
avoiding the useless state splitting on the states without self-
loops. The potential disadvantage is an increase in the number
of states related to the number of different outputs on incoming
edges of Mealy states (Proposition 1). We devised a heuristic

strategy to cope with this problem. We split Mealy states with
self-loops into pairs of states, where one is Moore-type with
a self-loop that has maximum probability.

Thus, for each state we define the maximum probability self-
loop function M Pself, : X — {0, 1}. Its ON-set represents
the set of input conditions for a state that: i) are on self-
loops; ii) produce compatible outputs (two outputs fields are
compatible if they differ only in entries where at least one
of the two is don’t care); and iii) are taken with maximum
probability.

The procedure that outputs M Pselfs is shown in Fig. 3.
Its inputs are the state under consideration s, the self-loop
function Sel f, (that includes all self-loops leaving state s), and
the STG of the FSM. In the pseudocode, SLO is a partition
of the self-loops. An element of SLO is composed of all
self-loops from state s that have the same output (ie., two
self-loops with outputs differing only by don’t cares will be
in two different elements of SLO). The elements of SLO are
mutually disjoint sets.

We then generate (), a cover of the self-loops leaving state
s. Initially @ is empty. In the first outermost iteration of the
generation procedure, the first element of SLO becomes the
first element of ). Then, for each element of SLO, we check
if it is compatible with any of the elements of Q. If this is the
case, we incrementally modify the elements of . Otherwise,
we create a new element.

The elements of () are output-compatible, possibly over-
lapping sets of self-loops. Whenever we include an element
of SLO in one of the elements in ), we need to specify
the don’t care entries in the output field that are not always
don’t cares for all components of the set (this is done by
procedure merge_out_field in the pseudocode). This step
is needed to guarantee pairwise compatibility. Notice that
an element of SLO can be included in more than one
element of (). Finally, the procedure choose_ max _prob_f
selects the output-compatible set of self-loops with maximum
probability. The input conditions corresponding to this set
form the ON-set of M Pselfs. In general, function M Psel f,
does not include all self-loop leaving state s. Consequently,
MPself, C Selfs, with equality holding when there is a
single output-compatible class. Notice that the probability of
the output-compatible classes can be compared using only the
conditional input probability, because they are collection of
self-loops leaving the same state.

Example 4: In the Mealy machine of Example 1, if we
consider state S2, we have two self-loops: inin}, with output
10 and iniins with output —1. The two output fields are
not compatible, therefore, we have two compatible classes
(the same two functions). We will choose the class that
is more probable. In this particular example, we assumed
equiprobable and independent inputs and both functions have
the same probability, therefore, one of the two is randomly
chosen. Assume now that Prob(in; = 1) = 0.7 and prob
Prob (in, = 1) = 0.5. The probability of the first class is
p1 = 0.7 x 0.5 = 0.35, while the probability of the second
class is po = 0.3 % 0.5 = 0.15. In this case, the first class
will be chosen. Observe that the probability of state S2 does
not come into play, because state S2 is the tail of both self-
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find Mpself (s, Self., STG) {
SLO = self loopconstout(s, Selfs, STG) ;
Q=10
foreach ( slo€ SLO ) {
compatible = 0;
foreach ( ¢ € Q) {
if ( is_compatible( slo, ¢ )} ) {
g = qUslo;
merge.out _field( ¢ );
compatible = 1;

break;
}
}
if ( !'compatible ) Q = QU {slo};
}
return( choosemax_probf( Q ) );

}

Fig. 3.

loops, and the two total transition probabilities differ from the
conditional probabilities only by the same scaling factor (i.e.,
the probability of 52).

Once the M Pself, functions have been found for all
states with self-loops, the second step of our transformation
algorithms is performed. A Mealy-state s with at least one
self-loop is split in two states s, and s;. State s, has the same
incoming and outgoing edges as the original one, with just one
important difference: the edges corresponding to the self-loops
represented by M Psel f; become transitions from s, to s3.

The second state s, is reached only from s, and has a self-
loop corresponding to M Psel f,. All the outgoing edges that
leave s, are replicated for s;, keeping the same destination.
State s;, is now Moore-type, because by construction, all edges
that have s, as head have the same output.

This procedure is advantageous for many reasons. First, the
increase in the number of states is tightly controlled. In the
worst case, if all states are Mealy-type and have self-loops, we
can have a twofold increase in the number of states. Second,
the self-loops with maximum probability are selected. Third, if
we really want to limit the increase in the number of states, we
may define a threshold: only the first £ states in a list ordered
for decreasing fotal probability of M Psel f, are duplicated.

We call the FSM obtained after the application of this
procedure locally-Moore FSM, because in general only a
subset of the states is Moore-type.

Example 5: The transformation of the Mealy machine of
Example 1 produces the locally-Moore FSM shown in Fig. 4.
The shaded areas enclose states that have been split. The
Moore-states with self-loops are drawn with bold lines. The
number of states and edges of the locally Moore machine is
smaller than those that we obtained with the complete Mealy
to Moore transformation (state SO has not been split).

The inputs are in1, and ine. Assume that we use three state
variables for the encoding: v1, vg, and v3. The state codes are

/*Choose the max.

