854 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

Analysis and Synthesis of Concurrent Digital
Circuits Using Control-Flow Expressions

Claudionor Nunes Coelho, Jr. and Giovanni De Micheli, Fellow, IEEE

Abstract—In this paper, we present a novel modeling style and
control synthesis technique for system-level specifications that are
better described as a set of concurrent descriptions, their syn-
chronizations, and constraints. The proposed synthesis procedure
considers the degrees of freedom introduced by the concurrent
models and by the environment in order to satisfy the design
constraints. Synthesis is divided in two phases. In the first phase,
the original specification is translated into an algebraic system,
for which complex control-flow constraints and quantifiers of
the design are introduced. In the second phase, we translate the
algebraic formulation into a finite-state representation, and we
derive an optimal control-unit implementation for each individual
concurrent part. In the implementation of the controllers from
the finite-state representation, we use flexible objective functions,
which allow designers to better control the goals of the synthesis
tool, and thus incorporate as much as possible their knowledge
about the environment and the design.

1. INTRODUCTION

HE USE of synthesis tools has gained great acceptance

in industry. Three of the reasons for its success are the
increasing complexity of the circuits, the need for reducing
time to market, and the need to design circuits optimally. In
order to meet the tight requirements of today’s marketplace,
designers have to rely on the specification at higher levels
of abstraction, and in particular, rely on models that describe
the specification at a level higher than the logic level and
register-transfer level (RTL) [1].

In these designs specified at higher levels, the system to
be synthesized is usually modeled as a set of sequential
components consisting of operations and their dependencies,
e.g., as in the case of a dataflow. We call process each sequen-
tial component. Processes have been successfully synthesized
at chip-level by experimental and/or commercial high-level
synthesis tools. The synthesis task in these tools involved the
scheduling of operations over a discrete time and the binding
of these operations to components.

This paper considers systems that are better described as
a set of synchronous concurrent processes and their syn-
chronization, which we call here a multiprocess or system-

Manuscript received September 20, 1994; revised December 6, 1995 and
April 16, 1996. This work was supported by ARPA under Grant DABT 63-95-
C-0049 9 115 432. The work of C. N. Coelho was supported by Scholarship
200 212/90.7 from CNPg/Brazil, and by a fellowship from Fujitsu Laboratories
of America. This paper was recommended by Associate Editor M. McFarland.

C. N. Coelho, Jr. is with the Departamento de Ciéncia da Computagéo,
ICEx/UFMG, Belo Horizonte, MG, Brazil.

G. De Micheli is with the Computer Systems Laboratory, Stanford Univer-
sity, Stanford, CA 94305 USA.

Publisher Item Identifier S 0278-0070(96)05724-7.

level design. Although attempts to use high-level synthesis
tools to synthesize multiprocess descriptions have been made,
these techniques are usually not well suited for system-level
designs for three reasons. First, most high-level synthesis tools
synthesize one process at a time, thus not considering some
degrees of freedom in the optimization. Second, the model
used for specifying and handling the interface in most high-
level synthesis is very simple, and does not easily support
modifications. Finally, standard cost functions used in high-
level synthesis are simple, i.e., the goal of the synthesis tool
is usually the minimization of area or delay. In system-level
designs, we may have to quantify not only area and delay, but
more complex cost measures, such as bus or microprocessor
utilization.

The use of single process techniques in the synthesis of
multiprocess descriptions imposes severe limitations on the
implementations; in some cases it even prevents valid im-
plementations from being found. Multiprocess descriptions
require the use of more complex algorithms and techniques
other than the ones used for single process synthesis. These
complex techniques involve the utilization of the degrees of
freedom of the other processes during the synthesis of a
single process, the use of synchronization among processes
to further optimize the synthesis tasks, the modification of the
control-flow over time, as required by the specification, and
the selection of the different goals of the synthesis tools.

Multiprocess descriptions also require specifications of
complex constraints. For example, when synthesizing single
process models, the tool does not have to consider the
synchronization among concurrent descriptions. However,
when synthesizing multiprocess descriptions, the interrelations
among different processes must be considered. In addition,
interrelations of the different parts in an interface do not need
to be static. For example, a synchronous RAM has different
requirements in terms of cycles for the different modes of
operation. The ability of adding complex timing constraints
results in a greater flexibility with respect to a specification.

1.1. Research Objective

In this paper, we present a formal model to analyze control-
flow intensive synchronous system-level specifications (oper-
ating under a single clock), and a methodology to synthesize
control-units for the concurrent parts of the design. In this
methodology, the control-flow of the description is first ab-
stracted into an algebraic system, here called control-flow
expressions, manipulated, and then translated into its state
space, where the control-unit is synthesized. Our technique

0278-0070/96$05.00 © 1996 IEEE

COELHO AND DE MICHELI: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 855

CONSTRAINTS

CONCURRENT DESCRIPTION
/

N

/

EXPRESSION REPRESENTATION

SYNCHRONIZATION OSTATE SPACE REPRESENTATION

TERM REWRITING

O\

AN

/

N

IMPLEMENTATIONS

Fig. 1. Design flow for synthesizing multiprocess descriptions.

also extends previous synthesis approaches because it con-
siders processes with arbitrary control-flow. We emphasize
that our system utilizes both representations during synthesis,
i.e., an algebraic representation and a state space represen-
tation, and that these two representations are necessary for
the efficient manipulation of the specification for different
types of transformations. Fig. 1 presents a pictorial view of
our design flow. We assume that the design is originally
specified by some hardware description language (HDL), such
as VHDL, Verilog HDL, or HardwareC, and compiled into
some control-dataflow graph (CDFG) model. We assume that
the compilation from the HDL into the CDFG model is a direct
mapping, and that control-flow expressions can be obtained
from the CDFG through abstraction. So, in all examples in
this paper, we will use the original HDL specification instead
of the CDFG representation. It should be emphasized here
that we focus neither on a specific CDFG model nor on an
HDL language representation, but on a modeling style for
concurrent synchronous systems and a synthesis technique for
their controllers.

The constraints of the system are manually entered in the
tool from some constraint language that includes synchro-
nization, timing, and binding constraints. For example, the
specification of synchronization constraints is already present
in the Esterel [2] language. The HardwareC language allows
the specification of timing and binding constraints that are used
by the synthesis tool. These constraints will guide the synthesis
tool during the synthesis of the control-unit implementations.

In the next section, we present some examples of where
our formulation can be used and how those problems can
be solved. In the following section, we define the algebra
of control-flow expressions, its axioms, the representation of
the design space, and a comparison with existing formalisms.
In Section IV, we show how constraints can be represented
in control-flow expressions, and how we restrict the solu-
tion space with respect to the constraints. In Section V, we
show how the algebra of confrol-flow expressions can be
transformed into a finite-state representation. In Section VI,
we present our synthesis method using an 0-1 integer lin-
ear programming specification with Boolean constraints. In

Section VII, we present some applications of this methodology
with implementation results, followed by some conclusions.

II. MOTIVATION

This section presents examples of real designs that either
cannot be synthesized or are synthesized suboptimally by
usual high-level synthesis tools. We show intuitively that
optimal and valid implementations can be obtained only if
synchronization, dynamic binding, and dynamic scheduling are
considered during the design space exploration. Then, in the
rest of the paper, we present formal methods to obtain optimal
solutions to these synthesis problems.

One of the major problems of using current high-level
synthesis tools to synthesize system-level designs is that the
synthesis tool must consider how the environment affects the
whole system. Since the specification of the environment in
which the circuit is going to execute is generally a formidable
task, the user must have a better control over the synthesis
tool in order to obtain optimal results. The user can interact
with our synthesis tool by specifying complex constraints and
flexible cost functions. The necessity of this interaction will
become apparent in the next examples.

2.1. Synchronization Synthesis and Dynamic Binding

2.1.1. Ethernet Coprocessor: In this example, we show
how we can synchronize multiple processes to share the
same critical resource. This synchronization is synthesized
by considering the degrees of freedom among the different
processes that share the critical resource. Dynamic binding is
achieved by allowing several processes to instantiate the same
resource at different times. In this example, a constraint that
crosses process boundaries exists, i.e., the critical resource
should not be used by more than one process at a time.

The block diagram of Fig. 2 is the block diagram of an
ethernet coprocessor. This coprocessor contains three units: an
execution unit, a reception unit, and a transmission unit. These
three units are modeled by thirteen concurrent processes, with
three processes accessing the bus: DMAxmit, DMArcvd, and
enqueue. The problem we want to solve is the synthesis of the

856 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

Host
CcPu

Memory

Ethernet Coprocessor

System
8{:5

Fig. 2. Ethernet coprocessor.

synchronization among the three processes such that any bus
access for the three processes is free of conflicts. Note that the
difficulty in solving this problem comes from the transfers that
are nondeterministic over time, i.e., we do not know a priori
when each process accesses the bus, since this operation is
control dependent. Also, the transfers of different processes
are uncorrelated, i.e., knowing that one process accesses the
bus at a specific time does not imply the transfers in other
processes are known.

This problem has been solved for the simplified assumption
that the processes are dataflows executing at the same rate [3].
Note that in the problem described here, however, we do not
know when each bus access will take place, since there may
be loops and conditionals in the specification that will make
the bus accesses execute at different rates. Thus, the approach
described in [3] cannot be used. Filo et al. [4] addressed
the problem of rescheduling transfers inside a single loop or
conditional to reduce the number of synchronizations among
processes. This method is restrictive because all transfers
that are optimized must be enclosed in the same loop or
conditional, and only the synchronization due to the transfers
is considered during the simplification. A synchronization
is eliminated if there are two transfers that are executed
sequentially or in parallel and the synchronization of the first
one is correlated to the second transfer. As we are going to
show later, our formalism allows processes to be specified by
their control-flow with an abstraction on the dataflow parts,
and thus will subsume the solutions found by both of these
procedures. Also, our formalism achieves the simplification of
synchronization that crosses loops and conditionals, and we
do not restrict this simplification to only correlated transfers
in the specification.

Let us first consider an abstraction of the original speci-
fication that captures only the bus accesses. Furthermore, in
order to be able to discuss this problem throughout this paper,
we will assume a set of reduced behaviors for DMArcvd,
DMAxmit, and enqueue such that the resulting behavior is

small enough that can be easily understood. Fig. 3 presents the
behaviors we assume for these descriptions in this paper, in a
pseuddVerilog code. In this figure, the constructs that do not
belong to the language, such as write bus, are represented
in typewriter style; reserved words of Verilog are represented
in bold; and other legal syntactic constructs are represented
in italics.

Note that the processes are control-dominated specifications
where the flow of control is modified by some set of wait
statements. In this example, also, note that the priority of
enqueue should be the smallest one, since the execution of
the bus access in this process may be delayed. On the other
hand, if the bus accesses of the other processes are delayed,
the controller will not be able to deliver data at the interface
at the proper rate.

If we assume that every operation takes one clock cycle,
an implementation for the synchronization mechanism of the
bus should establish a temporal relation between enqueue
and the two other processes DMAxmit and DMArcvd. This
temporal relation should include any data dependent operation
of the two other processes, such as the conditional transmission
ready, and it should also consider when the other processes
access the bus. A possible solution to this problem would be

module enqueue;
always
begin
wait (posedge clock);
while (transmission ready)
begin
wait (posedge clock);
wait (posedge clock);
end
read bus;
end
endmodule

In this implementation, we have to wait the first cycle
because DMArcvd is accessing the bus in the first cycle. During
the second cycle, enqueue will be able to access the bus only if
DMAxmit is not accessing it. In the following cycle, however,
DMArcvd will be accessing the bus again, and enqueue will
have to wait for another cycle. We will show later how this
controller could be obtained automatically for the process
enqueue.

2.1.2. Protocol Conversion: In this section, we show how
we can use synchronization synthesis in order to synthesize
the controller for converting the PCI bus protocol [5] into a
synchronous DRAM protocol. In particular, we will provide
here the conversion between reading and writing cycles of a
PCI bus into synchronous DRAM cycles. Fig. 4 shows the
diagram of a computer using a PCI bus, and a synchronous
DRAM (SDRAM) memory bank. Both protocols can use sin-
gle or burst mode transfers, with the difference that SDRAM’s
burst mode are limited to at most eight transfers on the same
row that are one cycle apart from each other.

Informally, a PCI bus cycle begins with an address phase,
followed by one or more data phases. Wait states can be
inserted in the data phase by either the microprocessor or by

COELHO AND DE MICHELL ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 857

module DMArcud;

module DMAzmit;

module engueue;

always always always
begin begin begin
write bus; initialize variables wait (free bus);
data = receive(from_zmit_frame); wait (transmission ready); read bus;
end read bus; end
endmodule end endmodule
endmodule
Fig. 3. Abstracted behaviors for DMArcvd, DMAxmit and enqueue.
PCI
SDRAM
SDRAM CONTROLLER
—

Processor|

WRITE

Fig. 4. Protocol conversion for PCI bus computer.

the memory. For burst mode transactions, we assume here a
linear increment of the address space.

