
Luca Benini and Giovanni De Micheli
Stanford University.

Abstract

When binding a logic network to a set of cells, a fundamental problem to be solved is recogniz-
ing whether a cell can implement a portion of the network. Boolean matching means solving
this task using a formalism based on Boolean algebra. In its simplest form, Boolean match-
ing can be posed as a tautology check. We review several approaches to Boolean matching
as well as to its generalization to cases involving don't care conditions and its rcstriction to
specific libraries such as those typical of anti-fuse based FPGAs. We present tht:11 a general
fonnulation of Boolean matching supp01.ting multiple-output logic cells.

Introduction1

Cell-library binding (also called technology mapping) is the task of traJlsforming a multiple-
level logic representation into an interconnection of component~ that art- ill~tall~ of c.t";lls
of a given library. By means .of library binding. logic de~igns can be target(~d to differ('llt
technologies and implementation styles, such as standard cells and gatE" array~. illcluding

field-programmable gate arrays (FPGAs).
Cell libraries contain the set of logic primitives that are available in the desired design

style. Hence the binding process must exploit the features of such.a library, in the search for
the best possible implementation, which optimizes performance, power consumption, area,
et cetera. Since different objectives may be of interest, binding is often formulated as a
constrained optimization problem, which is computationally intractable [12, 17].

Practical approaches to library binding can be classified into two major groups: heuristic
algorithms [13, 23] and rule-based approaches [11, 20]. In both cases, two subproblems must
be solved: matching and selection. Matching means being able to recognize whether a portion
of a multiple-level logic circuit can be implemented by a given cell. Selection means choosing
appropriate cells that optimize the figuJ'e of merit of interest.

We consider here the matching problem only. Heuri~tiC' algorithln-" for nt-I. work cov~ring
based on tree, graph and Boolean matching as well as rult'-bas(~ l\y~l.enll\ Ilavc' bc't", d~cribf'd
elsewhere [12]. In addition, we restrict our attention to librari~ of conlbinal.ional gates.

because register binding is often handled by special methods, e.g., [24]. At first, we consider
single-output logic cells, but we shall remove this assumption later.

Early approaches to library binding used graph-based representatiolls or Jibrary ("ells ex-
pressing multi-level decompositions into simple Boolean functions, such ~ lwo-ilJpul NAND~.
Matching was implemented as a (sub-) graph isomorphism problem, which ("an be solved very
efficiently when the decomposition graph is a tree. Unfort~nately, lhpse approaches suffer
from several drawbacks, the most important of which is that these representation are not
canonical and thus potential matches may not be detected. Pattern mal<.:hillg approaches to
b.inding have similar drawbacks, when the clusters are mul~ipie-levei. sum-of-product expres-
sions.

Later approaches to library binding used Boolean matching techniques, which are so
called because they are based upon (can.onical) Boolean representations of the logic functions.
The kernel of Boolean matching techniques is solving a tautology problem, which is co-NP
complete. Nevertheless, since in our case the cardinality of the support set of the Boolean
functions is small (i.e., most cells have at most 5 or 6 inputs) tautology is solved with little
computational burden. In addition, binary-decision diagrams (BODs) can support extremely
efficient tautology checks. .

It is the purpose of this paper to review and contrast different methods for Boolean
matching for generic and specific libraries. We present also a new approach to Booleanmatching that can handle multiple-output logic cells. .

2

We assume that the reader is familiar with the basic concE"pts of Hoolf'all alg('l>ra (S(~ (6. 12]
for a review) and BDDs [2). We concentrate here on some specific concept... needed for
the understanding of the following material. We denotE" vectors and 111atrices in bold. i.p..
x = [Xl, X2,.. ., Xn)T. A vector whose entries are 1 is denoted by 1. \.\f.e use thE" symbol
Vz and 3~ to designate respectively the consensus and the smoothing operators. Remember
that the consensus operation corresponds to universal quantification .and it is computed as
Vz-f = f~.f~, while smoothing corresponds to existential quantification and it is computed as
3zf = fz+f~. Consensus (smoothing) with respect to an array of variables can be computed
by repeated application of single-variable consensus (smoothing).

Don't care conditions2.1

The input controllability don't care set (CDC) for a Boolean function I(x) (\vith support
variables x) includes all input conditions that are never produced by the environment. We
can define a CDC function ICDC : X -+ {O, I} whose ON-set is the C DC-set. of I.

The output observability don't care set (ODC) for I denote all input pattp;rns that rep-
resents situations when I is not observed by the environment. \\:(~ d(-!fine all 01)(' function
IODC : X -+ {O, I} \vhose ON-set is the ODC-set of I. The- D(,' ftlnction 10(' = !oo("+!c../Jc

-13-

can be used to express all degrees of freedom available for the implementation j of a single

output function, namely:

f . f'oc :51:5 f + f DC

Boolean relations
When considering the minimization of multi-output Boolean function:), the degrees of free-
dom provided by the environment can be expressed by a Boolean relation [33).)I)tu-
itively, Boolean relations are generalizations of Boolean fu~ctions, where eaCh input pattern
may correspond to more than one output pattern. If we call.>: the input space and Y
the output space, a Boolean relation ~ can be represented by its characterist~c equation:
X: X x Y -+ {I, OJ such that X(x,y) ="1 if and only if y is one of the possible outputS" of
~ for the input x. We clarify these definitions with an example. "

Example 1 Consider the Boolean relation represented by the following table:

Its characteristic equation is: X ., t' t' ., . ,
1n}0tl }Ott 2 + .nJuttlJ(J"(tl"l + tUluUll(Jttl:z = 1

Libraries

We shall consider in the sequel Boolean functions that model a portion (or cluster) of the
circuit, and that are called cluster functions. We denote by f a gencric cluster function.
We call pattern function a combinational function modeling a library cell, and we use 9
to represent a generic pattern function. We assume for now that. both cluster and pattern
functions are scalar (i.e., have a single output.) This restriction is removed in Section 7.

We denote the library (i.e., the set of pattern functions) by L. We say that an input to
a library cell is stuck-at 0, if it is connected to ground. This is modeled by replacing by 0
the corresponding variable in the pattern function. We define the stuck-at 1 condition in a
similar way, mutatis mutandis. \\'e say that two (or more) cell inputs are bridged together,
when they are connected to the same input line. Finally, we say that a library is closed under
stuck-at and bridging (or closed in brief), if for any stuck-at and/or bridging condition. the

corresponding pattern function is equivalellt Lo either thr palLerl1 fllnct.ioll of a.llolher cell ill
L or to a Boolean constant value (i.e., TRUE or fALSI-:). ;\1o~t. ("('lllibrari(':o; arc' ("Io~'d.

Example 2 A library comprising an inverter, as well as a .4-input, a 9-input and a f-input
NAND cell is closed under stuck-at and bridging conditions. Indeed by shorting two or more
cell.inputs, or by sticking one (or more) cell inputs to ground or to the power supply litle.
we have a cell behavior equivalent to another cell in the library or to a constant valut. IJ we
remove the 9-input NAND gate from the library, then the library is no longer closed.

3

Let us consider a cluster function f(x), with n input variables \vhich are entries of vector x.
Let us consider also a pattern function g(y), where the variables in yare the m cell inputs.
For the sake of simplicity, we assume that n = m. We will remove this assumption in Section
7. Note tha~ when the cell has more inputs than the cardinality of the support of the cluster
function, i.e., 111 > n, then a match requires bridging or sticking-at a constant value some
inputs. When considering closed libraries (and most libraries are closed), there exist always
a more convenient match, i.e., a simpler cell performing this function. Conversely, when the
cell has fewer inputs than n, a match is possible only if some variable in x is redundant. This
.can be detected while matching the cluster function and considering don't care conditions.

