
L. Beninit D. Guan* G. De Micheli tD. Ku.
t CSt - Stanford University

Stanford, CA 94305-9030
* ESCALADE Corporation

Santa Clara, CA 95054

Abstract

Team design, distributed tool integration, design
flow management, resource sharing are challenging
needs of the electronic design automation (EDA)
area. We propose the concept of open distributed
design environment as a unified answer. Design-
ers may access the environment through a network
(i.e., the Internet) and use local and remote re-
sources as part of the same design flow. All details
of resource retrieval, data transfer and communi-
cation protocols are hidden to the user. New re-
.90urces (tools, libraries, design data) may be trans-
parently added to the environment at any time, thus
becoming automatically accessible to any user. We
describe the dynamic resource encapsulation mecha-
nism that grants these features to the EDA environ-
ment. We then propose a Web-based implementa-
tion that allows designers to access the environment
using standard Web browsers.

Moreover, as the complexity of design tasks in-
creases, resource sharing and team design become
critical issues as well. CPU-extensive EDA tools
may be insta.Iled on high-performance servers ac-
cessed by several designers, possibly (but not neces-
sarily) working on the same project. Thanks to the
pervasive diffusion of computer networking, both
tools and design teams may be geographica.Ily dis-
persed and connected through a network (in partic-
ular, the Internet). Reliable and effective commu-
nication paradigms are then required.

On the other hand, EDA tools have a relatively
short life- time: they become obsolete in a few years
and new versions are released every few months.
As a consequence, user interfaces should have short
learning curves and design frameworks should pro-
vide efficient and straightforward mechanisms to
update/replace the tools they contain.

All the above observations prompt for moving
from traditional EDA frameworks to an open, dis-
tributed environment, where designers can use local
and remote resources (tools, design data, libraries)
as part of complex design flows. Users may access
resources by requesting specific services (regardless
of how they are provided and where they are lo-
cated) and paying for them on a usage basis. In
the open environment, resources can be dynami-
ca.Ily and transparently added or updated to im-
prove capabilities and performances without affect-
ing the user front-end and the design flow.

1 Introd uction

The number of EDA tools involved in the design
flow of a complex VLSI system is ever increasing.
These tools are usually provided by many different
!;uppliers, with their own user interfaces and data
representations. Nevertheless, to make the design
process more productive, designers should work in a
unified EDA environment in which all tools are ac-
cessed through a common interface and may work
on the same design. Several attempts have been
made over the years to integrate EDA tools into
unified frameworks. The definition of standard for-
mats for design descriptions such as VHDL and
EDIF has been an important milestone in this di-
rection [1, 2]. However, tools provided by different
vendors still lack uniformity and compatibility.

1.1 Toward an open, distributed design
environment

The most critical step toward an open, distributed
EDA environment consists of defining an effective
mechanism for the dynamic encapsulation of dis-
tributed resources.

47 -

SASIMI '96

posed in [8] is static and PPP still lacks in flexibility
and modularity: adding (or updating) a new tool
into the environment is not straightforward and no
interactions are allowed with other tools across the
Internet.

A systematic approach to the dynamic encap-
sulation of distributed applications has been fol-
lowed in the area of object oriented programming
languages. In particular, the Object Management
Group (OMG) defined a Common Object Request
Broker Architecture (CORBA) [10] in which hetero-
geneous and dispersed applications may communi-
cate with one another, no matter where they are
located or who designed them. New applications
can be made available at any time by updating a
common repository, while existing applications can
be transparently updated without changing their
interfaces.

In this paper, we follow the same principle out-
lined above to propose a paradigm for dynamic
encapsulation of distributed EDA resources. The
overall architecture of an open, distributed design
environment and the main encapsulation mecha-
nisms are described in the next section. A Web-
based implementation is proposed in Section 3.

