
Optimal synthesis of gated clocks for low-power

Finite-State Machines

Luca Benini and Giovanni De Micheli

Center for Integrated Systems

Stanford University

Stanford, CA, 94305

Abstract

The automatic synthesis of low power FSMs with gated
clocks relies on e�cient algorithms for the synthesis and
optimization of dedicated clock-stopping circuitry. In a pre-
vious paper [3] we have described a framework for the trans-
formation of FSMs and the extraction of input and state
conditions where the clock can be safely stopped without
modifying the external behavior.

In this paper we concentrate on the optimal synthesis
of the logic block that controls the local clock of the FSM.
We formulate and solve a new logic optimization problem,
namely, the synthesis of a sub-function of a Boolean func-
tion that is minimal in size under a constraint on its prob-
ability to be one. We describe the relevance of this problem
for the optimal synthesis of gated clocks.

A prototype tool has been implemented and its perfor-
mance, although inuenced by the initial structure of the
�nite state machine, shows that sizable power reductions
can be obtained with our technique.

1 Introduction

The majority of the currently published work in the
area of automatic synthesis for low power focuses on the
reduction of the level of activity in some portion of the
circuit [5, 6, 7, 8], since in CMOS technology the largest
fraction of the power is dissipated during switching events.

In synchronous circuits, it is possible to selectively stop
the clock in portions of the circuit where active computa-
tion is not being performed. Local clocks that are condi-
tionally enabled are called gated clocks, because a signal
from the environment is used to qualify (gate) the global
clock signal. Gated clocks are commonly used by designers
of large power-constrained systems [11, 17]. Notice how-
ever that it is usually responsibility of the designer to �nd
the conditions that disable the clock.

Two di�erent approaches to the automatic synthesis of
logic circuits that can be conditionally disabled by environ-
mental signals have been reported so far. In [1] Alidina et.
al have described a precomputation-based approach that fo-
cuses mainly on data-path circuits, while the authors have
described in [2] a method to generate gated clocks for sys-
tems described as �nite state machines.

Our work is based on the observation that during the
operation of a FSM there are conditions such that the next
state and the output do not change. Therefore, clocking
the FSM only wastes power in the combinational logic and
in the registers. If we are able to detect when the machine
is idle, we can stop the clock until a useful transition must
be performed and the clocking must resume. The presence
of a gated clock has a two-fold advantage. First, when
the clock is stopped, no power is consumed in the FSM
combinational logic, because its inputs remain constant.
Second, no power is consumed in the sequential elements
(ip-ops) and the gated clock line (di�erently from the
scheme proposed in [1] where enabling signals are used).

Obviously, detecting idle conditions requires some com-
putation to be performed by additional circuitry. This
computation dissipates power, and sometimes it will be
too expensive to detect all idle conditions. It is therefore
very important to select a subset of all idle conditions that
are taken with high probability during the operation of the
FSM. We have shown in [2] that idle conditions correspond
to self-loops of Moore FSMs, therefore it is relatively easy
to detect them. Idle conditions in Mealy FSMs can also be
detected, but with more e�ort.

In [2] two problems were left open. First, our method
was applicable only to Moore-type FSMs, second, the syn-
thesis of the clock-stopping circuitry was based on a sim-
ple and fast heuristic. In [3], we removed the limitation to
Moore-type FSMs, extending the applicability of our ap-
proach to the more general class of incompletely speci�ed
Mealy-type FSMs. In this work we address the synthesis of
the clock-stopping logic. More in detail, we formulate and
solve a new logic synthesis problem, namely the choice of
a minimum-complexity sub-function Fa of a given Boolean
function fa, such that its probability of being one is larger
than a prede�ned fraction of the total probability of fa.
From a practical point of view, this means choosing a suit-
able subset all idle conditions such that the clock-stopping
circuitry dissipates minimum power but stops the clock
with high e�ciency.

In order to verify our results, we embedded our tool in
a complete path from high-level speci�cation to transistor-
level implementation and we employed accurate switch-
level simulation, because gate level power estimation has
limited accuracy. For some circuits more than 100% im-
provement (computed as 100(Porig=Pgated� 1)) in average
power dissipation has been obtained, but quality of the

a

Combinational
 Logic

CLK

IN OUT

STATE

Combinational
 Logic

IN OUT

STATE

GCLK
&L

CLK

f

(b)(a)

R
egisters

R
egisters

Figure 1: (a) Single clock, ip-op based �nite state
machine. (b) Gated clock version.

results is strongly dependent on the type of �nite state
machine we start with. In particular, our method is well
suited for FSMs that behave as reactive systems: they wait
for some input event to occur and they produce a response,
but for a large fraction of the total time they are idle.

2 Background

In this work we will assume a single clock scheme with
edge-triggered ip-ops, shown in Figure 1 (a). This is
not a limiting assumption. We have indeed applied our
methods to di�erent clocking schemes in [2] (where we used
transparent latches and multiphase clocks).

A gated clock FSM is obtained modifying the structure
in Figure 1 (a). We de�ne a new signal called activation
function (fa) whose purpose is to selectively stop the lo-
cal clock of the FSM, when the machine does not perform
state or output transitions. When fa = 1 the clock will
be stopped. The modi�ed structure is shown in Figure 1
(b). The block labeled \L" represents a latch, transparent
when the global clock signal CLK is low. Notice that the
presence of the latch is needed for a correct behavior, be-
cause fa may have glitches that must not propagate to the
AND gate when the global clock is high. Moreover, notice
that the delay of the logic for the computation of fa is on
the critical path of the circuit, and its e�ect must be taken
into account during timing veri�cation.

