166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

Scheduling and Control Generation
with Environmental Constraints
Based on Automata Representations

Jerry Chih-Yuan Yang, Giovanni De Micheli, Fellow, IEEE, and Maurizio Damiani

Abstract — We introduce a framework for synthesis of
behavioral models in which design information is represented
using an automaton model. This model offers the advantage
of supporting different constraints (e.g., timing, resource,
synchronization, etc.) with a uniform formalism. The set of all
feasible execution traces (schedules) is constructed and traversed
using efficient BDD-based implicit state-traversal techniques.

As an application example of this formalism, we present a novel
scheduling/control-generation algorithm under environmental
constraints where both the design and constraints are
represented using automata. We present an algorithm that
generates a minimum-latency schedule and a control unit
representation. This approach is able to exploit degrees of
freedom among interacting components of a multimodule system
during scheduling, and is well suited for system-level design,
where component encapsulation and interfacing are important.

1. INTRODUCTION

SPECIFICATION of a circuit and/or a system at the be-

havioral level consists of a description of its functionality
and implementation constraints. Existing high-level synthesis
tools often rely on ad-hoc representations of constraints.
Moreover, the synthesis of multimodule systems consisting of
several interacting components, possibly with heterogeneous
implementation styles, demands design tools to deal with
nontraditional constraints that go beyond the traditional tim-
ing and resource constraints. For example, when considering
scheduling independently two (or more) modules that ex-
change data, there are constraints due to data transfers. These
constraints delimit the flexibility that can be used to optimize
individual components. It is the purpose of this paper to model
circuits and constraints in a uniform and efficient manner,
and to present a synthesis paradigm that takes advantage of
all degrees of freedom described by the model. While this
method is applicable to usual high-level synthesis problems,
it is particularly well suited for the design of multimodule
systems, where component encapsulation and interfacing are
important.

Manuscript received January 4, 1995; revised July 26, 1995. This work
was- supported in part by ARPA, under Contract DABT63-95-C-0049, by
the ESPRIT III Basic Research Program of the EC under Contract 9072
(Project GEPPCOM), and by a Hitachi Graduate Fellowship. This paper was
recommended by Associate Editor R. Camposano.

J. C.-Y. Yang and G. De Micheli are with the Computer Systems Labora-
tory, Stanford University, CA 94305 USA.

M. Damiani is with D.E.I, Universitd di Padova 35100 Padova, Italy.

Publisher Item Identifier S 0278-0070(96)01845-3.

1.1. Overview

This paper is mainly concerned with scheduling and con-
trol generation under constraints, e.g., timing, resource, and
synchronization. Scheduling problems (e.g., under resource
constraints and/or release-times/deadlines) are generally in-
tractable [1]. Scheduling has been formulated and solved
exactly as integer-linear programming problems [2], as well
as using approximation techniques based on heuristics. Gajski
et al. [3] present a survey for many graph-based schedul-
ing techniques, most of them heuristics. A specialized in-
stance of scheduling with synchronization constraints is dealt
with in the form of interface matching in [4]. However,
the restrictions placed on the communicating components
prevent the algorithm from treating general synchronization
constraints.

Recently, Radivojevié and Brewer presented an exact
method using BDD’s to solve scheduling under constraints
[5]. By using BDD’s to unmiformly capture sequencing
dependencies and constraints, the method demonstrates that
it is efficient for scheduling under resource and timing
constraints.

However, in a system-level design environment, the ap-
proaches mentioned above lack the ability to effectively cap-
ture synchronization constraints among interacting compo-
nents. Failure to do so leads to nonoptimal synthesis results
because degrees of freedom between design and its environ-
ment are not fully used. For control-dominated designs, the
complexity is exacerbated since the design space is more
sensitive to the constraints than data-path designs. Takach et al.
[6] presented a finite-state modeling for scheduling problems .
known as BFSM’s. The approach allows for easy specification
of timing slacks, but does not address well concurrency and
synchronization issues. In addition, the manipulation of states
is explicit, which may limit the size of problems that can be
handled.

Our work addresses the deficiencies of previous approaches
by proposing a new representation of the design space under
constraints, and an efficient exact solution method to the
scheduling and control generation problem. We show that
modeling of system-level components is especially suitable for
this framework. Our model differentiates from [7] in that we
focus on automata construction from HDL models and their
implicit manipulation, rather than on control-flow abstraction
by means of expressions.

0278-0070/96$05.00 © 1996 IEEE

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 167

Process A1 {
A: write RQST = 1;
B: wait (ACK);
C: write DONE = 1;

Process A2 {
X: wait RQST =1;
Y: write ACK = 1;
Z: wait DONE = 1;

6O
O

|
®
®

EO

© @&

latency: 3 to infinite latency: 3 to infinite

@ (b)

Fig. 1. Synchronization scheduling example.

The first goal of our work is a formally consistent complete
representation of the control-flow design space in high-level
synthesis. This representation makes it possible to derive an
optimal design of control, i.e., with minimum latency. We
represent the components of a design as a set of interacting
components, and use notions from trace theory [9], [10] to
capture the sequential behavior of components. Finite-state
automata are used to represent these traces.

Automata modeling is able to capture design information at
many levels during synthesis [11], [12]. In this paper, we use
this formalism to derive a synthesis flow for control-dominated
designs. The design information, as well as the constraints,
are uniformly treated using finite automata as the underlying
model.

An important aspect of our approach is that the automaton
model is a specification and synthesis tool, which initially
does not prescribe the cycle-by-cycle behavior of the circuit.
Representing the set of possible execution traces, or schedules,
through automata allows us to reason about the behavior of
the design. In this respect, our work is different from the
research focused on control-unit optimization at the logic level
[13]-[15].

In order to handle efficiently the set of automata that
form the design representation, we leverage results from
implicit state enumeration of finite-state machines (FSM’s)
using BDD’s. The resulting BDD model implicitly enumer-
ates all feasible schedules that satisfy the specification and
its constraints. From this model, latency minimization and
control generation are performed. Retaining a ser of fea-
sible implementations (as opposed to picking one sched-
ule/implementation) has the advantage of allowing additional
constraints to be applied in later stages of synthesis (such as
register and interconnection constraints).

The following example illustrates a typical application of
our approach in finding a control solution for handshaking
protocol:

Example 1: The example is illustrated in Fig. 1. Two pro-
cesses A; and Ap describing a handshaking protocol are

Product Automaton

Optimal Schedule
8%
AN (A® RQST=1

BY ACK=1
C:

(a3
8y
&Y DONE = 1

latency: 3to 5
© @

latency: 3 cycles

modeled by their pseudocode and automata in Fig. 1(a) and
1(b), respectively. Each process has wait loops due to
synchronization points. Each process also includes possible
timing constraints on its operations (e.g., operation A in A;
and operation Y in A3 can occur in 1 or 2 cycles).

Therefore depending on the synchronization and timing
constraints, latencies for both can be 3 cycles or more.
Fig. 1(c) shows the automaton where processes A; and Ay
have been considered jointly. The automaton is obtained
by taking the product of A; and Az. Due to the exact
match of synchronization conditions, the wait statements are
effectively removed in the product, reducing the upper limit
of latency from undetermined to 5 cycles. Clearly, the fastest
implementation of this protocol (Fig. 1(d)) occurs in 3 cycles.
This is found by taking the shortest path through the product
automaton. :

While this example may seem trivial, it illustrates an im-
portant point. It shows that without taking interactions into
account, the wait statements cannot be easily removed and
fastest implementation would not be found. O

Our approach attempts to explore the flexibility that exists in
interacting components of a design. In general, our framework
fits into a typical design flow as follows. First, a design is
modeled using a hardware description language (HDL), e.g.,
Verilog HDL, VHDL, HardwareC [16]. The control portion of
the design is then compiled into a set of interacting automata.
Constraints are also represented in automata form. This is
shown in Fig. 1(a) and (b) in the previous example.