The synchronous DRAM reading protocol begins by a row
address selection (RAS) phase followed by a column address
selection (CAS) phase. After the CAS phase and a fixed
number of cycles, the SDRAM will produce data at a rate
of one word/cycle.

During the generation of the protocol converter, a control-
unit implementation is selected to combine the behaviors
of both SDRAM and PCI bus protocols. Implementations
satisfying these protocol conversion constraints were obtained
in the system described in [6]. In our approach, we will
show how such constraints can be combined with timing
and resource binding constraints in order to generate optimal
controllers.

2.2. Dynamic Scheduling

In this example, we show how we can specialize a design
by incorporating dynamic scheduling constraints from an
interface. Splitting the interface specification from the design
specification was addressed in [7]-[10]. One of the main
advantages of abstracting interface implementation details at
the higher levels of abstraction is that more degrees of freedom
can be explored during synthesis.

FRAME:#

<ADI3I:0]

C/BE#

IRDY#
TRDY# __

DEVSEL#

In such techniques, the transfers among processes are ab-
stracted in terms of communication operations (such as a send
operation). During synthesis, the best protocol and communi-
cation medium is selected to implement a particular transfer.
The selection and synthesis of the protocol interface will
impose complex scheduling constraints to the design, as we
will see below.

Consider a system that has an ASIC and an embedded
processor, such as the one given in Fig. 5. Assume the
ASIC communicates with the microprocessor either through
a synchronous memory or through a synchronous FIFO. For
example, this siructure has been used in hardware-software
codesign [11], [12]. In this system, the transfers to the memory
and to the FIFO are determined at run-time by the proper
selection of the address. The interface timing is also deter-
mined at run-time, since the timing specifications for these
two components are different, as given in Fig. 6. In essence, a
data transfer may take either one or three cycles to complete.
Thus, the timing constraint specification should also reflect the
mismatch between the timing of the components.

The specification of interface constraints has been used
in the past by Nestor [10], Ku [8], and Borriello [7]. They
used min/max scheduling constraints to annotate the design
specification. The use of these constraints, however, is limited

858

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

Fig. 5. System architecture.

cuk| L L L L
Ras| | f
Cas L
Data
Addr
We |

(a)

MEMORY
up i -5 AsIC
) send(addr,data)
FIFO / \
| PROGRAM
|
[Y

Fig. 6. Writing cycles for (a) synchronous DRAM and for (b) synchronous FIFO.

to static constraints. In the example presented above, the
specification of the interface requires the design to contain
implementation details, which is not desirable for the reasons
given previously.

Assuming that the address selection for the memory module
is called s, the constraint that we need to specify is a three-
cycle operation or a one-cycle operation, depending on s.
Thus, the interface can no longer be specified in terms of
fixed minimum/maximum delay between operations, since the
execution time of the operation is dependent on the address
selection. In order to synthesize the protocol for the send
operation given above, we must consider a dynamic schedule
for this operation.

This can be achieved by using the alternative composition
in the constraint specification. For example, one possible
representation for this constraint could be

synchronize with “send” operation
if (s)

delay for “send” is 3 cycles
else

delay for “send” is 1 cycle.

We will show that using the algebra of control-flow ex-
pressions, we can represent this constraint as the following
compact representation

s: Ras-0-{Cas,data} + 3 : data

where Ras is an abstraction to the RAS cycle of the RAM,
Cas is an abstraction of the CAS cycle of the RAM, 0 is a
one-cycle delay operation, data is an abstraction of the data
transfer, and § means that s is false.

During the synthesis procedure, the send operation is bound
to an implementation that observes this constraint. In this case,
the implementation is exactly the control that waits either one
or three cycles, depending on s.

In this example, the two different communications mecha-
nisms assume different possible behaviors for the environment.
Depending on how the environment requires data, one mode
should be highlighted over the other for some transfer by the
proper selection of an objective function.

III. CONTROL-FLOW EXPRESSIONS

This section presents the definition of the algebra of control-
Sflow expressions, which is a formal model for representing the
control-flow in system-level designs. As the name suggests,
control-flow expressions are used for the analysis of the
control-flow of the design, by abstracting away the dataflow
details.

3.1. Abstraction from the Original Specification

We consider in this paper system-level designs that will be
synthesized as synchronous circuits running under the same
clock. In the synthesis of these designs, we need to represent

COELHO AND DE MICHELL: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 859

the interactions among the concurrent parts, which can be best
modeled at the control-flow level.

We assume in our computation model that the specification
will be partitioned in terms of a control-flow and a dataflow,
as described in [1], [13], [14]. In this model, variables, their
operations, and operands are placed in the dataflow, and the
language constructs of the specification language are placed in
the control-flow. In addition, we assume that any I/O operation
between a process and the process external environment will
be placed in the dataflow.

In this model, the control-flow and dataflow will commu-
nicate through events. The control-flow will generate output
events to the dataflow that will sensitize the execution of oper-
ations in the dataflow. The dataflow will generate input events
to the control-flow that will trigger the different execution
paths.

Example 1: In Fig. 7, we show how the control-flow
portion of a description can be abstracted in terms of the
events it generates. The control-flow of the specification
generates output events aj,ap, a3, and ags. Event ag, for
example, triggers the execution of the path in the dataflow
that will complement dz. We represent the dataflow by an
implementation in terms of a datapath for illustrative purposes
only. In general, we do not assume any particular dataflow
implementation, since control-flow will be able to encode
several possible datapath implementations.

The datapath of Fig. 7 generates input events c; and co that
will trigger the execution of the loop and the execution of the
alternative path, respectively.

The reader should note that the control-flow does not make
any assumptions on the possible values of its input events
over time. In this example, we assume that entering the loop
(when even c; is generated) and exiting the loop are equally
probable. O

3.2. Algebra of Control-Flow Expressions

The algebra of control-flow expressions is defined by the
abstraction of the specification in terms of the sensitization
of paths in the dataflow, and by the compositions that are
used among these operations. As presented in the previous
section, we view the communication between the dataflow
and control-flow as an event generation/consumption process.
More formally, we call the output events generated from the
control-flow actions (from some alphabet .A). We assume that
each action will execute in one unit of time (or cycle). If an
operation executes in multiple cycles, they will be handled by
a composition of single-cycle actions.

Example 2: We abstract the computation x = yx*z of some
HDL by action a, which then substitutes all occurrences of this
computation in the specification. O

We represent the input events of a control-flow by condition-
als, which are symbols from an alphabet C. The conditionals
in a control-flow expression will enable different blocks of the
specification to execute. Guards will be defined as the set of
the Boolean formulas over the set of conditionals.

Definition 3.1: A guard is a Boolean formula on the
alphabet of conditionals. We will use G to denote the set of
guards over conditionals.

output [...] dx,dy;

begin
dx = !dx; B |
a=a-1; B]
if(dy==1) —a02

x = 0; 4
end

DATAPATH CFE

Fig. 7. Partitioning of specification into control-flow/dataflow.

We assume that each guard and conditional is evaluated
in zero time. At the end of this section, we compare the
assumptions on the execution time of actions, conditionals,
and guards with the synchrony hypothesis.

Example 3: In the specification if (z > y)z = y * z,
a conditional ¢ abstracts the binary relational computation
z > y. If at some instant of time, the guard c is true, £ = y*z
is executed. If at some instant of time, the guard —c is true,
the else branch (which is null in this case) is executed. O

As discussed in the introduction, we assume systems mod-
eled by a set of operations, dependencies, concurrency, and
synchronization. We encapsulate subbehaviors of this system
in terms of processes, which are represented by control-
flow expressions and correspond to an HDL model. In our
representation, each process has a label from some alphabet
F to control-flow expressions.

We define the set ¥ as the alphabet of actions, conditionals
and processes © = AUCU F.

The compositions that are defined in the algebra of control-
flow expressions are the compositions supported by existing
HDL’s. Verilog HDL, for example, supports sequential compo-
sition, alternative composition, loops, forks, and unconditional
repetition. The same set of compositions is also supported in
VHDL and HardwareC, and thus is supported by control-flow
expressions. Since alternative compositions and loops in these
languages are guarded, their corresponding compositions in
CFE’s will also be guarded.

We define the set @ = {sequential(-), alternative(+),
quard(:),loop(x),in finite(w), parallel(||)} as being the
valid compositions of control-flow expressions. The formal
definition of the algebra of control-flow expressions is
presented below

Definition 3.2: Let (X, 0,6, ¢) be the algebra of control-
flow expressions where:

Y1 is an alphabet that is subdivided into the alphabet of

actions, conditionals, and processes;

860 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

O is the set of composition operators that define se-
quential, alternative, guard, loop, infinite, and parallel
behavior;

§ is the identity operator for alternative composition;

¢ is the identity operator for sequential composition.

For the sake of simplicity, we restrict the sets of behaviors
definable in control-flow expressions in the following way: it
should always be possible to obtain a control-flow expression
without any process variables. In this sense, the set of process
variables have the same cardinality as the set of control-flow
expressions without process variables. In this paper, whenever
we refer to a CFE p, we are referring to the CFE defined by
the process variable p.

We consider a special action called 0, which corresponds
to a no-operation or abstraction of the computation. Action 0
executes in one unit-delay (just as any other action), but it cor-
responds either to an unobservable operation of a process with
no side effects or to a unit-delay between two computations.

In Definition 3.2, we introduced the symbol § that is called
here deadlock.! The symbol § is defined as & = false : p,
where p is any control-flow expression. The deadlock symbol
is an identity for alternative composition. This means that
the branch of the alternative composition represented by
the deadlock is never reachable. Later, we show that these
branches can in fact be removed.

We also introduced the symbol ¢, which is called here the
null computation. The null computation symbol is defined as a
computation that takes zero time. For example, this symbol
can be used to denote an empty branch of a conditional.
This symbol behaves as the identity symbol for sequential
composition.

The semantics of the major control-flow constructs in HDL
are related to control-flow expressions in the table in Fig. 8,
where p and g are processes (p, ¢ € F) and c is a conditional
(¢ € C). In this figure, we relate CFE to the control-flow
structure of Verilog HDL [15]. In this paper, we assume that
guards (:) have precedence over all other composition oper-
ators; loops and infinite composition (*,w) have precedence
over the remaining compositions; sequential composition (-)
has precedence over alternative and parallel composition;
alternative composition (+) has precedence over the parallel
composition. In addition, we use parentheses to overrule this
precedence and for ease of understanding. Although it is not
necessary, we will at times replace parentheses by square
brackets for clarity.

Informally, we define the behavior of the compositional
operators of CFE’s as follows: the sequential composition of
two processes p and ¢ means that ¢ is executed only after p
is executed. The parallel composition means that both p and ¢
begin execution at the same time, and any operation following
pllg will begin execution when both p and ¢ have completed.
Note that the parallel composition does not assume that p and ¢
must terminate at the same time. The alternative composition
means that a deterministic choice is first made with respect

Deadlock was the name given to § in process algebras. In synthesis, &
denotes code that is unreachable due to synchronization. Since its properties
are the same as the properties for deadlock in process algebras, we used the
latter name, for the sake of uniformity.

[Composition [HL Representation | CI Expression

Sequential begin p; ¢ end p.q
Parallel fork p; ¢ join pllg
if (¢)
; p; . ~.
Alternative else c:p+t:iq
q;
while (c)
Loop P (c:p)
wait (l¢)
P; (c:0).p
Infinite alv&;}a?/s P
)

Fig. 8. Link between Verilog HDL constructs and control-flow expressions.
to ¢ and —c to decide whether the CFE p or ¢ is executed,
respectively. The loop composition means that p is executed
while the guard c is true. The infinite composition means that
p is executed infinitely many times upon reset.

Note that in our definition of the syntax of CFE’s, every
loop and every alternative branch is guarded by “:”, which
makes the different branches of alternative and loops distinct.
This restricts the specification of loop bodies and alternative
branches to only accept deterministic choices with respect to
the guards.

We will use the following shorthand notation for control-
flow expressions. The control-flow expression p™ will denote
n instances of p composed sequentially

(-p)

n

which corresponds, for example, to a counting loop that
repeats n times in some HDL. The control-flow expression
(z : p)<™ will denote a control-flow expression in which at
most n. — 1 repetitions of p may occur. This CFE is equivalent
to(z:p+7T:e)" L

In our original specification, we assumed that every action
in A takes a unit-time delay in CFE’s, and that every guard
takes zero time delay. Then, we could possibly design a system
where after choosing a particular branch of an alternative
composition (e.g., after choosing c is true in ¢ : p+¢: ¢) and
executing the first action of process p, the execution of this
action would make ¢ true and thus also enabling the execution
of g. In order to avoid this erroneous behavior, we adopt a
weaker version of the synchrony hypothesis [16].

