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Abstract

In this work we describe a novel approach to the clas-
sical problem of library binding. We de�ne the concept
of generalized matching, a Boolean constraint whose sat-
isfaction allows us to �nd all possible input assignments
for which a library element matches a given Boolean rela-
tion. Completely and incompletely speci�ed Boolean func-
tions are treated as particular cases. Generalized match-
ing supports the simultaneous matching of more than one
single-output cell (or the optimal use of multi-output cells)
and allows the optimization of pin-assignment dependent
cost functions.

We describe a fully symbolic procedure for generalized
matching, and we discuss the related e�ciency issues.
The advantages of generalized matching over traditional
Boolean matching are then discussed by means of exam-
ples.

1 Introduction

With the di�usion of reliable and e�ective tools for logic
optimization and library binding, designers have adopted
methodologies that heavily rely on automatic tools for the
back-end parts of the design ow, namely the synthesis and
optimization of logic circuits.

Several formalisms have been explored for the represen-
tations and exploitation of the degrees of freedom allowed
in the implementation of multilevel logic circuits. We can
outline three broad classes: algebraic approaches [13], don't
care based techniques [17, 12] and Boolean relation based
optimizations [14, 15]. These approaches allow the explo-
ration of increasingly larger portions of the optimization
space, at the expenses of increasing computational com-
plexity. Such techniques are technology independent, be-
cause they do not rely on any particular assumption on
the technology that will be used for the �nal implementa-
tion.

The technology-dependent part of the synthesis process
has been called library binding (or technology mapping)
and performs a transformation of an optimized technology-
independent logic network into an equivalent network con-
sisting only of logic blocks belonging to a prede�ned li-
brary. Library binding algorithms targeting standard cell
or gate array implementations can be algorithmic or rule-
based. We concentrate here on algorithmic techniques that

start from an unmapped network and decompose it in
simple base functions (generally two-input gates). This
step is called decomposition. The decomposed network is
then processed starting from the inputs and moving to-
ward the outputs. During this process, subnetworks of
the unmapped network (called target networks and rep-
resented by target functions) are selected and replaced by
cell-library instances. This phase is called covering.

Covering algorithms can be divided into two broad
classes: i) structural approaches [10, 18], based on e�cient
graph matching algorithms and ii) Boolean approaches
[7, 19, 9], that represent library cells and portions of the un-
mapped network as Boolean functions, and employ mixed
graph-based and Boolean techniques. Although slightly
less e�cient, Boolean techniques can improve upon the re-
sults obtained by the structural approach.

This work proposes a general solution to the problem of
determining when a target function can be substituted by
one or more library cells. This problem is usually called
Boolean matching, and it is the core of all tools performing
library binding with Boolean techniques.

Our formulation is general, because it allows to solve the
matching problem even if the target block under consider-
ation is represented as a Boolean relation. Moreover, our
algorithm produces a symbolic representation of all possi-
ble input assignments for which a library cell matches a
given target block. This information gives us the possibil-
ity to employ and optimize accurate cost functions whose
value depends on the input pin assignment. Our approach
is fully symbolic and takes advantage of highly optimized
BDD-based tools [16]. Generalized matching supports the
simultaneous matching of more than one single-output cell
or the optimal use of multi-output cells. In our approach,
library binding is an iterative improvement process that
combines technology dependent and independent optimiza-
tions and o�ers the possibility to exploit degrees of freedom
not generally available with traditional techniques.

2 Terminology and problem formula-
tion

We assume that the reader is familiar with the ba-
sic concepts of Boolean algebra (see [11, 8] for a review).
We will concentrate here on some more advanced concepts
needed for the understanding of the following material.



The input controllability don't care set (CDC) for a
Boolean function f(x) (with support X) includes all input
conditions that are never produced by the environment.
We can de�ne a CDC function fCDC : X ! f0; 1g whose
ON-set is the CDC-set of f .

