
Luc Séméria Giovanni De Micheli
lucs@azur.stanford.edu nanni@galileo.stanford.edu

Computer System Laboratory, Stanford University
Stanford, CA 94305

ABSTRACT
In the recent past, subsets of C and C++ have been
defined to model and synthesize electronic systems as well
as reusable IP blocks. In order to synthesize as much as
possible of the C syntax, we have been researching the
problem of synthesizing and optimizing code with pointers.
In this paper, we focus on encoding the pointers’ values to
minimize the size of the circuits implementing the address
translations. After defining the encoding problem, we
present a solution based on heuristics and graph-embed-
ding techniques. The algorithm has been integrated in our
SpC flow which synthesizes C code with pointers.

1. INTRODUCTION

1.1 Synthesis from C
 For years, designers have been writing system-level models

using programming languages, such as C and C++, to estimate
the system performance and verify the functional correctness of
the design. However, to implement parts of their design in hard-
ware using synthesis tools, they must manually translate their
code into a synthesizable subset of hardware description lan-
guage (HDL). This process is both time consuming and error-
prone.

The use of C or a subset of C to describe both hardware and
software would accelerate the design process and facilitate the
software/hardware migration. Designers could describe their sys-
tem and IP components using C. C-based component modeling
would improve design reuse and retargeting to hardware and
software implementations.

However, the tasks of synthesizing hardware from C turns
out to be particularly complicated because of dynamic memory
allocation, function call, recursion, type casting and pointers. In
our research, we have been focusing on the problem of synthesiz-
ing code with pointers.

1.2 Synthesis of Pointers
The problem of synthesizing pointers has been already

introduced in [13] and [6]. The idea in [13] is to use pointer anal-
ysis to define thepoint-to set (sets of variables the pointer may
point to) of each pointer in the program. Then the loads (...=*p)
and stores (*p= ...) can be replaced by case statements in which
the variables of the point-to set are explicitly referenced. Further-
more, to reduce the size of the decoder associated with these case

statements and to minimize the number of register used, the val-
ues of the pointers are encoded. For a pointerp, we call its
encoded value itstag, notedp_tag .

Example 1. Let us consider a pointerp that may point to the
variablesa or b (result of the pointer analysis). Consider the
following line of code which implements aload:

out=*p;

This load instruction can be replaced by a case statement:
switch(p_tag) {

case 0: out=a; break;
case 1: out=b; break;

}

However, after encoding the pointers’ values in the final
hardware implementation, some combinational circuit may be
needed to translate the values of the pointers involved in assign-
ments or comparisons.

Example 2. Consider the assignmentp=q , where the pointersp
andq may point toa or b. For p, a (resp.b) is associated with
the value 0 (resp. 1), whereas forq, a (resp.b) is associated with
1 (resp. 0).
After encoding, the assignmentp=q is replaced by the following
code segment:

switch(q_tag) {
case 0: p_tag = 1; break;
case 1: p_tag = 0; break;

}

In this case, a better encoding can be found by having the same
encoding for bothp andq. Thenp=q would directly be replaced
byp_tag=q_tag .

To minimize the corresponding combinational circuit, the
codes have to be equal or subfield of one another. This paper pre-
sents a solution for the encoding of pointers’ values. In Section 2,
we are going to formulate the problem. In order to reduce the
complexity, we show in Section 3 how the encoding problem can
be simplified and solved using graph-embedding techniques. In
Sections 4 and 5, we present two optimization techniques called
folding andsplitting. The algorithm is then described in Section
6. Finally, in Section 7, we show how the encoding of pointers
has been integrated in our tool for the synthesis of pointers in C
(SpC) and present some results.

2. ENCODING OF POINTER

2.1 Definition of the Problem
Definition 1. We define a pointer-dependence graph as a graph
in which the nodes are the pointers and the edges are the rela-
tions between the pointers. An edge between two nodes is defined
when the two corresponding pointers are assigned or compared.