Dynamic encapsulation of dis-
tributed EDA resources

2

A successful mechanism for dynamic encapsula.-
tion has been behind the explosive growth of the
World Wide Web (WWW) [3]. Web browsers pro-
vide a uniform interface to any kind of informa.-
tion distributed all over the world, while uniform
resource locators (URLs) hide all the details of in-
formation retrieval [4]. New data can be added at
any time becoming automatically accessible to ev-

eryone.
Several attempts have been made to exploit the

features of the WWW in the CAD-EDA area.
In particular, Web- based interfaces to CAD tools
have been proposed in [5, 6, 1]. All these works
are mainly focused on an infoNnation-centric per-
spective, that reflects the original purposes of the
WWW. In the information-centric perspective, the
designer's need for geographically disperse and het-
erogeneous information is addressed by means of
distributed data encapsulation. The designer can
retrieve background material (i.e. algorithms, bib-
liography, benchmarking information, etc.) and de-
sign libraries simply by activating hyperlinks on a
WWW page. Multiple data formats can be trans-
ferred and viewed without the need of complex in-
teractions. Security issues are addressed and pri-
vacy is guaranteed by encrypted transactions. The
complexity of the communication among remote
sites is hidden, and the exchange of data among
users becomes straightforward.

However, the end-user of CAD tools not only
necessitates to access information and data, but
he/she mainly needs to process and modify data
by executing the available programs. Simple proto-
cols for remote batch execution have been described
in [5, 6, 1]. To address more directly the needs of
EDA users for distributed resource encapsulation,
an application-centric perspective was adopted in
[8]. Execution paradigms were proposed to provide
an effective interface not only for information re-
trieval and remote job launching, but also for inter-
active execution control. As a prototype, a highly
interactive Web-based interface was developed for
PPP, an integrated environment for low-power de-
sign and simulation [9].

PPP contains several tools distributed on a lo-
cal area network (LAN). Designers may access PPP
through the Internet using standard Web browsers,
without having any tool insta.1led on their own ma-
chines. However, the encapsulation strategy pro-

We refer to a fully distributed environment in which
designers, tools and data may be located every-
where on the network. Different tools with differ-
ent features are available to perform design tasks.
Designers have access to all these tools, and many
designers may work simultaneously on projects that
may be either independent or cooperative.

The key features we want to achieve are unifor-
mity and modularity. Designers issue requests and
tools provide services. In a uniform environment,
designers do not need to know where data and tools
are located, how tools communicate and how they
are implemented. On the other hand, tools must be
able to provide the same functionalities no matter
where the user is located.

The environment can be dynamicaJly and trans-
parently updated, thus becoming potentially unlim-
ited. New users and tools may be added at any
time. WhelJ.ever a new user becomes part of the

48

A. Bogliolo, L. Benini, D. Goon, D. Ku, G. De Micheli

ppp

-""".Gj'"

L,:~

a)

Figure 1: Compariaon between a) the asymmetric client-server architecture of PPP and b) a generic distributed
architecture in which users (U), tools (T) and databases (D) use symmetric gateways to interface to the network.

design environment, he/she gets access to all tools
available on it. Whenever a new tool is added, it
becomes automatically available to all designers.

Uniformity and modularity can be achieved in
two main steps:

tool interfaces with its own gateway as with local
users. The hidden mechanism in between retrieves
resources and data, transfers files, delivers service
requests and returns outputs back.

In principle, this is all we need to grant dynamic
encapsulation of distributed resources: adding an
agent to the environment is aloca.l task that entails
only creating a new gateway. Once a new resource
has its own gateway to the common protocol, it
becomes automatically accessible to any user.

. making the tool interface independent from the
implementation,

. making the whole architecture symmetric

Communication protocol2.1

The solution proposed in [8] met the first re-
quirement by means of a uniform Web-based in-
terface, but it was completely asymmetric (see Fig.
l.a): the server of PPP was centralized, and ad-hoc
mechanisms (based on a shared file system) were
used to address tool-communication issues. As a
consequence, adding a new tool into PPP was not
straightforward and interoperability across the In-
ternet was not supported. Moreover, the user had
to do explicit file transfer to put his/her own design
data on the PPP's file system.