The output observability don't care set (ODC) for f de-
note all input patterns that represents situations when f

is not observed by the environment. We de�ne an ODC

function fODC : X ! f0; 1g whose ON-set is the ODC-set
of f . The DC function fDC = fODC + fCDC can be used
to express all degrees of freedom available for the imple-
mentation ~f of a single output function, namely:

f � f 0DC � ~f � f + fDC (1)

or, equivalently:

( ~f + f
0

MIN) � (fMAX + ~f 0) = 1 (2)

where fMIN = f � f 0DC and fMAX = f + fDC.
If we target the minimization of multi-output Boolean

functions, the degrees of freedom provided by the environ-
ment can be expressed with a Boolean relation [14]. In-
tuitively, Boolean relations are generalizations of Boolean
functions, where each input pattern may correspond to
more than one output pattern. If we call X the input space
and Y the output space, a Boolean relation < can be repre-
sented with its characteristic function: X : X�Y ! f1; 0g
such that X (x; y) = 1 if and only if y is one of the possible
outputs of < for the input x. We clarify these de�nitions
with an example.

Example 1 Consider the Boolean relation represented by the
following table:

in1in2 out1out2
00 f00;11g
01 f00;11g
10 f10g
11 f10g

Its characteristic function is: X = in0
1
out0

1
out0

2
+

in0
1
out1out2 + in1out1out02.

We review some basic concepts related to the prob-
lem of Boolean matching. A frequently used notion is
NPN-equivalence [7, 8]. Two Boolean functions f and
g are NPN -equivalent when they are equivalent modulo
the negation of the output (N), the permutation (P ) of
the inputs and the negation (N) of the inputs. The NPN

matching problem consists of �nding (if it exists) a NPN

transformation that makes a cell of a prede�ned library
equivalent to a target Boolean function.

Many approaches have been proposed for the solution
of this problem [7, 2, 5, 6, 9]. We will concentrate here
on the most common technique used. In a preprocessing
once-for-all procedure a set of �lters is associated with the
library. Filters allow to early rule out a large number of
library elements that cannot match a given target function.
The library elements that pass the �lters are then matched
against the function.

The individuation of the correct (if any) NPN trans-
formation is done iteratively constructing the BDDs repre-
senting the various versions of the library element modulo
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Figure 1: Transformation of the library cell g ! G for

matching with function f . The �rst two control vari-

ables of each multiplexer are for permutation control,

the last one is for polarity control.

the NPN transformations and checking for Boolean equiv-
alence with the target function. The number of attempts
can be highly reduced if symmetries and polarity invari-
ances are detected [7]. E�cient detection of symmetries
and polarity invariances can be done employing spectral
techniques [6].

The approaches outlined above have been implemented
with successful results [3, 2, 9]. A recent study has shown
that the combined use of �lters and symmetry detection is
extremely e�ective in almost all practical cases [4].

Nevertheless, the Boolean matching problem is more
complex and still partially unsolved for incompletely speci-
�ed functions. Some attempts have been made to generate
�lters that are valid for matching incompletely speci�ed
functions [1], but they are less e�ective than the �lters
used for exact matching.

3 Exact generalized matching

Our matching algorithm is a two-step procedure. In this
section we will describe it for the simplest case of matching
a completely speci�ed Boolean function (this case will be
called exact matching).

We consider a target function f(x) and a library cell
function g(y) with n inputs. The �rst step of our procedure
is a transformation of the library cell function g. For the
ease of understanding we will describe this transformation
as it would be done using logic blocks.

On each input of g we connect the output of a mul-
tiplexer whose inputs are the same inputs of function f

(Figure 1). The control inputs of each multiplexer have the
following function: the �rst dlog2 ne control inputs control
which of the external n inputs is multiplexed on the input
of g. The last control variable controls the polarity of the
selected external input.

Example 2 In the case of Figure 1, consider multiplexer M1.
If the control variables C0 and C1 are 00, the input x1 is con-
nected with y1. If the polarity control variable C2 is 1, the
connection with y1 will be inverting, therefore x0

1
will be seen

on y1.

From our construction it is clear that the number of
control variables needed is Nc = n(dlog2 ne+ 1). The key



observation is that the controls variables c can be selected
in such a way that all PN -equivalent functions of g can
be generated (the inversion of the output can be obtained
with one more control variable for the output polarity. We
restrict to PN for the sake of simplicity).

