A survey of Boolean matching techniques
for library binding

Luca Benini and Giovanni De Micheli
Stanford University

Abstract

When binding a logic network to a set of cells, a fundamental problem to be solved is recogniz-
ing whether a cell can implement a portion of the network. Boolean matching means solving
this task using a formalism based on Boolean algebra. In its simplest form, Boolean match-
ing can be posed as a tautology check. We review several approaches lo Boolean maliching
as well as to its generalization to cases involving don’t care conditions and its restriction lo
specific libraries such as those typical of anti-fuse based FPGAs. We present then a general
formulation of Boolean matching supporting multiple-outpul logic cells.

1 Introduction

Cell-library binding (also called technology mapping) is the task of transforming a multiple-
level logic representation into an interconnection of components that are instances of cells
of a given library. By means of library binding. logic designs can be targeted to different
technologies and implementation styles, such as standard cells and gate arrays. including
field-programmable gate arrays (FPGAs). .

Cell libraries contain the set of logic primitives that are available in the desired design
style. Hence the binding process must exploit the features of such a library, in the search for
the best possible implementation, which optimizes performance, power consumption, area,
et cetera. Since different objectives may be of interest, binding is often formulated as a
constrained optimization problem, which is computationally intractable [12, 17).

Practical approaches to library binding can be classified into two major groups: heuristic
algorithms [13, 23] and rule-based approaches [11, 20]. In both cases, two subproblems must
be solved: matching and selection. Matching means bein g able to recognize whether a portion
of a multiple-level logic circuit can be implemented by a given cell. Selection means choosing
appropriate cells that optimize the figure of merit of interest.

We consider here the matching problem only. Heuristic algorithins for network covering
based on tree, graph and Boolean matching as well as rule-based systems have been described
elsewhere [12]. In addition, we restrict our attention to libraries of combinational gates.

because register binding is often handled by special methods, e.g., [24]. At first, we consider
single-output logic cells, but we shall remove this assumption later.

Early approaches to library binding used graph-based representations of library cells ex-
pressing multi-level decompositions into simple Boolean functions, such as two-input NANDs.
Matching was implemented as a (sub-) graph isomorphism problem, which can be solved very
efficiently when the decomposition graph is a tree. Unfortunately, these approaches suffer
from several drawbacks, the most important of which is that these representation are not
canonical and thus potential matches may not be detected. Pattern matching approaches to
bmdlng have similar drawbacks, when the clusters are multxple—level sum- ofoproduct expres-
sions.

Later approaches to library binding used Boolean matching techniques, which are so
called because they are based upon (canonical) Boolean representations of the logic functions.
The kernel of Boolean matching techniques is solving a tautology problem, which is co-NP
complete. Nevertheless, since in our case the cardinality of the support set of the Boolean
functions is small (i.e., most cells have at most 5 or 6 inputs) tautology is solved with little
computational burden. In addition, binary-decision diagrams (BDDs) can support extremely
efficient tautology checks.

It is the purpose of this paper to review and contrast different methods for Boolean
matching for generic and specific libraries. We present also a new approach to Boolean
matching that can handle multiple-output logic cells. :

2 Background

We assume that the reader is familiar with the basic concepts of Boolean algebra (see [6, 12)
for a review) and BDDs [2]. We concentrate here on some specific concepts needed for
the understanding of the following material. We denote vectors and matrices in bold, i.e..
X = [z1,Z2,...,Za)7. A vector whose entries are 1 is denoted by 1. We use the symbol
V: and 3; to designate respectively the consensus and the smoothing operators. Remember
that the consensus operation corresponds to universal quantification 'and it is computed as
Vef = fz- f,, while smoothing corresponds to existential quantification and it is computed as
3. f = f:+ f.. Consensus (smoothing) with respect to an array of variables can be computed
by repeated application of single-variable consensus (smoothing).

2.1 Don’t care conditions

The input controllability don’t care set (CDC) for a Boolean function f(x) (with support
variables x) includes all input conditions that are never produced by the environment. We
can define a CDC function fcpc : X — {0,1} whose ON-set is the CDC-set of f.