A schematic representation of a symmetric dis-
tributed architecture is shown in Fig. l.b. Any
agent (user (U), tool (T), database (D) needs a
gatetDay to access the EDA environment, that is
nothing but a set of agents using a common, well de-
fined protocol to communicate to each other. Gate-
ways translate between the standardized protocol
and the agent-specific interfaces. In this way they
wrap around tools and data, hiding all the details
of data transfers, remote execution protocols and
tool implementations.

Each user interfaces with the local gateway as
with a unique tool providing many different ser-
vices and working on a virtual file system. Each

The design process can be viewed as a sequence of
steps (tasks) involving interactions between pairs of
agents: a client agent that requests a service and a
server agent that provides it. In most of the design
steps, the agent acting as a client i$ the designer.
However, according to the symmetric scheme of Fig.
l.b, any agent may be viewed either as a client or
as a server in the context of different tasks.

We refer to a generic situation in which an agent
A requests a service to an agent B. Let us consider
A and B as a designer and a tool, respectively. In
a distributed environment, A and B may be on dif-
ferent machines and a communication channel is to
be opened between them to allow A to provide the
input data, control the execution of B and have the
results back. We assume a standard hand-shaking
protocol (providing request and gmnt primitives) to
be used to create the channel. To ensure full con-
nectivity, any agent may issue requests and grant
connections.

Notice that, when A requests a connection to
B, it knows which service B provides but it does

AQ

~~:~

SASIMI '96

retrieved

2.2 Data management

To achieve data location transparency, we use the
datalKlse abstraction to make file-systems accessible
from the EDA environment. A database is nothing
but an agent (with its own gateway) that provides
an interface to a set of data (see Fig. 2.a).

This abstraction provides a general way of pub-
lishing design data and libraries, possibly allowing
team design by means of revision control system
(RCS) facilities. However, any agent also needs to
access its local file-system to store temporary data..

We assume that every agent (user, tool or
database) has a local workspace (represented by
dashed cylinders in Fig. 2.a) that contains the
current design data. When a user loads a design
from a database, the corresponding files are stored
in his/her local workspace. In the same way, if a re-
mote tool has to run on the current design, (some
of) the design files need to be transferred to the
tool's workspace.

Notice .that the local workspace is not the same
as the local file system, although it may be im-
plemented as a directory tree on the file system.
The separation between the user's file system and
the local workspace is strictly enforced. Access to
the workspace is only allowed through the access
primitives provided within the EDA architecture
and implemented by the local gateway. If the users
wants to obtain a copy of the design files, he/she
needs to transfer them from the local workspace to
a database agent representing his/her local file sys-
tem. Security reasons are behind this architectural
choice: direct interaction with the local workspace
from outside the distributed environment may com-
promise the data integrity and the design correct-
ness.

Each gateway can manage the local workspace
according to the needs of the corresponding agent.
For instance, if a tool allows multiple access, the lo-
cal workspace should be partitioned to provide an
independent space to each job. On the other ~and,
a designer may want to launch more than one tool
simultaneously. In this case, check-out and check-
in primitives can be implemented by the local gate-
way to grant consistence to the design files simulta-
neously used by different tools. Caching strategies

not know how to interface to this service. How-
ever, since the hand-shaking primitives provide a
standard way of creating a connection between A
and B, the communication channel can be used to
send to the client the whole interface to the service
provided by B. This can be done either by using
standard message pasSing protocols, or by exploit-
ing the characteristics of languages designed for dis-
tributed execution on the Internet (such as JAVA
[11]). In this case, the interface is sent as a machine
independent executable program that may run on
A while controlling B.