/*Partition in classes with same output#/

/*Iterate on all self-loops classes in SLOx*/

/#Iterate on all compatible classes of self-loops*/

/*increase compatible class*/

/#*generate new compatible class*/

probability compatible class*/

Algorithm for the computation of max probability self-loop function M Pselfs.

Fig. 4.

STG of the locally-Moore FSM.

LMOa — vijvhvy, LMla — vivhvs, LM2a — vivavs,
LM1b — vivovs, and LM2b — wvivsvh. The activation
function includes all self-loops leaving Moore-states: f, =
ingViUhh + inpinkv vhul 4 ingvivous + inyinbvivavs +
inyinb v vhus.

Once the activation function has been found, we still need
to solve the problem of synthesizing the clock-stopping logic
in an optimal way. This problem will be addressed in the next
section.

IV. OPTIMAL ACTIVATION FUNCTION

The simplest approach is to try to use the complete f, as
activation function. This is seldom the best solution, because
the size of the implementation of f, can be too large, and
the corresponding power dissipation may reduce or nullify the
power reduction that we obtain by stopping the clock. Roughly
speaking, it is necessary to be able to choose a function
contained in f, whose implementation dissipates minimum
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power, but whose efficiency in stopping the clock is maximum.
We call such function F, C f, a subfunction’ of f,.

In [3], we proposed a simple greedy algorithm that will be
shortly outlined. First, a minimum cover of f, is obtained by
a two-level minimizer. Then, the largest cubes in the cover are
greedily selected until the number of literals in the partial cover
exceeds a user-specified literal threshold. The rationale of this
approach is that generally large cubes have high probability
and the primes that compose a minimum cover are as large
as possible.

There are several weak points in this approach.

» There is no guarantee that choosing the largest cubes
in a cover will maximize the probability of the cover,
because, in general, the probability of a cube depends on
the input and state probability distribution. Even if we
assume uniform input probability distribution, the state
probability distribution is in general not uniform.

* The function sought may not be found by looking only at
a subset of cubes of the minimum cover of the original
activation function. The number of possible subfunctions
of f, is much larger than the functions that we can
generate using subsets of the cubes of the minimum cover.

¢ Even if we restrict our attention to the list of cubes
in the minimum cover of f, assuming uniform dis-
tribution for input and states, the cubes of the cover
are in general overlapping (the minimum cover is not
guaranteed to be disjoint). Finding the minimum-literal,
maximum-probability subset of cubes becomes a set
covering problem that certainly is not solved exactly by
a greedy algorithm.

» The relation between the number of literals in a two-level
cover of the activation function and the power dissipation
of a multilevel implementation is not guaranteed to be
monotonic.

In the next section, we will propose a new algorithm
that overcomes the first three limitations listed above. As
for the last issue, we will assume that there is correlation
between the number of literals of a two-level cover and the
power dissipated in the final implementation, as suggested by
experimental results presented in [4]. We now formulate the
problem that we want to solve in a more rigorous way.

Problem 1: Given the activation function f,, find F, C f,
such that its probability P(F,) is P(F,) > MinProb =
aP(f,), (with 0 < « < 1) and the number of literals in
a two level implementation of F, is minimum.

We call this problem constrained-probability minimum
literal-count covering (CPML). Notice that we could as well
formulate the dual problem, constrained literal count cover
with maximum probability. The two problems can be solved
using the same strategy, and are equivalent for our purposes.
With the assumption of a good correlation between number of
literals and power dissipation, we propose an exact solution to
CPML and, by consequence to the problem of finding the best
reduced activation function given a complete f, to start with.

2Here, we exploit the isomorphism between set theory and Boolean algebra:
Boolean function are seen as sets of minterms. A subfunction of f, is therefore
a function whose ON-set is contained in the ON-set of f,.

A. Finding a Minimum Power Implementation

Apparently, the first source of difficulty comes from the fact
that we are not constrained to completely cover f,, therefore,
the “algorithmic machinery” developed in the area of two-level
minimization seems not useful. We first show that this is not
true. Consider the set of primes of f,, called Primes(f,).
Consider the set Suby, of all possible subfunctions of f,. The
set of primes of a generic subfunction F, € Suby, is called
Primes(F,). We state the following theorem.

Theorem 1: For every prime p € Primes(F,), only two
alternatives are possible.

* p € Primes(f,).

* p is contained in at least one element ¢ of Primes(f,)
(consequently its literal count is larger than the literal
count of ¢).

Proof: Assume that p € Primes(F,), (F, C f,).
Two alternatives are possible: i) p € Primes(f,) and ii)
p ¢ Primes(f,). We will prove by contradiction that, if ii)
is true, there is always at least a prime ¢ € Primes(f,) such
that p - ¢ = p (in other words, p is contained in at least a
prime of f,). Assume that the assert is not true, therefore, p is
not contained in any prime of f,. Notice that p is an implicant
of F,, therefore, it is an implicant of f, because F, C f,.
By consequence, p is an implicant of f, not contained in any
prime of f,. Therefore p is a prime of f, by definition. This
is not possible, because we assumed ii) to start with. O

The important consequence of this theorem is that we do
not need to generate all possible subfunctions of f,. We can
restrict our search to subfunctions that are formed by subsets of
Primes(f,) if we want to find a minimum literal subfunction.
Functions that belong to this class have all primes in the first
category of Theorem 1.