Assumption 3.1: Let p be a process and c be a guard that
guards the execution of p (defined as c : p). Any action of p is
assumed to execute after ¢ has been evaluated to true. In other
words, ¢ : p can be viewed as (¢ : €) - p. First, the conditional
is evaluated to true, then the process p that is guarded by c
is executed, and other assignments to ¢ will possibly affect
future choices only.

3.3. Axioms of CFE’s

In this section, we present the axioms for the algebra of
control-flow expressions. These axioms provide the theoretical

COELHO AND DE MICHELIL: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS

861

TABLE 1
AXIOMS OF CONTROL-FLOW EXPRESSIONS

(+ is commutative)
(+ is associative)

r (- distributes to the left with +)
(- is associative)

(+ is idempotent)

(8 is the identity element for +)
(8 is the zero element for -)

(€ is the identity element for -)

if a U b synchronize
if a U b does not synchronize

aipteiq = criqtcip
(arip+eiq)+tes:r = c:pt(ea:gtea:r)
= c:pteigtcecz:r
(1:pte:q)r = aprtea:g:
(prg)r = plqgr)
= pq-r
cq:ptcec:ip = c:p
l:p = p
0:p = 6
c:p+é = c1:p
b-p = &
p-e = p
€'p =P
caicip = (alc):p
allb = (aUb)
allp = 6
allp = blla
alld = a
alle = «a
a-pllb-g = (al|b)- (pllg)
a-pllb = (allt)-p
(iptelr = el +er

(qllr)

background that will be used to build the finite-state machine
representation for control-flow expressions in Section V.

The algebra of control-flow expressions inherits its formal-
ism from a subset of process algebras [17] that is suitable
for describing synchronous systems, called the algebra of
regular synchronous processes. We further extend this algebra
by specifying Boolean variables as guards of processes. The
following proposition holds for CFE’s.

Proposition 3.1: CFE’s are a subset of regular synchronous
process algebras.

In Table I, we present the axioms of control-flow expres-
sions that are derived from the axioms of the algebra of
synchronous processes, where a,b € M (the set of multisets
of actions), p, ¢, r € F (processes) and c1, ¢z, c3 € G (guards).

The alternative composition has § as its identity component.
It is commutative, and associates to the right or left. The
sequential composition has e as its identity component. It asso-
ciates to both the right and left, and it is only distributive to the
left with respect to the alternative composition. This implies
that p-(cy :r+ca:8)#c1:p-r+ce:p-s. The intuitive
meaning for p- (¢ : r+cg : 8) being different from ¢y : p-r+
¢ : p-s is that we abstracted away the computation of p, ¢; and
ca, and thus we cannot answer the question on whether action
p affects the choice of ¢; or ¢, or if the environment needs
some value from p for making a decision on whether c; or ¢
should be true. If we assumed this transformation were valid,
we could make the decision for all branches of the specification
on the start by propagating the guards toward the beginning.

On the other hand, if we assumed that p- (c; : 7+ ¢2: 8)
were equivalent to p-c; : 7+ p-co ¢ s, we would be in
fact assuming that system were noncausal (its current choices
depending on the future value of conditionals), and in this
case, we could also have propagated all those decisions to the
initial start time of the system modeled by the CFE.

The parallel composition assumes a synchronous execution
semantics, also known as maximal parallelism semantics. In
this execution semantics, if two processes are executed in
parallel, then one action of each process is executed atomically
at the same time. We represent the actions that execute together
by multisets of actions. For example, if multiset a defines
{a1,-++,a,}, where each a; € A, actions ay,---,a, are
executed at the same time. The set consisting of multisets of
actions is represented here by the symbol M. Tf two multisets
a = {ai, - +,an} and b = {by,--+,bm} are composed
in parallel, the resulting multiset {a1, -, an,b1, - ,bm} is
represented by a U b. We sometimes abuse our notation for
multisets and use a; for {a; } if it can be inferred by the context
that a; represents the multiset {a;}.

In the definition of the axioms of CFE’s, we showed that the
result of the parallel composition of two multisets a and b is
dependent on some synchronization between a and b. Although
a formal definition of synchronization will be presented in the
next section, we will give an informal definition that will allow
the reader to understand its meaning.

Processes synchronize in control-flow expressions by defin-
ing multisets of actions that always have to execute at the

862 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

same time, and by defining multisets of actions that should
never execute at the same time.

Loops and infinite computations can be defined by control-
flow expressions with process variables. The loop composition
(¢ : p)* is equivalent to recursive process g =c:p-q-+7¢C: €,
where p is a process variable. The infinite composition p“ is
equivalent to the recursive process ¢ = p - ¢. Their axioms
can be determined by applying those equations into axioms of
the original algebra.

3.4. Comparison of Control-Flow Expressions
with Existing Formalisms

Control-flow expressions are very useful as a modeling and
abstraction formalism for CDFG’s, since the translation from
a CDFG into CFE’s is straightforward. In this section, we
compare CFE’s with other formalisms that were used to model
the control-flow, while abstracting the dataflow information:
regular expressions, path expressions, finite-state machines,
Petri-nets, algebra of concurrent processes (ACP), calculus
of communicating systems (CCS), timing expressions, and
BEFSM’s, although this list is by no means exhaustive.

e The algebra of regular expressions [18] is used repre-
sent strings accepted/emitted by a finite-state machine.
This algebra is represented by (X, +,-, %), where X is
the alphabet of characters accepted/emitted, + denotes
alternative composition, - denotes sequential composition,
and * denotes zero or more repetitions of a subexpression.

Regular expressions have been used in the modeling
of the control-flow of sequential programs [19], [20].
In order to specify the control-flow in terms of an in-
put/output behavior, regular expressions must be extended
to guard alternative branches and loops. Also, in the case
of parallel descriptions, a parallel operator must be added.
However, this parallel operator is redundant for regular
expressions, since the left and right distributivity of the
sequential operator with respect to the alternative operator
allow concurrency to be traded by nondeterminism [21].
Such expressiveness does not exist in control-flow expres-
sions, because the sequential operator does not distribute
to the right with respect to the alternative operator.

CFE’s also extend regular expressions by defining
infinite behaviors, which could be achieved only by
extending regular expressions to w-regular expressions
[22].

* Path expressions [23] are equivalent to regular expres-
sions, with the addition of parallelism. However, instead
of a synchronous execution semantics for the parallel
composition, path expressions assume an interleaved ex-
ecution semantics. CFE’s also extend path expressions by
providing guards to alternative branches and loops, in the
same way CFE’s extended regular expressions.

* A finite-state machine [18] recognizer is a tuple
(3,5,8,50,F), where ¥ is a set of inputs, S is the
set of states, § : § x ¥ — S is the transition function, Sy
is the set of initial states, and F’ is the set of final states.
In the case of finite-state machines as computational
engines, we also define an output alphabet O, and either
the output transition function A : S — O (in the case

of a Moore machine) or A : S x ¥ — O (in the case
of a Mealy machine). Parallelism in finite-state machines
is defined only at the transition level, in which several
outputs may be generated at the same time. At this level,
however, the duration for each output has already been
determined, and any transformation of the specification
that modifies this execution time cannot be performed.

A specification consisting of a set of concurrently

executing finite-state machines can also be considered in
this model, as in the case of reactive system languages,
such as StateCharts [24] and SDL [25]. In these
languages, the system is modeled as a set of hierarchical
concurrent finite-state machines, and the system’s state
is defined to be the state of the Cartesian product of all
concurrently executing finite-state machines. As in the
case described in the previous paragraph, at the level of
finite-state machines, the execution time for the operations
has already been decided, and thus any transformation
that changes the execution time of operations cannot
be performed, without requiring a restructuring of the
finite-state machine.
Petri-nets [26] are represented by the tuple (1, P, 6,1),
where 7' is the set of transitions, P is the set of places; and
6 C T'x PUP xT defines the transition relation (or firing)
from transitions to places and vice-versa. A marking in
Petri-nets is an assignment of natural numbers (tokens) to
places. I is the initial marking of the Petri-net.

A state in a Petri-net is a marking of places. Transitions
between states are achieved by having a marking that
becomes another marking by firing some transition. This
firing occurs when one transition of the net has all
incoming places with more than one token. The transition
takes one such token from each incoming place and puts
one additional token in every outgoing place. Since only
one firing can occur at any time, this model can only
represent interleaved concurrent systems.

One possible extension of Petri-nets is the synchronous

firing semantics [27]. In this semantics, the set of firings
that can occur at the same time is specified along with the
Petri-net. Similarly to the concurrent finite-state machine
model, any transformations that changes the execution
time of the operations, or the structure of the graph cannot
be easily performed.
Process algebra [17] and CCS [28] comrespond to a
family of representations used to formally model con-
current systems. In these models, we view the system
as a set of operations that are represented by actions,
and their compositions in terms of sequential composi-
tion, nondeterministic choice, parallel composition, and
communication. Concurrency usually refers to interleaved
concurrency, which is represented by nondeterministic
choice; and synchronous concurrency is defined in terms
of communication.

These representations can be considered as a superset
of control-flow ~expressions. If we restrict the set of
specifiable behaviors to regular and synchronous pro-
cesses, then control-flow expressions will have the same
representation capabilities of process algebras and CCS.

COELHO AND DE MICHELIL: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 863

One of the unique features of control-flow expressions
that was defined previously in this paper is that we
distinguish actions from conditionals. This allows the
system to capture the reactive nature of hardware systems
better, and as a result, control-flow expressions will fit the
model used for synthesis better.

* Timing expressions [29], [30] is a model for describing
behaviors of sequential systems and specifying sequential
constraints a sequential system has to satisfy [29]. In
timing expressions, the sequential system is represented
by expressions that may take different values over time.
When compared to control-flow expressions, we see that
timing expressions will be better suited to represent
the control information at lower levels of descriptions,
whereas control-flow expressions will be better suited
for representing the control-flow at higher-levels of de-
scriptions. In addition, control-flow expressions can be
considered as a superset of timing expressions, since
CFE’s can be used to represent systems containing hier-
archical series-parallel specifications, whereas in timing
expressions parallelism can occur only at the highest
level.

* BFSM’s [31] are a generalization of finite-state machines
with partial timing information on the relative execution
time of the states. Through synthesis, a complete time
(or schedule) is obtained. This model closely resembles
the algebra of control-flow expressions because it was
used for modeling and synthesis of control-dominated
specifications. However, the lack of a synchronization
formalism and the lack of a formal model for con-
straint specification—which is restricted to scheduling
constraints—prevents BESM’s from being used in more
complex problems. As opposed to CFE’s, which uses both
expression and finite-state machine representations for a
concurrent system, the translation from the specification
to a finite-state machine description is performed too
early with BFSM’s, and thus, optimizations that would
be best used at the expression level—such as hierarchical
abstraction and rewriting—would not be available to the
synthesis process. Finally, BFSM is a model best suited
for representing the control-flow of languages in which
parallelism is specified at the process level, such as
VHDL. If used to represent the control-flow of languages
that can specify series-parallel composition of systems,
such as Verilog HDL, its representation and constraint
specification becomes cumbersome.

When compared to the formalisms presented above, control-
flow expressions are able to capture more succinctly the
control-flow information, abstraction from the original spec-
ification, and the degrees of freedom. When considering spec-
ifications in terms of CDFG’s (or in terms of the corresponding
HDL code) control-flow expressions fit perfectly as a modeling
tool of the control behavior for synthesis of system-level
specifications.

IV. CONSTRAINT SPECIFICATION

In the previous section, we presented the algebra of control-
flow expressions, and how to abstract the dataflow information

and represent the control-flow of the design. Real designs
consist of specification and design constraints. In this section,
we show how to use CFE’s to represent constraints, such as
scheduling, binding, and synchronization.

The specification of a system at higher levels of abstraction
requires the modeling of nondeterminism, since at these levels,
not all synthesis decisions have been made. In the algebra
of control-flow expressions, we model these nondeterministic
choices of the design by guarding the choices with decision
variables, which quantify the design space.

In this section, we present the incorporation of design con-
straints by control-flow expressions. Both the specification and
the constraints will be converted to a finite-state representation
in the next section, where we will be able to obtain the
controllers satisfying design constraints.

4.1. Quantification of the Design Space

We represent here the design space and constraints by means
of decision variables, which are used as guards of CFE’s.

Definition 4.1: A decision variable d is a variable guarding
the execution of a control-flow expression whose value is
determined by the synthesis procedure. Its possible values
are defined as the set of Boolean formulas over some set
D.

A decision variable is a Boolean variable that quantifies
a constraint, i.e., whenever the decision variable is true, the
constraint is satisfied. A simple implementation that has been
sought in the past is the assignment of decision variables to
constant values over time [32]. Later, we show how to obtain
assignments to the decision variables that considers the “state”
of the system being synthesized. Thus, in some cases, the set
D will be the set of conditionals C, with the Boolean constants
{0,1}. When we obtain a finite-state machine satisfying the
constraints in the next section, the different machines from
which we can choose will be uniquely determined by different
assignments to the decision variables.