Encoding of Pointers for Hardware Synthesis

Example 3. Consider the following code segment:
int *r1, *r2, *r3, *q1, *q2;
...
if(i==0)

{ r1=&a; r2=&b; r3=&c; }
else

{ r1=&b; r2=&c; r3=&d; }

if(j==0)
{ q1=r1; q2=r2; }

else
{ q1=r2; q2=r3; }

...

In this example, we consider the pointers {r1 , r2 , r3 , q1 , q2}
and the variables {a, b, c , d}. The pointers are defined as
follows: r1 may point to the variablesa or b, r2 may point to
the b or c and r3 may point toc or d. Then,q1 may take the
value of r1 or r2 and q2 may take the value ofr2 or r3 .
Consequently, q1 points toa, b or c , and q2 points tob, c or d.
This leads to the pointer-dependence graph on Figure 1.

Our goal is to encode each pointer with the minimum num-
ber of bits. And, when a pointer is assigned or compared to
another pointer, we want the corresponding tags to be equal (e.g.
p_tag=q_tag) or as close as possible to each other. If two tags
have different number of bits, one tag can be equal to a subfield
of the other. Assignments would then be performed by concate-
nating or removing bits, whereas comparisons would only be
executed on the bits common to the two codes. This reduces the
size of the circuit that translates or compares the tags while keep-
ing the number of bits to a minimum.

The encoding problem can be formulated as follows. For
each pointer we define a set of symbols corresponding to the
variables the pointer may point to. As a result we have an ensem-
ble of sets of symbols and the dependencies among the sets. The
problem consists of encoding the symbols in the sets. The con-
straints on the encoding are two: 1) the supercube1 of the sym-
bols in each set must have minimum size; 2) the symbols that
correspond to the same variable in two dependent sets must be
encoded as close as possible. The reason for the first constraint is
to minimize the number of bits to store, while the reason for the
second one is to reduce the size of the combinational circuit
implementing the pointer assignment and comparison.

Example 4. In Example 3, the pointersr1 , r2 and r3 may
point to two different variables andq1 , q2 may point to three
different variables.
We want to coder1 , r2 andr3 on 1 bit andq1 , q2 on 2 bits.

Then we want the code ofr1 andr2 to be subfields of the code
of q1 and the code ofr2 and r3 to be subfields of the code of
q2 . An encoding verifying these properties is shown on Figure 2.

1. Thesupercube of a set of cubes is the smallest cube containing
all the cubes in the set [8].

For r1 , value0 is assigned tob and value1 to a. For r2 , 1 will
be assigned toc and0 to b. As a result,q1=r1 will be replaced
by q1_tag={r1_tag,0} and q1=r2 will be replaced by
q1_tag={0,r2_tag} (where {,} is the concatenation
operator).

2.2 Problem Formulation
Let’s defineP pointers . We define the

pointer dependence relation as follows. For two pointers, and
, if and only if the two pointers are assigned or

compared, otherwise.

For each pointer we define its point-to set to be the
set of variables the pointer may point to. The point-to set is a
set of symbols , where each symbol is asso-
ciated with a variable. After encoding, we define , the set of
the encoded symbols of the point-to set . The encoded values
of the symbols in each set are noted .

Definition 2. Two sets and are said to bedependent if
their associated pointers are assigned or compared (i.e.

).

Our first goal is to minimize the number of registers as well
as the size of the decoders required to store and decode the point-
ers values. We want the minimize the dimension of the supercube
of the encoded symbols in each set. This minimum is achieved
when the sum of the dimensions of the supercubes is also mini-
mized:

(1)

When two pointers are assigned or compared, we also want
to minimize the size of the circuit implementing the translation
of the codes. For this purpose, the distance between encoded
symbols in two dependent sets has to be minimum:

(2)

wheredist() is the distance between the two encoded sets.
When the pointers have the same point-to set,dist() is defined
as:

(3)

where N is the number of symbols in the point-to set and
 is the Hamming distance between the codes of the

symbols .

In general, the sizes of the codes and the point-to sets may
differ. The computation of the distance is then more complex: we
have to consider the different subfields and the symbols associ-
ated with the same variables in the two sets.