The output observability don’t care set (ODC) for f denote all input patterns that rep-
resents situations when f is not observed by the environment. We define an O/’ function
fopc : X — {0,1} whose ON-set is the ODC-set of f. The D(’ function fp¢ = fove+ fepe

-13-

can be used to express all degrees of freedom available for the implementation fofa single
output function, namely:

f-foc <F<f+foc

Boolean relations

When considering the minimization of multi-output Boolean functions, the degrees of free-
dom provided by the environment can be expressed by a Boolecan relation [33). Intu-
itively, Boolean relations are generalizations of Boolean functions, where each input pattern
may correspond to more than one output pattern. If we call X the input space and Y
the output space, a Boolean relation R can be represented by its characteristic equation:
X : X xY — {1,0} such that X(x,y) =1 if and only if Y is one of the possible outputs of
R for the input x. We clarify these definitions with an example. .)

Example 1 Consider the Boolean relation represented by the following table:

nying | outjout,
00 {00,11}
01 {00,11}
10 {10}
11 {10}

Its characteristic equation is: X injout!out, + inout ouly + inyoul oul’, = |
10Ut ouly joutoul, wouljoul;,

Libraries

We shall consider in the sequel Boolean functions that model a portion (or cluster) of the
circuit, and that are called cluster functions. We denote by [a gencric cluster function.
We call pattern function a combinational function modeling a library cell, and we use ¢
to represent a generic pattern function. We assume for now that. both cluster and pattern
functions are scalar (i.e., have a single output.) This restriction is removed in Section 7.

We denote the library (i.e., the set of pattern functions) by L. We say that an input to
a library cell is stuck-at 0, if it is connected to ground. This is modeled by replacing by 0
the corresponding variable in the pattern function. We define the stuck-at 1 condition in a
similar way, mutatis mutandis. We say that two (or more) cell inputs are bridged together,
when they are connected to the same input line. Finally, we say that a library is closed under
stuck-at and bridging (or closed in brief), if for any stuck-at and/or bridging condition. the
corresponding pattern function is equivalent to either the pattern function of another cell in
L or to a Boolean constant value (i.e., TRUE or FA LSE). Most cell libraries are closed.

Example 2 A library comprising an inverter, as well as a {-input, a S-input and a £-input
NAND cell is closed under stuck-at and bridging conditions. Indeed by shorting two or more
cell inputs, or by sticking one (or more) cell inputs to ground or lo the power supply line.
we have a cell behavior equivalent to another cell in the library or to a constant value. If we
remove the 3-input NAND gate from the library, then the library is no longer closed.

3 Boolean matching

Let us consider a cluster function f(x), with n input variables which are entries of vector x.
Let us consider also a pattern function g(y), where the variables in y are the m cell inputs.
For the sake of simplicity, we assume that n = m. We will remove this assumption in Section
7. Note that when the cell has more inputs than the cardinality of the support of the cluster
function, i.e., m > n, then a match requires bridging or sticking-at a constant value some
inputs. When considering closed libraries (and most libraries are closed), there exist always
a more convenient match, i.e., a simpler cell performing this function. Conversely, when the
cell has fewer inputs than n, a match is possible only if some variable in x is redundant. This
can be detected while matching the cluster function and considering don’t care conditions.

Matching involves comparing two functions and finding an assignment of the cluster
variables to the patterns variables. For the sake of explanation, we separate the two issues
and we describe first matching two functions defined over the same set of variables. The
complete Boolean matching problem will be defined in Section 3.3.

3.1 Input permutation

Consider two functions, f and g, defined over the same variable sel x. T'he two functions are
equivalent if f(x) @ g(x) is a tautology. If the functions are expressed by reduced ordered
binary decision diagrams (ROBDDs), such a test can be done in constant time [5]. °

In general, we are interested in exploring the possible permutations of input variables
that yield equivalent behavior. Thus we say that f and g are P-equivalent if there exists a
permutation operator P such that f(x)®g(P x) is a tautology.