The modi�ed circuit operates as follows. We assume
that the activation function fa becomes valid before the
raising edge of the global clock. At this time the clock
signal is low and the latch L is transparent. If the fa signal
becomes high, the upcoming edge of the global clock will
not �lter through the AND gate and therefore the FSM
will not be clocked and GCLK will remain low. Note that
when the global clock is high, the latch is not transparent
and the negated input of the AND gate cannot change at
least up to the next falling edge of the global clock.

The activation function is a combinational logic block
that uses as its inputs the primary input IN and the state
lines STATE of the FSM. No external information is used,
the only input data for our algorithm is the behavioral de-
scription of the FSM and the probability distribution of the
input signals. In the following subsections we will describe
some basic concepts from automata and probability theory
that will be useful for the understanding of our algorithms.
Refer to [22, 14] for a more detailed treatment.

S1 S2

S0

−1/−0
10/00

−1/01
10/01

00/01

00/10 10/10
01/−1

11/11

00/00

−1

10

00
−1
10

00

10

11

01

00

10

−1 00

−1
10

10

11

01

00

(a)

(a) (b)

00

M0a
−0

M0b
00

M1a
01

M1b
11

M2a
−1

M2b
10

Figure 2: (a) STG of a Mealy machine. (b) STG of
the equivalent Moore machine.

2.1 Models of �nite state systems

A Mealy-type FSM can be described by a six-tuple
(X;Y; S; s0; �; �) where X is the set of inputs, Y is the
set of outputs, S is the set of states, and s0 is the initial
(reset) state. The next state function � is given by:

st+1 = �(X; st) (1)

The output function � is de�ned as:

yt = �(X; st) (2)

The de�nition of Moore-type FSM is similar, with the
only exception of the output function. For a Moore FSM
the output does not depend on the input. Therefore we
de�ne �M as:

yt = �M (st) (3)

Conceptually, Mealy and Moore machines are equiva-
lent, in the sense that it is always possible to specify a
Moore machine whose input-output behavior is equal to a
given Mealy machine behavior, and viceversa [18]. Practi-
cally, however, there is an important di�erence. The Mealy
model is usually more compact than the Moore model. In-
deed the transformation from Mealy to Moore involves a
state splitting procedure that may signi�cantly increase
the number of states and state transitions [18]. When don't
care conditions (DC) are present, the FSM becomes incom-
pletely speci�ed, � and � become partial functions.

Example 1 In Figure 2 (a), a Mealy machine is represented
in form of state transition graph (STG). If it is transformed to
the equivalent Moore machine (using the procedure outlined in
[18]), the new STG and is shown in Figure 2 (b). The STG
of the Moore machine has the output associated with the states,
while in the Mealy model the outputs are associated with the
edges. The higher complexity in terms of states and edges of
the Moore representation is evident. Notice that both FSMs
are incompletely speci�ed, because of some output don't cares,
represented with \�" in the output �elds.

2.2 Probabilistic models of FSMs

We model the probabilistic behavior of a general FSM
using a Markov chain [14] (as done in [15, 8, 24, 25]), a
weighted directed graph with a structure isomorphic to
the STG of the machine. For a transition from state si to

state sj, the weight pi;j on the corresponding edge repre-
sents the conditional probability of the transition (i.e., the
probability of a transition to state sj given that the ma-
chine was in state si). Symbolically this can be expressed
as:

pi;j = Prob(Next = sjjPresent = si) (4)

The pi;j are collected in a matrix P and depend on
the probability distribution of the inputs, that is initially
known. However, using the conditional probability as an
estimate of the total transition probability can lead to large
errors, because the probability of a transition strongly de-
pends on the probability for the machine to be in the state
tail of the transition.

In order to �nd the probability of a transition without
any condition, we need to know the state probabilities qi,
that represent the probability for the machine to be in a
given state i. Namely, the total transition probabilities we
are looking for are

ri;j = pi;jqi (5)

Many methods have been proposed to calculate the
state probabilities [14, 15]. In this work we have used
the Power Method. Using this method, the state proba-
bility vector q = [q1; q2; :::; qjSj]

T can be computed using
the iteration:

q
T
n+1 = q

T
n P (6)

with the normalization condition
PjSj

i=1
qi = 1 until con-

vergence is reached. The convergence properties of this
method are discussed in [16]. The power method has been
chosen because of its simplicity and its applicability (if
sparse matrix manipulation or symbolic formulation are
used [15]) to FSMs with a very large number of states. In
the following sections we assume that the state probability
vector and the total transition probabilities have already
been computed using the power method and equation (5).

Knowing input and state probability distribution allows
us to compute the probability of a Boolean function f with
inputs the state and input variables of the machine in an
exact fashion. Notice that this calculation is of vital im-
portance in our algorithm, that performs a search based
on the probability of the activation function.

3 Machine transformation

In a Moore machine, the detection of idle conditions is
straightforward. For each state s we �nd all input con-
ditions such that �(x; s) = s. If the next state is equal
to the present state, the output cannot change either and
therefore the machine is completely idle.