Now that we have defined our search space [Primes(f,)],
we must find a search strategy that guarantees an optimum
solution. The choice of a subset of Primes( f,) with minimum
literal count satisfying the probability constraint cannot be
done using a greedy strategy, because the primes are generally
overlapping and a choice done in one step affects the folowing
choices. An example will help to clarify this statement.

Example 6: Suppose that f, is a function of four vari-
ables a, b, ¢, d. The set of primes is Primes(f,) =
{a’t!, o', b, ab}. Assume for simplicity that all minterms
are equiprobable (Prob = 1/16) and our probability
constraint MinProb (the minimum allowed probability of the
subfunction) is MinProb = 1/2. All primes in this example
are equiprobable (they have the same size). If we choose a’t’
first, the following choices are biased. Since a'c’ is partially
covered by o't/, it will not be the right next choice because
we want to cover the largest number of minterms (remember
that we are assuming equiprobable minterms). Consequently,
either b’ or ab must be chosen.

CPML complexity is at least the same as two-level logic
minimization, because CPML becomes two-level logic min-
imization for the particular case o = 1. We describe here
a branch-and-bound algorithm that has been shown to work
efficiently on the benchmarks, even if its worst case behavior
is exponential. Furthermore, the branch-and-bound can be
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FindFa (fa, o)

{

PrimeList = Generateprimes(fa);

aP(fa)s
CurBest = FindFa PH1(PrimelList, MinProb);

MinProb

CurPartial = §;

FindFa PH2 (PrimeList, CurBest, CurPartial, MinProb);

return(CurBest);
}

Fig. 5. Two-phases algorithm for the exact solution of CPML.

modified to provide heuristic minimal solutions when the exact
minimum is not attainable in the allowable computation time.

B. Branch-and-Bound Solution

Our algorithm operates in two phases. In the first phase,
a heuristic solution is found in polynomial time (in the
number of primes Np). The second phase finds the global
minimum cost solution using a branch-and-bound approach.
The pseudocode of the algorithm is shown in Fig. 5.

We exploit the similarity of this problem with knapsack
[18]. We need to find the set of items (primes) with total
size (probability) larger than or equal to the knapsack capacity
(MinProb) minimizing the total value (number of literals). This
formulation differs from knapsack in two important details.
First, knapsack targets the maximization of value given a
constraint of the maximum allowed size (we face the opposite
situation). Second and most importantly, in knapsack the size
of an item is a constant, while in our case, the probability of
a prime varies when other primes are selected. To clarify this
statement, observe that primes may overlap and they contribute
to the total probability of the reduced activation function only
with minterms that are not covered by other already selected
primes (Example 6). As a consequence, CPML is not solved in
pseudopolynomial time [18] by dynamic programming. Notice
however that CPML reduces to knapsack if all primes are
disjoint (by complementing values and sizes).

In the first phase of our algorithm, we employ a greedy
procedure that is reminiscent of an approximation algorithm
for the solution of knapsack [19]. The solution obtained is
heuristic and it is employed as a starting point for the second
phase of the algorithm, that provides an exact solution.

The pseudocode of first phase of the algorithm is shown in
Fig. 6. Let us call Ppsg the total probability of minterms in
p which are not covered by already chosen primes. We define
value density D for a prime p the ratio Pure(p)/Niuts(p).
We greedily select the primes with largest D until the con-
straint on MinProb is satisfied. The selection is done by
function sel_prime_max PyrgNyts ratio in the pseudocode
of Fig. 6. We then check if there is a single prime whose
probability satisfies the MinProb constraint and whose literal
count is smaller than the total literal count of the greedily
selected primes. If this is the case, the list is discarded and
the single prime is selected.

/* Phase 1 */

/* Phase 2 *»/

The single prime solution is tested for two reasons. First, the
same test is performed in the greedy algorithm for the heuristic
solution of knapsack [19]. Second and most importantly, it
corresponds to a particular case that can be encountered in
practice. Some machines have a halt state and a halt input
value. If the machine is in halt and the inputs are fixed at
the halt value, no output and state transitions are allowed.
The cube of the activation function corresponding to the halt
state and inputs may have a small value of D, because even
if its probability is high, so is the number of specified literals
in the cube. When synthesizing the activation function, we
want to early detect the halt condition, that is indeed the most
natural candidate for clock-gating. The single cube test helps
in detecting such condition as soon as possible, before the time
consuming exact search is started.

When the first phase of the algorithm terminates, it returns
a feasible solution that is used as starting point for the branch-
and-bound algorithm employed in the second phase. At the
beginning of the second phase, we order the primes for
decreasing ratio P(p)/Ny:s(p). The probability P(p) of a
prime is computed multiplying the conditional probability of
the input part by the probability of the state part (remember
that the probability of a transition is computed by multiplying
the conditional input probability by the state probability), and
it is computed once for all (contrasts with phase 1 of the
algorithm, where Pp;p that is recomputed whenever a new
prime is chosen).

At the starting point of the branch-and-bound we have a
search list corresponding to all primes. Moreover, we have a
current best solution generated by the first phase. The current
partial solution is initially empty. Each time the recursive
procedure is invoked, all primes in the prime list are considered
one at a time. If the prime being considered (together with
the current-partial solution) yields more literals than the best
solution seen so far, the prime is discarded and another prime
is considered. Otherwise, a solution feasibility check is done
(i.e., if the probability is larger than, or equal to MinProb). If
this is the case, the current best solution is updated. Otherwise,
a new recursive search is.started, where the prime just being
considered is kept as part of the current partial solution, but
the primes considered at the previous level of the recursion are
discarded. The pseudocode of the algorithm is shown in Fig. 7.