An automaton representing all degrees of freedom can then
be generated by taking the product of the constraint automata
and the behavior automaton (as in Fig. 1(c)). If solutions
satisfying the constraints exist, then the product automaton
will be nonempty (Sections III and IV).

A minimum-latency schedule is then computed from the
product automaton using a shortest path algorithm (Section
VI) (as in Fig. 1(d)). We also show a simple control generation
scheme using our automata model. If the design behavior
contains conditionals or loops, it is often difficult to reason

168 " IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

in terms of schedules. In those cases, instead of generating a
schedule, we generate the control unit directly (Section 6.3).
We show that such a control unit still executes in a minimum
number of steps for any sequence of inputs. Experimental
results are presented in Section VIL

II. BACKGROUND

We consider the modeling and synthesis of systems that
consist of interacting synchronous components. Each compo-
nent runs on the same synchronized clock frequency, for the
sake of simplicity. Each component is specified by an HDL
model. Without loss of generality, we use HardwareC [16]
as our specification language. The specification is compiled
into a control-data flow graph (CDEG), which depicts the
dependencies among operations. We use the CDFG to extract
the necessary control dependencies in our modeling.

We assume hardware models can be interpreted as a set of
operations and dependencies [17], [3]. Operations are assumed
to take a single clock cycle to complete. Multiple-cycle
operations are modeled by chains of single-cycle operations.

In our framework, we focus on control portions of syn-
chronous, sequential digital systems. Since we consider the
problems of scheduling and control generation, only portions
related to control part of the behavior is needed in our

. modeling. The data path information is not explicitly modeled;
instead we model only points of synchronization between the
data path and control path.

2.1. Linking Behavior to Automata

Each component of a digital system can be modeled by
using the notion of process. Process specification can be
obtained by examining the ports through which a component
communicates with the environment. The sequence of values
that occur on the input and output ports over time can be
used to specify the behavior of the component. Processes are
modeled using infinite, rather than finite traces, because we
assume that since the system clock is always active, there
always will be a next-event. The processes we describe must
be able to accept this type of “infinite sequences,” also known
as w-words. A frace is a sequence of binary values taken over
the input/output ports at each clock cycle.

Traces are represented by sequences of variables denoting
operations -and compositional operators. Let a and b be input
symbols or expressions. The expression a-b denotes sequential
composition of two operations, i.e., b occurs after a. The
expression a - - - b denotes that b follows a and an undetermined
number of operations. The alternative operator is represented
by a + b. The expression a* denotes the Kleene closure,
i.e., zero or more occurrences of a. The expression ot is
equivalent to ¢ - a*, i.e., one or more occurrences, and a*
denotes u occurrences of a. The expression a ® b denotes
parallel composition, where the conjunction of expressions a
and b is returned.

Definition 1: Let B = {0, 1}. The set of all possible infinite
sequences over B is denoted by B“. To model a system with
inputs and outputs, let Z be the set of inputs ports, and O be
the set of output ports. Let & = (Z U O).

A synchronous trace 7, or trace for short, is an element
of the set (Blel)w,

A process is a set of traces that describe the input-output
behavior of the design. Simply put, '

Definition 2: A process P is a set of traces (i.e., P C

(Bledy),

To allow representing the languages with finite automata,
we consider only w-regular processes for the rest of the paper.
The definition of process as a set of traces is another but
equivalent form of expressing behavior, as compared to the
notion of process in HDL’s (used in Section I). We propose
a deterministic automaton model (DFA) on infinite-length
words as an efficient, finite representation .of processes. While
nondeterministic finite automata (NFA) can be more expressive
in some cases [18], they do not offer any advantage for the
types of acceptance conditions we deal with.

Definition 3: A deterministic finite automaton (DFA) A is
defined by a five-tuple (S,7,%, 4, f), where

S finite set of states;
1 € S initial state, .
. finite set of input symbols, (for our purposes, ¥ = B|"|)
§:8 x X — S state transition function;
feS final state.

From a technical standpoint, the initial and final states can
be merged to yield automata that model explicitly repetitive

processes as defined before. The software implementation of

our scheduler uses the merged notation. On the other hand,
for the sake of clarity of explanation, we keep the initial and
final states distinguished in the figures and examples of this
article. We represent graphically an automaton A as a directed
graph G(V, E), where the set of vertices V is in one-to-one
correspondence with the state set S, and the edge set &/ models
the transitions.

We define the notion of a valid trace as follows:

Definition 4: A successful run of automaton A on a trace
0 =0p---0n - is a sequence of states s =4---s, -, such
that for every n > 0, sny1. = 6(8n, 0n)-

An input sequence ¢ is accepted and called a valid trace
if it has a successful run on .A.

Other types of acceptance conditions are reported in the
literature on automata on infinite words (for example, in [18]).
These rules usually require infinite traversal of some state or
edge set in order for a sequence to be successful runs. Such
conditions are used in verification contexts to describe liveness
properties of processes and are not considered in the synthesis
aspects of this work. For this reason, we consider only the
automata and acceptance rules just defined. The traditional
product rules for ordinary automata is sufficient [19]:

Definition 5: Given DFA’s A;,---,A; over a common
alphabet), we define their product A = ®§:1Ai to be a
DFA over ¥ with the following properties:

» State space: S = ®*%_,S;

» Initial state: i = ®7_,1;

* Final state: f = ®7_, f;

* Transition function: § = ®*_,§;

where ® is the Cartesian product.

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 169

2.2. Implicit Product Computation

In our model, the constraints correspond to restrictions
placed on the set of execution traces and are modeled by
automata as well. The product of all automata modeling the
digital system and its constraints describes the trace set mod-
eling valid implementations. The technique for computing the
product automaton is the well-known BDD-based technique
which computes the product automaton using an implicit
breadth-first traversal [20], [21].

Here we present a brief review: the underlying operator used
is the image operator, which computes states reachable in one
transition given input, present state, and the transition function:

Definition 6: Let i denote the set of input variables, x
denote the present-state variable set, and y denote the next-
state variable set. The state transition relation is denoted by
y = 8(, x).

States are represented by an encoding. We will denote by
sk(-) the encoding of one or more states. In particular, s
denotes the encoding of the initial state 4.

For notational simplicity, we define the characteristic
equation x of the transition relation to be x(i,x,y) = 1.L.

In the traversal, the next state set s, ; is computed by

sk+1 = Img(s) = 3y 5 (x(i,%,y) - s(x))

where 3;(f) = fizo + fi=1 (existential quantification). Img
is the image operator.
The previous state set is computed by:

se-1 = PreImg(si) = 3 y(x(i,%,¥) - sx(¥))

where Prelmg is the inverse image operator.

In our framework, the overall design and constraint space is
defined by the set of automata A;, j = 1,2, - -, m. We utilize
the implicit procedure to find the product by defining:

e Initial state set:

m
S = H i]'
g=1
where i7; is the initial state of A;.
¢ Transition relation:

x=[1x
j=1

where); models implicitly the transition relation for A;.

We introduce a restriction function R which is used to

specify any additional conditions that may result during the

formation of the automata. R is a Boolean function that is used

to further restrict . When the restriction function is used, the
next state computation is defined as

skr1 = Img(se) = EIi,x(X(i» x,¥) - s&(X) - R(X,¥)).

Efficient implementations, such as the implicit enumeration
technique, are essential to forming the product automaton with
no size explosion.

UIn practice, i, x, y are Boolean-encoded representations of the initial,
present, and next states, respectively.

Start , Cond,
Operation ,
Done,

Fig. 2. Input symbols for an operation.