For a Mealy machine the problem complicates. Even if
the next state and present state are the same the output
may change, because a state may have incoming edges with
di�erent output �elds. A self-loop on a state is an idle con-
dition only if all incoming edges have the same output �eld.
We call such a state a Moore-state; and states of a Mealy

machine are not generally Moore-states. Apparently, this
observation leads to the conclusion that, in order to de-
tect the idle conditions on a Mealy-type FSM, one must
observe input, output and state lines. Unfortunately, the
number of outputs can be quite high and the complexity of
the combinational logic for the detection of idle conditions
(i.e. the activation function fa) will consequently increase.

In order to overcome this di�culty we have devised a
transformation that operates on the STG of a Mealy ma-
chine and produces a locally-Moore machine, an equivalent
FSM with the following properties.

� The number of states in the transformed STG in-
creases by a factor that is guaranteed to be less than
or equal to two. This is an important property, be-
cause the simple Mealy to Moore transformation [18]
may produce Moore FSMs that are much more com-
plex than the corresponding Mealy FSMs (in terms
of number of states and edges), and there is a strong
correlation between the complexity of the STG and
the power dissipation of the �nal implementation.

� The idle conditions that occur with maximum prob-
ability can be detected observing only the next state
and output lines. In other words, all states with high
probability self-loops are guaranteed to be Moore-
type in the locally-Moore FSM.

A byproduct of the transformation is amaximum proba-
bility activation function, whose ON-set includes the input
and state conditions corresponding to self-loops that occur
with maximum probability. The support of the activation
function includes only the state and input variables. The
transformation of a Mealy FSM into a locally-Moore FSM
has been thoroughly described in [3]. After the transfor-
mation we have a new STG of a machine that is compatible
with the original Mealy FSM, with activation function:

fa =
X

si2S0

Selfsi � ei (7)

where S0 � S the set of Moore-states in a FSM, ei is the
encoding state si 2 S0 and Selfsi groups all input cubes
corresponding to the maximum compatible set of self loops
leaving state si.

Example 2 The transformation of the Mealy machine of Ex-
ample 1 produces the locally-Moore FSM shown in Figure 3.
The shaded areas enclose states that have been split. The
Moore-states with self-loops are drawn with bold lines. The
number of states and edges of the locally Moore machine is
smaller than those that we obtained with the complete Mealy
to Moore transformation (state S0 has not been split).

The inputs are in1 and in2. Assume that we use three state
variables for the encoding: v1, v2 and v3. The state codes
are LM0 ! v0

1
v0
2
v0
3
, LM1a ! v0

1
v0
2
v3, LM2a ! v0

1
v2v

0
3
, LM1b

! v0
1
v2v3 and LM2b ! v1v

0
2
v0
3
. The activation function in-

cludes all self-loops leaving Moore-states: fa = in2v
0
1
v0
2
v0
3
+

in1in
0
2
v0
1
v0
2
v0
3
+ in2v

0
1
v2v3 + in1in

0
2
v0
1
v2v3 + in1in

0
2
v1v

0
2
v0
3
.

Once the activation function has been found, we still
need to solve the problem of synthesizing the clock-
stopping logic in an optimal way. This problem will be
addressed in the next section and it is the major contribu-
tion of this paper.

−1/00
10/00

00/01

00/1010/10

00/00

01/−1

00/10

00/00

01/−110/10

−1/01
10/01

11/11
11/11

−1/01
10/01

LM1a

LM2aLM2b

LM0 LM1b

Figure 3: STG of the locally-Moore FSM

4 Optimal activation function

The simplest approach is to try to use the complete
fa as activation function. This is seldom the best solu-
tion, because the size of the implementation of fa can be
too large, and the corresponding power dissipation may
reduce or nullify the power reduction that we obtain stop-
ping the clock. Roughly speaking, it is necessary to be able
to choose a simpler function contained in fa whose imple-
mentation dissipates minimum power, but whose e�ciency
in stopping the clock is maximum.

In [2] we proposed a simple greedy algorithm that will
be shortly outlined. First, a minimum cover of fa is ob-
tained with a two-level minimizer. Then, the largest cubes
in the cover are greedily selected until the number of lit-
erals in the partial cover exceeds a user-speci�ed literal
threshold. The rationale of this approach is that gener-
ally large cubes have high probability and the primes that
compose a minimum cover are as large as possible.

There are several weak points in this approach.

� There is no guarantee that choosing the largest cubes
in a cover will maximize the probability of the cover,
because the probability of a cube in general depends
on the input and state probability distribution. Even
if we assume uniform input probability distribution,
the state probability distribution is in general not uni-
form.

� The subfunction sought may not be found by looking
only at a subset of cubes of the minimum cover of the
original activation function. The number of possible
subfunctions of fa is much larger than the subfunc-
tions that we can generate using subsets of the cubes
of the minimum cover.

� Even if we restrict our attention to the list of cubes in
the minimum cover of fa assuming uniform distribu-
tion for input and states, the cubes of the cover are in
general overlapping (the minimum cover is not guar-
anteed to be disjoint). Finding the minimum-literal,
maximum-probability subset of cubes becomes a set
covering problem that certainly is not solved exactly
by a greedy algorithm.

� The relation between the number of literals in a two-
level cover of the activation function and the power
dissipation of a multilevel implementation is not guar-
anteed to be monotonic.