Matching involves comparing two functions and finding an assignment of the cluster
variables to the patterns variables. For the sake of explanation, \ve separate the two issues
and we describe first matching two functions defined over the same set of variables. Thecomplete Boolean matching problem will be defined in Section :3.3. .

Input permutation3.1

Consider two functions, f and g, defined over the same variable seL x. 'j'hf' L\\.o fullcLions arf~
equivalent if f(x) ~ g(x) is a tautology. If the functions are expressed b)t reduced orderedbinary decision diagrams (ROBDDs), such a test can be done in constant time [.5). .

In general, we are interested in exploring the possible permutatiol1s of input variables
that yield equivalent behavior. Thus we say that f and 9 are P-equivalent if there exists a
permutation operator 'P such that f(x)~g(P x) is a tautology.

The most simplistic approach to detect a match is to perform n! tautology checks. (Note
that n = m is usually small and that cells with more than 6 inputs are rare). Mailhot [26) was
the first to propose & method for Boolean matching. He detected tautology by comparing
ordered BDDs, and he renounced the canonicity of ROBDDs to save the computing time
of reducing the OBDDs of the cluster functions. (Historically, his method preceded the
development of efficient ROBDD manipulation tools [5).) To expedite P-equivalence checks,
he used filters to prune unnecessary tautology checks (See Section 4.2.) Thf! method can
be perfected by using ROBDDs. If each library element is associated \vith a multi-rooted
ROBDD representing all variable permutations, then 'P-equivalency i~ again a tautologycheck, that can be performed in constant time r.~l. '

-15-

3.2 Input and output polarity assignment
It is often the case that the polarity (also called phase) of the inputs and outputs of a
combinational network can be altered, because I/Os originate and terminate on registers or
I/O pads yielding signals and their complements. Thus it is useful to search for matches
with arbitrary polarity assignments, when these reduce the cost of the objective function of
interest.

The polarity assignment problem can be explained with the help of a formalism used to
classify Boolean functions. Consider all scalar Boolean functions over the same support set
of n variables. Two functions f and 9 belong to the same: NP .N cl~s, and .are said N'P N -
equivalent if there is a permutation operator P and complementation operators Ni,No, such
that f(x) = Nog(P M x) is a tautology [21]. The complementation operators specify the
possible negation of some of their arguments. Similarly, two functions f and 9 aresa.id to be
.N -equivalent (or polarity-related or phase-related) if there exist a complementation operator
M such that f(x) = g(M x) is a tautology. P N -equivalence is defined in a similar way.

Boolean matching is often defined in terms of N, or P N, or NP N -equivalence. In
principle, N, PN, and NPN-equivalence can be reduced to 2n, 2nn! and 2n+ln! tautology
checks. In practice, filters can be used to reduce drastically the number of tries, and early
approaches to Boolean matching \vere relying heavily on filtering [26]. Moreover, canollical
forms can be used to check for equivalence in constant tjrne. .

Variable assignment and Boolean matching

We distinguish now between the cluster variables x and the patte."n variables'y. A matching
requires an assignment of cluster to pattern variables, representing the connections between
the cluster and the cell. We denote a generic assignment by the characteristic equation
A(x,y) = 1 of a variable mapping function that maps the variables x into y.

Example 1 Co.nsider an assignment which maps each entry in x into the. corresponding
entry of y. Then the characteristic equation is x "t1i y = 1. Equivalently toe can eXp7'fSS
A(x,y) in scalar form as: ni:l(Xi ~ Yi) = 1.

With input permutation, the characte7-istic equation ca11 be expressed as: A(x, y) =
y ~ Px = I, where P is a permutation matrix.

With input permutation and complementation, then y ffi PN G1 x = 1 t where N is a
diagonal Boolean matrix.

The pattern function 9 under the variable assignment represented by A is [31]:

9.A(X) = 3yA(x. y)g(y) I

Example 2 Consider a two-dimensional inpttl spn(:t:. l(lh(:1"I': X = [.rl' .r:z]T (tnd y = [y,. Y2]T .
The NP N transformation that 'naps .1.1 10 Y2 and.r2 10 !II h(/..~ liLt joll01rilLg chi/. rc/.cl (li~1 ir
l:lJuation A(Xl' X2, !II, !l2) = (xll!iyi)(X2 ifi y,) = ;rl.T2YI!l~+J.,.r~Y~!I~+J.~.r:l!II!I:l+.r~.r~]/~!I"l = I.

Consider pattern function g = YIY2 with the previous assignment. The pattern function
under the variable assignment is 3yl.~.Ag = 3J/l.~(Xl e Y2)(X2"ffiYt)YtY2 = X2X~

As a result, a condition for matching is that f(x) ~ g.A(x)is a tautology, or equivalently:
f(x) ~ 3yA(x,y)g(y) = 1 for any value of x. Therefore there is a Boolean matching if and
only if the following formula evaluates to true.

'9'x(f(x) e 3y A(x,y)g(y») (2)

4

As outlined in the previous section, finding the correct input p(~rmlltation and polatit.y
assignment that matches a cluster function with a pattern functiol1 may require a large
number of tautology tests. Numerous approaches have been proposed to elinlinate or reduce
the need for iterative tautology check. I

4.1 Canonical forms

Burch and Long introduced a canonica] form for represel1ting functi<?ns modulo input-polarity
assignments [4]. This allows us to check for At -equivalence in constant time. The method
can be easily extended to cope with 'PN-equivalence (and N'PN-equivalence).

The canonical form for N .equivalence relies on a ROBDD representation and can be seen
as an operator (i.e., a Boolean function) whose argument is a Boolean function. Burch and
Long named it C.A(and defined it as follows. For all scalar Boolean functions 1 and g, then 1
is N -equivalent to C}/(f). Moreover, if 1 is N .equivalent to g, then C}/(/) = C}/(g).

Given a function f, its canonical form C}/(f) can be constructed in polynomial time by
performing a recursive expansion about its support variables. The structure of the algorithm
for forming C}/is similar to the ITE algorithm [.5, 12]. A description is reported in [4].

Let us consider now matching using the C}/operator. The Boolean functions representing
a library L can be put in the canonical foro'! C.\fa..c; a prC'l>rocPs.'iiI1g ~t.f'I). c!OrlC' OIICC' for all for
each library. These canonical forms can be stored in a ha..')h tabl(~.)0'01' ~acll <'III~t(.1' fUII<:tioll f
of interest, its canonical form C}/(/) must then be computed and cllc-ckc'(l again~t thc' libl'al'.\'
hash table. This check can be done in constant time.

Unfortunately, no polynomial-time reduction to permutation-canonical forl11 has bC~11
proposed so far. In [4] Long and Burch proposed semi-canonical 101'1115, that can be COlllpllted
efficiently but are not unique. For each pattern cell in the library, the (small) set of all its
semi-canonical forms is generated and stored once for all in a hash table. The cluster function
is matched first constructing one of its semi-canonical forms, then checking for its presence
in the library's hash table.

Extensions to cope with 'PN -equivalence are straiglltforward, by having the library ha."h
table store the permutation semi-canonical forms in polarity canollical forin. ""'inall)O, check.

-17-

. ing for NP N -equivalence is usually done by checking also for P N -equivalence of the com-
plement of f.

4.2 Boolean signatures

A signature of a Boolean function is a compact representation that characterizes some of the
properties of the function itself. Each Boolean function has a unique signature. On the other
hand, a signature may be related to two or more functions. This problem, called aliasing,
distinguishes signatures from canonical forms.