III. MODELING BASIC CONTROL FLOW WITH AUTOMATA

We model hardware as a set of concurrent processes, with
environmental constraints of several types (e.g., timing, re-
source, communication) which represent constraints on the set
of acceptable execution sequences. In this section, we show
how we map a control flow in terms of a set of automata.
While we use an explicit automata notation for the sake of
explanation, the actual manipulation of automata is done in
the implicit manner described in Section II.

The control flow behavior is modeled by defining automata
representations for several elementary control constructs. The
HDL description is first translated into a structured, inter-
mediate format such as a CDFG. Behavioral transformations
(such as code-motion optimization, dead code elimination)
can be applied at the CDFG level. The (optimized) CDFG
flow is then analyzed and mapped into automata constructs
that model elementary control constructs described in this
section. Currently, hierarchies in the description are flat-
tened.

We view behavior as a set of interacting components, where
each component is modeled by an accepting automaton. First,
we state the timing assumption for automata:

Assumption 1— Timing Semantics for Automaton: One
clock cycle expires each time a tramsition edge is taken.
No time parameters are associated with vertices.

The set of input symbols ¥ can be separated into two sets:
control signals and conditional signals. The control signals
define the start and end of execution for an operation. The
conditional signals occur in conditionals and data-dependent
loops, where run-time values determine the execution of
control flow.

Definition 7: The input symbols are defined with respect
to interaction among operations. For an operation r, the input
symbol set consists of:

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

S = Start Op sD

o o go> so...__._,()En@

S$D

Fig. 3. Automaton for an operation consuming n cycles.

S=Start B
D = Done A

S0

Fig. 4. Automaton for sequencing between operations A and B.

* Control inputs: Start, and Done, are signals that are
true at the start and finish of operation 7.

» Conditional inputs: If execution of op depends on data-
inputs, then Cond, denotes the set of conditional inputs
for r.

Since there may be more than one conditional signal for op-
eration 7, we use the vector notation Cond, = {Cond,.,,s =
1,2,---,|Cond,|}. Note that vectors are emboldened.

These signals are illustrated in Fig. 2. For conciseness, we
use S, = Start,, D, = Done,, C, = Cond,, and S, D, C
where the operation is uniquely identified

Notationally, an automaton is represented by an expression
whose supports are literals over S,, D, and C,. A minterm
in such an expression (S, D,.C,;) represents the simultaneous
occurrences of input symbols S,., D,, and C,.; on the input.

3.1. Operations

The elements of a control flow to be scheduled are called
operations. These typically include arithmetic, logic, and I[/O
operations.

Definition 8: An operation automaton for operation A
with n-cycles delay is defined by

Opa(n)=((S4a Da)*+((SaDa)-(Sa D4)"~2.(S4D4)))~.

Fig. 3 illustrates the operation automaton for operation 4
that can consume n cycles (i.e., a multicycle operation).

3.2. Sequencing Operator

The sequencing operator is the fundamental construct that
enforces the serialized execution of two operations (e.g., B
executes after the completion of A). This automaton describes
the behavior between the Done symbol of one operation (4)
and the Start symbol of the subsequent operation (B). Fig. 4
illustrates the sequencing automaton.

Definition 9: A sequencing automaton enforces that an
operation B can only start execution some time after A
completes. This is denoted by

Seaan =((Da 55)" + (DaSs)" + ((D4S5) - (D S5)°
-(D4SB)))“.

The transition from A to B in general can take anywhere
from 0 to co cycles. In the next section, we show how specific
timing constraints can be placed on sequencing automata.

Example 2: In this example, we show a graphical simula-
tion of the automata executing a simple sequence of operations.
Given two sequential, 1-cycle operations A and B, we show
the states of the automata (dark states are active) as the signals
Starta, Doney, Startg, Donep become valid. The overall
product automaton is Op4 ® Seqap ® Opp.

In this examglc, the transition from A to B takes 1-cycle,
although in general it is possible to have a O-cycle transition
(i.e., Doney = Startg = 1).

Note that it requires 4 cycles to complete a 3-cycle sequence.
This is due to each operation containing a Start—Done signal
pair, which requires two transitions to complete. Therefore,
the last Done transition (Donegp in this case) is ignored when
computing latency of the model. O

3.3. Parallel Execution of Operations

In our model, operations are executing in parallel, unless
there are sequential constraints. We use the following example
to illustrate operation and sequencing automata and the role
of concurrency. ‘

Example 3— Addition Example: The following segment
specifies a simple execution of loading, adding, and storing
some values.

Add_Process (A, B, C, X, Y)
in port A, B, C;
out port X, Y;

{

load A ;
load B ;
load C ;

X = A + B;
Y = A + C;
store X;
store Y;

ZROAGRE

We make some simplifying assumptions that there is only
one input port and one output port. The load and store state-
ments are executed in sequence. We also make the assumption
that all operations require one cycle to complete.

A CDFG annotated with the set of interacting automata
for this segment is shown in Fig. 6. The gray ovals indicate
Op automata, and arrows indicate Seq automata. The set of
acceptable traces for the execution of the HDL model is deter-
mined by the product automaton, which exhibits all possible
scheduling of operations. The segment first sequentially loads
values for A, B, and C. The sequencing of load and store

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 171

1000

0100

0010

000t

Fig. 5. Simulation of automata modeling operation A, the sequencing of A — B and operation B.

operations are fixed. The different orders in which addition
can be performed is shown in the product automaton.

We have taken the operations in the dotted box of Fig. 6,
and computed the product automaton, shown in Fig. 7. State s;
indicates the starting state of this portion of the computation.

The additions X = A+ B and Y = A+C can be performed
in one of following ways.

1) The value of X and Y being computed concurrently
is indicated by the sequence of states (s1, 54, 53) (one
cycle in doing the additions).

2) The value of X being computed before Y is indicated
by the sequence of states (s1, 3¢, $7,3s) (two cycles in
doing the additions).

3) The value of Y being computed before X is indicated
by the sequence of states (s1, s3, 52, 53) (two cycles in
doing the additions).

4) The automaton also illustrates the case where the
computations of X and Y are delayed. The. se-
quence (s1,85,++,85) shows that the operations can
wait any number of cycles before proceeding to
(337 82,5 38)’ (367 87, 38)’ or (343 38)-

Therefore, depending on the resource constraints on the
adders, or the timing constraints among operations, the product
automaton provides the flexibility in scheduling the control
flow operations. O

3.4. Conditional Operations

A key component in describing control flow is the modeling
of alternative execution flows, conditioned by the result of
some test.

A sample conditional code segment is
A;
if (O)

X;
else

Y;

D

In this framework, conditional constructs are mapped into
automata as follows. Let us refer to the previous fragment
of code. Operation X is executed if the value of a Boolean
variable C is 1; else operation Y is'executed. In order to define
completely the execution, it is important to define the time at
which the value of C is sampled. We chose to make this time
coincident with the completion of operation A. This is not,
however, the only possible choice.

Fig. 8(a) shows the CDFG relative to the fragment of code.
In the original CDFG, the two operations X and Y are hidden
under the if node by the hierarchy of the description. During
the compilation of the CDFG into the automaton, we flatten
the graph as shown in Fig. 8(b). The triangular vertices are
called fork and join, respectively.

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

] OPH(1

| op,(1

o, (1) Op, (1)

op, (1)

Fig. 6. CDFG/Automata notation for a segment of addition example.

The expansion operation corresponds to a rewrite of some
of the Start and Done signals involved. The rewriting rules
in this case are the following:

Fork node :
For node X : Dones — Doney - C
, For nodeY : Doney — Doney - C
 Join node :
For node D : Done;y — Donex + Doney

and are shown in Fig. 8(c).