In the next section, we will propose a new algorithm
that overcomes the �rst three limitations listed above. As
for the last issue, we will assume that there is correlation
between the number of literals of a two-level cover and the
power dissipated in the �nal implementation, as suggested
by experimental results presented in [4]. We now formulate
the problem that we want to solve in a more rigorous way.

Problem 1 Given the activation function fa, �nd Fa �
fa such that its probability P (Fa) is P (Fa) � MinProb =
�P (fa), (with 0 � � � 1) and the number of literals in a
two level implementation of Fa is minimum.

We call this problem constrained-probability minimum
literal-count covering (CPML). Notice that we could as
well formulate the dual problem, constrained literal count
cover with maximum probability. The two problems can
be solved using the same strategy, and are equivalent for
our purposes. With the assumption of a good correlation
between number of literals and power dissipation, we pro-
pose an exact solution to CPML and, by consequence to
the problem of �nding the best reduced activation function
given a complete fa to start with.

4.1 Finding a minimum power implemen-
tation

The �rst source of di�culty comes from the fact that
we are not constrained to completely cover fa, therefore,
the \algorithmic machinery" developed in the area of two-
level minimization seems not useful. We �rst show that
this is not true. Consider the set of primes of fa, called
Primes(fa). Consider the set Subfa of all possible sub-
functions of fa. The set of primes of a generic subfunction
Fa 2 Subfa is called Primes(Fa). We state the following
theorem.

Theorem 1 For every prime p 2 Primes(Fa) only two
alternative are possible.

� p 2 Primes(fa).

� p is contained in at least one element q of Primes(fa)
(consequently its literal count is larger than the literal
count of q).

Proof. Assume that p 2 Primes(Fa), (Fa � fa).
Two alternatives are possible: i) p 2 Primes(fa), ii)
p 62 Primes(fa). We will prove by contradiction that, if
(ii) is true, there is always at least a prime q 2 Primes(fa)
such that p�q = p (in other words, p is contained in at least
a prime of fa). Assume that the assert is not true, there-
fore, p is not contained in any prime of fa. Notice that
p is an implicant of Fa therefore it is an implicant of fa
because Fa � fa. By consequence, p is an implicant of fa
not contained in any prime of fa. Therefore p is a prime of
fa by de�nition. This is not possible, because we assumed
(ii) to start with. 2

The important consequence of this proposition is that
we do not need to generate all possible subfunctions of fa.
We can restrict our search to subfunctions that are formed
by subsets of Primes(fa) if we want to �nd a minimum
literal subfunction. Functions that belong to this class have
all primes in the �rst category of Theorem 1.

Now that we have de�ned our
search space (Primes(fa)), we must �nd a search strat-
egy that guarantees an optimum solution. The choice of
a subset of Primes(fa) with minimum literal count sat-
isfying the probability constraint cannot be done using a
greedy strategy, because the primes are in general overlap-
ping and a choice done in one step a�ects the following
choices. An example will help to clarify this statement.

Example 3 Suppose that fa is a function of four variables:
a; b; c; d. The set of primes is Primes(fa) = fa0b0; a0c0; bc0 ; abg.
Assume for simplicity that all minterms are equi-probable
(Prob = 1=16) and our probability constraint MinProb (the
minimum allowed probability of the subfunction) is MinProb =
1=2. All primes in this example are equi-probable (they have the
same size). If we choose a0b0 �rst, the following choices are bi-
ased. Since a0c0 is partially covered by a0b0, it will not be the
right next choice because we want to cover the largest num-
ber of minterms (remember that we are assuming equi-probable
minterms). Consequently either bc0 or ab must be chosen.

CPML complexity is at least the same as two-level logic
minimization, because CPML becomes two-level logic min-
imization for the particular case � = 1. We describe here a
branch-and-bound algorithm that has been shown to work
e�ciently on the benchmarks, even if its worst case behav-
ior is exponential. Furthermore, the branch-and-bound can
be modi�ed to provide heuristic minimal solutions when
the exact minimum is not attainable in the allowable com-
putation time.

4.2 Branch-and-bound solution

Our algorithm operates in two phases. In the �rst
phase, an heuristic minimal solution is found in polyno-
mial time (in the number of primes NP). The second phase
�nds the global minimum cost solution using a branch-and-
bound approach.

We exploit the similarity of this problem with knapsack
[19]. We need to �nd the set of items (primes) with total
size (probability) larger or equal to the knapsack capacity
(MinProb) minimizing the total value (number of literals).
This formulation di�ers from knapsack in two important
details. First, knapsack targets the maximization of value
given a constraint of the maximum allowed size (we face
the opposite situation). Second, and most important, in
knapsack the size of an item is a constant, while in our
case the probability of a prime varies when other primes
are selected. To clarify this statement, observe that primes
may overlap and they contribute to the total probability
of the reduced activation function only with minterms that
are not covered by other already selected primes.

As a consequence, CPML is not solved in pseudo-
polynomial time [19] by dynamic programming. Notice
however that CPML reduces to knapsack if all primes are
disjoint. In the �rst phase of our algorithm, we employ
a greedy procedure that would produce a solution within

a factor of two from the optimum in the case of disjoint
primes [19]. Since this is not guaranteed in CPML, the
solution is only a reasonable starting point for the second
phase of the algorithm, that will provide an exact solution.

We de�ne value density D for a prime p the ratio
PME(p)=Nlits(p), and we greedily select the primes with
maximum D until the constraint on MinProb is satis�ed.
PME is the total probability of minterms in p which are
not covered by already chosen primes.