A necessary condition for a Boolean match is that the c~rresponding signatures are eclual.
When signatures are compact, comparing them is an efficient method to determine when two
functions do not match, and therefore to reduce the search space for a match. Because of
aliasing errors, signatures do not represent sufficient conditions to ill fer matching. Thus,
they are inherently less powerful than canonical forms. Signatures have been used before
the introduction of canonical forms, and subsequently in the cases where canonic.a.1 forms areexpensive to compute or their size is too large [27]. I

Signatures can be based on some properties of the representation of a Boolp..a.n fUll ct. ion ,
such as symmetries, unateness, size of co-factors, etc. Some signatures are based on Booleanspectra and they are reviewed in Section 4.3. .

Mailhot [26] used signatures to reduce the number of tautology checks needed to de-
termine both 'P-equivalence and N'P N -equivalence. The signatures that he introduced are
based on the following facts:

. Any input permutation must associate a unate (binate) variable in the cluster function
with a unate (binate) variable in the pattern function.

. Variables or groups of variables that are interchangeable in the cluster function must
be interchangeable in the pattern £tInction. .

The first condition implies that the cluster and pattern functioJI1) Il1tlSI. ha\'<, tilt, 1)alllC'
number of unate and bmate variables to have a match. Thus illteger b is a sigllaturt' of tile
function. Moreover, with b bjnate variables, at most b!. (II - b)! \'arial>lt, pt'rllltltati()ll~ IIt'(-"dto be considered jn the search for a match jn the worst. case. .

Example 3 Consider the following pattern function from a commercial library: 9 = SIS2a +
SI s~b + s~ S3C + s~ s~d with n = 7 variables. Function 9 has 4 unate vu7-iables and 3 binate
variables.

Consider a cluster function f with n = 7 t!ariables. First, a necessary co7ldition for f
to match 9 is to have also .4' unate variables and .9 binate variables. If this is thc caSE. only
3! 4! = 144 variable orders and correspondins OBDDs need to be c07lsidered in the «:01'8t
case. (A match can be detected bef07'e aU 14.4' variable orders a7"f: considert:dJ. This Ilumbtr
must be compared to the overall number of permutations; 7! = 5040, which is much lal'gtr.

The second condition allows us to exploit symmetry properties to simplify the search
for a match [26, 28]. Consider the support set of a function f(x). A symmetry set is a set
of variables that are pairwise interchangeable without affecting the logic functionality. A
symmetry class is an ensemble of symmetry sets with the same cardinality. We denote a
symmetry class by Ci when its elements have cardinality i, i = 1,2,... ,n. Obviously classes
can be void. The symmetry classes of the pattern functions can be computed beforehand,
and they provide a signature for the patterns themselves. Indeed a necessary condition for
matching is to have symmetry classes of the same cardinality for each i = 1,2,..., n.

Example 4 Consider the function f = XIX2X3 + .1:4XS + .1:6!X7. The support variables of f(x)
can be partitioned into three symmetry sets: {XIX2X3}, {X4XS}' {X6X7}. There are two non-
void symmetry classes, namely: C2 = {{X4,XS},{X6,X1}} and C3 = {{XI,X2,X3}}' Thus a
signature is [0,2, 1,0,0,0,0].

Consider now library cells gl = Yl + Y2Y3 +. Y4YS + Y6Y1 and g2 = (~ + Y~)(Y3 + Y..)(Ys +
Y6 + Y7)' The signatures of the cells are respectively [1,3,0,0,0,0,oj and [0,2, I,O,O,O,OJ.
The signatures of f and g2 are equal and indeed 92 is N'PN -equivalent to f. Notice however
that in general signature matching is only a necessaMJ'condition for Boolean 111atching.

Other signatures can be obtained by considering the satisly count of a function, which
is the number of its minterms. The satisfy count for I is denoted by III. The satisfy count
can be computed quickly when using ROBDD representations [2]; The satisfy count is an
invariant for input permutation and complementation. Thus, it can be used as a signature-
for determining P-equivalence and P N -equivalence. Note that output complementation
changes the satisfy count of a n-input function I from III to 2" - III.

Mohnke and Malik [27] suggested to consider the satisfy counts of the cofactors of a
function with respect to its variables for determining 'P-equivalence and 'P N -equivalence. Let
us consider 'P-equivalence first. The signature is a vector whose entries are the satisfy counts
of the co-factors with respect to the uncomplemented variables. Again, such counts can be
computed quickly when using ROBDD representations [2]. Then. a necessary condition for
P-equivalence for two functions I and 9 is that each element of the signature for I has
one corresponding and equal element in the signature for g. This call bf" ca.'iily tested b.\'
sorting the entries and comparing the sorted signatures. Alia.slllg .<?<:cilr,') \VII(~11 tll(' ...ati~f.\'illg
count for two or more co-factors are the same. Mohnke and Malik [27] <:()II~id(~red brt:tLk1tp
signatures in these cases, that are based on the distance- of mint~rm,') rrOln an arbitrary point
of the Boolean space. Details are reported in [27].

When considering the N -equivalence problems, the satisf)' counts or the co-factors of
I with respect to both complemented and uncomplemented variables must be considered.
These integer pairs can be arranged in a matrix (\vith as many rows as the input variables)
representing the signature. A necessary condition for AI' -equivalence of t\VO functions I and
9 is that each row 0.£ the signature for f has the same elements (possibly permuted) as the
corresponding row for g. Aliasing occurs \vhen a row has identical elements. To overcome
this problem, other signature can be considered that are based on satisfy counts of cofac-
tors with respect to two variables. They are called component signatttres [27]. Eventually,

-I~

when considering the 'P N -equivalence problems, cofactor sjgnatures can still be used in a
straightforward way, but the use of breakup and component signatures is limited.

Similar approaches have been independently proposed by Laj et al. [25], and by Cheng
and Marek-Sadowska. [8]. In [25] the authors jntroduced a general method for evaluating the
quality of signatures, called effect/cost ratio. The effect of a sjgnature is the reciprocal of
its aliasing probability, while the cost depends on the algorithm used for its computation.
(For ROBDD-based algorithms, the cost is usually a low-order polynomjal functjon in the
number of nodes). Clearly, signatures wjth hjgh effect/cost ratio should be used. Since exact
computation of the effect of a signature js sometimes djfficult, it can be approxjmated by
the number of djfferent values that the signature may ta.k~. .

Finally, Tsai and Marek-Sadowska [35] have recently proposed a new set of signatures,
which have been proved to be effective when checkjng for 'P.AI -equivalence. Such signatures
are based on the generalized Reed-Muller form (GRM form) of Boolean functions. GRM
forms are useful because they can reveal complex symmetries of input variables and are
efficiently constructed with procedures sjrnjlar to those used .for BDDs.

4.3

There are several spectral representation of Boolean functions [21]. We consjdef here the
Hadamard tran~form, because it can be efficiently implemented. Consider a n-input Boolean
function f. Let z be a Boolean vector of length 2n whose i'h entry is f(bool(i)), i =
1,2,...,2n, being bool() a function returning the binary encoding of an integer. One can
view z as the truth table of f. We then recode the Boolean constants so .that they take
values {I, -I}. Namely we define y = 1 - 2. z.

The spectrum s of a function f is a vector with 2n elements, calculated as: s = Tn . y,
where the Hadamard matrix Tk of size k is defined recursively as follows:

ro I
Tk-1

Tk-1
Tk T#t-'

_Tk-1

Since Tn is symmetric and has orthogonal columns, its inverse i:i 1/2".Tn. 1'hus a. funct.ion
can be recovered from its spectrum by computing: y = 1/2n . Tn. sand z = 1/2. (1 - y).