Our goal is to minimize Eq. 1 and Eq. 2. There is a trade-off
between the storage area (number of registers) and the amount of
logic used to translate the codes. For example, one may optimize
the size of the pointers keeping the amount of logic minimum by
minimizing first Eq. 2 and then Eq. 1. In general, we can cast the
problem as follows:

(4)

where and are two coefficients.

r1 r2 r3

q1 q2

Figure 1: example of pointer-dependence graph

r1 {a,b}
r2 {b,c}
r3 {c,d}
q1 {a,b,c}
q2 {b,c,d}

Figure 2: example of encoding

a d

cb

r1
r3

r2

q1,q2

a 10
b 00
c 01
d 11

p1 p2 … pP, , ,{ }
pi

pj r pi pj,() 1=
r pi pj,() 0=

pi Πi
Πi

Ni s1
i s2

i … sNi

i, , ,{ }
Ei

Πi
e1

i e2
i … eNi

i, , ,{ }
Πi Π j

r pi pj,() 1=

min dim supercube Ei()()
i 1=

P

∑ 
 
 

min r pi pj,()dist Ei E j,()
j 1=

P

∑
i 1=

P

∑ 
 
 

dist Ei Ej,() H ek
i

ek
j,()

k 1=

N

∑=

H ek
i ek

j,()
sk
i sk

j=

min β dim sup. Ei()() γ r pi pj,()dist Ei Ej,()
j 1=

P

∑
i 1=

P

∑+
i 1=

P

∑ 
 
 

β γ

Since this problem is computationally hard to solve using
exact methods, we have been looking at heuristics for solving the
encoding of pointers.

3. SIMPLIFIED PROBLEM

3.1 Formalism for a Global Solution
In the general formulation of the problem presented in Sec-

tion 2, different codes may be associated with the symbols in
each set. Therefore the encoding has to be foundlocally, in each
set. The problem can be simplified by constraining all symbols
associated with the same variable to share the same code. Eq. 2 is
then irrelevant because the distance between the codes of the
symbols that correspond to the same variable in the different
po in t - to se ts i s nu l l (i .e .

). Our goal becomes to minimize Eq. 1
only. The encoding is then foundglobally for all the symbols
which correspond to the same variable in the sets.

We are now considering the symbols (i.e. variables) in the
union of the point-to sets. These symbols will be denoted:

. The complexity is reduced: instead of
dealing with O(P*N) symbols { such that and

} we on ly dea l w i th N symbo ls
, whereN is the number of variables.

We introduce now a formalism which has been used to solve
other encoding problems [8], [7], [14].

Definition 3. The relation matrixA is defined as the matrix in
which the rows represent the point-to sets and the columns the
symbols. The entry ofA is 1 if and only if the symbol is in
the set .

Example 5. Let’s take the case of Example 3. We can construct
the following relation matrix:

For example, the first row of the matrix shows thatr1 may point
to a or b.

We are looking for an encoding matrixE, that satisfies the
encoding constraints represented byA. The constraints expressed
by the relation matrixA is the following. Each row inA corre-
sponds to a point-to set. For each row ofA, we want the super-
cubes of the rows ofE corresponding to the 1s in to have
minimum size. This corresponds to the constraint expressed in
Eq. 1.

This problem differs from the input encoding problem [8].
The relation matrix is not a binary constraint matrix, as defined
for the general encoding problem [8], in the sense that we don’t
have the additional constraint that, for each row of the con-
straint matrix, the supercube of the rows ofE corresponding to
the 1s in does not intersect any of the rows ofE corresponding
to the 0s in . The 0s in the relation matrix can then be consid-
ered asdon’t care in the constraint matrix.

3.2 General Encoding Algorithm
The problem of input encoding has been extensively studied

([1] [4] [7] [9] [10] [11] [12] [14]). We use an approach reminis-
cent of MUSTANG [9] and POW3 [1].

Definition 4. An affinity graph is an undirected weighted graph
in which the nodes are the symbols and
the edges are the relations between the symbols in . The
weight on the edge { , } is defined as:

(5)

where is the number of pointers, is the total number of
symbols, the number of symbols in the set , and is
an element of the relation matrix.