When the �rst phase of the algorithm terminates, it
returns a feasible solution that will be useful for increasing
the e�ciency of the branch-and-bound algorithm employed
in the second phase. At the beginning of the second phase,
we order the primes for decreasing ratio P (p)=Nlits(p) (the
probability P (p) of a prime is computed multiplying the
probability of the input part by the probability of the state
part).

At the starting point of the branch-and-bound we have
a search list corresponding to all primes (that generates NP

branches in the decision tree). Moreover, we have a cur-
rent best solution from the �rst phase. The current partial
solution is initially empty. In order to explore all possi-
ble choices, we iteratively choose one prime following the
order in the list, and we agument the current partial solu-
tion with the selected prime. We then call recursively the
branch-and-bound procedure passing the list of all primes
following the chosen one as search list and the primes cho-
sen so far as current partial solution. The pseudo-code of
the algorithm follows.

FindFa (PrimeList, CurBest, CurPartial, MinProb)

f
if(Bound(PrimeList, CurBest, CurPartial, MinProb))

return; /* Bounding step */

DoneList = ;;
foreach (Prime 2 PrimeList) f /* Branching step */

DoneList = DoneList [Prime;

NewPartial = CurPartial [Prime;

if (Nlits(NewPartial) < Nlits(CurBest)) f
if (Prob(NewPartial) � MinProb)

CurBest = NewPartial; /* New Best solution */

else

FindFa (PrimeList � DoneList, CurBest,

NewPartial, MinProb); /* Recursion */

g
g

g

Note that the backtracking involved in the branch and
bound is implicitly obtained in the pseudo-code. For each
iteration of the inner loop, we generate a new partial solu-
tion adding to the original partial solution a single prime
from the search list. In this way, each new iteration back-
tracks on the choice of the prime in the previous iteration.

The bounding procedure (Bound) works on the search
list. If the search list (Primelist) is empty, obviously
the return value is 1. If the current partial solution
(CurPartial) is empty, the return value is 0. In the gen-
eral case, we select primes from the top of the search list
until the sum of their literal count becomes larger than
Nlits(CurBest) � Nlits(CurPartial). We compute the
sum of the probability of all selected primes (excluding
the last selected one) Ptot. We choose the maximum Pmax

between Ptot and Pone, where Pone is the largest probabil-
ity value of a single prime in the search list whose literal
count is less than Nlits(CurBest)�Nlits(CurPartial). If
Pmax < (MinProb�Prob(CurPartial))=2 we can discard
the partial solution and prune the search tree.

The bound is based on the approximation algorithm for
the solution of knapsack mentioned above. The greedy pro-
cedure guarantees a solution to knapsack within a factor
of 2 from the optimum. The optimum knapsack solution
itself is an upper bound to the solution of our problem (it
becomes the exact solution if all primes are disjoint). In-
tuitively, the bound eliminates the partial solutions that
could not improve the current best solution even if all
primes in the search list were mutually disjoint and not
overlapping with primes in the current partial solution.

Example 4 Assume that we have a current best solution that
satis�es the constraint on the probability (MinProb = :4) with a
cost of Nlits = 40. Assume that the current partial solution has
cost Nlits0 = 36 and probability Prob(CurPartial)= :35. Sup-
pose that the �rst two element of the unselected prime list are
a0b0 with probability :01 and a0c0 with probability :012. The max-
imum probability prime with at most 4 literals has probability
:015. Pmax is therefore Pmax = maxf:015; :012 + :01g = :022.
This branch of the search tree is pruned, because Pmax <
(MinProb� Prob(CurPartial))=2 = :025. Notice that the two
primes are partially overlapping, therefore the actual increase
in probability for the current solution if we select the two primes
would be smaller than the estimated one.

The bound can be made even tighter if after selecting
a new prime in a partial solution, the probabilities of the
remaining primes are reduced accordingly to the overlap
with the chosen prime. Notice that the computation of this
second bound requires the re-calculation of all probabilities
of the currently unselected primes (and the reordering of
the search list). By consequence the second bound should
be computed only after the �rst has been unsuccessful in
pruning the search tree.

Whenever the choice of a prime leads to a solution that
satis�es MinProb with a number of literals smaller that
the total literal count of the current best solution, the cur-
rent best solution is replaced with the new solution found.
The algorithm terminates when all choices in the search
list of the upper level of the recursion have been tried.

We want to point out that there are two possible sources
of complexity explosion in our algorithm. First, the num-
ber of primes for a Boolean function is worst case expo-
nential in the number of the function inputs. Second the
branch-and-bound algorithm has a worst case exponential
complexity in the number of primes that form the candi-
date list.

The double source of exponential behavior may seem
worrisome. Nevertheless, the structure of our algorithm is
exible enough to generate fast heuristic solutions if the
execution time exceeds some user-de�ned limit. The prob-
lem of the large number of primes can be avoided if we
apply the algorithm to a reduced set of primes. The most
natural candidate is obviously a prime and irredundant
cover of the function, obtainable using two-level minimiz-
ers that can provide optimum or near-optimum covers for
single output functions with a large number of inputs [9].

Moreover, if the time required by the branch-and-bound
algorithm to �nd the exact solution becomes too large, we

can interrupt the search when a user speci�ed CPU-limit
has been reached. The exact minimality of the last solution
found is not guaranteed, but we will have in general a good
approximation to a minimal solution. Notice that the �rst
phase of our algorithm �nds a feasible heuristic solution in
polynomial time, and we could even completely skip the
branch-and-bound if we consider it too expensive.