Each entry in the spectrum gives some global information about the Boolean function.
For example, the first entry is So = 2n - 2111 and is called Oth-order coefficient. The follo\ving

n entries are named first order coefficients and show t.he correlation of 1 witl. its illput
variables. The remaining coefficients show the correlation of f "'ith the exclusive or of
some input variables. In particular, jth-order coefficients show the correlation of f with the
exclusive or of j input variables.

Example 5 Consider /(%1, %2, %3) = Xl%2 + x; (n = 3). Its Hadamard spectrtll1l. is:
[SOl S} I S21 S12, S3, S13, S23, SI23]T = [-2,2,2, -6, -2, -2, -2, O]T. The O'h order coefficient is

So = ~ - 2 * 5 = -2. (In this case If I = 5). The first order coefficient 81 is 81 = 5 - 3 = 2.
Notice that Sl is equal to the number of agreements between f and XI minus the nun~ber of
disagreements. The second-order coefficient 812 is S12 = 3 - 5 = -2, i.t.. the number of
agreements between f and Xl e X2 minus the number of disagreements.

A spectrum uniquely identifies a function. Some operators applied to Boolean functions
have specific local effects on the elements of its spectrum vector. In particular, comple-
menting a function corresponds to changing sign to its spectrum. Input complementation
correspond to changing the sign of the spectral coefficients related to the complemented
variables and input permutation corresponds to permuting spectral entries. of the same or-
der. Moreover, substituting the input and/or output of a function with a linear combination
(i.e., exclusive or) with other inputs corresponds to swapping spectral elements of different
orden. By Using these transformations we can group Boolean functions into disjoint trczns-
lationally equivalent classes [14], that are classes closed under these transformations, called
here X N'P Nbecause extension of the N'P N concept.

Whereas the XN'P N concept is important for classification of Boolean functions, it is less
relevant for matching. Indeed, replacing a cluster with a XN'P N -equivalent ("ell rna.y require
the use of additional EXOR cells, thus increasing the ("08t of a rnat.ch. If Wp fe~t.ri("t ourselv~
to N'PNclasses, it can be sho\vn that a N'PNcanonical form can b(' obtaine<l applying a
sequence of transformations such that the first n + 1 (".ocfficicnt ar(~' mad(' positivc a.1ld the
coefficients from 1 to n+ 1 are in increasing order. Unfortunately, a matching algorithm based
on this canonical transformation has one main drawback: since the Hadamard transform has
2" coefficients, its computational cost is exponential in the number of inputs.

Boolean spectra can be of practical use to matching in two ways. First, they can be
used for matching by noticing that two functions are N'PN-equivalent if the corresponding
spectra are equal modulo complementation and permutation of the coefficients within the
same order. Yang [38] proposed a Boolean matching algorithm where permutations and
co~plementations of the elements of a spectrum are attempted, to make it equal to another
one. If and only if this process is successful, then the corresponding. functions are At'P At--
equivalent. While the algorithm is generally efficient in early ruling out unfeasible matching,
its worst-case performance is exponential.

Second, Boolean spectra can be used as signatures. (Fragments of spectra can also be
used: for example the orA-order coefficient is equivalent. to the satisfy count). When consid-
ering P, 'P N, or NP N -equivalent matching, aliasing may arise becaust" a cluster function f
may match the spectrum of a pattern function g. being f and 9 just .\'N'PNequivalent but
not N'PNequivalent. Nevertheless mismatches in Booelan spp<"tra (Of in portioll~ th(,frof)
may be used to rule out equivalence of the correspollding 800 leal I rullcliolls. ('Iarkt, ('t al. [9)
proposed BDD-based methods for the computation of thc ~J>f'(.tftI111. ')'11(' 111aill ad\'RlltaR~
of this approach lies in the high average efficiency of BOO.ba..~'(1 IIIRllip"IRtioll. altllollgll
the worst case computational complexity is still exponential. Morro\.{-'r. the allthors appliE'd
spectral filters to speed-up matching, and gave experimental eviclencC" 011 thC" high cffc;clfro.sl
ratio of such filters [9).

-21-

Boolean matching with don't care conditions5

Mul~ipie-levellogic networks have often several don't care conditions, that .are induced by
the interconnection of the network itself. Some of these don't care conditions are due to
the structuring of the network prior to library binding, while others are due to the binding
process itself. When considering don't care conditions associated with a cluster function, then
multiple matching cells can be found. It is therefore convenient to use don't care conditions
in the search for the most desirable matching cell.

We consider here both controllability and observability don't care conditions associated
with the cluster function f and represented jointly as f DC. We refer the reader to [12] for
the computation of fDC. We say that a pattern function 9 matches a cluster function f, if
9 matches 1 where f. f.bc .$: I.$: f + fDC.

Compatibility graph5.1

Matching can be defined in terms of P, NP, or NP N -equivalence. The first algorithm for
detecting NP N -equivalence using don't care conditions was proposed by Mailhot [26]. His
approach was limited to func;tions with four or less support variables (n ~ 4). Mailhot made
use of a matching compatibility graph, ~'hich is a directed graph whose vertex set is in one
to one correspondence with the NP N -equi valent classes of functions. There are 222 such
classes for functions of four variables, but 616126 classes for function of five variables and
this explains the limitation to four variables. .

Each vertex of the graph is labeled by a representative function of the clas~. T\vo vertices
are joined by an edge if the corresponding representative functions differ in Olle minterm.
Thus a path between two vertices can be associated \vith a sel. of minterllls, or equivalently
with a Boolean function measuring the difference between the represC'lttat.ivp fttnctions. Wf"
call such function the error function.

The vertices are annotated by library elements and their cost~, when the pattern functions
are in the corresponding NP N class. Given a cluster function J, an ."'?..\f -equivalence check
can map the cluster function to a vertex v E V. Such vertex alway:) exists, because all
AfP N classes are represented by the graph. On the other hand. the vertex ncay correspond
or not to a library element. In either cases, matching consists in finding the vertex u E
V associated with the least cost cell that is compatible \vith the cluster function. The
compatibility test reduces to checking \vhether the error function associated with the path
from v to 11 is included in the don't care function f DC, which represents the tolerance on the
error. In Mailhot's algorithm, the annotated m~tching compatibility graph and the paths
are computed once for all for any given library and stored. Thus matching with don't cat'£'
conditions requires just an additional inclusion test. Even though most libraries have few
cells with more than four inputs, the drawback of this approach is that it do~ not scale with
n due to the size of the graph.

5.2 A formula for Boolean matching with don't care conditions
Savoj et. a1 [31] presented a Boolean condition for matching with don't care conditions.
Consider a cluster function f(x) and don't care set fDC(X) and pattern function g(y). An
expression for determining a matching with don't C4f'e conditions can be derived by extending
expression (2) as follows:

(3)V'x(fDC(X) + f(x) ~ 3)"(A(x, y)g(y»))

which can be rewritten as:

V'x{3y{A{x,y)(JDC{X) + J{x) "EB g(y)))) (4)

Formula. (3) has an immediate meaning: for all the values of t.he input. variables x either
the pattern function 9 with input assignment A must be equal t.o J or JDC is true. Formula
(4) is easily derived from (3).

Example 6 Consider the cluster Junction f = XI e X2 with fDC = X~X2, and pattern
Junction 9 = Y1 + Y2. A variable assignment that assigns ~ to Yl and %2 to Y2 yields a
match. We verifllthat with (9). The input assignment function isA{x,y) = (YI(IjXl)(Y2~X2).
Formula (9) is therefore Vx{3Y«(Yl ~ Xl)(Y2eX2)(X~X2 + (XI ~ .T2)~(Y1 + 1/2»». Computing
the smoothing we obtain VX{X~X2+Xl%2+X~X~+XlX~), that is tautology. thus (3) is satisfied.