The most simplistic approach to detect a match is to perform n! tautology checks. (Note
that n = m is usually small and that cells with more than 6 inputs are rare). Mailhot [26] was
the first to propose a method for Boolean matching. He detected tautology by comparing
ordered BDDs, and he renounced the canonicity of ROBDDs to save the computing time
of reducing the OBDDs of the cluster functions. (Historically, his method preceded the
development of efficient ROBDD manipulation tools [5].) To expedite P-equivalence checks,
he used filters to prune unnecessary tautology checks (See Section 4.2.) The method can
be perfected by using ROBDDs. If each library element is associated with a multi-rooted
ROBDD representing all variable permutations, then P-equivalency is again a tautology
check, that can be performed in constant time [5l.

-15-

3.2 Input and output polarity assignment

It is often the case that the polarity (also called phase) of the inputs and outputs of a
combinational network can be altered, because 1/Os originate and terminate on registers or
1/O pads yielding signals and their complements. Thus it is useful to search for matches
with arbitrary polarity assignments, when these reduce the cost of the objective function of
interest.

The polarity assignment problem can be explained with the help of a formalism used to
classify Boolean functions. Consider all scalar Boolean functions over the same support set
of n variables. Two functions f and g belong to the same: NP N class, and .are said N'PN-
equivalent if there is a permutation operator P and complementation operators NV;, N, such
that f(x) = Mg(P M x) is a tautology [21]. The complementation operators specify the
possible negation of some of their arguments. Similarly, two functions f and g are said to be
N-equivalent (or polarity-related or phase-related) if there exist a complementation operator
N; such that f(x) = g(MN; x) is a tautology. PN -equivalence is defined in a similar way.

Boolean matching is often defined in terms of N, or PN, or N'PN-equivalence. In
principle, N, PN, and N'PN -equivalence can be reduced to 2%, 2"n! and 2**n! tautology
checks. In practice, filters can be used to reduce drastically the number of tries, and early
approaches to Boolean matching were relying heavily on filtering [26]. Moreover,-canonical
forms can be used to check for equivalence in constant time.

Variable assignment and Boolean matching

We distinguish now between the cluster variables x and the pattern variables y. A matching
requires an assignment of cluster to pattern variables, representing the connections between
the cluster and the cell. We denote a generic assignment by the characteristic equation
A(x,y) =1 of a variable mapping function that maps the variables x into y.

Example 1 Consider an assignment which maps each entry in x into the corresponding
entry of y. Then the characteristic equation is x @ y = 1. Equivalently we can express
A(x,y) in scalar form as: [T (z: ® i) = 1.

With input permutation, the characleristic equation can be ezpressed as: A(x,y) =
y & Px = 1, where P is a permutation matriz.

With input permutation and complementation, then y @ PN @& x = 1, where N is a
diagonal Boolean matriz.

The pattern function g under the variable assignment represented by A is [31]:
ga(x) = Iy A(x,y)g(y) 1

Example 2 Consider a two-dimensional inpul space. where: X = [oy.0))T andy = [y,.y2)7.
The N'PNtransformation that maps x, lo y}, and ry lo y, has the following characleristic
equation A(z1, T2, Y1, ¥2) = (T1@Y2)(x2 B Y1) = 2172y yp+ 11 P Y+ ray e+ Xy e =

Consider pattern function g = y,y, with the previous assignment. The pattern function
under the variable assignment is 3,, ,, Ag = 3, ., (21 ® ¥2)(228%)01y2 = 227}

As a result, a condition for matching is that f(x) & ga(x)is a tautology, or equivalently:
f(x) & 3y A(x,y)g(y) = 1 for any value of x. Therefore there is a Boolean matching if and
only if the following formula evaluates to true.

Vx(f(x) © 3, (A(x,¥)g(y))) (2)

4 Boolean matching algorithms

As outlined in the previous section, finding the correct input permutation and polarity
assignment that matches a cluster function with a pattern function may require a large
number of tautology tests. Numerous approaches have been proposed to eliminate or reduce
the need for iterative tautology check. ;

4.1 Canonical forms

Burch and Long introduced a canonical form for representing functions modulo input-polarity
assignments [4]. This allows us to check for M -equivalence in constant time. The method
can be easily extended to cope with PA -equivalence (and N'PA -equivalence).