In the algebra of control-flow expressions, we are going to
use decision variables as guards of expressions, so we will
need to extend guards to allow decision variables and condi-
tionals to be composed together. Because decision variables
will uniquely determine the satisfaction of a constraint, we
only need to compose guards with conjunctions of decision
variables or their complements. This also states that any non-
determinism from the specification will be uniquely guarded
by a Boolean guard.

Definition 4.2: A guard is a conjunction of decision vari-
ables (or their complements) and a Boolean formula over the
set of conditionals.

Example 4: Consider the code w = y * z;u = w + 3.
Assume both the multiplication and the addition take one clock
cycle, and that w = y * z is represented by action a and
u = w -+ 3 is represented by action b. A constraint between a
and b, or the quantification of all possible schedules such that
b occurs after a is represented by the CFE a-(z : 0)*-b, where
a,b € A, and z € D. In this CFE, the possible schedules are
quantified by the different assignments of the decision variable
x over time.

864 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

Possible assignments could be

The first assignment corresponds to an assignment of z to
false after the execution of action a. The second assignment
corresponds to an assignment of x to true after the execution
of a, then to false. The other assignments have a similar
correspondence. O

4.2. Constraint Representation

Constraints are properties that any implementation needs
to satisfy. We consider here a subset of constraints that can
be specified as scheduling constraints, binding constraints and
synchronization constraints. More complex specifications can
be achieved by composing these constraints using control-flow
expressions.

Timing constraints will be defined in terms of control-flow
expressions. In binding constraints, we will use expression
rewriting, i.e., the incorporation of binding constraints as a
modification of the original CFE. Both timing and binding
constraints will use decision variables as quantifiers of the
design space. Finally, synchronization constraints will use
multisets of actions that should occur at the same time and
multisets of actions that should never occur at the same time.

The constraints will be defined in terms of the actions that
appear in a control-flow expression, which we define below
as the support of a CFE.

Definition 4.3: The support of a control-flow expression p
is defined as the set of actions that are executed in p.

Example 5: The support of a CFE p = (a - b)*||(c -
d - e)¥, written as S,, is the set of actions of p. Here,
S, ={a,b,c,d,e}. O

Each action defined in the support of a CFE will have a
shadow action, which executes every time the corresponding
action executes.

Definition 4.4: A shadow of an action a, written as o,
is defined to be an action that does not correspond to any
operation of the original specification and executes every time
action a is executed.

Example 6: In the CFE (a - b - ¢)¥, 0, is executed every
time a is executed, o} is executed every time b is executed,
and o, is executed every time c¢ is executed. |

4.2.1. Scheduling Constraints: Scheduling constraints are
constraints that specify the timing relations among computa-
tions. Although we will only define minimum and maximum
timing constraints here, we can specify and handle a much
richer set of constraints with control-flow expressions, in-
cluding loops, alternative composition and synchronization, as
opposed to the constraints that are handled in other CAD tools,
such as [7], [8], [33], [34]. The specification of scheduling con-
straints using control-flow expressions can be also considered
as an extension of path constraints defined by [33].

m1 m2 m4
e ——— -
m3 m5
————— e
st
s2

Fig. 9. CDFG of a differential equation example.

Let us assume p to be a CFE representing a specification
of a design with support S,. Suppose we want to represent
initially simple minimum and maximum constraints between
two actions a and b, with a,b € S,,.

Definition 4.5: A minimum timing constraint of n cycles
between two actions ¢ and b, whose shadow actions are o,
and 05, can be represented by the CFE (2 : 0)* -0, -0" 1. (y :
0)* - 04, where z and y are decision variables.

Definition 4.6: A maximum timing constraint on n cycles
between two actions a and b, whose shadow actions are o, and
o4, can be represented by the CFE (z : 0)* -0, (y : 0)<" 0y,
where x and y are decision variables.

Let p be a control-flow expression representing a specifica-
tion and let mq, - - -, m,, be a set of CFE’s representing sched-
uling constraints. The control-flow expression p||m1l]| - - - [|my,
will denote the application of the n scheduling constraints to
the specification p.

Example 7: The design in Fig. 9 is the control-data flow
graph of a subset of the loop of a differential equation solver
[1]. Assume that the CFE for the specification is p, and that we
want to specify a maximum timing constraint of three cycles
between my and sz, which can be represented by the CFE
(z:0)* O, - (¥ : 0)<2. oy, where z and y are decision
variables.

The application of this constraint to the CFE p is represented
by a new CFE p||(z : 0)* - 0y, - (1 : 0)<3 - 04, O

In the previous example, we specified conventional min-
imum and maximum timing constraints. As we pointed out
before, CFE’s can be used to specify a much broader set of
scheduling constraints, and even hide interface information
from the original specification, as shown in the following
example.

Example 8: Let us examine the specification of the sched-
uling constraint presented in Section II-2. In this example,
the different actions that are involved in the transmission of
the data are the actions “Ras,” “Cas,” and ‘“‘data.” Associated
with the action “send,” we have the shadow action o¢epq. The
constraint that specifies that the send operation should take
either three or one cycle(s), depending on the address selection,
can be represented by the control-flow expression (z : 0)* -
(8q : {Osena, Ras} -0 {Cas,data} + 35 : {0send, data}). O

4.2.2. Binding Constraints: Binding constraints specify the
possible implementations for each computation that is repre-

COELHO AND DE MICHELI: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 865

sented by an action. We represent binding constraints as a
rewriting of the original control-flow expression.

Definition 4.7: Let p be a control-flow expression with
support S,. A rewriting of p, written as R(p)[a + ¢|, where
q is a control-flow expression, is defined as the substitution of
every occurrence of a € S, in p by g.

Example 9: Assume we make the rewriting of a by (¢; :
ag - a1+ c2ag-ar-ag)into p=(a-b)*||(c-d-e)*. Then

R(p)la « (e1:a0-a1+c2:ag-ay-az))
={e1:a0-a1+ca:agar-as) b)?|(c-d-e)*.

Definition 4.8: Let p be a CFE of a specification and
assume some action a can be implemented by a set of
components {C;,Cy,---,Cn}. This binding constraint is
represented by the CFE

R(p) a — E: l’i:Ci

1<i<m

where ¥1<i<m i : C; represents the alternative composition
of the m terms (z; : C;), and z1,---,z,, are m decision
variables.

In this expression rewriting, whenever z; is true, component
C; implements the computation abstracted by action a. Note
that since decision variables are assumed to take values from
the set of Boolean formulas over D, and not just the values
zero or one, we may have an implementation in which some
z; enables component C; at some time, and at a later time
z; (4 # j) enables component C;, thus implementing dynamic
binding of components.

Example 10: In this example, assume that actions m;, i =
1,--+,5 of Fig. 9 can be implemented by one of three multi-
pliers M, My, M3. Then, for the CFE p that represents this
CDFG, we define the binding for each m,; as

R(p)[mi = (@41 + My + @iz + My + 243 : M3)]

where ¢ ranges over one to five and xz;1,x;0 and x;3 are
decision variables. O

Note that in this section, we are only specifying binding
constraints. When an assignment to the decision variables is
obtained in such a way that different bindings are selected at
different times, then we refer to this as dynamic binding.

4.2.3. Synchronization Constraints: Synchronization con-
straints specify actions that should be executed at the same
time and actions that should never be executed at the same
time. The former type of synchronization corresponds to
the specification data transfers, or control transfer from one
specification to another. The latter kind of synchronization
allows one to specify exclusive use of a resource by some
individual process.

We define below ALWAYS and NEVER sets, which are sets
consisting of multisets of actions.

Definition 4.9: Let ALWAYS be a set consisting of multi-
sets of actions that contains multiset X. If two actions a and
b belong to the same multiset X, then a and b must always
execute at the same time.

Definition 4.10: Let NEVER be a set consisting of multi-
sets of actions that contains multiset X. If two actions a and
b belong to the same multiset X, then a and b must never
execute at the same time.

Example 11: Let us consider the synchronization synthesis
problem presented in Section II-1-1. In this problem, let us as-
sume the following control-flow expressions for the processes
DMArcvd, DMAxmit, and enqueue, respectively

p1=la-0]”
pa=[0-(c:0)"-a]”
ps =[(z:0)"-a]

where a corresponds to the bus access and zero hides the
internal computation from the original specification. The con-
ditional ¢ hides the evaluation of transmission ready predicate
and the decision variable x quantifies the predicate free bus.
In this case, since we have the additional restriction that no
two bus accesses should occur at the same time, we have
NEVER = {{a,a}}.

In summary, we showed how to represent scheduling,
binding, and synchronization constraints in this section. More
complex constraint specifications can use these three types
of constraints as building blocks, with the compositions of
control-flow expressions as a way to combine these constraints.

V. FINITE-STATE REPRESENTATION

This section shows how to generate a finite-state represen-
tation from control-flow expressions. As we have shown in
Fig. 1, we use both the algebraic and the finite-state repre-
sentations in our synthesis tool. The algebraic representation
presented in the previous sections allows us to manipulate and
rewrite the expressions algebraically. The finite-state represen-
tation allows us to analyze and to synthesize the controllers
for the specification.

We obtain a finite-state representation from a control-flow
expression by computing all the suffixes of the expression.
Informally, a suffix of a control-flow expression represents
the state of the system after an n-cycle simulation of the
system. We show that this state can be represented by another
CFE, and we call this simulation of the CFE to obtain its
suffixes a derivative, because of the its resemblance to the
work of Brzozowski [35] who first defined derivatives of
regular expressions.

In the following example, we will present the key ideas
of this section in obtaining a finite-state representation for
a control-flow expression by enumerating its suffixes. The
algorithm will be formalized later.

Example 12: For the control-flow expression p = (a-b-c)*,
we wish to obtain a finite-state Mealy machine. By inspecting
p, and assuming that a,b, and c are the outputs to the finite-
state machine representing p, we know that a Mealy machine
starting at some initial state go, makes a transition to some
state ¢; with output a being generated. From state g;, the
finite-state machine makes a transition to some state g with
output b. Finally, a transition ¢ occurs to the original state
go with output ¢. The Mealy machine for this control-flow
expression is presented in Fig. 10.

866 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

(a.b.c)®

b.c.(ab.c)®

c(ab.c)®

(o]

Fig. 10. Mealy machine for control-flow expression (a - b- c)¥.

If we now look at the possible suffixes of p, the CFE
b-c-(a-b-c)¥ is obtained after simulating (a-b-c)* for one
cycle, and the CFE ¢ - (a - b - ¢)* is obtained after simulating
b-c-(a-b-c)¥ for one cycle. Thus, we can associate the states
0,41, and g, with the suffixes (a-b-¢)*,b-¢c-(a-b-c)* and
¢-(a-b-c)v, respectively. |

What we need to show now is how to compute the suffixes
of a control-flow expression, that there is only a finite number
of suffixes for a given CFE, and that there is an equivalence
relation between the suffixes of a control-flow expression
and the states of its corresponding Mealy automaton. This is
described formally in Appendix A. We suggest to the reader
who is interested in the mathematical foundation of this paper
to go to this appendix before proceeding to the next section.

5.1. Constructing the Finite-State Representation

In this section, we present a procedure to obtain the finite-
state Mealy machine from a control-flow expression using
derivatives. This Mealy machine is formally represented by
M = (1,0,Q,6,),q0),> where I is the set of input variables
of M, O is the set of output symbols of M, Q is the set of
states, qo is the initial state, § is the transition function of M,
ie, 6 = Q x 2! — Q, and X is the output function of M,
ie, A:Qx2l — 20

This Mealy machine is related to the set of derivatives of
p in the following way. The set of input variables of M
corresponds to the set of conditional and decision variables
of p. The set of outputs of M corresponds to the multiset of
actions of p. With each irredundant suffix s of p, we associate
a state g, € (). In particular, go corresponds to the state g,
ie., to the CFE p itself.

The transition function (§) and the output function (\)
are related to the CFE p in the following way. Let s be an
irredundant suffix of a control-flow expression p, for which
we are building the finite-state machine representation. The
triple (7y, p, 7) € G x MA x F (defined formally in Appendix
A), obtained from a CFE p, indicates that the actions p are

2We use the Greek letter § to denote the transition function as used in
literature. This & is different from the & introduced in Section III-3, but the
reader should be able to easily recognize when we are referring to the deadlock
symbol and when we are referring to the transition function of the Mealy
machine M.

p
v
(@) (@0 0.(c:0afll (x0)".a)"

x:{a,a} + x:a cxa +Xxcfaa)

(1) 0.2.0)“ Il (c:0).a.(0.(c:0)* af 11 ((x:0)".2)"
Xca+xco xca +Xxcia,a)
(@.0)°ll (c:0)*.a.(0.(c:0)*.af° I (x:0)*.a)®

X C:{a,a} + X €:{a,a,a} X+ x:0

55 0,08 (0.c:0afll (x:0)*.a)®

Fig. 11. Finite-state representation for synchronization synthesis problem.

executed when v is true, followed by the execution of .
Assume that (v, 4, 7) € 9s, where ds denotes the derivative
of s. Thus, 8(¢s,v) = 7 and A(gs,y) = p in M.