The main problem in using formulae (3) and (4) is to find thp variable a..c;signment. Savoj
et. al ([31)) proposed an algorithm based upon a search for a variable a..~signment that
satisfies condition (4). To expedite the search, Savoj introduced a class of filters that are
valid even for incompletely specified functions. The filte~ ~rC' bas~ on th,. .~ati~f!/ ("Oflnl
of the function and its cofactors. For example, if If. fOCi> 191 no matching is obviously
possible. The interested reader is referred to [31) for details.

Boolean unification

Boolean unification is the process of finding a solution of a. Boolean equation [6]. A method
for finding Boolea.n matching with don't care conditions based on BooJea.n unification was
proposed by Chen [1]. A matching is searched for by solving a Boolean equation in which the
unknowns are the variable matching functions representing input assignments. Note that
these functions have been represented irnplicitJy up to now by the characteristic equation
A(x, y) = 1. Given f(x), f DC(X) and g(y), we first enforce the matching condition:

f(x)~g(y (5)+ Joc(X) = 1

which must hold for every x.
The unknowns in this equation are y = <t>(x. r), \vhc-rC" r i~ An ArrA)' of ArhitrAr.\. func-tion.'\

on x. Solving for the unkno\vns yields the variable matchillg. if 011(' ('xi...t 'I'IIt' soluLiol1

-2)-

method [7] uses a recursive algorithm reminiscent of the binary branching procedure for
Shannon expansion.

If we restrict ourselves to 'P.N matching, we must limit the generality of the solutions: we
allow only functions of the form y = PN ffi x for some permutation matrix P and diagonal
complementation matrix N. Unfortunately, this constraint is not enforced by equation (5).
In order to guarantee that solutions are in the desired form, a branch-and-bound algorithm
is proposed in [7] that may degenerate in the worst case to exhaustive enumeration of input
permutations and polarity assignments. Although Boolean unification is a general and inter-
esting framework for the description of matching problems, ~he Boolean unification algorithm
presented in [7] does not represent a significant theoretical improvement upon enumerative
procedures enhanced by efficient filters.

Matching using multi-valued functions5.4

One recent and effective approach to Boolean matching with don't care [36] exploits multi-
I

valued functions. A multi-valued function is a mapping from a n-dimensional space to the
Boolean space. The input variables can assume a finite number of values ranging from 1
to n. In symbols, a multi-valued function F is F: Nn -+ B, where N = {1,2,...,n} and
B = {I, OJ. The key idea is to represent admissible input assignments with literals of a multi-
valued function, and consequently, sets of admissible input assignments with multi-valuedcubes. .

Example 7 The cluster function is f(x.o X2, X3) and tht pallcl.n jttnclion i$ 9,(1/10 Y;l. Y3). """f,
consider only input pennutations for thf sake of simplicity. r1Ssttmc: that admi.~siblc: input
assignments are (Xl,Y2), (X2,Yl), (X2,Y2). (X3,Y.). and (X3,Y3). This (:/ of (ldmi""sibll' inp1l/

assignments can be represented by the multi.vahled cube a42}J:~1.2t.r!I':Jt.

The cubes of the multi-valued function representing possible input assignnlents are gen-
erated iteratively starting from a sum of products representation o(the pattern function
g, the cluster function I and its don't care function I DC. In the following description we
consider only input permutations for simplicity. The procedure has three steps.

First, the functions representing the off-set and on-set of f are.obtained: fOFF = f'. fbc
And IoN = I. Ibc and cast in sum 01 product form. The pattern functions are complemented,
and stored also in sum of product form. ""e consider matching \vith one cell represented by
9 and 9'.

Second, for each cube p of IoN and for each cube q of g', a multi-valued function
MvCube(p, q) is obtained. MvCube(p, q) expresses the constraint that the only accept-
able variable assignments are those that make the two cubes disjoint. Thjs is true if at least
one of the variables appearing in p with one polarity is associated \\,ith one of the variables
appearing in q with opposite polarity. The same procedure is repeated for each cube of fOFF
and each cube ofg. The intersection of all expressions M1JCube(p.q) "0 generated represents
implicitly the set of all possible input MsignmenL~ thai -,'i{~lcl a 111a.Lcll.

As a last step, feasible input assignments are extracted from the multi-valued represen-
tation, by solving a matching problem on a bipartite graph. For details, refer to [36].

Example 8 Assume that a cube in foN is P = Xlx2 and a cube in 9' is q = Y~Y2Y3. The
multi-valued junction extracted by p and q is MvCube(p,q) = xiI} + x~2.3}. The function
expresses the constraint that, in order for the two cubes to be disjoint, Xl can be associated
with YI, or X2 can be associated with either Y2 or Y3.

The computational complexity of the procedure is of the orde.r of the product of the
cardinalities of the sum of products under consideration. This is usually not a serious lim-
itation, because most functions (that may match usual cells) have a manageable sum of
product representation, and very effective tools exist for two-level logic minimization. [3].
Moreover, for most libraries, the sum of cubes represent.ations of the pattern functions are
usually very small and seldom larger than ten cubes. Another factor affecting the computa-
tional complexity is that the intersection 'of the functiolls M t,Ctthf::(p, q) i:; a product of SU1'~
form, \vhich may require an exponential number of product.s to be computed. In [36] the
authors propose a heuristic that orders the selection of cubes trying to keep the size of thf"
intersection as small as possible. Extensions of the algorithm to deal with NPA-"matching
with don't cares are straightforward and do not sensibly change t.he overall complexity.

6

Binding for field programmable gate arrays may leverage specific techniques; which depend
on the architecture of the programmable modules. Whereas binding of look-up table [34]
and array based [37] FPGAs does not require matching as defined in this paper, Boolean
matching is important for antifuse-based FPGAs [18, 19, 30]. An antifuse-based FPGA
consists of an array of programmable logic modules, each implementing a logic function that
can be personalized by shorting inputs either to a voltage rail or together, by programming
the anti-fuses. The uncommitted module is modeled by a combinational, single-output
module function.

The library of anti-fuse based FPGAs is represented by all l~gic [unctions that can be
implemented by personalizing the logic module. Note that such library i!\ closed by definition.
As far as library binding is concerned, two strategies can be uscad. I)erivillg th(' ("nt.in- library
and using the Boolean matching techniques described above. or rf'pres~nt.il)g thf' library
implicitly by the module function. The first approach i.c; used wh!'11 ~omf' pf'r.'\onaJizat.iolls.
are discarded, because of some electrical and physical design considerations. \\:e consider
the second approach in this section.

Example 9 Let us consider the FPGAs marketed by Aclellnc.. (See Figure I). In the Act!
series, the module implements the function: ml = (SO+sl)(s2a+s2b)+soS~(S3C:+83d), while
in the Act! and ActS series it implements the function: 77112 = (so + $()($:l~3a + (S1$3)'b) +
SOS~(S2S3C + (s2s3)'d). In both cases, the module is a fiLnction ofn = 8 inp1Lts.

-25-

(a) (b)

Figure 1: Actl and Act2 modul~

As an example of programming, by setting So = s} = 1. futlctiotl m, imple1nfnl.((the
multiplexer S2a + s~b. This is achieved by providing a path from inp1Lts So and s} to the
power rail through an anti-fuse.

There are about seven hundred functions that can be derived by programming tithet. mod-
ules.

For the sake of simplicity, we consider only personalizations by input stuck-ats. Then,
the module function can implement any cluster function that matches any of its cofactors.
ROBDD representations can be very useful in visualizing and solving this matching problem.
Indeed, given an order of the variables of the module function and a corresponding ROBDD
representation, its cofactors with respect to the first k variables in the order are represented
by subgraphs of the ROBDD. These subgraphs are rooted at those vertices reachable from
the root of the module ROBDD along k edges corresponding to the'variables with respect
to which the cofactors have been taken, or equivalently to those variables that are stuck-at
a fixed value by the personalization.