The weight in the affinity graph increases with the
number of sets that contain both and : when two variables
are in many point-to sets, we want their code to be close. This is
even more important for small point-to sets. For example, if we
have symbols in the point-to set , their code must
be next to each other to minimize the dimension of the supercube
of the encoded set , whereas if we have symbols in
the point-to set , the Hamming distance between the encod-
ing of the symbols in the point-to set can be as much as

. Therefore, the weight is the sum of the
contributions of the point-to sets that contain both and ,
where the con t r ibu t ion o f each po in t - to se t i s

.

The pointer encoding problem can be solved as an embed-
ding of the affinity graph in the Boolean hyperspace as done in
[10],[9],[1].

Example 6. The relation matrix presented in Example 5 can be
used to generate the affinity graph on Figure 3.

Let’s look at the weight on the edge {a,b}. The variablesa
and b are both in the point-to sets ofr1 and q1 . The weight

 is 3, sum of 2, contribution from r1, and 1, contribution
from q1.
After graph-embedding, the encoding presented in Figure 2 can

be found.

These algorithms however do not consider the fact that two
symbols can share the same code. We are going to use this prop-
erty in Section 4 for a technique calledfolding. One symbol can
also have multiple codes. The notion ofsplitting presented in
Section 5 will be based on this property.

4. ENCODING WITH FOLDING
Definition 5. We define asfolding the action of assigning the
same code to two symbols.

Proposition 1.Two symbols can be folded if and only if they are
not both in the same point-to set and not in two dependent point-
to sets.

The rationale for this proposition is that we want to distin-
guish each symbol inside a point-to set and, in the case of a com-
parison, we want to distinguish the symbols in the two dependent
point-to sets.

In the relation matrixA, folding the symbols and is
equivalent to replacing the columnsi andj by one columnk such
that:

 for l in {1, 2, ...,N}. (6)

dist Ei E j,() 0=
i j,() 1 2 ... P, , ,{ }2∈∀

Π
Π s1 s2 … sN, , ,{ }=

sj
i i 1 2 ... P, , ,{ }∈

j 1 2 ... N, i, ,{ }∈
s1 s2 … sN, , ,{ }

ai j, sj
Πi

A

a b c d

1 1 0 0

0 1 1 0

0 0 1 1

1 1 1 0

0 1 1 1

=

r1

r2

r3

q1

q2

α
α

α

α
α

Π s1 s2 … sN, , ,{ }=
Π

wi j, si sj

wi j, ak i, a⋅
k j, 1 Log2N Log2Nk–+()⋅

k 1=

P

∑=

P N
Nk Πk ai j,

wi j,
si sj

Nk 2= Πk

Ek Nk 10=
Πk

Log2 Nk() 4= wi j,
si sj

Πk
1 Log2N Log2Nk–+()

a b

c d

4

3

3

1 1

Figure 3: Example of Affinity Graph

wa b,

wa b,

si sj

ak l, ai l, aj l,∨=

In the affinity graph, folding is done by merging (or fusing1)
the nodes corresponding to the symbols , into one new node
corresponding to . The weights on the edges incident to this
new node corresponding to are then defined as:

 for l in {1, 2, ..., N}. (7)

Graph-embedding techniques can be modified to incorpo-
rate folding. In Section 6, we present a column-based method
with folding.

Example 7. Let’s consider the pointer-dependence graph on
Figure 4 wherer1 , r2 , andr3 point respectively to {a,b,c },
{b,c ,d} and {c ,d,e}. The relation matrix and the associated
affinity graph are represented in Figure 5.

The number of variables in each point-to set is either 3 (forr1 ,
r2 , and r3) or 4 (for q1 andq2). Therefore, we want to code
the symbols associated with the variables on 2 bits. However,
since we have 5 symbols, an encoding with less than 3 bits
cannot be found without folding.
 The symbola is in the point-to set ofr1 andq1 , whereas the

symbole is the point-to set ofr3 and q2 . According to the
pointer-dependence graph, these point-to sets are not dependent.
The symbols associated witha ande can be folded. After folding
we end up with the graph on Figure 6.