Example 13: Fig. 11 shows the finite-state representation
for the synchronization example whose control-flow expres-
sion was presented in Example 11 (p1]|p2]|ps). O

Note that the derivative computation does not take into
account the synchronization constraints. Thus, we will need
the following definitions.

Definition 5.1: A transition §(g, f) of a finite-state Mealy
machine representation of the control-flow expression p is
valid if

e Vo e ALWAY S, (Mg, f)Nz #0) = (z C Xg, f))

* Vz € NEVER,z & Xaq, f).

The definition above states that if at least a certain action
in a transition is included in some multiset of actions of
the ALWAYS set, then all actions in this multiset should be
executed in the transition. Furthermore, this transition should
not include any multiset of actions of the NEVER set. This
condition guarantees that the transition will not violate the
synchronization requirements of the design.

Since some of the transitions of the Mealy machine may be
invalid, we have also to check whether a state of the machine
is reachable by valid transitions or not.

Proposition 5.1: The initial state ¢, of the finite-state
Mealy machine representing the control-flow expression p is
reachable, and so is any other state ¢ €) such that there is
at least one valid transition from another reachable state to q.

The algorithm of Fig. 12 is used to compute the finite-
state Mealy machine M of a specification. The algorithm
works by traversing the finite-state machine in a breadth-
first search manner, and eliminating the invalid transitions
and the unreachable states. The finite-state machine obtained
contains only the reachable states and valid transitions of the
system. The design space represented by the scheduling and
binding constraints are embedded into the original control-flow
expression of the specification.

Example 14: If we apply the NEVER = {a,a} con-
straint to the finite-state representation of p1||pz||ps (shown

COELHO AND DE MICHELL ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS

867

/* Breath First Search of state spacc represented by CFE p */

procedure Construct. FSM
{
input: cfe, ALWAYS, NEVER
output: finite-state machine M
fifo.init (cfe)
while (fifo #0) {
cfe = fifo.first()
mark(cfe)
derivative = 9 (cfe)
Y(y,p,7) 1 (G x MA x F) € derivative {

if (WNALWAYS # 0)
if (ALWAYS ¢ p) continue
if (uN NEVER # 0)
if (VEVER € p) continue
add edge (cfe,y : p, ™) to finite-state machine
if unmarked (7)

fifo.insert ()
}
}

remove unreachable states

}

Fig. 12. Algorithm to construct finite-state representation.

/* initialize fifo with inttial cfe */
/* get cfe on top of fifo */
/¥ mark cfe as traversed and make it a state */

/* compute all cfe’s one cycle apart */

/* check if it wiolates ALWAYS and NEVER sets */

/* transition 15 valid*/
/* if suffiz isn't a state, insert it in fifo */

4
'A‘) y . 1)\ O}
/(—\ ((i v l\ (a.0) @i (0.(c:0)"a) @ Il ((x:0)*.a)®
;;aa),, x:a cxa + 'x"' a;:a?)‘ a Exa
S
}‘_) — '{o.(a.m @)] (c:0)*.a.{0.(c:0)*.a) @I ((x:0)%.a) @
™ BN
xcia+ X ci0 xca +""m("=‘a) Xca+xco xca
e
El\ @)/ (2.0) @11 (c:0)*.a.(0.(c:0)*.a) @Il {(x:0)*.a) ©
?ﬁ‘(a.a) + ié.t\i,a.a) X:a + x:0

Fig. 13. Finite-state representation observing synchronization constraints.

nite-state machine.

in Example 13), we obtain the finite-state representation of
Fig. 13(b).

Note that state 3 becomes unreachable from the initial
state, and thus can be eliminated from the final finite-state
representation. O

5.2. Feasibility of Solutions

In the design process, the user may want at some point
to determine if there exists an implementation for the spec-
ification in the presence of a set of design constraints. The
following theorem shows how one can test whether a problem
is overconstrained or not.

Theorem 5.1: Suppose p is a control-flow expression along
with the synchronization constraints specified by the sets

(®)

(a) Finite-state machine without applying always and never sets. (b) Fi-

ALWAYS and NEVER. If the procedure Construct FSM (p,
ALWAYS, NEVER) returns an empty finite-state machine,
then the specification is overconstrained.

Proof: We know that at least one state should exist
in the finite-state machine: the state corresponding to ¢ =
p|lma]|- - ||m.,. If this initial state does not exist in the finite-
state machine, it means that it was first generated (before the
while loop of the algorithm in Fig. 12), but later removed from
the finite-state machine because the state was unreachable.
Since invalid transitions are eliminated when they violate
synchronization constraints, ¢ was overconstrained.]

Note that the converse may not be true, however. If the
overconstrained part of the specification is not large enough
to make all states unreachable, then an implementation is still

868 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

CFE pui..iipitt..ipn ALWAYS NEVER

Finite~-State Hepresentation Cost Function

0-1 Integer Linear Programming

(X Implementation

Pro, ietlon

Control-Unit for Py

Fig. 14. Methodology for synthesizing control-units.

obtained for the parts of the specification that satisfies the
constraints.

VI. SYNTHESIZING CONTROL-UNITS FROM
THE FINITE-STATE REPRESENTATION

We present in this section a methodology to synthesize
control-units from the finite-state representation. Fig. 14
gives a pictorial view of the synthesis method. From the
specification represented by the set of concurrent processes
p1ll- - l|lpill -« ||pn, and the synchronization constraints
expressed by the ALWAYS and NEVER sets, we obtained
a finite-state machine representation by the algorithm shown
in the previous section. From this finite-state representation,
which already contains all feasible behaviors, we look for a
feasible implementation that has been optimized with respect
to a cost function. In particular, we obtain in this section the
implementation by casting the synthesis problem as a 0-1
Integer Linear Programming instance. Note that the optimized
finite-state representation models the system as a whole. Thus,
to derive the controller for each individual process p;, we
project the set of decisions made for the implementation into
p;. This methodology can be used to synthesize the controllers
of concurrent systems with arbitrary control-flows, as well as
systems with environment and synchronization constraints.

The major difference between our formulation and previous
approaches to synthesis, such as [32], [36]-[38] is that we
do not have the notion of a control-step as a linear order
over time, because of loops, synchronization, and concur-
rency. Whereas the control flows only in one direction in
single-source single-sink dataflows, loops make the analysis
of the control-flow depend on the different assignments to
the conditionals. Concurrency implies that different instances
of the same piece of computation require different decisions.
Finally, synchronization implies that the different parts of
the specification should not be treated separately. Thus, the
complexity of the synthesis task becomes much higher.

The dependency of the flow of control on the conditionals
and on the design constraints prevents us from formulating the
synthesis problem in terms of control-steps. However, we can
define the synthesis problem in terms of an equivalent entity:
the state of a finite-state machine.

We will consider, thus, the finite-state machine M =
(1,0,Q,6,), qo) defined in Section V-1 that represents the
control-flow expression p and the synchronization constraints.
This finite-state machine was obtained by the algorithm given
in Fig. 12. We assume that () contains only reachable states
and A contains only valid transitions.

Since we enriched the control-flow expression of the spec-
ification with decision variables in order to quantify the
design space, the corresponding finite-state machine contains
a representation of the design space according to the degrees
of freedom introduced. Thus, we define now what we mean
by an implementation of the finite-state machine M.

Definition 6.1: Let M be the finite-state machine obtained
from a control-flow expression through derivation. We call M’
an implementation of M if the following conditions hold.

1) The set of states of M’ is a subset of the set of states
of M.

2) The initial states of M and M’ are the same.

3) The set of transitions of M’ is a subset of the set of
transitions of M.

Thus, an implementation M’ = (I,0,Q',8§,), qo) will
be an implementation of M = (I,0,Q,8,\,qo) if Q' C
Q,§ C & and N C). In addition to the requirements
given above, we still require that M’ also satisfies additional
constraints that will be imposed by the structure of the original
specification. We will present by an example the formulation
of the multiprocess synthesis problem as an ILP. The complete
formulation can be seen in Appendix B.

In the synthesis of M’ from M, we have to identify which
states will be included in M’ and which transitions will be
part of the transition function for M’. In order to determine
the states of M which will be part of the states of M’, we
create a Boolean variable y, for each state g, of M. If the
Boolean variable ¥, is set to 1, our interpretation will be that
the state g, will belong to M’. We will denote the state g, by
p in the remainder of this section.

In order to determine a subset of the transitions of M’, we
subdivide each guard f of a transition &(gp, f) into two con-
joined parts. The first part contains only decision variables and
the second part contains only conditional variables. Let us call
the first part fx and the second part f¢r. Now, for each state
qp, decision variable = of fyx and for each different Boolean
formula fey of g,, we create a Boolean variable z(,, ¢ ol
In the solution of the ILP problem, the variables Z(q,, o)
are assigned 0-1 values such that if lez'—qu,fC) =1,
then 6(q,, f) belongs to M, ie., if fx evaluates to 1 when
each variable z of fy is assigned the value of Tlap.f) then
8(qp, f) will belong to M".

Example 15: Let us consider the finite-state machine
of Fig. 13 for the synchronization problem presented in
Section II-1-1. For this finite-state machine, the set of mixed
Boolean-ILP equations that quantifies the design space for the

COELHO AND DE MICHELL: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 869

decision variable x is shown below

yo=1

Y1 — (T0,1)%0 V T(2,c)¥2) =0

Y2 —n(Tao Vo) =0

Zeo,1) =1

2z =1

T(1,e) T T(1,0) =1

ZT(2,0) =1

(®0,1y VW) (2(1,0)%8 ¥V T1) (22,0 V T2) =0.

The first set of equations represents the transition relation
of M in terms of the decision variables and states. The first
state of M (0) is always a state of M’. State 1 will be a state
of M’ if 0 is a state of M’ and the transition 6(0, z) is in M’,
which is represented by assigning 1 to x(p,1); or if state 2 is
a state of M’ and the transition §(2,zc) is in M’, which is
represented by assigning 1 to the Boolean variable z(3 o). A
similar reasoning yields the third equation.

In the second group of equations, we represent the set of
valid assignments for each state and conditional expression.
The first equation states that the only possible choice for state
0 is to make a transition to state 1, and thus, (g ;) should be
assigned to 1. Similarly, when ¢ is false on state 1, since the
only possible choice is a transition to state 0, this transition
should be a transition of M’. In the transition between states
1 and 2, there are two possible choices when c is true, and
only one of those transitions should be assigned to M’.

In the third set of equations, we guarantee that for any
causality constraint of the type a - (x : 0)* - b, where a and
b are actions and z is a decision variable, at least one state
of M’ will have z assigned to false, i.e., b will eventually be
scheduled.

A assignment satisfying this set of equations is given by
Yo=y1=Y2= 1,201 = T12= T2 = 1,71, = 0. O

6.1. Selection of a Cost Function

In the previous section, we considered just the formulation
of the constraints to find an implementation of a finite-
state representation. In system-level designs, we want to be
able to distinguish possible implementations with respect to
some cost measure in order to be able to select the optimal
implementation. In addition, the designer should be able to add
information about the environment. In our tool, the designer
is allowed to control the synthesis solutions by specifying
flexible objective functions, i.e., cost functions whose goals
may be different for the different regions of the specification.
For example, in a nested loop structure, the synthesis goal may
be minimum delay for the inner loop, but minimum area for the
outer loops. We will show here how to specify scheduling and
binding cost functions by using actions and guards. Then, we
will generalize the procedure by showing how the designer can
specify more general objective functions with CFE’s, whose
goals change with the different regions of the specification.

6.1.1. Selecting Minimum Scheduling Costs: In synthesis,
one of the primary goals is to obtain circuits whose running

time is minimum. The selection of minimum scheduling
costs using using control-flow expressions uses the following
observation. In single-source single-sink acyclic CDFG’s, the
synthesis of minimum schedules is equivalent to minimizing
the execution time for the sink node of the CDFG. Thus, every
time an operation is delayed one cycle, we can associate an
action O (corresponding to a delay of one cycle) that is inserted
between the action which was delayed by one cycle and the
action executed previously (Section IV). As a result, we can
quantify the scheduling and causality constraints by counting
the number of zeros inserted by the synthesis procedure.

The advantage of this method is that we may select fast
schedules with respect to a restricted portion of the specifi-
cation, or with respect to some set of conditionals, instead of
just the minimum global schedule, giving more flexibility to
the other parts of the specification.