When considering P-equivalence, all variable orders or the modul!' runction and the cor-
responding ROBDDs must be considered to consider all possible personalization.<;. This can
be done by constructing a multi-rooted ROBDD, that encapsulates the librar)' corre~pond-
ing to the module function. Alternatively, this ROBDD can be repre~ellt(~d h)O a callonical
table. Moreover, by 'P N -equivalence can be efficiently detected by usillg tll~ callollical rorlll~
described in Section 3.20 Extensions to cope with personalization by bridging have also beell
proposed [15].

Example 10 Consider the module function m = sl(s2a + s~b) + S~(S3C + "3d) and cluster
function f = xy + x'z, shown in Figures I; (a) and (a) respectively. Figure ~ (b) shows the
ROBDD ofm for variable order: (sl,s2,a,b,c,s3,d) and Figure !J (c) shows thf ROBDD

.
b

:~
f

c

d

83

(8) (b) (c) Cd)

Figure 2: (a) Programmable module. (b) Module ROBDD. (c) Cluster ROBDD. (d) Repre-
sentation of the cluster function.

off for variable order: (x,y,z). Since the ROBDD oJJ is i."otnO17Jhir to th(.~llbg1YLph oj
the ROBDD of m rooted in the vertex labeled ~ (which ill tht right child oj .~I). tht m()d,ut
junction can implement f by stucking St at 1.

Note that other cluster functions, that can be imple1nented by the module Junction. tnay
have ROBDDs that are not isomorphic to any subgraph of the ROBDD oj Figut"f 2 (b). 1'his
is due to the fact that a specific variable order has been chosen to cOMtruct this ROBDD.

It is important to note that the method just described is appljcable to any FPGA ljbrary.
as long as the module function can be modeled by a single-output logjc fullction and the
personalization is performed by sticking-at or brjdging cell inputs. We consider next specific
methods targeted to the module functions used by some vendors. These methods are faster
because module-specific. .

Murgai et aI. [29] developed Boolean matching procedures specialized to the ActJ atld
Act£ module functions. The algorithms are complex, because both module functions are not
quite multiplexing trees. Thus the methods attempt to determjne first which inputs of the
cluster function should be tied to the multjplexers' selectors (corresponding to the OR gate
in Figure 1.) Then they attempt to bind the cluster inputs to the multiplexers' inputs. Two
different procedures for ActJ and Act~ modules are described in detail in [29].

Fortas et al. [16] addressed the problem of matching thp: QuickJ.ogic modtllp cell. which
can be modeled by a 20-input, 4-output modtlle ftlrl("tioll. '() I't~k(' 1,1.(, l>rohl("I" Inor('"
tractable, they considered two fragments of the cell. callpd M a.I.d .4 r('sl>f'C"t i"f'I.\' a.I.d shown
in Figure 3. They developed matching a.lgoritl'l1ls for slIrl. rraglllc'lll.s. .\.lalrl.il.g rraglllc'I.1

-27-

Az OZ

r ~

Hz Fz

~
b1 b2 c1 c2 d1 d2.1.2

(c)(b)(8)

Figure 3: (a) The QuickLogic programmable module. (b) Eragment M. (c) Fragment A.

A is easy, because it implements the conjunction of up to six variables, such that no more
than three have the same polarity. Thus this test is always performed first and, tf positive,
this solution is preferred. When matching fragment M, the cluster 'variable to bind to the
selector input So is chosen first. Then, a test is performed to see if both co-factors can be
implemented by gated multiplexers with the same control line. Details 'of tIll.'; procf'dlil"e are
reported in [16].

7

As presented in the previous sections, searching for a Boolean match involves some kind of
enumeration of the possible variable assignments. The efficacy of some methods is based
on clever techniques to reduce the number of alternative solutions ° that must be tested.
The most advanced approaches, namely, those based on canonical forms and multi-valued
functions, avoid explicit enumeration by transforming the matching problem into checking
the satisfiability of a Boolean formula.

In this section we propose a novel approach that is more general in applicability and
retains the desirable characteristic of solving the matching problem by a simple satisfiability
check. We remove the restriction on the equality of the cardinality of the support sets for
f and g. We consider a pattern function f(x) with n variables and a library (".cll functioll
g(y) with m inputs. We describe first how we model the variable a..c;~igllmelll flillcliolJ usillg
a circuit model. In practice, we use BDD-based symbolic manipulal.ion tec:llniqu(~.

On each input of the cell represented by 9 we connect tllP output or a. 11lUllil>lexcr wllose
inputs are the cluster inputs, i.e., the support of J (Figur(~ -I). 1'11<" (Oolll.rol illpUt.~ or t~a.<'11
multiplexer have the following function: the first. rlO92 nl vAriAbl~ colltrol whic-11 of I.tlp

~ I~~~ 8. I

8 ..1

8 I

. I

..

,..

Gg

Figure 4: Transformation of the pattern function g -+ G for matching with cluster Junction
f. The first two control variables of each multiplexer are for permutation control, the last
one is for polarity control.

I

The last control variable controls t.IIPexternal n inputs is multiplexed on the input of g.
polarity of the selected external input.

Example 3 In the case of Figure -+" consider multiplexer .1\1/. If ~.h.(. conll'Ol {!ariablf.C1 (~
and C1 are 00, the input Xl is connected with Y1. If the polarity CO'nllYJI t'a1-iable (; is I, lhc:
connection with Yt will be inverting, therefore ~ will be seen on Yt.

From our construction it is clear that the number of control variables needed is N c =
m(rlog2 n 1 + 1). The key observation is that the control variables c can be selected in such
a way th~t all ." N -equivalent functions of g can be generated. (The in versjon of the output.
can be obtained with one more control variable for the output polarity. We restrict. our
attention to ." Nfor the sake of simplicity). .

In general, the class of functions generated by assignments to c is actually larger than
all input permutations and polarity changes. It includes the cases wh.ere two or more of the
inputs of g are bridged and connected to the same cluster input with arbitrary polarity or
some of the cluster inputs is left unconnected. (Note that this is possible only \\'hen that input
is redundant because of don't care conditions). We call the set of functions that. a pattern

cell can implement via this multiplexing an extended- 'P N(E'P N) class. The generalization
to EN'P Nis straightforward.

From an algebraic viewpoint, the introduction of the multiplf"x~r.c; ha..~ t.ran.c;formf"d f"aC"h
pattern function g(y) into a new BooleaJ1 function G(c. x). Wc' dt'fillc' all E'P .1\ ~C'clllivalf'II(.c'
relation over"the set S of all the Boolean functions with 11. input.'!: E'P.t\f -C'<Jlli\"alC'll("c' part it.ion.'!
S into equivalence classes. The set of equivalence cla.s~cs defilled by all t~ui\'alt.'II("c' r(,latioll i...
ca.lled quotient set. Therefore we call G(c, x) quotient function bc~au~c:' it iml>licitly represcnl~
an equivalence class (i.e., an element of the quotient set.). 111c\('(.'d alll>o...~ihl(' a.,,~iglllll(~llt.~ or
the c variables individuate all possible functions of x that. belong t.o th(' salllC' class as thco
original library cell function g.