The number of inputs of the target function and the cell
library are not constrained to be the same. In general we
allow m inputs for g and n inputs for f . If n > m some
of the inputs of f will not be used by g. In this case g

can match only if some of the variables in the support of f
are redundant (an unlikely condition if we do not consider
don't cares). When m > n, some of the inputs of f will be
connected with two or more inputs of g.

In general, the class of functions generated by assign-
ments of c is actually larger than all input permutations
and polarity changes. It includes the cases where two or
more of the inputs of g are connected to the same exter-
nal input with arbitrary polarity or some of the external
inputs is left unconnected. We call this equivalence rela-
tion extended-PN (EPN). The extension to ENPN is
straightforward.

The library cell function g(y) has been transformed to
a new Boolean function G(c;x). The EPN equivalence re-
lation is de�ned over the set S of all the Boolean functions
with n inputs. EPN -equivalence partitions S in equiva-
lence classes. The set of equivalence classes de�ned by an
equivalence relation is called quotient set. We call G quo-
tient function because it implicitly represents a quotient
class, in fact, all possible assignments of the c variables
individuate all possible functions of x that belong to the
same class as the original library cell function g.

The construction of G is performed directly starting
from the BDD of g. Thanks to the binary encoding on
the control variables of the multiplexers, the size of c is
O(m log2 n). This is an important property, because we
want to keep the number of variables in the BDD repre-
sentation of G as small as possible for e�ciency reasons.

The second step of our procedure consists of de�ning a
Boolean formula [11] that has at least one satisfying assign-
ment if and only if there exists a function EPN -equivalent
to g that is equivalent to f . Intuitively, this problem can
be solved observing that there is an EPN matching if and
only if there exists an assignment c0 to the control vari-
ables c of G(c;x) such that G(c0;x) is equal to f(x) for all
possible values of x. The key point is to realize that this
condition can be immediately translated into the following
Boolean formula:

M(c) = 8x
�
G(c;x)�f(x)

�
(3)

where 8x represents the universal quanti�er (consensus)
applied to all variables in x and � represents the XNOR
operator. The formula above can be seen as a function
of the control variables c. We will call it matching func-
tion,M(c), for brevity. Notice that the ON-set of M con-
tains all possible input assignments and polarity inversions
that match with f . There are two important consequences.
First, the formula above can be e�ciently computed in a
fully symbolic way, using BDDs. Second, our procedure
�nds all possible matchings given f and g, not only a par-
ticular one.
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Figure 2: Target function f and quotient function G

of example 3.

Example 3 The library cell function is g = x0y. We
want to �nd the matching with f = wz0 . Figure 2 shows
G(a; b; c; d; w; z) = (c� (za + wa0))0(d� (zb + wb0)), where a; c
and b; d are the control variables. We take the XNOR of f and
G:

f�G = (wz0)�((c� (za+ wa0))0(d� (zb + wb0)))

Computing the consensus of the above Boolean formula with
respect to w and z (the order does not matter), we obtain
M(a;b; c; d) = ab0c0d0 + a0bcd. There are two minterms in
M(a;b) that correspond to the two possible solutions. Minterm
ab0c0d0 corresponds to assigning z to x and w to y without any
polarity change. Minterm a0bcd corresponds to assigning z to y
and w to x changing both polarities. The correctness and com-
pleteness of the solution set represented by M can be veri�ed by
inspection.

From a practical point of view, our algorithm operates
as follows. Given the BDD of f and the BDD of G (con-
structed starting from g), the BDD ofG(c;x)�f(x) is con-
structed. The last step is the computation of the consensus
over all variables in x that produces M(c).

Notice that our matching procedure requires more
Boolean variables than the traditional approach, therefore
the BDD computations involved are very likely to be more
expensive. The e�ciency of �lters and symmetry detec-
tion is such that for a very high percentage of cases the
traditional approach can �nd a matching doing only a sin-
gle BDD comparison (performed in constant time), there-
fore the traditional matching approach would appear to
be more convenient. This may be true, especially if we
are not interested in obtaining all possible matchings. We
will show in the next section that our approach is applica-
ble to Boolean matching problems more general that exact
matching, where traditional techniques cannot be applied.

4 Generalized matching

We will �rst consider the case of incompletely speci�ed
single-output target function. Next, we generalize to multi-
output target function.