A different choice of the sampling time for C' may lead to
different rewrite rules, or to the need of constructing a new
sequencing automaton for X and Y altogether.

We allow if statements to be replaced by more general
case statements, where only one branch is taken. In general,
the completion of join is specified by the disjunction of all
Done; signals, where Done; is the completion signal of the
it* branch in the conditional.

Since paths in the CDFG model are executed according to
the value of the conditionals, some sets of paths have mutually-
exclusive execution. Different models for enforcing mutual
exclusiveness, such as condition vectors by Wakabayashi et
al. [22] and path-based synthesis by Camposano [8], have
been used in the past. In our formalism, mutually exclusive
paths in the CDFG correspond to invalid execution traces and
unreachable states in the final automaton. By the definitions

Done Y Start X

Fig. 7. Product automaton for addition section.

of fork and join, we guarantee that operations that can be
executed concurrently are mutually compatible. We conclude
this section with one more example, that clarifies the role of
the sampling time of the condition signal C.

Example 4: Consider a CDFG as shown in Fig. 9. The
triangles indicate fork and join nodes, and circles- indicate
operations. If C is true, then operations W and Y execute,
otherwise operations X and Z execute. Thus, the sets {W, Y}
and {X,Z} are mutually exclusive.

The automata model corresponding to the CDFG is specified
by the product of all automata modeling the conditionals and
operations. Namely, for the conditionals:

FOT'X:DU—;DU-@
ForY :Dy — Dy - C
For Z:Dy — Dy -C

FOT‘W:DU—)DU-C.

The execution of operation V is subject to the termination
of both conditionals. One automaton is constructed for each
sequencing constraint, and the two D,y signals are replaced by:

Dw + Dx

Dy +Dg. -

Assuming that operation U has completed (Dyy = 1), the set
of next states is the image of the current states under transition
relation for any value of the conditional C. The next states
contain two sets of states, namely, those reached with C = 0,
and those reached with C' = 1. By checking the operation
sequencing automata, however, and recalling the rewriting
occurred, it follows that the first set contains only those states
in which processes X and Z are allowed to execute (Starty

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 173

@

@

c _C
: Join
®

Fork
For X:

D,=D,*C
For Y:
DA= DA"E
For D:
Dif=DX+DY

©

Fig. 8. Handling of conditionals: (a) Conditional branching CDFG, (b) Expansion the CDFG, (c) Rewrite rules.

(@)

Fig. 9. Handling of parallel conditionals. (a) CDFG. (b) Expansion of CDFG.

and Starty can be set to 1) , while in the second set only
W and Y can execute. Executing other subsets of operations
in {W, X,Y, Z} is not represented by any trace accepted by
the product automaton, and therefore is not allowed. Notice
that the value of C' used in the rewrite rules is sampled at
the same time-point for all branches, namely, when Dy = 1.
Transition in the sequencing automata for {W, X,Y,Z} are
thus synchronized to the same value. Different rewrite rules
may result in different patterns of execution, because the
value of C' may be sampled at different times for different
branches.

We conclude by observing that the parallel sampling of C
for the two branches was enforced by a common parent node.

If a designer wishes nonadjacent conditionals to sample the
same signal, an explicit synchronization (or latching of the
sampled value) must be imposed.]

3.5. Loob Execution

Loops can be classified as having fixed (known at compile
time) or variable iteration count (e.g., synchronization wait
statements, data-dependent loops). They can be described in
our framework using constructs previously described. In the
following example, we model a variable-iteration loop.

Example 5: A generic loop has the following form:

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

(@) (®) ©

Fig. 10. Loop modeling: (a) Iteration in CDFG. (b) Symbol for iteration. (c)
Expansion of iteration with conditionals.

A ;

while (C) {

B = (modify O);
}

D

We assume C' to be a Boolean variable (for instance, the
result of a comparison operation). The notation used to model
the loop is shown in Fig. 10. In the figure, the following
execution paths are included:

e Ato D (C is false initially);

* A to B (C is true, entering loop);

* B to B (C is true, already in loop);

* B to D (C is false, exiting loop).

Depending on the value of C, completion of A can start the
execution of B or D. Then, B executes until C fails. Overall,
the rewrite rules yield

For D : Donejyop — Doney C + Donepoay .C
For Body : Doney — Doney - C + Donepggy - C.

O

As in the case of conditional branching, it is important to
specify the time at which the loop exit condition is sampled.
We sample this condition at the end of the execution of the
operation immediately preceding the loop test, which can be

either the operation preceding the iteration statement or the
last operation in the loop body.

The implicit traversal formalism deals with loops elegantly
since traversal through a loop ends when no new states are
reached. Loops are modeled by ‘a finite-state control structure
(even when the loop itself can have infinite latency), and can
be handled conveniently using our framework.

IV. MODELING CONVENTIONAL
CONSTRAINTS WITH AUTOMATA

In this section, we show how constraints are modeled.
Constraints are themselves represented in automata form, and
incorporated into the specification automaton by forming the
product automaton.

In cases where there is no solution that satisfies the con-
straints, the product is a null automaton. Intuitively, this means

S= Start A
D= Done B

t . .
/&ln
(7 .
() =5CO-0—0--C—0
DS DS DS

TC min{tmin)

TC

max(tmax) ‘

Fig. 11. (top) Automaton for minimum timing constraints. (bottom) Automa- .
ton for maximum timing constraints.

that there is no intersection between the design space and the
constraint space. Conversely, as long as the product is not null,
there exists at least one sequence of operations from which a
controller can be synthesized.

Although the concepts in this paper are described in explicit
notation, note that the actual manipulation of automata is done
in the implicit manner described in Section II.

4.1. Timing Constraints

Fig. 11 shows the two general automata models for timing
constraints. .

To model a minimum timing constraint (Fig. 11(top)) of
tmin Cycles between two operations A and B, the constraint
automaton contains ¢,,;, sequential transitions to NOOP states,
and a self-loop transition on the initial state. The automaton
is denoted by TMIN 4p(tmin). The automaton forces at least
Lmin cycles to expire before final state is reached. S

For a maximum timing constraint of ¢,,,, between A
and B (Fig. 11(bottom)), denoted by TM AX 45 (¢maz), ach
intermediate NOOP state contains a transition to the final state.
Operation B therefore must be reached by at most tmgs
cycles.

Example 6: (Timing Constraint) Consider the addition
computation of Example (3), and suppose we wish to impose
a maximum timing constraint of 3 cycles betweén load A
and load B. In the automaton model, the Seqsp automaton
is replaced with a TMAX 45(3). Thus, the transition now
must take place in three cycles or less. This is shown in
Fig. 12(a).

A minimum timing constraint of 2 cycles between load B
and Joad C. Similarly, the Seggc automaton is replaced with
TMINpc(2) as shown in Fig. 12(b). The automaton models

YANG ef al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 175

(@) ®)

Fig. 12. Timing constraint example: (a) 3-cycle maximum timing constraint
on load A; (b) 2-cycle minimum timing constraint on load B.

F‘M
e =O~0

RC,(F,n) RC,(F. n) RC (F.n)

Fig. 13. General resource constraint automata.

all possible execution traces for load B to complete after the
minimum of 2 cycles. O

4.2. Resource Constraints

Constraining a design to a fixed number of resources can
be modeled using automata. A resource is characterized by its
type F (e.g., add, multiply, etc.), and the number of cycles n
that it consumes. The maximum number of resources available
at any time (the resource constraint) for type F is Rr mae-

The automaton that enforces a maximum resource usage
of Rr mqe employs the product of k£ automata, where k
is the number of operations of type F. For each instance
j=1,2,--+,k, a comparator automaton RC;(F,n) is con-
structed. Since F is a n-cycle resource, RC; is an automaton
accepting n cycles, as shown in Fig. 13. F is being utilized
by instance j when RC); is not in the initial/final state and the
output Out; is assigned value 1.