The entire communication mechanism is made
transparent by the gateways. Referring to Fig. 2.a,
we c&l1 A, and B, the gateways of A and B respec-
tively. A, makes the tools of the environment visi-
ble to A as if they were on the local machine. When
A asks A, to run tool B, A, requests a connection
to the corresponding gateway (B,). If the resource
is available, B, launches B and sends to A, a grant
message contaoining the interfacing guidelines. A,
interprets the message and follows the guidelines to
create a local interface to the remote tool (possi-
bly using standard helpers). At this point A may
use the interface to get direct control of the remote
tool as if it were local (performance issues will be
discussed later).

A message representation protocol is necessary to
a.llow A, to interpret the interface guidelines pro-
vided by B,. To keep generality, we assume that
the grant message starts with a standard header
describing the message body and the helpers that
can be used for interpretation. A message protocol
following this principle is, for instance, the multi-
pu"1H>8e internet mail extension (MIME) [12).

Both licensing and security issues can be trans-
parently addressed. The request message sent by
A, to B, may contain standard information allow-
ing B to identify the client and check for its per-
missions, while encryption can be used to grant se-
curity.

Files containing design data and results are a.lso
to be transferred between A and B. However, we
don't need to define a unique file transfer protocol.
Once the connection is established, data transfers
can be decided in accordance by the two agents and
controlled either by the server or by client (through
the tool interface). Nevertheless, we need to define
what's the workspace where files can be stored and

50

A. Bogliolo, L. Benini, D. Guan, D. Ku, G. De Micheli

raoun:e
repository

-::~~~~~~j

In'ML

~~GUI

-@

~
r::::::J

HTML

a~
~
t::::::j

HTML

a
IDg

e

.

.

. ~
b)

Figure 2: Schematic representation of a) an open, distributed EDA environment, and b) a possible Web-baaed
implementation.

may also be implemented to improve performances

Optimizing performance2.3

of tools runs: initiaJly only directory information is
transferred to the user, while the actual results are
transferred to the user's local workspace (and pos-
sibly to design databases or tools used to perform
subsequent design tasks) only upon request.

This lazy transfer mechanism exploits the well-
known principle of locality of access. Data is trans-
ferred when needed, although the directory infor-
mation is completely available. More advanced
caching schemes can be envisioned. One interesting
alternative is to pre-fetch not-yet-requested data
during the idle user time.

The performance of Internet connection is widely
variable depending on the degree of congestion. As
an ever increasing number' of users access the In-
ternet with high-bandwidth requests, the perfor-
mance of the links between users, tools and de-
sign databases may fluctuate from acceptable to
extremely slow.

While for long batch runs with low interactivity
the speed of the link between user and server may
not be an issue (the network latency is hidden by
the length of the batch run), this is not the case
for highly interactive applications. Moreover, even
long batch runs benefit from fast access to files used
In input and output. We propose a cache-based s0-
lution that takes advantage of the presence of local
workspaces associated with each agent. Access to
the local workspace is fast because it is physica.lly
located on local resources (disk, main memory).

When the user accesses a design database and
checks out a design, no file transfer is initiated. The
user receives in his/her workspace only content in-
formation about current design data. When he/she
specifies part of the design as target of tool runs, the
f.orresponding files are automatica.lly transferred to
his/her local workspace and forwarded to the tool's
~ca.l workspace (possibly using a different Internet
link). A similar mechanism is used for the outputs

Resource repository2.4

The mechanisms described so far a.l1ow transpar-
ent interactions between remote agents that do not
necessarily know each other in advance. The last
thing we need is to make agents visible and reach-
able within the environment.

To this purpose, each agent may be registered
under a unique name into a common resouree repos-
itory. The repository is a database that associates
with the agent's name its location, its features and
its permissions. When a designer access the envi-
ronment, his/her gateway automatically connects
to the repository to construct a local image of
the environment, containing all the available re-
sources. In particular, resource names and features
are shown to the user, while resource locations are
used by the gateway to ask connections upon user's

- 51

~

SASIMI '96

requests. Global licensing policies can also be con-
ceived. For instance, a license key can be associated
with each agent. When it accesses the repository,
its license key can be used as a filter to hide re-
sources it cannot access.