Notice that the backtracking involved in the branch and
bound is implicitly obtained in the pseudocode. For each
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FindFa PH1(PrimeList, MinProb, CurBest)
{.

Selected = #; Pr = 0; ;

while (Pr < MinProb ) {

/* Greedy selection of primes */

NewPrime = sel primemaxPrygN,:,ratio(PrimeList);

Pr = Pr + Prob(NewPrime);
Selected = Selected U NewPrime;
Compute Py (NewPrime, PrimeList);
}
MaxPrPrime = maxProbprime(PrimeList);
Pr1 = Prob(MaxPrPrime);

if ( Pr1 > MinProb && Ny..(MaxPrPrime) < N (Selected) ) {

Pr = Prt;
Selected = MaxPrPrime;

Niits = Nieo(MaxPrPrime);

}

return(Selected);
}

Fig. 6. First phase of CPML solution.

/* Recompute Py e for unselected primes */

/*Single-prime solution*/

FindFa.PH2 (PrimeList, CurBest, CurPartial, MinProb)

{

1f (Bound (PrimeList, CurBest, CurPartial, MinProb)) return;

DonelList = @;
foreach (Prime € Primelist) {
DonelList = DonelList U Prime;

NewPartial = CurPartial U Prime;

if ( Njeo(NewPartial) < Nus,(CurBest) ) {

if ( Prob(NewPartial) > MinProb )

CurBest = NewPartial;

else

FindFa.PH2 (PrimeList — DoneList, CurBest, NewPartial, MinProb);

}

Fig. 7. Second phase of CPML solution.

iteration of the inner loop, we generate a new partial solution
adding to the original partial solution a single prime from the
search list. In this way, each new iteration backtracks on the
choice of the prime in the previous iteration. The algorithm
terminates when all choices in the search list of the upper level
of the recursion have been tried.

The bound is based on the approximation algorithm for the
solution of knapsack mentioned above. The greedy procedure
guarantees a solution to knapsack within a factor of two from
the optimum [19]. The optimum knapsack solution itself is
an upper bound to the solution of our problem (it becomes
the exact solution if all primes are disjoint). Intuitively, the
bound eliminates the partial solutions that could not improve

/* Bounding step */

/* Branching step */

/* New Best solution */

/* Recursion */

the current best solution even if all primes in the search list
were mutually disjoint and not overlapping with primes in the
current partial solution.

The bounding procedure {(Bound) is shown in Fig. 8. It
works on the search list. If the search list (Primelist) is
empty, obviously the return value is one. If the current partial
solution (CurPartial) is empty, the return value is zero. In
the general case, we select primes from the top of the search
list until the sum of their literal count becomes larger than
Nyits(CurBest) — Nyys(CurPartial). We compute the sum
of the probabilities of all selected primes (excluding the last
selected one) and call it P;,;. We choose the maximum P,
between P,,; and P,,., where P,,. is the largest probability
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value of a single prime in the search list whose literal count
is less than Ny;;e(CurBest) — Njis(CurPartial).

Once Pa.x has been obtained, we can prune the partial
solution if the following inequality is verified

MinProb — Prob (CurPartial)

. 5
Prax < 5 &)

The rationale behind this bound requires further expla-
nation. In the Bound procedure, we are trying to discover
if a selection of primes from PrimelList can increase the
probability of the current partial solution by AP > MinProb—
Prob (CurPartial) (an amount large enough to satisfy the
bound on probability), without increasing the number of
literals by more than Deltalits (the difference between the
number of literals in the best solution so far and the number
of literals in the current partial solution).

If such a selection exists, its probability Pepact 18 Pegact <
Pipop, Where we obtain Pppa, by assuming that all primes
are disjoint (remember that primes can be overlapping, hence
the inequality). An upper bound Pp.y for Py, is obtained
by the greedy algorithm described above, because finding
Ppap requires the solution of a 0—1knapsack problem and the
greedy algorithm provides an approximate solution P, >
Prpap/2 [19]. Thus, we have established the following chain
of inequalities

Pexact S Pknap S 2Pmax~ (6)

If 2P < AP, the same will hold for P, ..., thus proving
the correctness of the bound.

Example 7: Assume that we have a current best solution
that satisfies the constraint on the probability (MinProb =
0.4) with a cost of Nlits = 40. Assume that the cur-
rent partial solution has cost Nlits’ = 36 and probability
Prob (CurPartial) = 0.35. Suppose that the first two el-
ement of the unselected prime list are a’b’ with probability
0.01 and a’¢’ with probability 0.012. The maximum probability
prime with at most four literals has probability 0.015. Py,
is therefore Pn., = max{0.015, 0.012 + 0.01} = 0.022.
This branch of the search tree is pruned, because Ppax <
[MinProb — Prob (CurPartial)]/2 = 0.025. Notice that the
two primes are partially overlapping, therefore the actual
increase in probability for the current solution if we select
the two primes would be smaller than the estimated one.