4.1 Matching incompletely speci�ed func-
tions

In a general multilevel circuit, single-output target func-
tions have ODCs and CDCs. These degrees of freedom
should be exploited when the library binding step is per-
formed. The matching problem with DCs (DC-matching,
for brevity) can be formulated as follow. Given a Boolean
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target function f and its DC function fDC, a library cell
function g matches f if and only if there is an input

permutation and polarity assignment g
NPN
! ~g such that

(~g + f 0MIN)(~g
0 + fMAX) is true for all input combinations.

The increased complexity of this kind of Boolean match-
ing stems from the fact that not all �lters and symmetries
are invariant when fDC is not null. In this case our ap-
proach completely avoids the problems, because it is pos-
sible to formulate Boolean matching with DC as a simple
Boolean formula. Since the quotient function G(c;x) im-
plicitly represents the complete EPN class of functions
generated by g, we can simply insert it in the formula of
DC-matching. We then universally quantify out x, enforc-
ing the validity of the condition for all input con�gurations.
In symbols:

M(c) = 8x
�
(G(c;x) + fMIN(x)

0)�

(fMAX(x) +G(c;x)0)
�

(4)

The result of the consensus is again the matching func-
tion M(c) whose ON-set is the set of all possible assign-
ments of the control variables that satisfy the matching
condition. Observing the formula, two points are of inter-
est. First, when fDC = 0 we have fMIN = fMAX = f and
equation (4) degenerates to equation (3). Second, solving
the DC-matching problem in our approach is not more dif-
�cult than solving the exact matching problem, the only
di�erence being that a di�erent formula must be univer-
sally quanti�ed (the number of Boolean variables involved
do no change).

Another interesting point is that our procedure can be
applied to target functions and library cell functions with
di�erent number of inputs. Therefore it is able to �nd
a match even when the minimum cost library element g
compatible with f has smaller or larger support than f .

4.2 Matching Boolean relations

We consider the scenario shown in Figure 3. We have
a logic network where we identify a set of logic blocks
q1; q2; :::; ql (represented by multi-output Boolean function
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Figure 4: A typical example of situation where BR-

matching is applicable.

q). Consider the set of logic blocks that are predecessors
of q, which we call f1; f2; :::; fn (represented by a multi-
output Boolean function f). We focus on the library bind-
ing problem for the components f . In the traditional single-
output approach, we would bind the components of f one
by one (considering don't cares conditions). Using general-
ized matching it is possible to perform concurrent binding
of two or more target functions.

We will show that concurrent binding requires to �nd
a group (cluster) of single-output cells (or a single multi-
output cell) that satisfy a Boolean constraint expressed as
a Boolean relation. This avor of generalized matching
will therefore be called BR-matching. Roughly speaking,
BR-matching is more powerful than DC-matching, as in
the case of the corresponding technology independent opti-
mizations. The components of f that will be concurrently
mapped are called unbound. The remaining components of
f are considered as bound and we will not attempt to bind
the corresponding target functions to library cells.

The two limiting cases of this situation are when only
one component is considered unbound and when all compo-
nents are considered unbound. The �rst limiting case has
already been addressed in the previous section. We will
discuss here the second limiting case (f is fully-unbound),
from which all the intermediate situations can be easily
derived. In order to keep the formalism as simple as possi-
ble, we will analyze the case of a fully-unbound, two-output
target Boolean function f , as shown in Figure 4 (the exten-
sion to the general multi-output case is straightforward).
Moreover, we will assume that the composite function h(x)
is completely speci�ed and single-output (this hypothesis
will be relaxed later).

Whenever h = 1, we know that the function q must be
q = 1 as well (their outputs coincide). The opposite holds
when h = 0. We can translate this simple observation in a
Boolean constraint:

qh+ q
0
h
0 (5)

that must hold for each value of x. Notice that the
support of q is not x, but the vector f (in our case consisting
of f1 and f2). We want to test if two library cell functions
g1 and g2 (or a two-output library element) can implement
block f , without changing the external behavior of h. We
will use the quotient functions G1(c1;x) and G2(c2;x) that



implicitly represent the EPN classes. The constraint (5)
enforced on all input vectors becomes:

M(c1;c2) = 8x[q(G1(c1;x);G2(c2;x))h(x) +

q(G1(c1; x);G2(c2;x))
0
h(x)0] (6)

We clarify the meaning of this Boolean formula through
an example.