Notice that the resource repository is a resource
itself. However, its location needs to be known in
advance by all the agents' gateways. This is the
only asYDlInetry in the whole architecture of Fig.
2.a. The presence of a center node such as the
repository to which all users must refer to access
tools may rise concerns about the scalability of our
architecture. We do not expect that traffic from/to
the repository will become a severe limitation, be-
cause the connections with the repository have very
low bandwidth requirements. The amount of data
transferred is small: it consists only of access infor-
mation for the required tools.

Fully symmetric solutions can also be adopted,
such as those developed in the area of distributed
data bases r131.

3 A Web-based implementation

The open EDA environment we have described is
completely general. We have mainly focused on a
dynamic tool integration paradigm and analyzed
the necessary conditions to make it working. Many
different protocols can be specified and different
mechanisms conceived to meet these requirements.
However, most of the features we have described are
similar to those of the World Wide Web. Hence, we
propose in this section a Web-based implementa-
tion for the architecture of Fig. 2.a. We use HTTP
servers as gateways and we associate each agent
with a URL. In addition, we use Web browsers as
standard front-ends to access the environment.

The interface to the resource repository is a (tree
of) HTML pages containing hyperlinks to the avail-
able resources [14]. Links can be classified and or-
ganized to make it easier to find data and services,
and the HTML pages can be dynamica.lly generated
by scripts (based on the Common Gateway Inter-
face, CGI [IS}) in order to show to each user only
the links he/she is allowed to follow. To connect
to the environment, a designer uses a Web browser
to access the URL of the resource repository. The
corresponding HTML page can be conceived as the
main-page of the EDA environment. From this

page the designer may access design-data, run re-
mote tools, contact other designers. This is always
done by clicking the corresponding links.

Referring to Fig. 2.b, consider designer A access-
ing the environment. The entry point can be alocaJ
page (provided by A,) containing a link to the URL
of the resource repository. Following this link, user
identification data are automatically posted by A,
to the HTTP server of the resource repository. If
agent A is a registered user, the resource repository
generates the HTML page containing the hyper-
links to all the resources A can access (including,
for example, a design database D and a design tool
B). From the user stand point, this page looks like
the main page of aloca.l EDA framework: resources
can be represented by their functionality, or just be
associated with icons to be clicked to access the
corresponding resources.

Suppose that A opens a project p stored in D,
and runs B to synthesize part of the design spec-
ified in p. When A clicks the hyperlink of D, a
request is implicitly sent to D" that checks for per-
missions and provides the HTML pages that allow
A to browse (part of) the contents of the database.
The first of this pages can be viewed as the grant
message sent by D I to A" A, interprets the mes-
sage and shows the interface up. Actually, this is
automatically done by the Web browser.

When A selects project p from the database, the
corresponding files (or at least their directory in-
formation, if caching mechanisms are implemented)
are to be transparently checked-out and transferred
from D to the local workspace of A. However, the
workspace of A is hidden to the Web browser. Files
cannot be transferred through the communication
channel opened between the browser and the HTTP
server that implements the gateway of D. On the
other hand, using standard File Transfer Protocol
(FTP) will violate both transparency and security
requirements,. What we need is a new connection
between A, and D,.

We assume that each gateway has a demon wait-
ing on a given port for file transfer requests. The
preexisting Internet connection can be used to pro-
vide D, with all information required to connect to
the A, 's file transfer demon: IP address, port num-
ber, file transfer protocol and password to be used.
Upon user's selection, D, requests a connection to
the Ag's demon that makes the local workspace ac-

52

A. Bogliolo, L. Benini, D. Goon, D. Ku, G. De Micheli

tion can be used not only to transfer data, but also
to transfer executable programs in a platform in-
dependent fashion. Agent A can then receive a
program (e.g., a JAVA applet) implementing a full
graphic user interface (GUI) to B. The interface is
transferred once for a.I1 upon connection and runs
loca.l1y, improving efficiency. Interactions through
the network are involved only to launch remote jobs
on B. In practice, the use of JAVA applets can be
viewed as an advanced caching mechanism.