Finally, an e�cient implementations of the algorithm
can be achieved using symbolic BDD-based techniques.
Many parts of the current implementation already use sym-
bolic techniques (for example, the prime generation is fully
symbolic [23], and the cube probability calculation is also
done in a symbolic fashion), but still the prime list is ma-
nipulated by the branch and bound algorithm in a tradi-
tional way.

4.3 The overall procedure

We can now briey outline the full procedure used for
the synthesis of our low-power gated clock FSMs. Our
starting point is a FSM speci�ed with a transition table or
a compatible format. The synthesis ow is the following.

� The Mealy machine is transformed to an equivalent
locally-Moore machine (full details on this step are in
[3]).

� The complete activation function fa is extracted from
the Moore-states of the locally-Moore machine.

� The probability of the complete fa is computed.

� The prime set Primes(fa) is generated.

� The branch-and-bound algorithm �nds the minimum
literal count solution Fa whose probability is a pre-
speci�ed fraction � of the probability of fa

� Fa is used as additional DC set for optimizing the
combinational logic of the FSM.

The last step can sensibly improve the quality of the
results, in particular if Fa is large [2]. Unfortunately, it is
hard to foresee the e�ect of Fa used as DC set. Sometimes
it may be convenient to choose a Fa that is not minimal in
the sense discussed above, if it allows a large simpli�cation
in the combinational part of the FSM. Our heuristic ap-
proach is to try di�erent Fa that range from the complete
fa to a much smaller subfunction, in an attempt to explore
the trade-o� curve.

This iterative search strategy raises the problems of
choosing appropriate values of the parameter � � 1 used
to scale down the probability of fa when the reduced ac-
tivation functions are generated. The approach that we
adopted is to generate a set of solutions using di�erent val-
ues of �, in such a way that the possible range of solutions
is uniformly sampled.

We have devised a heuristic algorithm that generates
suitable � values and we briey outline it. The rationale
behind our approach is to split the range of probability
available for Fa in Ncand equal intervals and to generate a
set CandF generated using the following values of �:

�i = i=Ncand i = 1; 2; :::;Ncand (8)

If empty or duplicated solutions are generated during
this process, our algorithm adaptively select new values
of � such that the new candidates will have a probability
between those of solutions generated with two consecutive
values of � that have maximum literal cost di�erence.

Obviously, if large Ncand are used, the computational
time required to generated CandF increases. Notice how-
ever that only the last two steps in the overall procedure
describe before need to be iterated, and usually a small
number of di�erent values of � is su�cient to �nd a satis-
fying solution.

5 Implementation and experimental
results

We implemented the algorithms as a part of a tool-set
for low-power synthesis that we are developing. The tool
reads the state transition table of the FSM. The �rst step
is the transformation of the Mealy machine to a locally-
Moore machine and the extraction of the self-loops from
the Moore-states.

We then apply the power method to compute the exact
state probabilities given an input probability distribution
(we assumed uniform input probability distribution, but
this assumption is not restrictive). Notice that this step
can be modi�ed to use the exact and approximate methods
described in [16, 25, 24] that have been demonstrated to
run on very large sequential circuits. Presently, our pro-
cedure employs sparse matrix techniques and it has been
able to process all MCNC benchmarks provided in state
transition table format in a small time (less than 1sec for
the largest example s298).

We then state assign both the original machine and the
locally-Moore FSM using JEDI [26]. Once the state codes
have been assigned, our probabilistic-driven procedure for
the selection of the activation function can start. First, all
primes of the activation function are generated using sym-
bolic methods [23], then the probability of the minimized
cover (obtained with ESPRESSO [20]) of the complete ac-
tivation function fa is computed. The number of literals of
the complete minimized cover is used as initial literal cost
limit in the branch-and-bound algorithm.

The user speci�es the number of activation functions
that the procedure should generate, and the branch-and-
bound algorithms solves the CPML as many times as it
is requested. Surprisingly, for all MCNC benchmarks this
step has never been the bottleneck, the CPU time being in
the order of 30 seconds maximum. This is certainly due to
the fact that the majority of the FSM MCNC benchmarks
do not have a large number of self-loops (in particular the
larger ones). Nevertheless, even if di�cult cases are found,
our algorithm stops the search when a user speci�ed CPU
time limit has been reached. The solution becomes then
suboptimal, but there are other sources of inexactness in
the overall procedure. Therefore the search for an exact
optimum solution of CPML is not of primary practical im-
portance.

The combinational logic of the locally-Moore FSM is
then optimized in SIS [20] using the additional DC set

given by the activation function. This step is repeated for
all activation functions generated in the preceding step,
and alternative solution are generated. The DC-based min-
imization of the combinational logic using the activation
functions is the main bottleneck of our procedure. In our
tool the user has the possibility to specify a CPU-time
limit for each minimization attempt. This of course lim-
its the possible improvements obtainable on large FSMs.
More work has to be done in this area, in order to be able
to rapidly estimate if there is available space for improve-
ments or if the additional DC set given by the activation
function is too small to be useful, and the DC-based opti-
mization step can be skipped.