Example 4 Consider a block f with three inputs (x1, x2, x3)
and two outputs f1 and f2 that are connected to the inputs of
an AND gate. We have q = f1f2. Assume that the global
function is h = x1x02 + x3. The Boolean constraint enforced by
this structure is:

(f1f2)(x1x
0

2
+ x3) + (f 0

1
+ f 0

2
)(x0

1
x0
3
+ x2x

0

3
)

which is the characteristic function of the following BR
x1x2x3 f1f2
000 f10;01;00g
001 f11g
010 f10;01;00g
011 f11g
100 f11g
101 f11g
110 f10;01;00g
111 f11g

The Boolean relation is constructed by AND-ing the only
admissible output f11g (f1f2) with all input con�gurations cor-
responding to the ON-set of h: x1x02 + x3, and by AND-ing
the admissible outputs f10;01;00g (f 0

1
+f 0

2
) with the remaining

input con�gurations (the OFF-set of h: x0
1
x0
3
+ x2x03).

We will allow EP matching (input polarity inversions are
not allowed) for the sake of simplicity. Our candidate library
cell functions for BR-matching of block f are g1(y1; y2) =
(y0

1
y0
2
)0 (for f1) and g2(y1; y2) = (y1y

0

2
)0 (for f2). We need

Nc = 2 � 4 control variables for P matching (two control vari-
ables for each input of the library cells). The quotient func-
tions are: G1 = ((c0

1
c0
2
x1+ c0

1
c2x2+ c1c02x3)

0(c0
3
c0
4
x1+ c0

3
c4x2+

c3c
0

4
x3)0)0 and G2 = ((c0

5
c0
6
x1 + c0

5
c6x2 + c5c

0

6
x3)(c07c

0

8
x1 +

c0
7
c8x2 + c7c

0

8
x3)

0)0

Replacing in the expression of the Boolean constraint all
the occurrences of f1, f2 with G1 and G2 we obtain the
Boolean formula for BR-matching. We then universally quan-
tify the formula with respect to x1, x2 and x3. The resulting
matching function M is M(c1; c2; :::; c8) = c0

1
c0
2
c3c04c

0
5
c6c7c08 +

c1c
0

2
c0
3
c0
4
c0
5
c6c7c

0

8
(representing all allowed input assignments).

There are two minterms because of the symmetry of the library
element g1.

Notice that formula (6) reduces to formula (3) if the
block f has one output. The number of control variables
needed is Nc =m1(dlog2(n)e+1)+m2(dlog2(n)e+1) where
m1 and m2 are respectively the number of inputs of the
library cells to be inserted in place of f1 and f2 and n is
the number of external inputs.

The general fully-unbound multi-output case (when the
block f has k outputs) is conceptually the same as the two-
output case above described. From the practical point of
view, however, the complexity of BR-matching increases
very rapidly with the number of outputs of block f . First,
the number of control variables is O(km log2 n) (where m
is the number of inputs of the library cell and n is the
number of inputs of the block f). Second, the number of
possible clusters of library cells to be tried is O(Nk) (where
N is the number of cells in the library).

...x

2

h

q

1
q

2
q

f

1f

f

Figure 5: A situation where BR2-matching is applica-

ble.

Let us now consider the general case in which only some
of the target functions of block f are unbound. For each
unbound component, the quotient function G of a candi-
date library cell will be inserted in (6), while the bound
target functions will be left untouched. The advantage of
this approach is that it can be applied to situations where
the number of control variables needed for fully-unbound
BR-matching is too high, or the number of possible clus-
ters of library cells is excessive.

Moreover, many libraries include multi-output cells (like
full adders and decoders). We can restrict the use of BR-
matching to the multi-output cells prede�ned in our li-
brary. In this case, the dependence from k of the num-
ber of control variables disappears, because if a matching
input assignment exists, it must be the same for all the
output functions (the quotient function for a multi-output
cell does not have more control variables than the quotient
function of a single-output cell with the same number of
inputs).