Definition 10: The set of automata checking for resource
constraints consists of &£ automata

RCj(fan)a j:172a"'ak

Done X Start Y

®

Fig. 14. Resource constraint example. (a) Insertion of R(add, 1) to enforce
an one-adder resource constraint. (b) Product automaton for adder segment
under constraint.

and a comparator function based on the output functions of
RC ge

R]—',mam > QOuty + Outy + -+« + Outy,.

The output of the comparator is 1 if the inequality is satisfied,
otherwise the output is 0.

The comparator output becomes part of the specification
description. Indeed, functions Rx .., is an instance of re-
striction function as introduced in Section 2.2. During implicit
traversal of the product automaton, those traces that violate
the resource constraint (therefore causing the output of R to
be 0) are not constructed, leaving only those schedules that
satisfy the constraint.

In the case where the resource J only requires one cycle,
the constraint automaton degenerates to a combinational logic
function.

176 ' IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

PGt
Master

Fig. 15. Memory arbitration system and signals diagram.

mem.arbitrate (bus-rqst, bus-grant, cpu-rqst, cpu-grant) {

if (lcpu-1gst && !bus-rqst) {
store cpu-grant = 0;
store bus-grant = 0;

else if (!cpu-rqst && bus-rgst) {
store cpu-grant = 0;
store bus-grant = 1;
while (bus-rgst) {
if (cpu-rgst) {
store bus-grant = 0;

cpu_grani_memory (cpu-rgst, cpu-grant, bus-grant);

store bus-grant = 1;

}

else {

}

cpu_grant_memory (cpu-rqst, cpu-grant, bus-grant) ;

Fig. 16. Arbitration protocol.

Example 7: Consider the addition segment of Example 3.
Suppose we place a resource constraint of one adder. A
comparator expressed in Boolean logic is constructed allowing
at most one adder to be utilized at any given time:

R(add,1) = Startx + Starty.

Fig. 14(a) shows that R(add,1) constrains the two ad-
ditions. The resulting product automaton for the addition
segment is shown in Fig. 14(b). Note that the previously
concurrent path of Startyx - Starty is eliminated (shown in
dotted lines). The comparator effectively enforces a mutual
exclusion on the additions and serializes the operations. [

V. SYNCHRONIZATION CONSTRAINTS

Sections III and IV have described basic constructs needed
to model control flow and typical constraints. Using these,
the automata framework can model most traditional high-level
synthesis problems. In addition, our methodology supports
modeling synchronization among interacting modules.

Most synchronization primitives can be modeled using the
conditional and loop constructs previously described. As an
example, the wait statement can be viewed as a degenerate
case of a loop with no loop body and modeled accordingly.

An application domain that is especially suitable for our
framework is the area of system-level design. Our method can
be efficiently utilized to describe complex, control-oriented
protocols. In this section, we highlight our methodology by
focusing on a specific system-level example.

Example 8—Memory Arbitration: The design is part of a
memory arbitration unit (MAU), whose function is to arbitrate
accesses to main memory from the CPU (or its cache) and
bus clients (or bus arbiters). In this tase, we have chosen a
PCI-bus? based system as the target architecture. The block
diagram and the three major functional blocks with their input
and output signals are shown in Fig. 15.

The goal is to design an arbitration unit that will grant
memory accesses to either the CPU, or a PCI master device.

2 PCI Local Bus Specification Revision 2.0.

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 177

pci-read (bus-rqst, bus-grant, frame, TRDY, addr, data) {
store bus-rqst = 1 ; /* ask for the memory */

wait ({IFRAME) ;

store TRDY = 1;

store bus-rgst = 1;

send_address (addr);

while (IFRAME) {
store TRDY = 0;
receive_data (data);
while (!bus-grant); {

store TRDY = 1;

}

Fig. 17. PClI-read protocol.

cpu_read (cpu-read-enable, cpu-rqst, cpu-grant, addr, data) {

wait (lcpu-read-enable);

store cpu-rgst = 1 ; /* ask for the memory */

while (!cpu-read-enable) {
if (cpu-grant) {

}

Fig. 18. CPU-read protocol.

For purposes of illustration, we use a simple scheme where a
CPU request is always granted by preempting any existing bus
accesses. Only read-cycles of the CPU and PCI are modeled.
All accesses occur synchronously on the the system clock
boundaries.

The arbitration protocol, PCI-read, and CPU-read protocols
along with the automata (in CDFG notation) are shown in
Figs. 16-18, respectively. The routine cpu_grant.memory
sets cpu-grant to 1, bus-grant to 0, and waits for
(Yecpu-rgst). The CPU-read is modeled as a generic read
enabled by cpu-read-enable. The figures highlight con-
trol flow by showing conditionals and loops. Multiple opera-
tions are combined as single circles for illustration purposes.

The automata representations are built based on primi-
tive constructs discussed previously. The memory arbitra-
tion mem_arbitrate unit is synchronized to pci_read and
cpu_read through a set of synchronization signals: pci-
rgst, pci-grant, cpu-rgst, cpu-grant.

receive_data(addr, data); /* get data */

walit

cpu-read-enable

store

H

o

cpu-read-enable

Notice that in the specification of mem_arbitrate, there are
no details of either the bus or CPU protocol. The arbitration
protocol description is generic, while the protocol-specific
portions of the design are described in cpu_read and pci_read.
Changes in one module do not effect the description of the
other two. Communication and synchronization takes place
through the shared, synchronized signals. As an example,
the bus protocol can be changed from PCI to another one
without changing the arbiter or CPU descriptions, as long as
the module has the same input/output signals. The automata
formulations for each functional block can remain separate and
modular until the product is formed. O

VI. SCHEDULING OF THE SPECIFICATION AUTOMATON

Our final goal is to derive a control-unit implementation
from the specification automaton. In our context, such an
implementation is a state-table description- of the control
FSM. An instance of the implementation is extracted from the

178 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

specification automaton by examining the paths from initial
state to final state. The set of all paths from initial to final
state in the specification automaton constitutes all execution
sequences that satisfy constraints imposed.

In general, there are many possible optimization cost crite-
ria. Past approaches in using automata for sequential synthesis
have focused mainly on state minimization e.g., [23]-[25],
[14]. In this work, the optimization goal is to minimize the
execution latency of the design. We assume that the clock
period is a fixed parameter, and latency is defined as the
number of clock cycles. The solution algorithms will be
presented in the following two stages.

1) We focus on models (or submodels) whose latencies
do not depend on input data, known as fixed-latency
blocks. We demonstrate that the minimum latency sched-
ule under constraints can be found using a shortest path
algorithm. We then show how to derive a corresponding
control unit.

2) We discuss variable-latency models, or designs whose
latencies depend on input data. Generally, these include
conditionals, data-dependent loops, and synchronization.
We show that algorithms for the fixed-latency case can
be used to generate control implementations with the
least latency for any environmental condition.

6.1. Scheduling and Control Generation
for Fixed-Latency Models

In this section, we present an algorithm that computes
a schedule which minimizes the latency using the product
automaton. From the schedule a state-table for the control
FSM can be generated.

Despite the intractable nature of the scheduling problem
under resource constraints, we show that the minimization
algorithm is polynomial in the size of the product automaton.
Therefore, the challenge lies in forming the automaton of
reasonable size, since the problem size is not polynomially
bounded. We rely heavily on the efficiency of BDD represen-
tation and implicit traversal procedure. ‘

For fixed-latency designs, all paths in the product automaton
correspond to feasible schedules that satisfy constraints. We
recall Assumption 1, which says that each transition edge
corresponds to one cycle. Since a shortest path necessarily
contains the fewest transition edges and thereby the fewest
clock cycles, we can state the following.