The bound can be made even tighter if after selecting a new
prime in a partial solution, the probabilities of the remaining
primes are reduced accordingly to the overlap with the chosen
prime. Notice that the computation of this second bound
requires the recalculation of all probabilities of the currently
unselected primes (and the reordering of the search list). As a
consequence, the second bound should be computed only after
the first has been unsuccessful in pruning the search tree.

We want to point out that there are two possible sources
of complexity explosion in our algorithm. First, the number
of primes for a Boolean function is worst case exponential
in the number of the function inputs. Second the branch-and-
bound algorithm has a worst case exponential complexity in
the number of primes that form the candidate list.

The double source of exponential behavior may seem wor-
risome. Nevertheless, the structure of our algorithm is flexible
enough to generate fast heuristic solutions if the execution
time exceeds some user-defined limit. The problem of the large
number of primes can be avoided if we apply the algorithm to a
reduced set of primes. The most natural candidate is obviously
a prime and irredundant cover of the function, obtainable
using two-level minimizers that can provide optimum or
near-optimum covers for single-output functions with a large
number of inputs [9].

If either the branch-and-bound is interrupted or a reduced
set of primes is used, the exact minimality of the last solution
found is not guaranteed, but we will have, in general, a good
quality heuristic solution. Notice that the first phase of our
algorithm finds a feasible solution in polynomial time, and
we could even completely skip the branch-and-bound if we
consider it too expensive.

Finally, an efficient implementation of the algorithm can be
achieved using symbolic BDD-based techniques. Many parts
of the current implementation already use symbolic techniques
(for example, the prime generation is fully symbolic [23], and
the cube probability calculation is also done in a symbolic
fashion), but still the prime list is manipulated by the branch
and bound algorithm in an explicit way.

C. The Overall Procedure

We can now briefly outline the full procedure used for the
synthesis of our low-power gated clock FSM’s. Our starting
point is a FSM specified with a transition table or a compatible
format. The synthesis flow is the following.

* The Mealy machine is transformed to an equivalent
locally-Moore machine.

» The complete activation function f, is extracted from the
Moore-states of the locally-Moore machine.

* The probability of the complete f, is computed.

» The prime set Primes(f,) is generated.

* The branch-and-bound algorithm finds the minimum lit-
eral count solution F,, whose probability is a prespecified
fraction « of the probability of f,.

* F, is used as additional DC set for optimizing the
combinational logic of the FSM.

The last step can sensibly improve the quality of the results,
in particular if F, is large [3]. Unfortunately, it is hard to
foresee the effects of F, used as DC set. Sometimes, it may
be convenient to choose a F, that is not minimal in the
sense discussed above, if it allows a large simplification in the
combinational part of the FSM. Our heuristic approach is to try
different F, that range from the complete f, to a much smaller
subfunction, in an attempt to explore the trade-off curve.

This iterative search strategy raises the problems of choos-
ing appropriate values of the parameter o« < 1 used to
scale down the probability of f, when the reduced activation
functions are generated. The approach that we adopted is to
generate a set of reduced activation functions Candp using
different values of «, in such a way that the possible range of
solutions is uniformly sampled. We have devised a heuristic
procedure that generates suitable « values and we briefly
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Bound(PrimeList, CurBest, CurPartial, MinProb);

{
if ( PrimeList == @ ) return(1);
if ( CurPartial == @ ) return(0);

Selected = B; ANp:: = 0; Pr = 0; exit = 0;

DeltalLits = Ny;;.(CurBest) — Nj:.(CurPartial);

while ( 'exit ) {

NewPrime = selmax PNratio(PrimeList);

/* Greedy selection of primes */

if ( Npts + Nies(NewPrime) > DeltaLits ) exit = 1;

else {
Pr = Pr + Prob(NewPrime);
Selected = Selected U NewPrime;

Nuts = Nues + Nis(NewPrime);

}

MaxPrPrime = maxProb.prime(Primelist);

Pri = Prob(MaxPrPrime);

if ( Pr1 > Pr && Ni..(MaxPrPrime) < DeltalLits ) {

Pr = Pri;
Selected = MaxPrPrime;

Nuts = Niuce(MaxPrPrime);

}

if ( Pr < .5 (MinProb — Prob(CurPartial)) ) return(1);

else return(0);

}

Fig. 8. Bounding function.

outline it

1
N, cand

It may be the case that for two or more consecutive values
«;, the algorithms generates the same solution. This happens,
for example, when eliminating even a single prime from a
solution generated for i + 1 causes a decrease in the P(F,) in
the solution generated for i larger than P(f,)/Necana. In this
case, our algorithm adaptively select new values of a such
that the new candidates will have a probability between those
of solutions generated with two consecutive values of « that
have maximum literal cost difference.

Obviously, if large N,q,q are used, the computational time
required to generated Candp increases. Notice, however, that
only the last two steps in the overall procedure describe before
need to be iterated, and usually a small number of different
values of « is sufficient to find a satisfying solution.

One more point is worth noting. Although our procedure
for the synthesis of a constrained probability minimum literal
cover of F, is exact, the overall synthesis path is heuristic.
As a consequence, finding an exact solution to CPML may
not be essential, because the approximation introduced may
cause large errors that we do not control. Nevertheless, the
strength of our approach lies in its flexibility; our algorithm
offers the possibility of exploring the search space with a fine

i:1,2a"'>Ncand- (7)

a; =

/*Single~prime solution*/

/*Bound test*/

granularity, and it can find heuristic solutions at a very low
computational cost.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented the algorithms as a part of our tool-set for
low-power synthesis. The tool reads the state transition table
of the FSM. The first step is the transformation of the Mealy
machine to a locally-Moore machine and the extraction of the
self-loops from the Moore-states.