Our last step is to introduce the most powerful form
of generalized matching: we will consider the case of BR-
matching when the block h itself is described by a Boolean
relation. We call this case BR2-matching. Consider the
characteristic function X (x) of the Boolean relation repre-
senting the block h (obviously, the block h is a multi-output
function h, otherwise the speci�cation as a Boolean rela-
tion would be meaningless). We assume for simplicity that
h has only two outputs: h1(x) and h2(x) (corresponding to
the output of the q block: q1 and q2). This case is depicted
in Figure 5. We call G the array of quotient functions of
cells that we want to place into block f. The Boolean for-
mula for BR2-matching is:

M(c) = 8x[ Xh1h2(x)q1(G(c;x))q2(G(c;x)) +

Xh1h0

2

(x)q1(G(c;x))q2(G(c;x))0 +

Xh0

1
h2
(x)q1(G(c;x))0q2(G(c;x)) +

Xh0

1
h0

2

(x)q1(G(c;x))0q2(G(c;x))0 ] (7)

Where Xh1;h2 , Xh1 ;h0

2

, Xh0

1
;h2

and Xh0

1
;h0

2

are the cofac-
tors of the characteristic function X with respect to h1 and
h2. The meaning of this Boolean formula is similar the one
of the simpler BR-matching case. The detailed derivation
is not presented here for space reasons.

In summary, we have shown that all avors of gener-
alized matching, from exact matching to BR2-matching,



can be expressed as a satis�ability problem on a Boolean
function. This is an interesting result from a theoretic
point of view. The matching problem has traditionally
been solved as a combination of a combinatorial problem
(�nding the correct permutation and polarity assignment
for inputs and outputs) and a Boolean satis�ability prob-
lem (testing the equality of two Boolean functions). Our
approach merges the two in a pure satis�ability problem
on an extended Boolean space (input variables and control
variables).

A mapper based on generalized matching has a struc-
ture that is very similar to BDD-based technology-
independent optimization tools. First, BR-based matching
can �nd matchings across fan-out points. Second, its ef-
�cacy is dominated by the size of the BDDs representing
the matching functions M(c). Third, generalized match-
ing can be applied iteratively, because the exploitation of
indi�erence conditions on a portion of a network can re-
veal indi�erence conditions on other portions that where
hidden before.

5 Exploiting the matching function

The solution of the generalized matching problem in-
volves the identi�cation of the matching function M(c)
(where c are control variables) whose satisfying assign-
ments (ON-set) are all possible input assignments and po-
larity changes that enable the substitution of a target func-
tion f with a library cell function g. This is an useful in-
formation that can be exploited for the individuation of
the best input assignment according to a pre-de�ned cost
function.

Simple delay and power models that do not depend on
input assignment do not accurately describe the behavior
of real circuits. We will consider here a timing-related and
a power-related cost function for which input assignment
is signi�cant.

A timing-related cost function is the path-dependent de-
lay. In order to accurately describe the timing behavior of
CMOS circuits, the path-dependent delay model assigns
a di�erent delay to each path between inputs and output
(we will consider single output blocks for simplicity). If
the environment of a block is completely known (as it is
the case for the optimization of an already mapped cir-
cuit), the path delays can be accurately calculated based
on look-up tables, fan-in and fan-out information. Other-
wise, if this model is used during the �rst mapping pass,
only an estimate of the possible fan-out is known.

The cost of a library element could be de�ned to be the
latest arrival time of its output for a given input assign-
ment:

Cost =Maxftin1+�in1 ; tin2+�in2 ; :::; tinn+�inng(8)

where tini and �ini are respectively the arrival times
and the path delays of the n inputs. Obviously, the cost of
a library element depends on the input assignment.

Example 5 Consider a 2 input NAND gate. Assume that it
can safely replace (because of don't care conditions) a 2 input

XOR gate. The cost (latest arrival time of the output) of the
XOR gate is Cost = 12:3. The arrival time of the two inputs
is tin1 = 11:2 and tin2 = 11:7. The path delays of the NAND
are �in1 = 0:5, �in2 = 0:7. The replacement of the XOR gate
with the NAND gate is convenient only if the external input
in2 is connected with the gate input 1 (Cost = Maxf11:7 +
0:5;11:2 + 0:7g = 12:2). The other input assignment gives a
cost Cost = 12:4 that is higher than the one of the XOR gate.