Proposition 1: Given an automaton representing the exe-
cution flows of a fixed-latency process, a shortest path from
the initial to the final state determines a minimum latency
schedule.

Example 9— Shortest Path: We reconsider now the in-
struction sequence of Example 7 under timing and resource
constraints. Noting that the addition is a fixed-latency block,
we show that the shortest paths constitutes a minimum-latency
schedule.

Fig. 19 explicitly shows the relevant parts of the product
automaton. There are two shortest paths, depending on the
order of the addition operations: 1, 2, 5, 6,7, 8, 9, 10, 13, 14
and 1, 2, 5,6, 7, 8, 11, 12, 13, 14. Scheduling of operations

Done A Start B °

. Done A Start B
Done A Start B

Fig. 19. Shortest path for addition example.

based on these shortest paths are minimum-latency since each
operation is executed as soon as possible under constraints. []

Shortest Path Algorithm: The specification automaton can
be seen as a graph where each edge has weight 1. Given |
a graph in explicit representation, any single-source shortest
path algorithm (such as Dijkstra’s algorithm [26]) can be
used to solve the shortest path problem. Since the size of
automaton is likely to be very large, an explicit representation
and algorithm will be ineffective for large designs. In this
section, we describe’ a shortest-path algorithm that can be
applied in the implicit traversal framework.

The algorithm is divided into two steps: a forward and
a reverse traversal. During forward traversal, the set of
next states reachable in one transition are computed using
an image computation in each iteration. States are assigned
a label corresponding to the iteration in which they are
first reached. The procedure iterates until no new states are
found. During reverse traversal, the set of previous states
that can be reached in one transition are computed using
the inverse-image operator in each iteration. The shortest
path is extracted by taking the state(s) with the highest label
during the reverse traversal. The algorithm is described in
Fig. 20. Note that the forward traversal can be seen as an
extension of the implicit state traversal procedure [20], [21].
The only additional task required is labeling to state sets during
traversal. The complexity of these two procedures are of the
same order of the generic traversal.

The algorithm as shown generatés one explicit minimum-
latency schedule during the reverse traversal- by choosing
one path when more than one is available. The procedure

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 179

can be modified slightly to explicitly generate all minimum-
latency schedules. Instead of choosing one path, the procedure
recursively follows all possible paths available. While the
implicit automata modeling is able to efficiently represent and
manipulate large number of paths, an explicit representation of
all minimum-latency paths can require excessive storage since
the implicit product automaton may contain exponential num-

ber of paths relative to number of states. Thus, enumerating’

explicitly all minimum-latency schedules should only be done
when sufficient constraints have been applied to the product
automaton using the implicit formulation. On the other hand,
only one minimum-latency schedule is required for high-level
synthesis applications, and it can be practically computed using
the algorithm provided.

Example 10: Consider the automaton of Fig. 19. We per-
form the shortest path computation using ForwardTraversal
and ReverseTraversal. For the addition example, following
the state labeling in Fig. 19, the run of the algorithm yields:

Forward Traversal Reverse Traversal

So : {1} S : {14}

Sl : {2} Sg : {13}

Sy :{3,5} S7 : {12} (picking 1 path)
Ss: {4,6} S : {11}

Sy {7} S5 : {8}

S5 : {8} Ss: {7}

S : {9,11} S3 : {6}

S7 : {10,12} Sy : {5}

Ss : {13} Sy : {2}

Sy : {14} S : {1}

The resulting path can be traced by following the reverse
traversal: it corresponds to the darkened path in the figure. (I

6.2. Control Generation for Fixed-Latency Models

The implicit shortest path algorithm (Fig. 20) generates
one minimum-latency schedule. From this schedule, a control
implementation can be easily generated.

The output format of our control generation procedure
is a state-transition table. The table can then be passed to
conventional sequential optimizers e.g., [15]. To derive a state
table representation, we need to consider different inputs and
corresponding state transitions for each state.

Fig. 21 shows the pseudocode for generating the state
table. Each entry in the state table is composed of a triple
of present state, inputs (including conditionals), next state
(s1,w, s2). Given a present state s; and a next state so, the
input/conditionals required for the transition can be computed
by:

w = (X © 81 32)|51=82=1

where x is the characteristic function of the transition relation.

The procedure takes the minimum-latency schedule S as
input, where S is the sequence of states in the specification au-
tomaton generated by algorithm ReverseTraversal. For each
control step j, the state-transition table for S; is constructed
by taking all pairs of states in S; and S;4;, and computing w.

Forward Traversal (A) {

So = InitialState (A);

Ty = FinalState (A);

TotalSet = 0;

k=1;

while (Ty ¢ Si-1) {
TotalSet = TotalSet|) Sp-1;
Sk = image(Sk-1) ~ U;Zo Sis
k=k+1;

}

conirol_steps = k — 1;

ReverseTraversal(S, control_steps) {
k = control_steps;
while (k > 0) {
sx = inverse_tmage(Sk) () Sk—1;
. k=k— 1;
}
}

Fig. 20. The implicit shortest path algorithm.

The complexity of this algorithm is E;:& S; x S;41 number
of computations of w, which is polynomial in the number of
states.

Example 11: The state table for the addition example is:

state output / next state

81 Starts [so

) Doney - Startp / ss
tH Donep - Starte / sg
S6 Donep - Starte [s7
S8 Donepg - Startc [sg
S9 Donec - Startx / s1o0
$10 Donex - Starty | s13
S13 Doney - Starts, / 814
S14

The state table as is would terminate execution at si4. In
practice, if the process is repetitive, s14 is replaced by s;. O

6.3. Control Generation for Variable-Latency Models

When considering models with conditional branching and it-
eration, latency may vary on the input data. Indeed, alternative
paths of a conditional construct may require different latencies,
and loops may have exit conditions that are data-dependent.
Since synchronization wait statements are modeled as un-
bounded loops, they also give rise to variable-latency models.

When latency is data dependent, it is usually cumbersome
to talk about minimum-latency schedules, because the latency
itself depends on the input data. However, it is relevant to
construct control units that use the least latency for any
possible execution flow.

180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

/* S: Sequence of states generated by ReverseTraversal
control_steps: Number of steps generated by ForwardTraversal */

GenStateTable (S, conirol_steps) {

for (j = 0; 7 < control_steps; 7 +) {

foreach s; € §(j) {
foreach s; € S(5+ 1) {
P=3y-8-x;
if(P # NULL) {

w= Pl81=l9~‘:l;

}

EnterTable(s;, w, s3);

}
}

Fig. 21. Generating the state table from one schedule.

The algorithms outlined in Section 6.1 can be easily ex-
tended to find the least latency implementation for all input
combinations, even in the presence of conditionals. The ex-
tension relies on the following three steps.

1) Sample and store the value determining the branch to
be taken. Thus the state information of the specification
automaton registers also the path along which each state
was reached. The state of the specification antomaton
has then the form (c, s), where ¢ records the condition
input values, and s is the state of the original automaton.

2) Replace the final state f with the set F' of all states of
the form (c, f). Stop ForwardTraversal when all such

~ states are reached (i.e., when the original automaton has
reached the final state for all values of the conditionals).

3) Apply ReverseTraversal starting from F (i.e., find the
shortest-path predecessor of each state for each branch
of the conditionals).

The correctness of the procedure relies on a couple of
observations. First, our modeling of fork and join retains
only valid sets of nonmutually exclusive execution paths in
the specification automaton as shown in Section 3.4. Such
paths are the ones and the only ones that are explored by
the implicit traversal procedure. Second, the implicit traversal
procedure performs existential quantification on the condi-
tional inputs, thereby insuring that all possible values of the
input are included in the search. This leads to the following
proposition:

Proposition 2: For variable-latency models, procedures
ForwardTraversal and -ReverseTraversal will generate
the minimum-latency execution sequences for all conditional
input combinations.