We can express the scheduling cost of an implementation
by considering the causality and scheduling constraints of the
specification. For causality constraints of the type (z : 0)*,
where z is a decision variable, we cast the schedule cost as the
number of times x is assigned to one, i.e., the amount of delay
inserted due to decision variable . Similarly, for a scheduling
constraint of the form (z! : 04 2% : 02 + ... + 2™ : O™),
where 21,22, .-+, 2" are decision variables. Every time z* is
assigned to one, the latency of the process in which z° was
specified is increased by .

Example 16: In the Example 15, we can represent
the scheduling cost on z by the cost min Yo%(o,1) +
y1(r,e)lzaz) + Y272, where + denotes arithmetic
addition and | denotes Boolean disjunction.

This cost function represents all possible assignments = can
have in the finite-state representation. Whenever z is assigned
to one, corresponding to x(j oy, T(0,1); T(1,6)» OF T(2,c) being
assigned to one, the execution time of process ps increases.
Thus, any assignment to x that minimizes the number of
times x is one over time (corresponding to the assignments
of T(1,c),T(0,1), T(1,5)> OF x@‘c)) reduces the latency of ps.

The user specifies this cost function by requesting a min-
imization of the assignments of z over time, which can be
automatically translated to the cost function given above. [

6.1.2. Selecting Minimum Binding Costs: In order to select
a binding cost, we will have to define a partial cost function
for actions, called here 5. We then compute the disjunction
of every transition of M’ that contains action a, and weight
this disjunction by S(a).

Example 17: In Example 10, we rewrote the control-flow
expression of the original specification in order to include
binding constraints.

We can represent the binding cost of an implementation by
the formula

min B(M:)[Vr,, | + B(M2)[Vry, | + B(Ms)[Vr,,]

where 3(M;) is the cost of component M;, and Vr,, denotes
the disjunction of all transitions of the implementation that
contains M;. Note that due to the complexity of the Boolean
formula representing the disjunction of the set of transitions
containing M;, we decided not to put them explicitly here.

870 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

This formula states that the cost of M; (1 € {1,2,3})
contributes to the cost of the implementation if at least one
transition of M with output M is a transition of M’. O

6.1.3. Generalizing Objective Functions: We showed pre-
viously how to select minimum scheduling and binding so-
lutions by specifying their corresponding cost functions. We
suggest, in this section, the combination of scheduling cost
functions, binding cost functions, and control-flow expressions
to obtain more general objective functions, such as the mini-
mization of the execution time over paths or the minimization
of the execution time of parts of a control-flow expression.

When we showed how scheduling and binding cost func-
tions could be represented in our formulation, we only con-
sidered single transitions in the cost function. Because CFE’s,
decision variables and shadow actions can be used to represent
constraints, we can combine constraint representation with
objective functions and represent the cost of the whole path
for an implementation. This combination provides the designer
with the flexibility of further controlling the synthesis tool to
change its goals according to the region being synthesized,
or to guide the synthesis tool to introduce priorities in the
synthesis process.

Example 18: In the specification of the ethernet copro-
cessor of Fig. 2, the transmission unit consists of three pro-
cesses, DMA XMIT, XMIT_FRAME and XMIT BIT. Process
DMA _XMIT receives a block as a byte stream from the bus and
transmits it to the process XMIT_FRAME, which encapsulates
the block with a frame and sends it to process XMIT BIT.
Thus, the transmission unit can represented by the control-
flow expression dma_zmit||cmit_frame||xmit_bit, with the
appropriate synchronization corresponding to data transfers.

Let us consider the transmission of data from dma xmit
to xmitframe to be represented by action a, the
transmission of data from xmitframe to xmitbit to be
represented by action b, and the initialization of the
transmission command by action ¢. Thus, the expression
dma.xmit||zmit_frame||xmit_bit]|(zq 0)* -4 (w1
0)* - a - (z2 : 0)* - b encapsulates with decision variables
z1 and z9 all possible schedules of the transfers in the
transmission unit. Thus, minimizing a cost function defined
over the assignments to (z1, 22) will correspond to minimizing
the execution time of the path that begins with the execution
of the transmit data command, and ends at the transmission
of the first bit. O

Note that the designer should be able to provide only cost
measures by specifying which parts of the design he wants to
tag with a cost function. The actual composition of the cost
function and the computation of which transitions will be used
in the cost function can be determined automatically.

6.2. Comparison with Other ILP Methods

We are going to analyze the procedure given above to
obtain an implementation that minimizes or maximizes the cost
functions defined above. We will compare the basic complexity
of the algorithm with problems they are able to solve.

Most previous approaches to scheduling and binding are
usually restricted to single-source, single-tail control-data flow

graphs [4], [32], [36]-[40], [41], i.e., specifications in which
the concurrent parts are restricted to begin at the same time,
or to specifications which are dataflow intensive, as in the
case of DSP’s [42], [43]. Although those systems can also
be synthesized with our approach, we further extend those
methods by synthesizing the concurrent parts that may be run-
ning at different speeds or that may have complex interactions.
In addition, we also consider the synchronization among the
different parts of the system, which is only considered in a
limited way in [3], [4]. In [44], a reconfiguration procedure
for datapaths was described, but this reconfiguration is used
only in case of failure.

Among the approaches to scheduling mentioned above, we
are going to compare the execution time of our approach
with exact methods using 0-1 integer linear programming
formulations, such as [32], [38]. For single-source, single-tail
control-data flow graphs, our method pays a penalty in the
number of variables to be solved by the ILP solver, which
is greater by a constant factor with respect to these other
approaches. However, our methodology outperforms those
other approaches in that it can handle loops, synchronization,
and multirate execution of concurrent models.

If we consider the finite-state machine representation M of
a control-flow expression p with n, states, n. conditionals and
ng decision variables, then the number of variables in the worst
case will be on the order of O(nsny2"). Note, however, that
in practical terms this upper bound is never reached, since not
all decision variables will be evaluated in every state and not
all possible expressions on conditionals are evaluated at the
same time. If we compare this complexity with the complexity
of the 01 ILP method of [32], we note that n related with the
number of control-steps an operation can be scheduled in [32],
ng is related with the number of operations to be scheduled
in [32] and n. = 1 in [32], since no conditional paths can be
specified in the formulation.

6.3. Solution of the ILP

In order to solve this set of 0—1 ILP equations, we developed
a solver based on binary decision diagrams (BDD’s) to obtain
the set of solutions that minimizes/maximizes some cost
function. :

The reason for obtaining the set of solutions is that the user
may be interested in further constraining a previous solution,
or dynamically selecting which solution should be taken. For
example, in a problem of determining which transaction should
take a bus, the user may want to specify that during some
cycles no transaction may be able to access the bus.

We refer the reader to [45] for an introduction on BDD’s.
BDD’s have been used in several different applications, in-
cluding the solution of 0—1 Integer Linear Programming [46],
because of its low space complexity to represent some types of
Boolean functions. In these problems, each equation of the 0-1
ILP problem is represented by a BDD. This BDD describes a
function whose assignments to the Boolean variables satisfy
the ILP equation. In a 0-1 ILP problem, the problem is
specified as a set of equations and a cost function, that should
be minimized or maximized. An assignment satisfying this set

COELHO AND DE MICHELL: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 871

then else

then se

0

BDD representing the constraint 4z1 4 5z < 8.

Fig. 15.

of equations can be obtained by conjoining the BDD’s for the
different equations, and a solution that minimizes/maximizes
a cost function can be obtained by a branch-and-bound on the
set of valid assignments to the conjoined BDD with respect
to the cost function.

Example 19: The equation 4z, + 522 < 8 is true by any
assignment satisfying the Boolean formula z; V T3, whose
BDD is shown in Fig. 15. |

We developed a BDD-based ILP solver that extended the
solution method presented in [46] by allowing equations not
to be limited to linear equations on the Boolean variables,
but to linear equations on Boolean functions over Boolean
variables. Although the problems both solvers can solve are
still the same, since the Boolean constraints can be represented
by a set of linear separable equations, our solver has a smaller
number of Boolean variables and equations to solve than the
former when the equations include Boolean functions.

6.4. Derivation of Control-Unit

We now show how we can obtain an implementation
for the original processes from the finite-state machine M.
Because M’ was obtained by finding an implementation
for the system p = pi]|--«]||p, that minimizes some cost
function, we can obtain a control-unit implementation for
each p; satisfying the assignments to the decision variables
in M’ by projecting these assignments into p;. Thus, from the
submachine M’ = (I,0,Q’, 8, X, go), we construct machines
M; = (I;,0;,Q,8;, Ai, qo) for each concurrent part p; of
p.M; will be the control-unit for this concurrent part of p.

The set I; of inputs to M; corresponds to the set of
conditional variables of I. O; corresponds to the multiset of
actions of M. This multiset is a subset of O, restricted to the
multisets of actions that can be generated from p; alone. The
transition function §; has the same transitions of &', but with
the set of inputs restricted to ;. The output function A; is a
restriction of A’ in such a way that the inputs are restricted to
I; and only the actions specified in p; are maintained in A;.

Let us interpret this new transition function §; and the
output function);. Suppose we computed the finite-state
machine representation N for p; alone. In this finite-state
machine representation, let us assume a state transition and an
output generation that is dependent on some decision variable.
After synthesizing the finite-state representation for p, and
obtaining M;, the transition of N was replaced by one or more
transitions which depended only on the conditional variables.

Even if the number of states in N and M; does not agree,
there will be equivalent transitions for N and Af; such that
for each two equivalent states of N and M;, there will be two
corresponding transitions. Thus, this change in the transition
function can be interpreted as if the decision variable of p;
were assigned the Boolean expression associated with the
transition of §;. This mechanism can be used to dynamically
reconfigure the system according to the system’s state, based
on the conditionals.

In practice, we would like to keep the number of possible
schedules for a given operation small because dynamically
scheduling an cperation increases the complexity of the con-
troller for a model. In our case, this was achieved by the
following observations. First, a control-flow expression is
unrolled only if it is necessary to generate a new state, since
equivalent states are grouped together. Second, the controller
obtained is a finite-state machine partially specified with
respect to the conditionals whenever possible, because we
leave room for sequential logic optimizers to further optimize
the final controller.

Example 20: In the synchronization example discussed
in previous examples, our goal is to obtain a control-unit
implementation for p3. Note that the assignment presented in
Example 15 eliminates the transition from state 1 to state 2
when c is true. If we restrict the implementation on the actions
generated by ps = ((z : 0)* - ¢)*, we obtain the finite-state
machine presented in Fig. 16. O

The reader should note that the finite-state machine we ob-
tain by the procedure above does not guarantee any minimality
with respect to the number of states, but just a finite-state
machine that satisfies the original constraints and minimizes
latency, which is the primary optimization goal. We use the
state minimizer Stamina [47] to obtain the minimum number
of states for the control-flow expression. In fact, in Example
20, an implemeatation with minimum number of states can be
obtained with just two states.

Note that the complexity of the finite-state machine for each
of the control-flow expressions will have a complexity of the
product machine in the worst case, i.e., when the amount
of synchronization among the machines is high. However,
if the amount of synchronization among several control-flow
expressions is high, then the number of states of the finite-state
machine will be much lower than the product of the number
of states for the finite-state machine of the individual control-
flow expressions. Thus, we do not expect the final complexity
of the machines to be much higher, except for the subparts that
are not tightly coupled. Note, however, that we can always find
transformations of the control-flow expression that maximize
the tightly coupled regions of a control-flow expression [48].

VII. IMPLEMENTATION AND RESULTS

We implemented a program to synthesize controllers with
dynamic schedules from control-flow expressions in 20000
lines of C, and a 0-1 ILP solver using BDD’s in 3000 lines
of C.

Since the technique presented in this paper is targeted for the
synthesis of concurrent systems under synchronization, which

872

(AO) @.0) @11 0.(c:0)*a) 11 (x:0)".2) @

AN

.
\\/

< 1> 0.(a.0) (D“ (c:0)*.a.(0.(c:0)".a) 0)” {(x:0)*.a) ®

AN

(@ @0y (c:0)*.a.(0.(c:0)*.a) Oy ((x:0)*.a) @

Fig. 16. Finite-state machine for control-flow expression ((z : 0)*

is a new area, there are no standard benchmarks yet. Thus,
instead of comparing our approach with the existing techniques
for scheduling and binding using standard benchmarks, we
will show an application of this technique for designing the
circuits described in Section II.

7.1. Applying Scheduling Constraints to
the Ethernet Coprocessor

We consider here the Ethernet coprocessor of Fig. 2. In that
figure, let us focus on the transmission unit. As mentioned
in Example 18, the transmission unit is composed by three
processes, dma_xmit, xmit_frame and xmit_bit. Upon receiving a
byte from process xmit_frame, xmit_bit sends the corresponding
bit streams over the line TXD. Thus, xmit_bit must receive each
byte eight cycles apart, which constraints the rate in which the
bytes are transmitted from xmit_frame.