An input probability distribution must be specified by the
user (we assumed uniform input probability distribution, but
this assumption is not restrictive). Moreover, we assumed that
every input line has a maximum of one transition per clock
cycle. This is an optimistic assumption, because multiple input
transitions (high transition density) may increase the power
dissipated in the activation function logic (but not in the FSM
logic because the input are guarded by flip-flops). If input with
high transition activity are present, smaller activation function
should be allowed.

The power method is applied to compute the exact state
probabilities given a conditional input probability distribution.
Notice that this step can be modified to use the exact and
approximate methods described in [15], [24], [25] that have
been demonstrated to run on very large sequential circuits.
Presently, our procedure employs sparse matrix techniques and
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it has been able to process all MCNC benchmarks provided in
state transition table format in a small time (less than 10 s on
a DECstation 5000/240 for the largest example s298).

We then state assign both the original machine and the
locally-Moore FSM using JEDI [26]. Once the state codes
have been assigned, our probabilistic-driven procedure for the
selection of the activation function can start. First, all primes of
the activation function are generated using symbolic methods
[23], then the probability of the minimized cover (obtained
with ESPRESSO [20]) of the complete activation function f,
is computed. The number of literals of the complete minimized
cover is used as initial literal cost limit in the branch-and-
bound algorithm.

The user specifies the number of activation functions that
the procedure should generate, and the branch-and-bound
algorithms solves the CPML as many times as it is requested.
Surprisingly, for all MCNC benchmarks this step has never
been the bottleneck, the CPU time being in the order of 30 s
maximum. This is certainly due to the fact that the majority
of the FSM MCNC benchmarks do not have a large number
of self-loops (in particular the larger ones). Nevertheless, even
if difficult cases are found, our algorithm stops the search
when a user specified CPU time limit has been reached. The
solution becomes then suboptimal, but there are other sources
of inexactness in the overall procedure. Therefore, the search
for an exact optimum solution of CPML is not of primary
practical importance.

The combinational logic of the locally-Moore FSM is then
optimized in SIS [20] using the additional DC set given by
the activation function. This step is repeated for all activation
functions generated in the preceding step, and alternative
solutions are generated. The DC-based minimization of the
combinational logic using the activation functions is the main
bottleneck of our procedure. In our tool, the user has the
possibility to specify a CPU-time limit for each minimization
attempt. This, of course, limits the possible improvements
obtainable on large FSM’s.

The activation functions are also optimized using SIS, then
the alternative solutions are mapped with CERES [21], and
the gated clocking circuitry is generated. Again the same
optimization and library binding programs are used for both
the original Mealy machine and the locally-Moore gated clock
machines. We employed a simple target library which includes
two, three, and four input gates. Our flip-flops have a master-
slave structure, and their cost (in terms of area and input load
capacitance) is approximatively equivalent to two three-input
logic gates.

Finally, the alternative gated clock implementations and the
implementation of the original Mealy FSM are simulated with
a large number of test patterns using a switch level simulator
(IRSIM [27]) modified for power estimation.

The quality of the results strongly depends on two factors.
First, how much state splitting has been needed to trans-
form the machine to a locally-Moore one. Second, for what
percentage of the total operation time the FSM is in a self-
loop condition (this depends on the FSM structure and on
the input probability distribution). For machines with a very
small number of self-loops or a very low-probability complete

TABLE 1
RESULTS OF OUR PROCEDURE APPLIED TO MCNC BENCHMARKS.
Size Is NUMBER OF TRANSISTORS P (POWER) IS IN pw

Original Locally-M. Gated l
Circuit | Size | P || Size | P | Sie | P [ % | F, Size | @
bbara || 330 | 67 | 422 | T2 | 408 | 34 || 97 | 74 | 1
bhsse | 640 | 121 | 742 | 137 | 736 |119( 2 | 140 | 1
bbtas || 142 | 56 | 138 | 57 | 164 | 44 || 27 | 34 | .93

kevb 721 | 128 || 754 | 132 || 820 | 114 || 12 62 91
lion9 188 | 60 226 | 60 248 | 52 15 8 25
7492 | 899 || 7496 | 900 || 7502 | 810 || 11 14
5420 544 | 132 1 344 | 132 || 602 | 108 || 22 44
sef 3222 | 437 | 3222 | 437 | 3169 | 400 9 26
1474 | 159 || 2468 | 230 || 2534 | 208 0 560
test 348 | 73 442 | 76 374 | 32 | 128 64 .88

5298

—

1

ot

.
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activation function, the chance of improvement is limited or
pull. This is the case for many MCNC benchmarks for which
the final improvement is negligible. As for the first problem,
it may be worth to investigate if, in case the state duplication
is too high, using an activation function with the outputs of
the FSM as additional inputs may lead to better results.

Example 8: The Mealy machine of Example 1 has been
synthesized without any gated clock. The number of states
is three, the mapped implementation has 124 transistors and
a total nodal capacitance of 2.32 pF. The average power
dissipation is 52 pW.