To further improve performance, local applica-
tions are to be used whenever available.

An experimental
low-power design

application:4

Realizing a working prototype of a Web-based open
EAD environment is the target of our current work.
As a starting point, we have restricted the scope of
our project to the area of CAD for low-power, where
most of our research efforts are concentrated. We
are following a three step process consisting of: i)
definition of specifications, ii) feasibility study and
iii) prototype implementation. This paper is based
on the results of the first two steps.

Two sets of experiments were performed to ver-
ify feasibility. First, we used PPP to experi-
ment remote execution strategies and to analyze
the features of Web-based interfaces [8]. Simula-
tion, synthesis and optimization tools for low-power
CMOS circuits are integrated in PPP. A common
Web-based GUI hides the boundaries among dif-
ferent tools and makes them accessible through
the Internet. Both batch and interactive re-
mote execution protocol are implemented. PPP is
available on our Web server for direct evaluation
(http://akebono.stanford.edu/users/PPP). Second,
we developed a distributed RCS application to ex-
periment the dynamic encapsulation mechanism
based on a common hand-shaking protocol. In par-
ticular, we used a JAVA applet as platform indepen-
dent interface to the database, and JAVA servers as
file-transfer demons. Sockets were used to establish
connections between them.

The implementation of a full fledged open EDA
environment for low power is work in progress. The
synthesis and simulation tools embedded in PPP
will become the first "agents" in the environment.

cessible for file transfers. Notice that, if caching
mechanisms are implemented, the file-transfer con-
nection will not be closed when A exits from D.
The caching mechanism will be transparently man-
aged by A, and D I' that will close the connection
only when all the data have been transferred.

At this point of the user session, p has become
the current project. A goes back to the main page
(i. e., to the resource repository) and clicks the icon
associated with B to access the synthesis tool. The
double hand-shaking procedure is then repeated to
establish the connection between A and B: A,
sends to B, a connection request containing the in-
formation about its file-transfer demon, B, checks
permissions and grants the connection by sending
its Web-based interface. At the same time, B, re-
quests connection to the file transfer demon of A
and automatically downloads the directory infor-
mation about the current design. This grants con-
sistence between the local workspaces of A and B
and allows the user to work on B as on a local tool.
In particular, the current design can be accessed
through the Web-based interface of B. The user
can then select part of the design to be the target
for the tool run.

The double connection between two agents,
closely resembles that defined in the standard file
transfer protocol. A message channel is first cre-
ated upon client's request. A data channel is then
opened and controlled by the server to allow the
client to upload and download files. In our architec-
ture, the message channel is replaced by a highly in-
teractive and flexible user interface, while the data
channel is hidden to the user to make file transfers
transparent.

So far we implicitly referred to tool interfaces
implemented as HTML pages dynamically gener-
ated by the tool's gateway (as those used in PPP).
HTML forms are used to issue commands on the re-
mote server, while nothing is processed locally. In
general, this provides an effective way of controlling
tasks dominated by the execution time of batch pro-
cesses (i.e., optimization, simulation), but becomes
inefficient when dealing with tools that entail fre-
quent graphic interactions (i.e., waveform displays
or schematic editors).

In these cases, we can exploit the key features
of languages designed for distributed execution on
the Internet, such as JAVA. The Internet connec-

53

SASIMI'96

Conclusions5 References

We have proposed a new paradigm for the dynamic
integration of EDA tools in an open, distributed
environment. The architecture of the environment
is symmetric and completely decentralized. Any
agent (designer, tool or database) uses a local gate-
way to become part of the environment. A simple
hand-shaking protocol provides a standard way of
establishing connections between gateways of differ-
ent agents. Gateways wrap around agents and hide
all details of resource retrieval, remote connection
and data transfer.