This leads to an encoding that requires only two bits:

1. A pair of verticesa, b in a graph are said to be fused (merged or
identified) if the two vertices are replaced by a single vertex
such that every edge that was incident on eithera or b or on
both is incident on the new vertex [2].

5. SPLITTING TECHNIQUE
Definition 6.We define as splitting the action of assigning two or
more codes to one variable (or symbol).

In Section 3 and 4, each variable was associated with a
unique symbol that was encoded. After splitting, one variable
may be associated with more than one symbol: splitting a symbol

 is equivalent to creating a new symbol which corresponds
to the same variable. The original symbol and the newly cre-
ated are then encoded into and respectively.

Proposition 2.A point-to set that contains a symbol may,
after splitting , contain the newly created symbol if and
only if there is no code equal to in the encoded set or in
any encoded set depended of .

As described in Section 2.2 the symbols in each set can have
different codes. Therefore, to minimize the dimension of the
supercube of the encoded symbols in a set (i.e. Eq. 1), we can
create new symbols associated with the same variables, for this
set. Note that, if we split the symbols for each point-to set, we
end up with a local encoding scheme as presented in Section 2.2.
However, to limit the increase in complexity, we are trying to
split as few symbols as possible.

In the relation matrixA, splitting is done by adding a col-
umn relative to . For each row relative to the point-to set

, the entry can be set to 1 if Proposition 2 is verified. The
point-to set may then contain , or both and .

In order to minimize Eq. 1, for set that may contain or
, the following expression may be considered:

(8)

where is either { }, { } or { , }.

For example, if Eq. 8 is minimum for , the
dimension of the supercube of the encoded symbols in the point-
to set is minimum when is set to 0 and is set to 1.

The new affinity graph can then be recomputed from the
relation matrix. Splitting as well as folding can be incorporated
in our graph-embedding algorithm as presented in Section 6.

Example 8. Let’s consider the pointer-dependence graph on
Figure 8 wherer1 , r2 andr3 may respectively point to{a,b} ,
{b,c} and{a,c} .

We would like to encoder1 , r2 andr3 with 1 bit andq with 2
bits. We also want the codes ofr1 , r2 andr3 to be subfields of
the code ofq.
Using the encoding technique without splitting symbols, we can

find the encoding on Figure 9.
In this caser1 andr2 are encoded on 1 bit but the encoding of

r3 requires 2 bits.

si sj
sk

sk

wk l, wi l, wj l,+=

Figure 4: Pointer-dependence graph

r1 r2 r3

q1 q2

r1 {a,b,c}
r2 {b,c,d}
r3 {c,d,e}
q1 {a,b,c,d}
q2 {b,c,d,e}

A

a b c d e

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 1 1 1 0

0 1 1 1 1

=

r1

r2

r3

q1

q2
a

b

c

d

e

4

4
2

8

6

2
4

8

4

Figure 5: Encoding problem before folding

A

a
e b c d

1 1 1 0

0 1 1 1

1 0 1 1

1 1 1 1

1 1 1 1

=

r1

r2

r3

q1

q2 a,e

b

c

d

66

8

8 8

6

Figure 6: Encoding problem after folding a and e

a 00
b 01
c 11
d 10
e 00 a,e

cd

b

r1,r2,r3
q1,q2

Figure 7: Result of the encoding after folding a and e

si si'
si

si' ei ei'

Πk si
si si'

ei' Ek
Πk

i' si' αk
Πk ak

i'

Πk si si' si si'

si
si'

min
E'

dim supercube Ek ei{ }–() E'∪()()()

E' ei ei' ei ei'

E' ei'{ }=

Πk ak
i ak

i'

Figure 8: encoding problem before splitting

r1 {a,b}
r2 {b,c}
r3 {a,c}
q {a,b,c}

r1 r2 r3

q

a

b c

3 3

3

A

a b c

1 1 0

0 1 1

1 0 1

1 1 1

=
r1

r2

r3

q

After splitting the symbola, we end up with the two symbolsa
anda’ . We can find the encoding on Figure 10 where the symbol
a is in the point-to set ofr1 , r2 andq anda’ in the point-to set
of r3 andq.