Process xmit_frame was specified as a program state ma-
chine written in Verilog HDL, as shown in Fig. 17, and it
was also specified with an exception handling mechanism, i.e.,
the disable command of Verilog HDL. We refer the reader
to [48] for additional details on the implementation. Table II
presents the results for the scheduling of xmit_frame from
its control-flow expression model. The first column shows
the number of states of xmit-frame before scheduling the
operations. The second column shows the number of states
after state minimization. The third column shows the size of
the constraints in terms of BDD nodes, used by the BDD ILP
solver. The fourth column shows the execution time taken to
obtain a satisfying schedule minimizing the execution time of
the process. Note that by having a finite-state representation of
the behavior of the system in two different implementations,
we were able to obtain two comparable implementations in
the number of states.

7.2. Protocol Conversion for a PCI Bus

We implemented the four models for the reading and writing
cycles of the PCI local bus and the SDRAM mentioned in
Section II-1-2 in 230 lines of a high-level subset of Verilog
HDL, with the corresponding CFE’s having similar complex-

ca)v.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

———- 0 jc:(hma
(v

cCT”

ether_xmit = preamble;
txrestart = 0;
discon_b=1;

if (counter < npreamble)
counter++;

ccT!

elge
state = 'SFD;

discon_b=0;
xmitidle = 1;
wait (txstart);
xmitidie = 0;
wait (DMAxmit);

st = 'PREAMBLE;
counter = 1;
parity = 8’hff;

ether_xmit = sfd;
b = DMAxmit;
state = 'DEST1;

ether_xmit = b; b
parity = parity * b;
b = DMAxmit;

state = 'DEST2;

cCcT’
Bther_xmit = b;

counter++;
else

state = 'DATAEND;

Fig. 17. Program state machine for process xmit.frame.
TABLE II
RESULTS OF THE zmit_frame SYNTHESIS PROBLEM
States | Constraint | Time
xmit-frame {except.) || 178 | 90 324 | 15.7s
xmit-frame 178 | 90 989 87s

ity. These models are predefined libraries that can synchronize
with any circuit. We thus use the technique of synchronization

COELHO AND DE MICHELI: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS

873

TABLE III
PCI/SDRAM PROTOCOL CONVERSION EXAMPLE
States | States States Execution | Actions | Conditionals | Decision
Model PCI SDRAM | PCI 4+ SDRAM | Time Variables
READ |7 15 34 3.5s 16 8 6
WRITE | 6 7 30 1.6 s 15 8 3

synthesis in order to synthesize a combined controller that is
smaller than the two separate controllers.

Table IIT shows the number of states for the controllers in
terms of a Mealy machine, when each part is synthesized sepa-
rately, and when the controller for both models is generated as
a single controller, which is highly desirable, since both parts
are highly synchronized. Although the number of states in the
single controller is higher than the number of states used when
both specifications are synthesized separately, the total number
of registers used is smaller, due to the reduction of unreachable
states of both specifications. (For example, a SDRAM transfer
does not occur if the PCI is not also transferring data.) We
also show the number of actions, conditionals, and decision
variables for both descriptions. In both cases, we attempted to
minimize the execution time of the combined description.

VII. SUMMARY AND CONCLUSION

We considered in this paper the modeling and synthesis
problems for specifications that are better described as a set of
concurrent and interacting parts, or multiprocess descriptions.
For these specifications, current synthesis tools achieve subop-
timal results, due to the local scope of such tools, i.e., they do
not consider the reconfigurability of one part of a specification
with respect to the other parts.

In order to capture the degrees of freedom available in such
designs most effectively, we developed a modeling technique
for control-flow dominated specifications, and we presented
a methodology for automatically obtaining the controllers for
the concurrent parts of the specification.

Modeling was performed in the algebraic domain, which
we called the algebra of control-flow expressions. Using
control-flow expressions, the system was abstracted in terms
of its control-flow. Control-flow expressions were manipulated
algebraically with operations such as term rewriting, and syn-
chronization specification. Constraints were also represented
as control-flow expressions, which allowed an uniform method
for representing the specification and constraints.

Synthesis was performed in the state-space domain. We
showed how a control-flow expression can be translated into
a finite-state representation, where the analysis and synthesis
tasks were performed. The conversion from a control-flow
into a finite-state machine was achieved by computing the
derivatives of a control-flow expression. We showed that the
number of derivatives was finite, and that only a finite number
of iterations was necessary to obtain all the derivatives of an
expression.

Analysis of a control-flow expression was performed by
checking for emptiness of the corresponding finite-state ma-
chine representation. This allowed us to check if a specification

was overconstrained, and thus conclude that no solution ex-
isted for the synthesis problem.

Synthesis was cast as an 0-1 ILP problem. In the ILP
formulation, the designer was allowed to specify flexible
objective functions in order to have a better control over
the synthesis procedure. These functions allowed the different
regions of computation of a system-level design to have
different goals, which were satisfied during the synthesis of
the specification.

The ILP problem was solved using a BDD solver. Among
the advantages of this solver was that it included the reduced
number of variables that needed to be handled and the capa-
bility of considering intermediate solutions, i.e., the capability
of adding synchronization elements at the end of the synthesis
process to allow for extensibility of the design.

Reconfigurability of a process with respect to the process’
environment was achieved by allowing an assignment to a
decision variable to vary over time. Thus, at different states
of the system we were able to obtain different assignments to
the decision variables.

As future work, we are currently investigating possible
extensions to control-flow expressions. Among them, we are
considering the specification of constraints as negations of
CFE’s, addition of an exception handling mechanisms to
CFE’s, and the incorporation of internal variables. Since
the size of the finite-state machine for each control-flow
expression depends heavily on the amount of synchronization,
we intend to use this fact to reduce the size of a finite-
state machine when synthesizing the finite-state machine for
a control-flow expression, and to facilitate the specification
of constraints. With this new method, the complexity of
the intermediate representation would be further reduced. In
addition, the synchronization of the different parts can be
further reduced by considering synchronization only at small
blocks or subparts of the specification, instead of considering
the full specification. Finally, we are currently investigating
the use the algebra of control-flow expressions to perform
high-level restructuring of the control-flow.

APPENDIX A
DERIVATIVES

We show in this appendix how we can use the computation
of derivatives to compute the suffixes of a CFE, and that
derivatives of a CFE correspond to the cycle-by-cycle simula-
tion of the CFE. In order to define derivatives of a control-flow
expression, we need to know if the control-flow expression
can execute in zero time. Thus, we define a function A that
returns a Boolean expression over the set of conditionals and
decision variables for those guards that enable zero-cycle paths
(or e-paths) in a CFE.

874 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

Definition A.1: Let A : F — G be a function defined
recursively as follows:

1y
A(f:€)=f,where f€ g
A(§) =0
A(a) =0, where a € MA.

2) Let P,Q € F and let A(P) and A(Q) be the guards
that generate ¢ in P and @, respectively. We assume that
if ¢1,¢2,9 € G, and that for any two guards f and g, fg
is the conjunction of f and g, that f|g is the disjunction
of f and g and that f is the negation of f

A(P-Q)=A(P)A(Q)
Aler : P4 ez Q) =1 A(P)|e2 A(Q)
Al(g: P)") =7
A(P¥) =0
A(PlIQ) = A(P)A(Q).

The function A determines which assignment to condition-
als and decision variables make a control-flow expression
execute €, that executes in zero time. Assume for some
CFE p,A(p) # 0. If we compose p inside a loop ((c :
p)*) or in an infinite computation (p~),(c : p)* and p*
will violate the synchrony hypothesis and the synchronous
execution semantics we defined earlier, since in (¢ : p)*, or
similarly for p*, there is at least one assignment to the guards
that would make ¢ be evaluated consecutively in the same
clock cycle.

Definition A.2: Let p be a control-flow expression. We
say (¢ : p)* and p* are well-formed CFE’s (WFCFE’s) if
A(p) = 0.

Although nonWFCFE’s appear in real life specifications,
synthesis tools always make the assumption that each loop or
infinite repetition will take at least one cycle. Thus, we must
be able to convert nonWFCFE’s into WFCFE’s such that the
* execution time for the non-¢ executions is maintained, and a
delay is generated for e executions.

Theorem A.l: Let A(p) # 0, for some CFE p. Then
Alp- (A(p) : 0+ A(p) :) = 0. -

Proof: A(p-(A(p): 0+A(p) :) = A(p)A(p) = 0 m

Note that for any other assignment to the conditionals and
decision variables such that the € is not executed in p, an ¢ is
executed in (A(p) : 0+ A(p) : €). We have thus shown that
for any nonWFCFE, we can obtain an equivalent CFE which
is well-formed. Thus, we will consider in this appendix CFE’s
which are WFCFE’s, since they will correspond to circuits
that will be implemented.

The derivatives of a CFE correspond to a cycle-by-cycle
simulation of the CFE. Since actions in a control-flow expres-
sion have a single-cycle semantics, a cycle-by-cycle simulation
of a control-flow expression is equivalent to extracting all ac-
tions that can be executed next from a control-flow expression.

We will represent the derivative of a control-flow expression
by the operator 0. This operator, when applied to a CFE,
yields a triple in G x MA x F, where G is the set of Boolean
expressions over the set of conditional and decision variables,

MA is the set consisting of multisets of actions, and F is
the set of control-flow expressions. The triple (v, u,7) €
G x M x F obtained from a CFE p indicates that the actions
1 are executed when +y is true, followed by the execution of 7.

Definition A.3: Let 9 : 7 — (G x M* x F) be defined
as a derivative of a control-flow expression, given recursively
as follows:

o(f: 6) :{(ﬁe’e)}
o(f: a) :{(fva,6>}
8(8) =0, the empty set
9(f :0)=(£,0,¢)
p-a) ={(v,p. 7 9)|(v,p,7) € Bp}

U{{A(p)y, u, m)I(7, 1,) € 9g}
frp+ f2:q) ={(frv,,m)|(7, ,7) € Bp
A #)F UL(fay, i, m)| (v, 1y 70)
€ 9g N (1 #€)}
(p*) ={(v, s)| (v, 11, m) € (p - p*)}
O(f o)) ={(frs, (v, p1,7) €0 - (f : p)*)}
pllg) = {(vp A g 11p U Bas Tpl [T)| (Yps By Tp)
€ O A (g, g, Tq) € Oq}.

Example 21: Let p = (a- b - ¢)~.

Ip ={(v,p,m)|(v, 7)€ 0(a-b-c-(a-b-c)*}
:{(77/-L77r'b'c' (a-b~c)w)1(fy,,u77r) e@a}U@
={(true,a,b-c-(a-b-c)¥)}.

Thus, after the first cycle in which action a is executed, p
transforms into b- ¢ (a-b-c)*. d

Now, let us extend the definition of 9 operator to the iter-
ative application of J to a control-flow expression. Since we
can consider each application of J as a one-cycle simulation
of the control-flow expression, then the iterative application of
0 corresponds to a multicycle simulation of the control-flow
expression.

Definition A.4: Let p be a control-flow expression. 9'p is
defined recursively as follows:

8'p =dp

J'p = U ar.

(7,u,m)EUSZ] 89p

Let us now define formally what is a suffix of a control-flow
expression.

Definition A.5: Let p be a control-flow expression. Then ¢
is a suffix of p if ¢ = p or if In, vy, : (v, 1, q) € O"p.

The definition above allows the following formula to be
used for computing the set of suffixes of a control-flow
expression

Suffixes (p) = UpZy {7 |(v, 4, 7) € 0"p} U {p}.

Although the formula presented above computes all the
suffixes of a control-flow expression, the formula does not
specify that the number of suffixes is finite, and neither does
it specify that the set of suffixes can be obtained after a

COELHO AND DE MICHELIL: ANALYSIS AND SYNTHESIS OF CONCURRENT DIGITAL CIRCUITS 875

finite number of iterations. Thus, we have to show that this
procedure is in fact effective, i.e., that it will terminate after
a finite number of iterations.

In order to show that the nurnber of suffixes is finite, we
first have to eliminate any two suffixes that are equivalent,
according to the following definition.

Definition A.6: Two control-flow expressions p and ¢ are
equivalent if one can be obtained from the other using the
CFE axioms (Table I).

Example 22: The control-flow expression (a - b - ¢)¥ is
equivalent to ¢ - b-c- (a-b-c)*.

Thus we will only consider the set of suffixes for a control-
flow expression such that no two suffixes are equivalent. This
set of suffixes will be called the set of irredundant suffixes of a
control-flow expression. In the rest of this paper, we will refer
to the set of irredundant suffixes of a control-flow expression
just by the set of suffixes of the control-flow expression.

The following theorem shows that the number of derivatives
of a control-flow expression is finite, considering that any
two equivalent control-flow expressions are represented by the
same set element during the computation of a derivative.

Theorem A.2: Every control-flow expression p has a finite
number of derivatives, i.e., |U2, 8°p| (the number of elements
of this set) is finite.