Using our algorithm, the minimum power implementation
(obtained with the complete activation function in this case)
of the equivalent locally-Moore gated clock machine has 178
transistors and a total nodal capacitance of 3.14 pF. The
average power dissipation is 42 4 W. Notice that the efficacy of
the activation function in stopping the clock allows substantial
power savings (24%) even if the total capacitance is larger
(35%). This is due to the fact that the locally-Moore machine
has five states, and its combinational logic is more complex. In
contrast, with a complete Moore transformation the minimum
power implementation has 196 transistors and total nodal
capacitance of 3.39 pF. Its power dissipation is 48 pW. '

Table I reports the performance of our tools on a subset
of the MCNC benchmarks. The first six columns show the
area (number of transistors) and the power dissipation of the
normal Mealy FSM, the locally-Moore FSM without gated
clock, and the locally-Moore machine with gated clock. The
last three columns show the power improvement [computed
as 100(Pmeaty/Pgated — 1)}, the size (in transistors) of the
activation function and the « factor used in the solution of
CPML leading to the best result. Notice that, if there is no
power improvement the improvement is set to zero.

The tool is able to process all benchmarks, but in the table,
we list examples representative of various classes of possible
results. The benchmarks bbara and test are reactive FSM’s.
The high number and probability of the self-loops allow an
impressive reduction of the total power dissipation, even if the
area penalty can be not negligible. For this class of FSM’s,
our tool gives its best results.
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In contrast, for bbsse and styr there is no power reduction
or even a power increase. The bbsse benchmark is represen-
tative of a class of machines where the number and probability
of the self-loops is too small for our procedure to obtain
substantial power savings. The styr benchmark has many
self-loops, but they all have low probability. Moreover, the
transformation to locally-Moore machine has a too large area
overhead in this case, therefore, even if there are power savings
with respect to the locally-Moore implementation without
clock, the smaller Mealy implementation has the lowest power
consumption.

For all other examples in the table the power savings vary
between 10% and 30%. For some of these machines (s420
and scf), there is no area overhead for the locally-Moore
transformation. This happens when all states with self-loops
are already Moore states in the original FSM. We included
some of the larger examples in the benchmark suite (s298 and
scf) to show the applicability of our method to large FSM’s.

From the analysis of the results, it is quite clear that several
complex trade-offs are involved. First, the transformation to
locally-Moore machine can sometimes be very expensive in
terms of area overhead. Second, the choice of the best possible
activation function is paramount for good results. In fact,
for many examples, the complete activation function was too
large, and reduced activation functions gave better results.
Notice, however, that for some examples, the efficiency of
the activation function in stopping the clock was such that the
power was sensibly reduced even with large area overhead.

Having discussed how much power is saved, we address now
the problem of where the power is saved. In our approach, the
FSM clock is freezed only when the next state variables and
the outputs are not going to change in the upcoming clock
cycle. It may be possible to think that power is saved only in
the flip-flops and the clock line. This intuitive observation is
deceiving, because power is also saved in the combinational
logic, as it is shown in Table II. We have compared in the table
the power dissipation of the locally-Moore implementation
with and without gated clock. We compare to the locally-
Moore FSM because its STG is isomorphic to those of the
gated-clock FSM. Hence, all modifications are due only to
the insertion of the activation function. The comparison with
the Mealy machine is less explicative because the locally-
Moore transformation modifies the STG and consequently
the next state and output function, making impossible to
distinguish how the clock-gating circuitry alone affects the
power dissipation.

In the first two columns of the table, for the two imple-
mentations, we compare the ratio of the power dissipated in
the combinational logic (flip-flops outputs, all nodes in the
FSM logic and outputs) and the power dissipated in the clock-
related circuitry (activation function, clock lines, NAND gate,
latch, inputs, and internal nodes of the flip-flops). In the last
two columns, we show the power ratio for the combinational
logic and the power ratio for the clock-related circuitry for the
two implementations.

First, notice that the ratio PC°™?/PC* is almost always
smaller for the gated-clock FSM’s. This result is quite in-
tuitive, because PCY* in the gated-clock FSM includes the

TABLE II
PARTITION AND COMPARISON BETWEEN POWER DISSIPATION IN CLOCKING LoGIC
AND FSM LoGiC FOR LOCALLY-MOORE AND GATED-CLOCK FSM’s

e Comb | pCik Comi [ pClk | pComb ) pComt | pCix 1 pcik
Circuit H Féaedl Foaica | P PLE | PEareal PLTNy | Féateal Plotas

Loc_M
bbara 1.2777 2.7006 0.3624 0.7660
bhsse 1.5317 2.5386 0.7601 1.2597
bbtas 1.2242 1.8715 0.6861 1.0488
keyb 2.4024 3.2242 0.8185 1.0985
lion9 2.0734 2.2749 0.8937 0.9806
5298 17.7560 17.9872 0.9887 1.0016
5420 1.3517 1.5251 0.8126 0.9169

scf 2.8988 2.7368 0.9274 0.8755
styT 4.2330 4.3990 0.8969 0.9320
test 1.1751 2.8957 0.3048 0.7512

power dissipation of the activation function. The results of
columns three and four are somewhat counterintuitive, because
they show that there is consistently higher power saving in the
combinational logic than in the clock-related circuitry. This
result is due to three factors. First, the reduced switching
activity on the outputs of the flip-flops, that are generally
highly loaded. Second, the absence of propagation to internal
nodes in the FSM logic of input transitions when the FSM is
in a self-loops. Third and most importantly, the simplification
in the FSM’s logic that is obtained using the ON-set of the
activation function as additional controllability don’t care set.