The encoding in Figure 10 is optimal: r1, r2 and r3 are encoded
on 1 bit and the assignments toq (q=r1 , q=r2 , q=r3) don’t
require any additional logic.

6. ALGORITHM
We propose a column-based approach (which means that

the encoding matrix can be found column by column [3]). Our
algorithm without folding and splitting is similar to the one used
in [1]. A pseudo code of the algorithm with folding and splitting
is presented on Figure 11.

We consider one bit of the code at the time. For a symbol
associated with the code , we consider the bits fork={1, 2,
..., n} wheren is typically . At each iterationk,
we construct the kth column of the encoding matrixE: the value
of (0 or 1) is assigned in a way that minimizes the distance
between the encoded symbol and its neighbors in the affinity
graph.

The assignment is done for the symbols on every edge start-
ing with the edges with highest weights. For the symbols inci-
dent to the edges { , }, we are trying to assign the same value
to both and . However, if the symbols and are also
incident to other edges whose weights are higher than, the
values of and may already be assigned to different values.
Moreover, at each iteration ofk, the number of symbols having
the same code is also limited.

Definition 7. An edge { , } is said to beviolated at iteration k
if the values and associated with the two symbols incident
to the edge, have different values.

Definition 8. A class violation is defined at iteration k, when
more than symbols have the same code so far. (At iteration
k, we are only considering the k first bits of the codes, since the
other ones haven’t been assigned yet).

The rationale for defining class violation is that we ulti-
mately want to distinguish all the symbols. Therefore, in our
greedy algorithm, we have to make sure that, at each iteration of
k, we have less than symbols associated with the same
code. For example fork=(n-1), we cannot have more than 2 sym-
bols with the same code.

Proposition 3.An edge{ , } is violated at iteration k if either
one of the following conditions applies:

• there is class violation (and therefore, and need to
have different values),

• the values and associated with the two symbols inci-
dent to the edge have already been assigned to different val-
ues (by Definition 7).

In the case of a class violation, we try to fold one of the
symbols on the edge { , } with any of the previously assigned
symbols. At this stage, two symbols are folded if Proposition 1 is
verified and if they have the same partial code so far.

In the case when different values have been assigned to the
two symbols , (i.e.), we try to split the symbols on
the edge. One symbol can be split if the newly created symbol
does cause any class violation or can be folded with another sym-
bol. In our algorithm, for a symbol , we create a new symbol

 associated with a code such that for l>k and
. In case of a class violation, we try to fold this new

symbol as done previously. If folding cannot be done, the symbol
is not split.

a b

c

r1

r2q,r3

Figure 9: encoding without splitting

a 00
b 01
c 11

A

a a' b c

1 0 1 0

0 0 1 1

0 1 0 1

1 1 1 1

=
r1

r2

r3

q

a -0
b 01
c 11

a’ c

ba

r3
r2

r1

q

a b

ca’

3

3

3

1

Figure 10: result after splitting symbol a

si
ei ei

k

n log2 N()=

ei
k

ei

si sj
ei

k ej
k si sj

wi j,
ei

k ej
k

si sj
ei

k ej
k

2n k–

2n k–

si sj

ei
k ej

k

ei
k ej

k

si sj

si sj ei
k ej

k≠

si
si' ei' e'i

l ei
l=

e'i
k ej

k=

encode pointer() {
/* construct matrix E one column at a time */
for k=1 to n

assign_code(k);
}

assign_code(k) {
sort edges by weight in decreasing order;
foreach edge { , } {

if(and not assigned) {

 = = select_bit(,);
if(class violation) {

try_fold(); try_fold(); }
}
if(or not assigned) {

=unassigned(,); =assigned(,);

 = ;
if(no class violation) {

try_fold(); try_fold(); }
}
else /* and assigned */

if(!=)
violated_edges->add({ , })

}

sort violated edges by weight in decreasing order;
foreach violated edge { , } {

try_split(); try_split();
}

}

try_split() {
create

= xor(1<<k);
if(class violation)

try_fold();
}

try_fold() {
if(s.t. Proposition 1 verified and ==){

fold(,);
remove ;

}

si sj

ei
k

ej
k

ei
k

ej
k

si sj

si sj

si sj
sh si sj sl si sj

eh
k

el
k

si sj

si sj
eh

k
el

k

si sj

si sj
si sj

si
si'

ei' ei

si'

si
sj∃ ei ej

si sj
si

Figure 11: algorithm with splitting and folding

Example 9. Consider the problem presented on Figure 12. The
associated relation matrix and affinity graph are presented on
Figure 13.