The activation functions are also optimized using SIS,
then the alternative solutions are mapped with CERES
[21], and the gated clocking circuitry is generated. Again
the same optimization and library binding programs are
used for both the original Mealy machine and the locally-
Moore gated clock machines. Finally the alternative gated
clock implementations and the implementation of the orig-
inal Mealy FSM are simulated with a large number of test
patterns using a switch level simulator (IRSIM [27]) mod-
i�ed for power estimation.

The quality of the results strongly depends on two fac-
tors. First, how much state splitting has been needed to
transform the machine to a locally-Moore one. Second, for
what percentage of the total operation time the FSM is in a
self-loop condition (this depends on the FSM structure and
on the input probability distribution). For machines with
a very small number of self-loops or a very low-probability
complete activation function, the area of improvement is
limited or null. This is the case for many MCNC bench-
marks for which the �nal improvement is negligible. As
for the �rst problem, it may be worth to investigate if, in
case the state duplication is too high, using an activation
function with the outputs of the FSM as additional inputs
may lead to better results.

Example 5 The Mealy machine of Example 1 has been syn-
thesized without any gated clock. The number of states is 3, the
mapped implementation has 124 transistor and a total nodal ca-
pacitance of 2.32 pF. The average power dissipation is 52 �W.

Using our algorithm, the minimum power implementation
(obtained with the complete activation function in this case) of
the equivalent locally-Moore gated clock machine has 178 tran-
sistors and a total nodal capacitance of 3.14 pF. The average
power dissipation is 42 �W. Notice that the e�cacy of the ac-
tivation function in stopping the clock allows substantial power
savings (24%) even if the total capacitance is larger (35%).
This is due to the fact that the locally-Moore machine has 5
states, and its combinational logic is more complex. In contrast,
with a complete Moore transformation the minimum power im-
plementation has 196 transistors and total nodal capacitance of
3.39 pF. Its power dissipation is 48 �W.

Table 1 reports the performance of our tools on a sub-
set of the MCNC benchmarks. The �rst six columns show
the area (number of transistors) and the power dissipation
of the normal Mealy FSM, the locally-Moore FSM with-
out gated clock and the locally-Moore machine with gated
clock. The last two columns show the power improvement
(computed as 100(Pmealy=Pgated�1)) and the � factor used
in the solution of CPML leading to the best result. Notice

Original Locally-M. Gated
Cir. Size P Size P Size P % �

bbara 330 67 422 72 408 34 97 1
bbsse 640 121 742 137 736 119 2 1
bbtas 142 56 138 57 164 44 27 .93
keyb 721 128 754 132 820 114 12 .91
lion9 188 60 226 60 248 52 15 .25
s298 7492 899 7496 900 7502 810 11 1
s420 544 132 544 132 602 108 22 .75
scf 3222 437 3222 437 3169 400 9 1
styr 1474 159 2468 230 2534 208 0 .75
test 348 73 442 76 374 32 128 .88

Table 1: Results of our procedure applied to MCNC
benchmarks. Size is number of transistors. P (power)
is in �W.

that, if there is no power improvement the improvement is
set to 0.

The tool is able to process all benchmarks, but in the ta-
ble we list examples representative of various classes of pos-
sible results. The benchmarks bbara and test are reactive
FSMs. The high number and probability of the self-loops
allow an impressive reduction of the total power dissipa-
tion, even if the area penalty can be not negligible. For
this class of FSMs our tool gives its best results.

In contrast, for bbsse and styr there is no power re-
duction or even a power increase. The bbsse benchmark
is representative of a class of machines where the num-
ber and probability of the self-loops is too small for our
procedure to obtain substantial power savings. The styr

benchmark has many self-loops, but they all have low prob-
ability. Moreover, the transformation to locally-Moore ma-
chine has a too large area overhead in this case, therefore,
even if there are power savings with respect to the locally-
Moore implementation without clock, the smaller Mealy
implementation has the lowest power consumption.

For all other examples in the table the power savings
vary between 10% and 30%. For some of these machines
(s420 and scf), there is no area overhead for the locally-
Moore transformation. This happens when all states with
self-loops are already Moore states in the original FSM.
We included some of the larger examples in the bench-
mark suite (s298 and scf) to show the applicability of
our method to large FSMs.

From the analysis of the results, it is quite clear that
several complex trade-o�s are involved. First, the trans-
formation to locally-Moore machine can sometimes be very
expensive in terms of area overhead. To address this prob-
lem, a procedure that splits only on the states with high
probability self-loops is under development in the �nal ver-
sion of our tool. Second, the choice of the best possible
activation function is paramount for good results. In fact,
for many examples, the complete activation function was
too large, and reduced activation functions gave better re-
sults. Notice however that for some examples the e�ciency
of the activation function in stopping the clock was such
that the power was sensibly reduced even with large area
overhead.

6 Conclusions and future work

We have described a technique for the automatic syn-
thesis of gated clocks for Mealy and Moore FSMs. We want
to emphasize that our method is a complete procedure,
from the FSMs high-level speci�cation to the fully mapped
network, and it has been tested with accurate power esti-
mation tools. The quality of our results depends on the ini-
tial structure of the FSM, but we obtain important power
reductions for a large class of �nite state machines, where
the probability of being in a self-loop (idle) is high.

We have discussed a new transformation for Mealy
FSMs that makes them suitable for gated-clock implemen-
tation, we have proposed a new logic optimization problem,
called \constrained probability minimum literals" problem,
and we have described its exact and heuristic solutions.