The formulation of suitable cost functions for minimum
power dissipation mapping is still an open research topic.
As an example we will refer to the power dissipation model
proposed in [20] where the charge and discharge of internal
nodes is taken into account. In this case the cost function
(power dissipated on a gate) is de�ned as:

Cost =
X

j2internal nodes

P
int
avg(j) +

X

i2inputs

P
inp
avg(i) (9)

Where the two contributions are respectively the av-
erage power dissipated on internal nodes and the average
power dissipated on the inputs of the gate plus the accu-
mulated power cost of input i assuming a match with the
gate under consideration. The �rst summation is strongly
dependent on input assignment, in fact P int

avg(j) is propor-
tional to the expected number of transitions on internal
node j. As for the second summation, it may become de-
pendent on input assignment if the input loads are not
equal. Clearly, the minimization of such a cost function
is guaranteed only if all admissible input assignments are
known.

A simple procedure that �nds the minimum of a cost
function dependent on input assignment enumerates all the
minterms ofM(c) and computes the cost function for each
of them. The assignment corresponding to the minterm
that produces the minimum cost function value is chosen.
The essential advantage of this procedure is that it com-
putes the cost function (a possibly expensive task) only
for the minterms ofM , that represent all admissible EPN
transformations.

6 Examples and practical issues

The purpose of this work was to describe a new ap-
proach to the matching problem and more in general to
library binding. We have implemented and tested the
matching algorithm, but we have not yet developed a com-
plete library binding tool based on these ideas. Therefore
we only show the application of generalized matching on a
simple but meaningful example. We will then discuss the
issue of �nding a good ordering on the BDD variables for
maximum e�ciency during generalized matching.

Example 6 In this example we will consider EP-matching (in-
put polarity changes are not allowed) for the sake of simplicity.
Assume that we have a simple library containing 4 cells: two-
input XOR (Cost = 2), two-input AND (Cost = 2) , inverter
NOT (Cost = 1), two-input AND1 (logic function in1in

0

2
,

Cost = 3). An implicit cell is the \WIRE" whose cost is zero.
We want to optimize the mapped network of Figure 6. Notice
that the mapping cannot be improved with Boolean methods us-
ing don't cares because the external DC-set is empty and the
XOR on the output does not introduce any ODC on its fan-ins.
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Figure 6: Application of BR-matching on a multi-

output sub-block.

We apply BR-matching to the multi-output target function
consisting of the �rst XOR and the AND (enclosed in the dashed
box f). The Boolean condition for BR-matching is:

h(G1G
0
2 +G0

1G2) + h0(G1G2 +G0
1G

0
2)

that must be universally quanti�ed on the input variables x1,
x2, x3. Only the cell clusters that give a lower cost than the
current one (Cost = 4) must be considered. The candidate cell
clusters are listed in the following table.

Cost Cluster

0 WIRE-WIRE

1 WIRE-NOT NOT-WIRE

2 NOT-NOT WIRE-AND XOR-WIRE

WIRE-XOR

3 NOT-AND AND-NOT XOR-NOT NOT-XOR

AND1-WIRE WIRE-AND1

The number of control variables needed is 4 � 2 = 8 in the
worst case (two two-input cells and three primary inputs), but
we will need only 3 � 2 = 6 for our restricted candidate set of
clusters.

Applying BR-matching, we �nd that WIRE-AND1 is a cor-
rect replacement. The quotient functions are G1 = c0

1
c0
2
x1 +

c0
1
c2x2 + c1c

0

2
x3 (for WIRE) and G2 = (c0

3
c0
4
x1 + c0

3
c4x2 +

c3c04x3)(c
0
5
c0
6
x1 + c0

5
c6x2 + c5c06x3)

0 (for AND1). The match-
ing function is M = c1c

0

2
c0
3
c4c

0

5
c0
6
. The �nal solution is shown

in Figure 6. The optimized network has a lower cost and is
fan-out free. Notice that this replacement could not have been
found with traditional methods, unless resorting to technology-
independent optimizations.