Since we have 4 symbols, we want to encode them on n=2 bits.
At iteration k=1, we assign the value0 to b,c and1 to a,d. The

violated edges are {a,b}, {a,c}, {d,c} and {d,b} but folding and
splitting cannot be done. For example, for the edge {a,b}, a
cannot be folded withb (resp.c) because both symbols are in the
point-to set ofr1 andq1(resp.r2 andq1).
At iteration k=2, we assign00 to b, 01 to c , 10 to a and11 to d.
All the edges are violated and some symbols can be split. The
variablea can be split and the new symbola’ can be folded with
d. The variabled can also be split and the new symbold’ can be
folded witha.
Finally, we end up with the encoding on Figure 14 in which all

the constraints are verified.

7. IMPLEMENTATION IN SPC
In [13], we presented SpC a solution for the synthesis of

pointers in C. The toolflow is presented on Figure 15. Our imple-
mentation takes a function with pointers in C and generates a
module in Verilog. This module can then be synthesized using
the Behavioral CompilerTM of Synopsys. The translation from C
to Verilog consists of different passes. After the front-end, we
inline the functions and perform the pointer analysis. Then the
aliasing information is used to remove and optimize pointers in
the following order:

- define the point-to-set of each pointer;
- replace theloads andstores;
- optimizeloads andstores;
- encode pointers;
- dead-code elimination.

The intermediate code without pointers is then translated
into Verilog.

Today, SpC supports only pointers to variables and array
elements. Nevertheless, our algorithm for pointer encoding could
be used for pointers to pointers, pointers to functions, and recur-
sive data structures as well.

The heuristic algorithm described in Section 6 has been
implemented and applied to some test cases. The results are illus-
trated in Table 1 and have been obtained as follows. The register
file as well as the logic necessary to translate the values of the
pointers has been synthesized using Synopsys Design Compi-
lerTM and the tsmc.35 library. We present the results for three dif-
ferent schemes.

First we present the results for a straightforward minimum-
length encoding of the symbols. In this suboptimal encoding,
each variable in each point-to set is simply associated with a
number (0 for the first variable, 1 for the second variable, etc...).
The number of bits used to encode each tag is then minimum but
the size of the circuit which translates the values of the pointers
is not.

The second scheme is the implementation of the algorithm
without splitting and folding. The size of the circuit translating
the values of the pointers is then reduced. However, the number
of bits used for the encoding is not always minimal, which leads
to larger decoding circuits (combinational area) and more regis-
ters (non-combinational area).

Finally, the last column shows the results for the algorithm
with folding and splitting. The length of the codes is then close
from the minimum and the size of the combinational circuit is
reduced, which gives better results.

Figure 12: encoding problem

r1 {a,b}
r2 {a,c}
r3 {b,c}

r1 r2 r3

q1
r4 {b,d}

r4 r5

q2

r5 {c,d}

a

b

c

3

3
4

a b c d

A =

1 1 0 0

1 0 1 0

0 1 1 0

0 1 0 1

0 0 1 1

1 1 1 0

0 1 1 1

r1

r2

r3

r4

r5

q1

q2

d
3

3

Figure 13: relation matrix and affinity graph

a,d’

b c

a’
r1,r4

r3

r2,r5

q1,q2
a 1-
b 00
c 01
d 1-

Figure 14: encoding after splitting and folding

,d

example P N
min. length simple algorithm spit and fold

combin. non-c. combin. non-c. combin. non-c.