Future research will concentrate on the implementation
of fully symbolic algorithm for the synthesis of the activa-
tion function and on the application of our techniques to
large synchronous networks.

7 Acknowledgements

This research is supported by NSF under contract MIP-
9421129.

References

[1] M. Alidina, J. Monteiro, et al., \Precomputation-based se-
quential logic optimization for low power," IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
vol. 2, no. 4, pp. 426{436, Jan. 1995.

[2] L. Benini, P. Siegel and G. De Micheli, \Automatic syn-
thesis of gated clocks for power reduction in sequential cir-
cuits" IEEE Design and Test of Computers, pp. 32{40,
Dic. 1994.

[3] L. Benini and G. De Micheli, \Transformation and synthe-
sis of FSMs for low power gated clock implementation "
International Symposium on Low Power Design, pp. 21{
26, April 1995.

[4] P. E. Landman and J. M. Rabaey, \Activity-sensitivearchi-
tectural power analysis for the control path," International
Symposium on Low Power Design, pp. 93{98, April 1995.

[5] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, \On av-
erage power dissipation and random pattern testability of
cmos combinational logic networks," in ICCAD, Proceed-
ings of the International Conference on Computer-Aided
Design, pp. 402{407, Nov. 1992.

[6] C. Tsui, M. Pedram, and A. Despain, \Technology decom-
position and mapping targeting low power dissipation," in
DAC, Proceedings of the Design Automation Conference,
pp. 68{73, 1993.

[7] K. Roy and S. Prasad, \Circuit activity based logic synthe-
sis for low power reliable operations," IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 1,
no. 4, pp. 503{513, Dec. 1993.

[8] L. Benini and G. De Micheli, \State assignment for low
power dissipation," in CICC, Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 136{139, May
1994.

[9] P.McGeer, J. Sanghavi, et al., \ESPRESSO-SIGNATURE:
a new exact minimizer for logic functions," IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
vol. 1, no. 4, pp. 432{440, Dec. 1993.

[10] N. Yeung, et al., \The design of a 55SPECin92 RISC pro-
cessor under 2W," in IEEE International Solid-State Cir-
cuits Conference, pp. 206{207, Feb. 1994.

[11] B. Suessmith and G. Paap III, \PowerPC 603 micropro-
cessor power management,"Communications of the ACM,
no. 6, pp. 43{46, June 1994.

[12] D. Pham, et al., \A 3.0W 75SPECint92 85SPECfp92 su-
perscalar RISC microprocessor," in IEEE International
Solid-State Circuits Conference, pp. 212{213, Feb. 1994.

[13] N. Weste and K. Eshraghian, Principles of CMOS VLSI
Design (Second Edition). Addison-Wesley, 1992.

[14] K. Trivedi. Probability and statistics with reliability, queu-
ing and computer science applications. Prentice-Hall, 1982.

[15] G. Hachtel, E. Macii, A. Pardo and F. Somenzi Symbolic
algorithms to calculateSteady-Stateprobabilities of a �nite
state machine. In Proc. of IEEE European Design and Test
Conf., pages 214 { 218, February 1994.

[16] G. Hachtel, E. Macii, A. Pardo and F. Somenzi, \Prob-
abilistic analysis of large �nite state machines," in
DAC, Proceedings of the Design Automation Conference,
pp. 270{275, June 1994.

[17] J. Schutz, \A 3.3V 0.6�m BiCMOS superscalar micropro-
cessor," in IEEE International Solid-State Circuits Con-
ference, pp. 202{203, Feb. 1994.

[18] J. Hartmanis and H. Stearns, Algebraic Structure Theory
of Sequential Machines. Prentice-Hall, 1966.

[19] M. R. Garey and D. S. Johnson, Computers and in-
tractability. A guide to the Theory of NP-completeness.
Freeman, 1983.

[20] E. Sentovich, et al., \Sequential circuit design using syn-
thesis and optimization," in ICCD, Proceedings of the In-
ternational Conference on Computer Design, pp. 328{333,
Oct. 1992.

[21] F. Mailhot and G. De Micheli, \Algorithms for technology
mapping based on binary decision diagrams and on boolean
operations," IEEE Transactions on CAD/ICAS, pp. 599{
620, May 1993.

[22] G. De Micheli. Synthesis and optimization of digital cir-
cuits. McGraw-Hill, 1994.

[23] O. Coudert and C. Madre, \Implicit and incremental com-
putation of primes and essential primes of Boolean func-
tions," in DAC, Proceedings of the Design Automation
Conference, pp 36{39, June 1992.

[24] R. Marculescu, D. Marculescu and M. Pedram, \Switching
activity analysis considering spatiotemporal correlations,"
ICCAD, Proceedings of the International Conference on
Computer-Aided Design, pp. 294{299, Nov. 1994

[25] J. Monteiro, S. Devadas and B. Lin, \A methodology for
e�cient estimation of switching activitiy in sequential logic
circuits," in DAC, Proceedings of the Design Automation
Conference, pp. 315{321, June 1994

[26] B. Lin and A. R. Newton, \Synthesis of multiple-level logic
from symbolic high-level description languages," in Proc.
of IEEE Int. Conf. On Computer Design, pages 187 { 196,
August 1989.

[27] A. Salz, M. Horowitz, \IRSIM: an incremental MOS
switch-level simulator," in DAC, Proceedings of the Design
Automation Conference, pp. 173{178, June 1989.