Example 12— Variable-Latency: Consider the following
sample of code, with unit-delay operations:

V : L = M + Ny
if (C)
W : P =L + R ;

X ¢t R=P -0 ;
¥
Z: store R

We first show the necessity of keeping the information
related to the chosen branch. The automaton diagram (without
branch information in the states) is shown in Fig. 22. Then, a
shortest-path algorithm would reach the final state travefsing
only two edges, (i.e., along path (s1, 2, sg)) and thus ignoring
part of the computation (corresponding to the true value of
the conditional.)

The complete automaton with the branch-taken information
is shown in Fig. 23. Procedure ForwardTraversal stops
only when the final state set F' (denoted in the figure as

.{F -8,T -8}) is reached by all possible alternative branches.

Fig. 23 indicates also the control steps. One shortest-path path
(corresponding to C) has a latency of two, while another
(corresponding to C) has a latency of four units.

The state table can be generated as in the case of fixed-
latency models, while neglecting the branch state information,
because the execution paths have already been identified. The
state table for this example is the following:

input/state output/next state

-/ s Starty [so

C/ sy Startw / s4

C/ s Startz / sg

-/ 84 Startx / se

-/ sg Startz [sg

-/ 88 -/ S8

O
VII. RESULTS

We have implemented a version of the automata framework
and the scheduling algorithm described in this paper. We use
HardwareC as our entry HDL to describe our processes and
constraints. HERCULES is used to translate the.description
into a CDFG intermediate form known as SIF [16]. From SIF,
the set of interacting automata is constructed and the product
automaton is formed. The last step is to extract the shortest
path which consists of the minimum-latency schedule. We
show the effectiveness of our tool in two ways. First, we apply
our algorithm to a set of conventional high-level synthesis

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 181
/

Fig. 23.

Specification automaton with branch information. (Shaded states
are final states.)

benchmarks to illustrate that our method is competitive for
conventional applications. We then use the memory arbitration
example and show the resulting controller implementation,
which demonstrates an application that is easily modeled and
synthesized using this framework.

We have run our algorithm on a set of standard high-
level synthesis benchmarks. We impose resource constraints
on selected benchmarks in order for our tool to solve more
difficult instances of scheduling problems. The choice of a
good variable ordering to form the product automaton is cru-
cial to the feasibility of the method. It is possible to construct
an effective ordering because the automaton structure is known
a priori. In Table I, we show the time it takes to construct the
product automaton and produce the minimum-schedule. The
BDD size refers to the largest intermediate BDD encountered.
The resource being constrained are included in parenthesis.
The runtimes are in seconds on a DECStation 3000/400.

As an example, we vary resource constraints on ellip-
tic. Table II shows the number of control steps as num-

TABLE I

RESOURCE CONSTRAINED SCHEDULING RESULTS
Benchmark | Control steps | BDD size | cpu(sec)
ged 4 884 7.7
diffeq (1 alu) 5 3290 14.3
tseng (1 alu) 5 7299 41.6
parker86 (1 alu) 10 7704 67.1
elliptic (1 alu) 28 26725 512.0
ecc.encode 18 15438 133
ecc.decode 19 2788 79

TABLE 11
ELLIPTIC SCHEDULE VARIANCES DUE TO CHANGES IN RESOURCES
multipliers | ALUs | Control steps | cpu(sec)
3 3 15 302.3
2 3 15 254.2
1 3 16 500.0
3 2 17 559.4
2 2 17 602.4
1 2 17 945.3
3 1 28 482.5

ber of multipliers and ALU are varied. We assume that
both ALU and multiplier take 1 cycle to complete. When
we restrict the maximum timing constraint to less than 15
cycles (with no resource constraints), no feasible schedule
exists. .
We compare the approximate runtimes of our automata
method with those reported by Gebotys et al. [2] (IP formula-
tion) and Radivojevic ez al. [5] (symbolic formulation). The
resulting number of control steps are the same for all methods

-since all three methods are exact. The average runtime for

elliptic under various constraints is compared. The IP method
(average runtime of 2 s) is fastest for this example, while the
symbolic (average runtime of 400 s) and the automata
(average runtime of 500 s) are comparable. Since symbolic
and automata are symbolic, implicit techniques, they can
potentially handle larger problem sizes. It is interesting to note
that the symbolic method has a range of runtimes from
less than 1 to 2000 s), while the range of runtime for the
automata method is much smaller. This reflects the different
treatment of constraint incorporation: the automata method
is less sensitive to constraint variations.

These results are rough comparison only, as runtimes for all
three methods were under different constraints and different
machines. The main point is to note that all three methods can
be applied to problems of practical size. IP and symbolic
solutions require an upper bound to be given before starting,
while the automata method does not.

The results of applying the automata method to the

‘memory arbitration unit (MAU) example in Section V are

reported in Table III. BFS is the number of steps required
for the ForwardTraversal algorithm. The representation in
BDD is very compact, as the state space required to model
synchronization constraints is small. Our method deals with
such control-dominated system-level designs very effectively.
The low number of control steps that is typical in these designs

182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 2, FEBRUARY 1996

TABLE III
RESULTS ON THE MEMORY-ARBITRATION UNIT

Benchmark | BFS steps | BDD size

MAU 4

cpu(sec)

3164 14.3

works well in our framework, since there are fewer steps in
the breadth-first traversal, thus keeping execution times low.
Another advantage of the automata method is the ability
of describing designs modularly. Different memory arbitra-
tion schemes can be substituted into mem_arbitrate without
changing the other routines as long as the same I/O signals
are used. Similarly, different bus and CPU implementations
can be used as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated a novel way of using an
automaton formulation for design representation and synthesis
under general environmental constraints. In particular, we
demonstrated that scheduling can be performed using environ-
mental constraints (such as flexibility due to interaction with
other components). These constraints are more general than
the traditional resource/timing constraints.

We have shown that efficient state representation and tra-
versal techniques can be extended to the high-level synthesis
domain, in particular to scheduling. While we have reported
experimental results on traditional high-level synthesis ex-
amples for the sake of comparison, our method is better
suited for system-level designs. Design components can be
described in a modular manner, with each component hav-
ing its own automaton specification. The product is formed
by synchronizing through a set of common communication
signals, using the degrees of freedom among the interacting
models.

There are a number of future research directions. First,
the current discussion only addresses scheduling and control
generation for one minimum-latency trace. One advantage
of implicit enumeration scheme is that it is able to capture
multiple traces and schedules efficiently. In such cases, it is
possible to utilize the degrees of freedom of multiple solutions
to optimize the control - generation. In [12], a scheme to
optimize nondeterministic FSM’s using a similar framework
is addressed. It attempts to find a best control implementation
based on some cost factor (e.g., number of states). The opti-
mization is performed on the entire set of possible execution
traces, where implicit methods again is applied. Similar meth-
ods that leverage the preservation and further optimization of
a set of feasible solutions are subjects of ongoing research.
Second, a number of heuristics algorithms are possible to prune
the search space and obtain faster runtimes. An idea under
investigation is to employ the automata modeling and solution
for interface protocols, and resort to traditional scheduling
techniques for operations not involved in synchronization.
Lastly, a number of techniques can be added to enhance the
performance of BDD operations, including a generalized BDD
variable ordering scheme as well as the use of alternate BDD
representations (e.g., zero-suppressed BDD’s).

ACKNOWLEDGMENT

The authors are indebted to J. Fron, who implemented the
SIF to automata compiler, and to Dr. D. Ku for his comments.
They also thank the anonymous reviewers for pointing out
several imprecisions in the first draft of the paper.