The canonical form for A/-equivalence relies on a ROBDD representation and can be seen
as an operator (i.e., a Boolean function) whose argument is a Boolean function. Burch and
Long named it Cyrand defined it as follows. For all scalar Boolean functions f and g, then f
is N-equivalent to Cx(f). Moreover, if f is M-equivalent to g, then Cn(f) = Cx(9g).

Given a function f, its canonical form Cx(f) can be constructed in polynomial time by
performing a recursive expansion about its support variables. The structure of the algorithm
for forming Cyis similar to the ITE algorithm [5, 12]. A description is reported in [4].

Let us consider now matching using the Cyroperator. The Boolean functions representing
a library L can be put in the canonical form Cyras a preprocessing step. done once for all for
each library. These canonical forms can be stored in a hash table. For each cluster function J
of interest, its canonical form Cx(f) must then be computed and checked against the library
hash table. This check can be done in constant time.

Unfortunately, no polynomial-time reduction to permutation-canonical forim has been
proposed so far. In [4] Long and Burch proposed semi-canonical forms, that can be computed
efficiently but are not unique. For each pattern cell in the library, the (small) set of all its
semi-canonical forms is generated and stored once for all in a hash table. The cluster function
is matched first constructing one of its semi-canonical forms, then checking for its presence
in the library’s hash table.

Extensions to cope with PN -equivalence are straightforward, by having the library hash
table store the permutation semi-canonical forms in polarity canonical form. F inally, check-

-1+

-ing for N'PN -equivalence is usually done by checking also for PA -equivalence of the com-
plement of f.

4.2 Boolean signatures

A signature of a Boolean function is a compact representation that characterizes some of the
properties of the function itself. Each Boolean function has a unique signature. On the other
hand, a signature may be related to two or more functlons This problem, called aliasing,
dlstmgmshes signatures from canonical forms. -

A necessary condition for a Boolean match is that the cdrresponding signatures are equal.
When signatures are compact, comparing them is an efficient method to determine when two
functions do not match, and therefore to reduce the search space for a match. Because of
aliasing errors, signatures do not represent sufficient conditions to infer matching. Thus,
they are inherently less powerful than canonical forms. Signatures have been used before
the introduction of canonical forms, and subsequently in the cases where canonical forms are
expensive to compute or their size is too large [27].

Signatures can be based on some properties of the representation of a Boolean function,
such as symmetries, unateness, size of co-factors, etc. Some signatures are based on Boolean
spectra and they are reviewed in Section 4.3.

Mailhot [26] used signatures to reduce the number of tautology checks needed to de-
termine both P-equivalence and N"PN -equivalence. The signatures that he introduced are
based on the following facts:

¢ Any input permutation must associate a unate (binate) variable in the cluster function
with a unate (binate) variable in the pattern function.

e Variables or groups of variables that are interchangeable in the cluster function must
be interchangeable in the pattern function.

The first condition implies that the cluster and pattern functions must have the same
number of unate and binate variables to have a match. Thus integer b is a signature of the
function. Moreover, with b binate variables, al most 8! - (1 — b)! variable permutations need
to be considered in the search for a match in the worst. case.

Example 3 Consider the following pattern function from a commercial library: ¢ = s;s,a+
51550 + sysac + sisid with n = 7 variables. Function g has { unate variables and 3 binate
variables.

Consider a cluster function f with n = T variables. First, a necessary condition for f
to match g is to have also 4 unate variables and 8 binate variables. If this is the case. only
3! 4! = 144 variable orders and corresponding OBDDs need to be considered in the worst
case. (A match can be detected before all 144 variable orders are considered). This number
must be compared to the overall number of permutations; 7! = 5040, which is much larger.