From the example above we can draw some general ob-
servations. First, generalized matching is well suited for
re-mapping or local optimization. Heuristics must be de-
veloped that direct the re-mapping e�ort on regions of a
large network where improvements are required. Second,
the e�ciency of our procedure will improve if methods that
avoid the generation of useless library cell clusters are de-
veloped.

Generalized matching involves a BDD-based consensus
computation. It is well known that universal quanti�cation
of Boolean formulas may be computationally expensive.
In our prototype implementation we have used standard
Boolean operators as implemented in a well known BDD-
package [16]. The e�ciency of BDD-based Boolean manip-
ulation strongly depends on input variable ordering. The
Boolean equation of generalized matching are expressed on
a common support that can be divided into two subsets:
control variables c and input variables x. We have investi-
gated the best ordering between these two sets. It is very
unlikely that an ordering that interleaves control variables

Orderfc;xg Orderfx; cg
Nx=Nc BDDe Te Tc BDDe Te Tc
2 / 4 22 < :01 < :01 14 < :01 < :01
3 / 9 188 < :01 < :01 88 < :01 :01
4 / 12 763 :05 :02 192 < :01 :02
5 / 20 4286 :32 :07 916 < :01 :08
6 / 24 15693 1:3 :26 2020 < :01 :40
7 / 28 61506 7:2 2:1 5566 < :01 1:8
8 / 32 211769 34 4:3 10688 < :01 6:8
9 / 45 � � � 41110 < :01 34

Table 1: Performance of generalized matching applied

to functions with increasing support size. Time is in

seconds.

and input variables will give good results in the general
case, because of the structure of the quotient functions.

Table 1 shows the result of our test. Both the target
and the library cell function were N -inputs AND gates
(N = 2; 3; :::; 9). This function has been chosen because
of the compactness of its BDD and its complete symme-
try. The �rst column of the table contains the number
of input variables versus the number of control variables.
The second and �fth column contain the size of the BDD
representing the Boolean formula to be universally quanti-
�ed (in our case the matching formula is G�f) for the two
orderings. The third and sixth column contain the time
needed for the computation of the matching formula on
a SPARCstation-IPX with 32MB of memory. The fourth
and seventh column contain the time needed for the com-
putation of the consensus on the matching formula.

Clearly, the ordering with the support variables x on
top has superior performance, even if the time for the con-
sensus computation is slightly smaller for the opposite or-
dering. Keeping the size of the matching formula as small
as possible is important for two reasons. First, the formula
must be completely computed before the consensus oper-
ation can be performed. Second, the formula is not �xed
(it reduces to a simple XNOR only for exact matching)
and it is not possible to design customized algorithm for
its computation.

In contrast, the consensus on x is always the last step
of generalized matching, and the complete knowledge of its
ON-set is not always needed (only a single satisfying as-
signment is necessary if a simple \yes-no" answer is sought
for). A specialized algorithm for the consensus computa-
tion could exploit this property to increase the e�ciency.

7 Conclusions

We have described a BDD-based fully-symbolic proce-
dure called generalized matching, that allows us to �nd all
possible input assignments for which a library cell function
matches a given Boolean function or relation. General-
ized matching supports the simultaneous matching of more
than one single-output cell (or the optimal use of multi-
output cells) and allows the optimization of pin-assignment
dependent cost functions.



Much work has to be done before its practical appli-
cation may become competitive with state-of-the-art tools
for library binding. Cells with support between 2 and 6,
that constitute the largest fraction of most libraries, are
matched in a time-e�cient fashion. For larger cells (and
clusters of cells) the performance degrades.

Many directions of improvement are under exploration.
The detection of symmetries in the library cells may help in
constructing quotient functions with a smaller number of
control variables. Filters can be exploited to early rule out
large numbers of candidate cells. A specialized algorithm
is under development for the e�cient computation of the
consensus.

We believe that generalized matching is practically ap-
pealing as a post-processing step after traditional library
binding. The availability of the full set of compatible input
assignments allows a more accurate search of the minimum
cost when complex cost functions are employed. Boolean
Relation based optimizations o�er the possibility of ex-
ploiting additional degrees of freedom for multi-output cell
matching or concurrent optimization of clusters of cells
during re-mapping.
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