REFERENCES

[1] M. Garey and D. Johnson, Computers and Intmctabzlzty San Fran-
cisco, CA: Freeman, 1979.

[2] C. H. Gebotys and M. L. Elmasry, “Global optimization approach for

architectural synthesis,” IEEE Trans. Computer-Aided Design, vol. 9,

pp. 12661279, Sept. 1993.

D. Gajski, N. Dutt, A. Wu, and S. Lin, High-level Synthesis: Introduction

to Chip and System Design. Norwell, MA: Kluwer Academic, 1992.

[4] D. Filo, D. C. Ku, C. N. Coelho, and G. De Micheli, “Interface
optimization for concurrent systems under timing constraints,” IEEE
Trans. VLSI Syst., vol. 1, pp. 268-281, Sept. 1993.

[5] 1 Radivojevi¢ and F. Brewer, “Symbolic scheduling techniques,” in
IEICE Trans. Inform. Syst. vol. €78-d, no. 3, Japan, Mar. 1995.

[6] A. Takach, W. Wolf, and M. Lesser, “An automaton model for sched-
uling constraints in synchronous machines,” /EEE Trans. Comput., vol.
44, pp. 1-12, Jan. 1995.

[7]1 C. Coelho and G. De Micheli, “Dynamic scheduling and synchronization
synthesis of concurrent digital systems under system-level constraints,”
in ICCAD, Proc. Int. Conf. CAD, 1994, pp. 175-181.

[8] R. Camposano, “Path-based scheduling for synthesis,”
Computer-Aided Design, vol 10, pp. 85-93, Jan. 1991.

[91 D. L. Dill, Trace Theory for Automatic Hierarchical Verification of
Speed-independent Circuits. Cambridge, MA: MIT, 1988.

[10] C. A. R. Hoare, A Model for Communicating Sequential Processes.

Englewood Cliffs, NJI: Prentice-Hall, 1985. .

J. Fron, J. C.-Y. Yang, M. Damiani, and G. De Micheli, “A synthesis

framework based on trace and automata theory,” in Int. Workshop. Logic

Synthesis, 1993 pp., 5c1-5¢15.

M. Damiani, “Non-deterministic finite state machines and sequential

don’t cares,” in EDAC Proc. Europ. Design Automat. Conf., 1994, pp.

192-198.

G. Saucier, M. C. Depaulet, and P. Sicard, “Asyl: A rule-based system

for controller synthesis,” IEEE ‘Trans. Computer-Aided Design, vol

CAD-6, pp. 1088-1097, Nov. 1987.

P. Ashar, S. Devadas, and A. R. Newton, Sequential Logic Synthesis.

Norwell, MA: Kluwer Academic, 1992.

[15] E. Sentovich, ez al., “Sequential circuit design using synthesis and
optimization,” in ICCD, Proc. Int. Conf. Comput. Design, Oct. 1992,
pp. 328-333.

[16] D. Ku and G. De Micheli, High Level Synthesis of ASICs Under Timing
and Synchronization Constraints. Norwell, MA: Kluwer Academic,
June 1992.)

[171 G. De Micheli, Synthesis and Optimization of Digital Circuits.
York: McGraw Hill, 1994.

[18] W. Thomas, “Automata on infinite objects,” in Handbook Theoreticil.

Comput. Sci., New York: Elsevier Science, 1990, pp. 133-191.

Z. Kohavi, Switching and Finite Automata Theory. New York:-

McGraw-Hill, 1978.

O. Coudert and J. Madre, “A unified framework for the formal veri- -

fication of sequential circuits,” in JCCAD, Proc. Int. Conf. CAD, Nov.

1990, pp. 126-129.

H. Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni- Vincentelli,

“Implicit state enumeration of finite state machines using BDD’s,” in

ICCAD, Proc. Int. Conf. CAD, Nov. 1990, pp. 130-133.

K. Wakabayashi and H. Tanaka, “Global scheduling independent of

contrel dependencies based on condition vectors,” in DAC Proc. Design

Automat. Conf., 1992, pp. 112-115.

[23] J. Kim and M. M. Newborn, “The simplification of sequential machines

with input restrictions,” JEEE Trans. Compuz vol. C-21, pp. 1440-1443,

Dec. 1972.

J.-K: Rho, G. Hachtel, and F. Somenzi, “Don’t care sequences and the

optimization of interacting finite state machines,” in ICCAD Proc. Int.

Conf. CAD, 1991, pp. 418-421.

S. Devadas, ¢ Optnmzmg interacting finite state machmes using sequen-

tial don’t cares,” IEEE Trans. Computer-Aided Design, Vol. 10, PP

14731484, Dec. 1991.

[26] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
New York: McGraw-Hill, 1990.

3

[luart

IEEE Trans.

[11

(12]

[13]

[14]

New

[19]

[20]

[21]

[22]

[24]

[25]

YANG et al.: SCHEDULING AND CONTROL GENERATION WITH ENVIRONMENTAL CONSTRAINTS 183

Jerry Chih-Yuan Yang received the B.S.E.E. and M.S.E.E. degrees in 1990,
and is currently working toward the Ph.D. degree in electrical engineering at
Stanford University, Stanford, CA.

His research interests include logic synthesis; system-level modeling, veri-
fication and synthesis; and finite-state based synthesis methods.

Giovanni De Micheli (S’79-M’82-SM’89-F’89) received the Dr. Eng. degree
in nuclear engineering in 1979 from the Politecnico di Milano, Italy, and
received the M.S and Ph.D. degrees in electrical engineering and computer
science from the University of California, Berkeley, in 1980 and 1983,
respectively.

He is an Associate Professor of Electrical Engineering and Computer
Science at Stanford University. From 1984 to 1986 he was with the IBM T. J.
Watson Research Center, Yorktown Heights, NY, where he was project leader
of the Design Automation Workstation group. Previously, he held positions
at the Department of Electronics, Politecnico di Milano, Italy, and at Harris
Semiconductor, Melbourne, FL. His research interests include several aspects
of the computer-aided design of integrated circuits with particular emphasis
on automated synthesis, and optimization and verification of VLSI circuits. He
is the author of Synthesisis and Optimization of Digital Circuits, (McGraw-
Hill, 1994), coauthor of High-Level Synthesis of ASICA Under Timing and
Synchronization Constraints (Kluwer, 1992), and coeditor of Design Systems
for VLSI Circuits: Logic Synthesis and Silicon Compilation, (Martinus Nijhoff
Publishers). He was also co-director of the Advanced Study Institute on
Logic Synthesis and Silicon Compilation, held in L’Aquila, Italy, under the
sponsorship of NATO in 1986 and 1987.

Dr. De Micheli received the Presidential Young Investigator Award in 1988,
the Best Paper Award in 1987 in IEEE TTRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS and two Best Paper Awards at
the Design Automation Conference, in 1983 and 1993. He is an Associate
Editor of the IEEE TRANSACTIONS ON VLSI SysTems and Integration: The
VLSI Journal. He was technical and general chairman of the International
Conference on Computer Design-ICCD in 1988 and 1989, respectively. He
has served as member of the technical committtee of the ICCD, ICCAD, and
DAC Conferences. He is the Program Chair of the DAC ’96 Conference.

Maurizio Damiani received the degree in electrical engineering in 1987 from
the University of Bologna, Italy. He received the M.S. and Ph.D. degrees in
electrical engineering from Stanford University, Stanford, CA.

He is an associate professor with the University of Padua since 1992. His
research interests include formal modeling, synthesis and testing of sequential
finite-state circuits and systems.

Dr. Damiani received an AEI Scholarship in 1988 and a Rotary International

Fellowship Award in 1989,