-29-

We introduce now a Boolean formula that has at least one satisfying assignment if and
only if there exists a function £'P N -equivalent to 9 that i~ equivalent to f." Intuitively, the
formula can be explained by observing that there is an E:'P N matching if and only if there
exists an assignment Co to the control variables c of G(c, x) such ~hat G(co, x) is equal to f(x)
for all possible values of x. In other words, the variable assignment represented implicitly
by A(x,y) can be cast in explicit form using G(c,x) and Equation (1) is equivalent to
9,A(X) = G(c,x). Therefore, Boolean matching is represented. by:

M(c) = "Vx [G(c,x)$f(x)] (6)

The application of the universal quantifier produc~ a funC'.tion of the control variables
c. We will call it matching function, M(c). Observe two import.ant. racts. Fir~t, the for-
mula above can be efficiently computed in a fully symbolic way, using HDJ)s. Second, our
procedure finds all possible matchings given f(x) and g(y), not just a particular one.

Example 4 Let the pattern function be g = x'y and the cluster function be f = wz. Figure
.5 models G(a,b,c,d,w,z) = (ce (za + wa')'(de (zb+ wb')), where a,c and b,d are the
control variables. We equate f to G:

reG (wz')e«c $ (za + wa'»)'(d e (zb + wb'»)

Then we take the consensus of the resulting expression with respecl to u' and z (the order
does not matter), to get M(a, b,c, d) = ab'c'd' + a'bcd. The two minterms oj M(a, b) describe
the two possible variable assignments. Minterm al/c'd' CoT1-espon.t.ls to assigniflg z to x and
w to y without any polarity change. Minte1'1n a'bcd COf'1-esponds to assigning::. to y and w to
x changing both polarities. The CO1'1'ectness and completeness oj the s()htlion .';(;/ 1"tp1"tscn/l:d
by M can be verified by inspection.

From an implementation standpoint, the matching algorithl11 operatt".s as rollow~. l;'ir~t
the quotient functions are computed from the ROBDDs of the pattern runctions. 'J'hanks to
the binary encoding on the contro] variables of the multiplexers, the si;'.f~ of c is O(m 1091 n).
This js an important property, because \ve \vant to keep the nulnber or variables in the
ROBDD representation of G as small as possible for efficien('y re.a.~OII-". Npxt. giv(~n t.h('
ROBDD of f, the ROBDD of G(c, x)'e)f(x) is constructed. The la.<;t st('P i-" tilt" c-oml>llt,ation
of the consensus over a.ll va.riables in x that yields M(c).

When the cluster function is completely specified, traditional matching procedures en-
hanced with filter appears to be more efficient than our algorithm, because the tautology
check is fast and the number of checks is reduced to one in most practical cases [32]. We
will show in the following sections that our approach is applicable to a more general class of
Boolean matching problems, where traditional techniques cannot be applied.

As a final remark, note that the application of the matching function for binding an ti-
fuse based FPGA libraries is straightforward. Only the programmable module function needs
to be represented, being the entire library modeled by the quotient functions. Indeed the
formulation already takes bridging into account. Stuck-at constant values can be modeled
by adding two additional inputs to the multiplexers, each. one corresponding to a Boolean
constant value.

7.1 Mat~hing incompletely specified functions
Boolean matching with don't care conditions can be represented as a ~tra.ightror\\'ard ~xt~ll-
sion of formula (6). Given a" cluster function f(x) with don ~l ca1't's reJ>rt~ellt<.'(1 by f D'.(X),
there exists a match if there is a satisfying assignment to the followillg rormula.:

M(c) = Vx [G(c,x)el(x) + loc(x)] , (7)

The result of the consensus is again the matching function M(c) representing all possible
assignments of the control variables that satisfy the matching condition. Observing the
formula, two points are of interest. First, when loc = 0, Equation (7) degenerates to
Equation (6). Second, finding a match with or without don't care conditions has the same
complexity, the only difference being that a different formula must be universally quantified
(the number of Boolean variables is unchanged).

Another interesting point is that our procedure can be applied to pattern functions and
library cell functions with different number of inputs. We can find a match even when the
minimum cost library elem.ent 9 compatible with I has fewer or more inputs than J.

8

In the previous sections we have discussed the a.ppliration of O\lr a.pproa.c-.h to matrhing
problems for single-output functions, where exact solutioll~ havf" I'>(~~II J.>roJ.>os<~d. \\;.e IIOW
consider matching of multi-output functions, a problem for whirh no f"xa-('t .-.olnt.ion ha.c; hf"C"n
proposed so far. We present a formula for det.ectillg exac,tl-,o \\'hf~11 Uoolea.11 111a.t.(Ollillg of
multi-output functions is possible.

Consider the scenario sho\vn in Figure 6. We have a logic Ilc~t.\\'ork wllc.'r(' \Vc' iut'lltif). a-
set of logic blocks ql, q2, ..., q, (represented by multi-output Boolean functioll q). (.:onsicler
the set of logic blocks that are predecessors of q, \vhich \ve call 11,1"2. 1 k (representf";d
by a multi-output Boolean function f). We focus on the library binding problem for the
components f. In the traditional single-output approach, we would bind the components of

Figure 6: The general multi-output matching problem. The unbound pattern functions of f
are enclosed by the dashed line.

r one by one (possibly considering don't cares condjtjons). Usillg generalized ma.tchillg it is
possjble to perform concurrent binding of two or more cluster runctions.

We will show that concurrent bindjng requjres to find a group or single-olltput library
cells (or a single multi-output cell) that satisfy a Boolean con~traiJ1t expr~sed ~ a Hoole-all
relatjon. This flavor of generalized matching wjll therefore be called BR-matching. Roughly
speaking, BR-matching is more powerful than matching wjth don.'t 'care.~ . as in the case of
the corresponding technology independent optimizations.

In general, the components of f that will be concurrently mapped are call"ed unbound. The
remajnjng components of f are considered as bound and will be preserved. The two ljrnitjng
cases of this situation are when only one component js consjdered unbound and when all
components are considered unbound. The first ljrniting case has already been addressed in
the previous section. We will discuss here the second limiting case (f is fully-unbound), from
which all the intermediate situations can be easily derived. In order to keep the formalism as
simple as possible, we will analyze the case of a fully-unbound, two-output cluster functjon
r, as shown in Figure 7. The extension to the general multi-output case is straightforward.
Moreover, we will assume that the composite function h(x) = q(f(x» is completely specified
and single-output (this hypothesis will be relaxed later).

Whenever h = 1, we know that the function q must. be q = J M \vell (tlleir outputs
coincide). The opposite holds \vhen h = O. We can translate thi.-; simplf" observation in a
Boolean constraint:

q(f)~h(x) 1 (8)

that must hold for each value of x, Notjce that the support of q i!) Ilot. X. but tile vector f
(in our case consistjng of /1 and /2)' We want to test jf two library fullction~ .91 alld g'l (or a
two-output library element) can implement block f, without changillg lile exterllal behavior
of h. We will use the quotient functions G)(Cl'X) and G2(C2,X) t.hat implirit.I)' r(~pr(~!)(~llt
the £'P At classes. The constraint (8) enforced on all input vectors becomes:

Figure 7: A typical e:eample of situation where BR-matching is applicable.

(9)M(Cl,C2) = V'X[q(G1(Cl,X),G2(C2,X))iIih(x)]
I

We clarify the meaning of this Boolean formula through an example.