Each agent may act either as a server or as a
client in the context of a given transaction. The
Internet connection is used by the server to send to
the client all information necessary to interface to
the service it provides. This grants complete modu-
larity to the environment: the client agent doesn't
need to know in advance how to interface to the
server. New tools can be added at any time be-
coming automatically available to any user without
affecting the preexisting ones.

The agent abstraction makes the environment
open and flexible. For instance, no restrictions
on data format are necessary, since agents can
be added to perform any kind of data conver-
sions. Flow-manager agents may be also con-
ceived: instead of containing tools or databases,
flow-manager agents steer a task-specific design
flow possibly involving many other agents. Design-
ers are agents as well. They may not only access
resources, but also provide services. For instance,
they may provide information to other designers ei-
ther by publishing design data or by accepting talk-
like connections. Any kind of licensing policies and
security protections may also be implemented.

We proposed a Web-based implementation for
the dynamic encapsulation mechanisms. Prelimi-
nary experiments have been performed that demon-
strate the viability of the approach. Our current
work is mainly focused on realizing a working pro-
totype of the open, distributed EDA environment.

[1] T. J. Barnes et 41., Electronic CAD frame1Dorb.
Kluwer Academic Publishers, 1992.

[2] R. Camposano and W. Wolf, Trends in High-Level
S,nthuu. Kluwer Academic Publishers, 1991.

[3] T. Berners-Lee et 41., "The world-wide web," Com-
munications of the ACM, vol. 37, no. 8, pp. 76 -

82,1994.

[4] Network Working Group, "Uniform Resource L0-
cators (URL)," RFC 1738, http://nw.w3.-
org/pub/VVV/Addressing/rfc1738.txt, ~cem-
ber 1994.

[5J M. J. Silva and R. H. Katz, "The case for design
using the World Wide Web," in Proc. of Design
Automation Conf., pp. 579-585, 1995.

[6J P. G. Ploger, J. Wilberg, M. Langevin, and R. Cam-
poeano, "WWW Based structuring of codesigna",
in Proc. of 1nt.1 S,mposiam on S'6tem Spthuu,
pp. 138-143, 1995.

[7] D. Lindsky and J. M. Rabaey, "Early Power Explo-
ration - A World Wide Web Application," in Proc.
of De6ign Autom4tion Con!, pp. 27 - 32, 1996.

[8J L. Benini, A. Bogliolo, and G. De Micheli,
"Distributed EDA tool integration: the PPP
paradigm," to 4ppe4r in Proceedings of ICCD, 1996.

[9J A. Bogliolo, L. Benini, and B. RiccO, "Power Esti-
mation of Cell-Based CMOS Circuits," in Proc. of
Design Aatom4tion Con!, pp. 433 - 438, 1996.

[10] S. Vinoski, "Distributed Object Computing with
CORBA," C++ Report M4gazine, July/August
1993.

[11] Sun Micr~ystems, '"The JAVA language environ-
ment: a white paper," http://java.sun.coa!-
.hitePaper/java-whit8paper-1.htal.

[12] "MIME (Multipurpose Internet Mail Exten-
sions)," RFC 151.1/151.!, http:// oac.uci.-
edu/ indi v / ehood/MIKE/MIME . htal.

[13] R. Elmcasri and S. B. Navathe, Fundament4ls of
Dat4base System6. Benjamin/Cummings, 1994.

[14J Network Working Group, "HyperText Markup
Language (BTML)," Working 4nd 6ackground
materials, http://nw..3.org/hypertext/VVV/-
MarkUp/MarkUp.htal.

[15] "The Common Gateway Interface," Working
4nd 64ckground m4teri4ls, http://hoohoo.ncsa.-
uiuc.edu/cgi.

Acknowledgements
This work was partia.l1y supported by NSF (under
contract MIP-9421129), by AEI (under grant De
Castro) and by a Stanford CIS grant.

54