test1 5 5 1215 2756 1211 3307 1069 2756

test2 7 4 1119 2447 1346 2723 1006 2447

test3 9 7 3747 4960 3666 5236 3325 4960

Table 1: results after synthesis and optimization using tsmc.35
library: combinational area and non-combinational area in library
units.

front-end

remove pointers

deadcode

Csuif2Verilog

pointer analysis

set point-to-set

replace*

opt load/store

encode pointers

remove &

.v

Behavioral
Compiler

Figure 15: Toolflow for the Synthesis of Pointers in C

C function

Verilog Module

.dbNetlist

.c

8. CONCLUSION
We have presented the problem of encoding pointers for the

synthesis of hardware. After simplification, the problem can be
solved using graph-embedding techniques. These techniques can
be further optimized: two symbols can share the same code (fold-
ing) and one symbol can have multiple codes (splitting). The
algorithm presented has been successfully implemented for the
synthesis of C code with pointers. Our technique could also be
applied to other languages and object-oriented programs.

9. ACKNOWLEDGMENTS
This research is supported by DARPA under grant

DATB63-95-C0049 and by Synopsys Inc. We would also like to
thank Maurizio Damiani for its precious comments and sugges-
tions.

10.REFERENCES
[1] L.Benini and G.De Micheli,”State assignment for low power

dissipation” Custom Integrated Circuits Conference, 1994,
pp. 136-139.

[2] Narsingh Deo“Graph Theory with applications to Engineer-
ing and Computer Science”, Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[3] T.A Dolotta and E.J. McCluskey.“The Encoding of Internal
States of Sequential Machines.” in IEEE Transactions on
Electronic Computers, volume EC-13, pp. 549-562, October
1964.

[4] C. Duff, “Codage d’automates et théorie des cubes intersec-
tants,” These, Institut National Polytechnique de Grenoble,
France, March 1991.

[5] Evgueii Goldberg, Tiziano Villa, Robert Brayton, Alberto San-
giovanni-Vincentelli, “Theory and Algorithms for Face

Hypercube Embedding” Transaction on CAD, volume 17(6),
June 1998.

[6] Hwayong Kim, Kiyoung Choi,“Transformation from C to
Synthesizable VHDL” in Proceedings of Asia Pacific Conf.
on HDL APCHDL’98, July 1998.

[7] Giovanni De Micheli.“Symbolic Design of Combinational
and Sequential Logic Circuits Implemented by Two-Level
Logic Macros.” IEEE Transaction on CAD, volume 5(4), pp.
597-616, 1986.

[8] Giovanni De Micheli“Synthesis and Optimization of Digital
Circuits” , Mc Graw Hill, Hightstown, NJ, 1994.

[9] A. R. Newton, S. Devaras, H-keung Ma and A. Sangiovanni-
Vincentelli. “MUSTANG: State Assignment of Finite State
Machines Targeting Multilevel Logic Implementations.”
IEEE Transaction on CAD, volume 7(12), pp. 1290-1300,
1988.

[10] G. Saucier,“State Assignment of Asynchronous Sequential
Machines using Graph Techniques”, IEEE Transaction on
Computer, March 1972.

[11] G. Saucier, C. Duff, F. Poirot,“State assignment using a new
embedding method based on intersecting cube theory”,” in
Proceeding of Design Automation Conf., pp. 321-326, June
1989.

[12] G. Saucier, M.C. Depaulet and P. Sicard,“ASYL: A rule-
based system for controller synthesis”, IEEE Transactions on
CAD, volume CAD-6, pp. 1088-1097, November 1987.

[13] Luc Séméria, Giovanni De Micheli,“SpC: Synthesis of
Pointers in C. Application of Pointer Analysis to the Behav-
ioral Synthesis from C”, proceeding of the 1998 ICCAD, pp.
340-346, November 1998.

[14] Tiziano Villa, Alberto Sangiovanni-Vincentelly,“N OVA:
State Assignment of Finite State Machines for Optimal Two-
Level Logic Implementation”, IEEE Transactions on Com-
puter-Aided Design, Vol. 9, pp. 905-924, September 1990.