We want to point out that our methodology attains consistent
power savings not only when the clock line is heavily loaded
and large flip-flops are used, but also for very small FSM’s
with optimized flip-flops. It is, however, important to remark
that the full extent of the possible savings is obtained only
if the combinational logic is reoptimized with the increased
don’t care set previously described. Moreover, for classes of
FSM'’s such as synchronous counters, or more generally, FSM
without self-loops, our methedology is ineffective in reducing
power consumption.

In summary, the power savings depend on the fraction of
the total operation time that the FSM spends in idle condition.
Don’t care optimization is very helpful when the FSM is
small and the idle time is a relatively small fraction of the
total, because it helps in reducing the overhead of the clock-
gating circuitry. For large FSM’s the impact of don’t cares is
generally less relevant. Even if the power savings are basically
decided by the initial structure of the FSM, it is important to
have an automated synthesis procedure such as ours, so as to
avoid unnecessary effort from designers in trying to manually
design clock-stopping logic.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have described a technique for the automatic synthesis
of gated clocks for Mealy and Moore FSM’s. We want to
emphasize that our method is part of a complete procedure,
starting from FSM’s state-table specification to fully mapped
network, and it has been tested with accurate power estimation
tools. The quality of our results depends on the initial structure
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Fig. 9. Timing diagrams of the activation function f,, the global clock CLK and the gated clock GCLK when (a) a simple AND gate is used and

(b) a latch and the AND gate are used.

of the FSM, but we obtain important power reductions for
a large class of FSM’s, where the probability of being in a
self-loop (idle) is high. Even if our tool cannot fully replace
the knowledge of the designer in finding idle conditions at
the architectural level, it may enable design exploration for
cases where it is not clear if clock gating may produce sizable
power savings.

While automatic synthesis of dynamic power management
circuits is not a new idea, this paper provides two novel
theoretical contributions. First, we presented a transformation
for Mealy FSM’s that makes them suitable for gated-clock
implementation, allowing for greater flexibility in the choice
of clock-stopping functions with small support and lower
complexity. Second, we have proposed a logic optimization
problem, called “constrained probability minimum literals”
problem, and we have described its exact and heuristic so-
lutions. Our solver has large applicability, and can improve
the performance of any power management scheme that relies
on optimized combinational logic that stops the clock with
maximum efficiency.

For some FSM’s, even the limited increases in the number of
states and transitions produced by the locally-Moore transfor-
mation is unacceptable. To address this problem, a procedure
that splits only on the states with high probability self-loops
may become useful.

An area-oriented state assignment program has been used in
the current implementation. Additional power savings could be
obtained if the state assignment algorithm takes power dissi-
pation into account. The relationship between state assignment
and activation function synthesis requires further investigation.

Finally, future research will concentrate on the implemen-
tation of fully symbolic algorithm for the synthesis of the
activation function and on the application of our techniques
to large synchronous networks.

APPENDIX:
TIMING ANALYSIS

The activation function uses as its inputs the state and input
signals of the FSM; therefore, it is on the critical path of the
circuit. In order to verify the correctness of the gated clock
implementation, we need to make sure that the delay that the
activation function adds to the delay of its inputs is less than
the cycle time 7' of the circuit. We can test this condition
performing static timing analysis on the network composed by
the activation function and the logic that feeds its input (the
combinational part of the FSM and the logic in the previous
stages that computes the primary inputs). We call the critical
path delay through this network T,;:.

If we collect the delays through the latch and the AND
gate (Fig. 1) and the setup time of the input flip-flops in one
worst-case parameter T,,. we obtain the following constraint
inequality for the activation function

Tcrit <T - T‘wc- (8)

Moreover, the presence of a gate on the clock path usually
implies increased clock skew. In a completely automated
synthesis environment, it should be possible for the designer
to specify accurate skew control for the gated clock line, thus
preventing possible races or timing violation involving the
logic blocks in the fan-out of the FSM.

Finally, it should be noticed that the presence of the latch L
is fundamental for the correct behavior of the proposed gated
clock implementation. A simple combinational AND gate is not
acceptable because the activation function is not guaranteed to
change when the global clock signal is low. If the activation
function changes when the clock is high and it is not latched,
it may create spurious pulses (glitches) on the local clock line.
An example of this problem is shown in Fig. 9. In Fig. 9(a),
the behavior of the gated clock line simply ANDed with f/
is shown. The glitch on f, produces a glitch on the gated
clock line that will very likely produce incorrect behavior
in the FSM. In contrast [Fig. 9(b)], when f, is latched, the
glitch does not pass through the latch when the clock is high.
Function f, may also produce glitches when the clock is low,
but in this case the AND gate itself will filter out the spurious
transitions, because the global clock signal has the controlling
value.

The presence of the latch could be avoided if we could guar-
antee that the activation function changes only after the falling
edge of the global clock, or that the circuitry that implements
the activation function is hazard free. These constraints may
be acceptable in some particular examples, but the general
solution that we have discussed has a small overhead (only
one latch) and it does not require specialized techniques for
the synthesis of f,.
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