Example 5 Consider a block f with three inputs (Xl, X2, X3) and two outputs fl and f2
that are connected to the inputs of an AND gate. We have q = ftf2.. Assume that the global
Junction is h = XIX~ + X3. The Boolean constraint enforced by thiS structu1'e is:

hf2)(%1%~ + %3) + (f~ + f~)(%~%; + %2%;) 1

which is the characteristic equation of the following Boolean relation:

hh%1%2%3--

{IO,Ol
{II

{IO,Ol
{II
{11
{It

{lO,Ol
{II

We consider £'Pmatching for the sake of simplicity. Our candidalc lib1Ylry ('(II filll.rliolls
for BR-matching of block f are gl(Yl, Y2) = (Y~Y2)' for fl and g;2(Yl, Y2) = (Y1Y~)' for f2- ~¥e
-need Nc = 2 * 4 control variables for 'Pmatching (two control variables for each input of tilt
library cells)- The quotient functions are: G1 = ((~~Xl + ~C2X2 + Cl~:f3)'(~~.rl + ~('~.r2 +
C3~X3)')' and G2 = ((cIs~Xl + clsC6X2 + C5~X3)(c';daXl + c';CSX2 + CidaX3)')'

We replace in the expression of the Boolean constraint all the occurrences of ./1. 12 with G 1
and G2 and we compute the consensus with respect to :fl. X'l and X3- The restuting matching

,OO}

}

,OO}

}

}

}

,OO}

}

~33-

function M is M(Ct, C2, ..., cs) = ~ ~C3c.c'sC6C7c's + Cl~~~!:'sC6C7c's (representing all allowed

input assignments). There are two minterms because of the symmetry of th~ library element
9..

Notice that formula (9) reduces to formula (6) if the block f has Ol)t' output. The nun)ber
of control variables needed is Nc = mt(rl092 (n)l + 1) + m2(rl092(n)1 + 1) where Tnl and m2
Are respectively the number of inputs of the library cells 91 ~nd 92. aJlci 1/. is tht, IIUlllbf'r orinputs. .

The general fully-unbound multi-output case (when the block f has k outputs) is the
same as the two-output case above described. From a practical standpoint. however, the
complexity of BR-matching increases very rapidly with the number of outputs ~f block f.
First, the number of control variables is O(k m 1092 n). Second, the. number of possible groups
of library cells to be tried is O(ILIIr.) (where ILl is the number of cells in the library).

Let us now consider the general case in which only some of the cluster functions of block
f are unbound. For each unbound component, the quotient function G of a candidate library
cell will be inserted in Equation (9), while the bound cluster functions \vill be left untouched.
The advantage of this approach is that it can be applied. to situations where the number
of control variables needed for fully-unbound BR-matching is too high, or the number of
possible groups of library cells is excessive.

Moreover, many libraries include muJti-output ceJls (like full adders and dec.oders). We
can restrict the use of BR-matching to the muJti-output cel)~ prede(illoo ill our library. 11)
this case, if a matching input va.J.iable assignment exists. it must. be thE~ ~a.I))(~ for aJI output
functions, thus the dependence from k of the number of control.yaria.»I~.-; di~t'..I>pear~. 'J'hp
quotient function for a multi-output cell does not have more control varit'..bles than th~
quotient function of a single-output cell with the same number or inputs.

Example 6 We will consider £'P-matching for the sake ofsimplicily. .~ssumt lhal U'l:' ha1}(:,
a simple library containing -+' cells: two-input XOR (Cost = 2), t1lJo-input AND ((.'u~l = 1),
inverter NOT (Cost = 1), two-input AND! (logic funclion iltlin~, Cu~l = 3). An implil:il
cell is the "WIRE" (cost zero). We want to optimize the mapped network of Figure 8.
Notice that the mapping cannot be improved with Boolean methods using don't carts because
the external don't care set is empty and the J\'OR on the output does not introduce any ODC
on its fan-ins.

We apply BR-matching to the multi-output cluster function consisting of the first XOR
and the AND (enclosed in the dashed box f). The Boolean condition for BR-matching is:

V'Zl,z2,za(h(G1G; + G~G2) + h'(G1G2 + G;G;)

4) must beOnly the cell groups that give a lower cost than the current one (Cost
considered. The candidate cell groups are listed in the following table.

5

The number of control variables needed is 4 * 2 = 8 in the' worst case (two two-input cells
and three primary inputs), but we will need only 3 * 2 = 6 for our restricted candidate set of

groups.
Applying BR-matching, we find that WIRE-ANDJ is a correct replacement. The quotient

junctions are G1 = ~~Xl + ~C2X2 + Cl~X3 (for WIRE) and Gi = (~~Xl + ~C4X2 +
C3c.X3) (c'sdeXl + c'sCeX2 + CsdeX3)' (for AND!). The matching Junction i.q M = r.1~~c..c's~.
The final solution is shown. in Figure 8. The optimized network has a lower cost and is fan-
out free. Notice that this replacement could not have been found with traditional methods,
unless resorting to technology-independent optimizations.

From the example above we can dra\v some general observations. First, generalized
matching is well suited for re-mapping or local optimization. Heuristics must be developed
that direct the re-mapping effort on regions of a large network where improvements are
required. Second, the efficiency of our procedure will improve if met.hods that. avoid the
generation of useless library cell groups are developed. "

Finally, we can further generalize BR-matching to tile ca.'>e wllf":11 t.h(' blo(-:k h it~lf is
incompletely specified or described b)' a Boolean relat.ion [I].. .-AII fla\"or... or g('II('raliz(-d
matching can be expressed as a satisfiability problem OIl a suitably cxt.('llu('(1 :\f)ac('.

9 Conclusions
In this work we have reviewed several techniques for Boolean matching to be used by library
binding tools. Although traditional techniques based on iterative tautology check enhanced
with filters are effective for matching completely specified functions, more advanced ap-
proaches have been described that efficiently deal with incompletely specified functions. A
paradigm shift is ta.kjng place: all new techniques solve Boolean matching by transforming
it into a satisfiabiljty problem in a different Boolean space.

-35-

In the same direction, we described the novel concept of generalized matching, that en-
ables concurrent matching of multi-output functions and exploits all local degrees of freedom
available for the choice of library cells. Generaljzed matching is more powerful than Boolean
mAtching with don't cares and can be extended to FPGA matching jn a straightforward way.
We believe that generalized matching js practically appealing as an aggressive optimization
It.ep after traditiona.1library binding.

This research is supported by NSF under contract number MIP-9421129

References

(IJ L. Benini, M. Favalli and G. De Micheli, "Generalized ,matching, a new approach to
concurrent logic optimization and library binding," in Inte1'national Workshop on Logic
Synthesis, May 1995.

12] R. Bryant, "Graph-Based Algorjthms for Boolean Functjon Manipulation", IEEE
Transactions on Computers, Vol. C-35, No.8, August 1986, pp: 677-691.

13) R. Brayton, G. Hachtel, C. McMullen and A. Sangiovanni- Vincentelli, Logic Minimi::a-
tion Algorithms for VLSI Synthesis, Kluwer. 1984.

14) J. R. Burch and D. E. Long, "Efficient Boolean functiol) Illatchillg." in I(~(.'A D. Pro-
ceedings of the International Conference 011 Comp'uter-A ided Design, pp. 408-411, Nov.
1992.

16) K. Brace, R. Rudell and R. Bryant, "Efficient implementation of a BOD package," in
DAC, Proceedings oj the Design Automation Confcrenc(, pp. 40 .4.~, JulIe 1993.

(6] F. Brown. Boolean reasoning. Kluwer Academic Publishers. 1990.

(7J K.-C. Chen, "Boolean matching based on Booleall unificatioll.~ in ICCA Df Plvcetdings
of the International Conference on Computer-AidEd DEsign, pp. :346-351. No\', 1993.

18] D. I. Cheng and M. Ma.rek-Sado\vska, "Verifying equivalence of functions with unknown
input correspondence," in EDA C, Proceedings of the Eu1'opean Design A ulomation Con-
ference, pp. 81-85, March 1993.

E. M. Clarke, K. L. McMillan et aI., "Spectral transforms for Large Boolean Functions
with application to technology mapping," in DAC, Proceedings oj the Design Aut07na-
lion Conference, pp. 54-60, June 199:3.