Proof: We are going to prove this theorem recursively
on the number of CFE compositions.

1) Basis: | U2, 0%(f : @) < 2 and | U2, 06| = 0

2) Inductive Step: Let | U, 9'p| < N, and U2, d'g| <

N, for control-flow expressions p and ¢

< (JuRed'p| x |UZd'q)
+ U200 (Ap) : 9)
SNpNg+ Ny
c1ip+etq)] <|Ue0 ey 1 p)]
+|URod(cz : q)
<Ny + Ny
U260 (plla)| <|URo0'P
<NpNy
U200 (n)] < U2 (p - p*)]
< 2|Us2e0'p|
<2N,
|Us20* ((c : p)")| < U0 (e 2 poc: p)")
<2|Ud" (p.(c 1 p)")|
< 2N, n

U260 (p - q)

JUzZ00"(

Theorem A.3: For any control-flow expression p, there

exists N such that for all M >N UN §'p = UM, 8'p.
Proof: Suppose UY ; 0'p = UfV:_ll d*p, but uﬁ\jll O'p #

UN, &%, where N is the least integer in which this occurs.

Since UN 1 'p = (UN,,8p) U (9N +1p). Then OV F1p
must contain some derivative not included in U

We defined 9V *1p = U, , ryeun | 51, - Note that we have
U, d%p = UY ! 9%p. Thus, 9V +1p = Uy umeul = aipT =
ONp, and U,ﬁ:ol d'p = UN, &'p, a contradiction.

In summary, we presented a way to compute all the suffixes
of a control-flow expression. We also showed that the number
of suffixes is finite, since the number of derivatives is finite,
and that only a finite number of derivatives is necessary to
obtain the sets of suffixes.

APPENDIX B
FORMULATION OF MULTISYNTHESIS
PROBLEM AS 0-1 ILP INSTANCE

We formulate the problem of finding an implementation for
the finite-state representation as an ILP instance. We will use
here z, fx,c and f¢y, as defined in Section VI. Let us define
also fg which stands for (Vo € z) fx (z = Z'p)fC)|z, i.e., the
formula obtained by replacing every occurrence of z € fx
by Zp, fC.

Finally, let X = {z,, fC,} U {yp} be the set of all Boolean
variables defined previously for the finite-state machine M.
We want to obtain an assignment to the variables in X such
that the following set of equations hold.

* The initial state of the finite-state machine M is a valid
state of every implementation M’ of M:y, = 1, where
p denotes here the original control-flow expression.

« Each state p’ of M is a state of M’ (y, = 1) if for every
transition to p’ ((p, fx fo.v') € P),yp, = \/py,,f)ci-'7 ie.,
p’ is a state of M’ if there is a state p that is a state of
P’, and there is an assignment to X such that f)C(' = 1.

* For each alternative composition in which the guards are
decision variables—such as in the case of the module
selection or in scheduling constraint specification—only
one decision variable should be frue for a given state of
the finite-state machine.

This statement is captured by following formula:
Y@y f~ = 1, for all p and transitions §(p, f) = p’
and A(p, f) = a such that x € z, and X denotes the
arithmetic addition.

» For each causality constraint (x : 0)*, where z is a deci-
sion variable, we assume that eventually the computation
should proceed. In other words, there is at least one state
of the implementation M’ in which 2 should be different
from one.

The following equation
Ns(p,fy=p' e F)=a (N Tp.5cy V Yp) = 0.

captures this constraint:

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for
their many helpful comments.

REFERENCES

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw Hill, 1994.

[2] G. Berry and G. Gonthier, The Esterel Synchronous Programming
Language: Design, Semantics, Implementation. Paris, France: Ecole
Nationale Supérieurc des Mines de Paris and Institut National de
Recherche en Informatique et Automatique, 1988.

[3] Y.-H. Hung and A. C. Parker, “High-level synthesis with pin constraints
for multiple-chip designs,” in Proc. Design Automation Conf., June
1992, pp. 231-234.

876

(4]

—
ENE

{7

[8]

(10]
[11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
{20]
(21]
[22]

[23]

[24]
[25]
[26]
[27]

(28]

[29]

(30]
[31]

{32

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 8, AUGUST 1996

D. Filo, D. C. Ku, C. N. Coetho Jr., and G. De Micheli, “Interface
optimjzation for concurrent systems under timing constraints,” [EEE
Trans. VLSI Syst., vol. 1, pp. 268-281, Sept. 1993.

PCI Local Bus Specification Revision 2.1, 1995.

G. Borriello and R. Katz, “Synthesis and optimization of interface
transducer logic,” in Proc. Int. Conf. Computer-Aided Design, Santa
Clara, CA, Nov. 1987, pp. 56-60.

G. Borriello, “A new interface specification methodology and its applica-
tion to transducer synthesis,” Univ. California, Berkeley, CA, UCB/CSD
Tech. Rep. (dissertation) 88/4301988, 1988.

D. Ku and G. De Micheli, High-level Synthesis of ASIC’s Under Timing
and Synchronization Constraints. Norwell, MA: Kluwer Academic,
1992.

S. Narayan and D. Gajski, “Interfacing incompatible protocols using
interface process generation,” in Proc. Design Automation Conf., June
1995, pp. 468-473.

J. Nestor and D. Thomas, “Behavioral synthesis with interfaces,” in
Proc. Design Automation Conf., June 1986, pp. 112-115.

R. K. Gupta, C. N. Coelho Jr., and G. De Micheli, “Synthesis and sim-
ulation of digital systems containing interacting hardware and software
components,” in Proc. 29th Design Automation Conf., June 1992, pp
225-230.

, “Program implementation schemes for hardware-software sys-
tems,” IEEE Trans. Comput., vol. 43, pp. 48-55, Jan. 1994.

A. Wu, D. Gajski, N. Dutt, and S. Lin, High-Level VLSI Synthe-
sis—Introduction to Chip and System Design. Norwell, MA: Kluwer
Academic, 1992.

Z. Zhu and S. D. Johnson, “An example of interactive hardware
transformation,” Indiana Univ., Tech. Rep. 383, 1993.

D. E. Thomas and P. R. Moorby, The Verilog Hardware Description
Language. Norwell, MA: Kluwer Academic, 1991.

F. Boussinot and R. De Simone, “The ESTEREL language,” Proc. IEEE,
vol. 79, pp. 1293-1303, Sept. 1991.

J. C. M. Baeten, Process Algebra. New York: Cambridge Univ. Press,
1990.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation. Reading, MA: Addison Wesley, 1979.
J. Laski, “Path expressions in data flow program testing.” in Proc. 14th
Ann. Int. Comput. Software Appl. Conf., Chicago, IL, 1990, pp. 570-576.
M. R. Paige, “On partitioning program graphs,” IEEE Trans. Software
Eng., vol. SE-3, pp. 386-393, Nov. 1977.

R. Milner, “A complete inference system for a class of regular behav-
iors,” J. Comput. Syst. Sci., vol. 28, pp. 439-467, 1984.

Y. Choueka, “Theories of automata on w-tapes: A simplified approach,”
J. Comput. Syst. Sci., vol. 8, pp. 117-141, 1974.

R. H. Campbell, “Path expressions: A technique for specifying process
synchronization,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Illinois,
Urbana, IL, UIUCDCS-R-77-863, Aug. 1976.

D. Drusinsky and D. Harel, “Statecharts as an abstract model for digital
control-units,” Weizmann Inst. Sci., Tech. Rep. CS86-12, 1986.

R. Saracco, Telecommunications Systems Engineering Using SDL.
New York: Elsevier Sci., 1989.

J. L. Peterson, Petri Net Theory and the Modeling of Systems.
wood Cliffs, NJ: Prentice-Hall, 1981.

T. H. Wang, “Repeatable firing sequences for petri nets under conven-
tional, subset and timed firing rules,” Ph.D. dissertation, Case Western
Reserve Univ., Cleveland, OH, 1988.

R. Milner, “Handbook of theoretical computer science,” Operational and
Albebraic Semantics of Concurrent Processes Cambridge, MA: Mass.
Inst. Technol. Press, 1991, vol. 2, ch. 19, pp. 1201-1242.

Z.Zhu and S. D. Johnson, “Automatic synthesis of sequential synchro-
nization,” in Proc, IFIP Conf. Hardware Descript. Lang. Appl., Ottawa,
Canada, Apr. 1993.

, “Capturing synchronization specifications for sequential compo-
sitions,” in Proc. Int. Conf. Comput. Design, Oct. 1994, pp. 117-121.
W. Wolf, A. Takach, and T. Lee, “High-Level VLSI Synthesis,” Archi-
tectural Optimization Methods for Control-Dominated Machines. Nor-
well, MA: Kluwer Academic, 1991.

C.-T. Hwang, J.-H. Lee, and Y-C Hsu, “A formal approach to the
scheduling problem in high-level synthesis, JEEE Trans. Computer-
Aided Design, vol. 10, pp. 464-475, Apr. 1991.

Engle-

[33]

[34]

[35]
[36]

(371

[38]

(39

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. Takach, W. Wolf, and M. Leeser, “An automaton model for sched-
uling constraints, [EEE Trans. Comput., vol. 44, pp. 1-12, Jan. 1995.
W. Wolf, A. Takach, C. Huang, and R. Manno, “The Princeton Uni-
versity behavioral synthesis system,” in Proc. 29th Design Automation
Conf., June 1992, pp. 182-187.

J. A. Brzozowski, “Derivatives of regular expressions,” J. Assoc. Com-
put. Mach., vol. 11, no. 4, pp. 481494, Oct. 1964.
C. H. Gebotys, Optimal VLSI Architectural Synthesis.
Kluwer Academic, 1991.

T. Kim, J. W. S. Liu, and C. L. Liu, “A scheduling algorithm for con-
ditional resource sharing,” in Proc. Int. Conf. Computer-Aided Design,
Santa Clara, CA, Nov. 1991, pp. 84-87.

I. Radivojevi¢ and F. Brewer, “Symbolic techniques for optimal sched-
uling,” in Proc. Synth. Simul. Meeting Int. Interchange—SASIMI, Nara,
Japan, Oct. 1993, pp. 145-154.

L. Hafer and A. Parker, “Automated synthesis of digital hardware,”
IEEE Trans. Comput., C-31, pp. 93-109, Feb. 1982.

P. Marwedel, “Matching system and component behavior in mimola
synthesis tool,” in Proc. Euro. Design Automation Conf., Mar. 1990, pp.
146-156.

K. Wakabayashi and H. Tanaka, “Global scheduling independent of
control dependencies based on condition vectors,” in Proc. Design
Automation Conf., June 1992, pp. 112-115.

D. Lanneer et al., “Architectural synthesis for medium and high through-
put signal processing with the new cathedral environment,” in R.
Camposano and W. Wolf, Eds., High-Level {VLSI} Synthesis. Norwell,
MA: Kluwer Academic, June 1991, pp. 27-54.

S. Note, G. Goossens, F. Catthoor, and H. De Man, “Combined hardware
selection and pipelining in high-performance data-path design,” IEEE
Trans. Computer-Aided Design, vol. 11, pp. 413-423, Apr. 1992.

L. Guerra, M. Potkonjak, and J. Rabaey, “High level synthesis for
reconfigurable datapath structures,” in Proc. Int. Conf. Computer-Aided
Design, Nov. 1993, pp. 26-29.

R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, pp. 677-691, Aug. 1986.
S.-W. Jeong and F. Somenzi, “Logic synthesis and optimization,” A New
Algorithm for 0-1 Programming Based on Binary Decision Diagrams.
Norwell, MA: Kluwer Academic, 1993, ch. 2, pp. 145-166.

J.-K. Rho, G. D. Hachtel, F. Somenzi, and R.. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,” IEEE Trans. Computer-Aided Design, vol. 13, pp. 167-177,
Feb. 1994.

C. N. Coelho Jr., “Analysis and synthesis of concurrent digital circuits
using control-flow expressions,” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, 1995.

Norwell, MA:

Claudionor Nunes Coelho, Jr. received the B.S. degree in electrical en-
gineering (summa cum laude) and the M.Sc. degree in computer science
from the Federal University of Minas Gerais, (UFMG), Brazil, in 1988
and 1990, respectively. He also received the Ph.D. degree in electrical
engineering/computer science from Stanford University, Stanford, CA, in

1996.

He is an Adjunct Professor with the Department of Computer Science at the
UFMG. His research interests include the specification, synthesis, and formal
verification of hardware and software components for real-time embedded
systems, computer architecture, and performance evaluation of hardware-
software systems. From 1993 to 1996, he was a summer intern and a staff
member on formal hardware verification with Fujitsu Laboratories of America
and with Integrated Information Technology.

Giovanni De Micheli (S’79-M’82-SM’89-F’89) for a photograph and biog-
raphy, see p. 643 of the June 1996 issue of this TRANSACTIONS.