The second condition allows us to exploit symmetry properties to simplify the search
for a match [26, 28]. Consider the support set of a function f(x). A symmetry set is a set
of variables that are pairwise interchangeable without affecting the logic functionality. A
symmetry class is an ensemble of symmetry sets with the same cardinality. We denote a
symmetry class by C; when its elements have cardinality ¢, = 1,2,...,n. Obviously classes
can be void. The symmetry classes of the pattern functions can be computed beforehand,
and they provide a signature for the patterns themselves. Indeed a necessary condition for
matching is to have symmetry classes of the same cardinality for each t = 1,2,...,n.

Example 4 Consider the function f = 212323+ 2475+ zez7. The support variables of f(x)
can be partitioned into three symmetry sets: {zz223}, {2425}, {z62z7}. There are lwo non-
void symmetry classes, namely: C; = {{z4,2s}, {:z:s, z7}} and C3 = {{z1,22,23}}. Thus a
signature is [0,2,1,0,0,0,0].

Consider now library cells g1 = y1 + y2ys + yays + yeyr and g2 = (y; + yo)(ys + ya)(ys +
ye + y1). The signatures of the cells are respectively [1,3,0,0,0,0,0] and [0,2,1,0,0,0,0].
The signatures of f and g are equal and indeed g, is N'PN -equivalenl to [. Notice however
that in general signature matching is only a necessary condition for Boolean malching.

Other signatures can be obtained by considering the satisfy count of a function, which
is the number of its minterms. The satisfy count for f is denoted by |f|. The satisfy count
can be computed quickly when using ROBDD representations [2]: The satisfy count is an
invariant for input permutation and complementation. Thus, it can be used as a signature
for determining P-equivalence and PN -equivalence. Note that output complementation
changes the satisfy count of a n-input function f from |f| to 2" — |f].

Mohnke and Malik [27] suggested to consider the satisfy counts of the cofactors of a
function with respect to its variables for determining P-equivalence and PA -equivalence. Let
us consider P-equivalence first. The signature is a vector whose entries are the satisfy counts
of the co-factors with respect to the uncomplemented variables. Again, such counts can be
computed quickly when using ROBDD representations [2]. Then, a necessary condition for
P-equivalence for two functions f and g is that each element of the signature for f has
one corresponding and equal element in the signature for g. This can be easily tested by
sorting the entries and comparing the sorted signatures. Aliasing occurs when the satisfying
count for two or more co-factors are the same. Mohnke and Malik [27] considered breakup
signatures in these cases, that are based on the distance of minterms [romn an arbitrary point
of the Boolean space. Details are reported in [27).

When considering the A -equivalence problems, the satisfy counts of the co-factors of
f with respect to both complemented and uncomplemented variables must be considered.
These integer pairs can be arranged in a matrix (with as many rows as the input variables)
representing the signature. A necessary condition for A -equivalence of two functions f and
g is that each row of the signature for f has the same elements (possibly permuted) as the
corresponding row for g. Aliasing occurs when a row has identical elements. To overcome
this problem, other signature can be considered that are based on satisfly counts of cofac-
tors with respect to two variables. They are called component signatures [27]. Eventually,

-19-

when considering the PN -equivalence problems, cofactor signatures can still be used in a
straightforward way, but the use of breakup and component signatures is limited.

Similar approaches have been independently proposed by Lai et al. [25], and by Cheng
and Marek-Sadowska [8]. In [25] the authors introduced a general method for evaluating the
quality of signatures, called effect/cost ratio. The effect of a signature is the reciprocal of
its aliasing probability, while the cost depends on the algorithm used for its computation.
(For ROBDD-based algorithms, the cost is usually a low-order polynomial function in the
number of nodes). Clearly, signatures with high effect/cost ratio should be used. Since exact
computation of the effect of a signature is sometimes difficult, it can be approxxmated by
the number of different values that the signature may take.

Finally, Tsai and Marek-Sadowska [35] have recently proposed a new set of signatures,
which have been proved to be effective when checking for PA -equivalence. Such signatures
are based on the generalized Reed-Muller form (GRM form) of Boolean functions. GRM
forms are useful because they can reveal complex symmetries of input variables and are
efficiently constructed with procedures similar to those used for BDDs.

4.3 Spectral methods

There are several spectral representation of Boolean functions [21]. We consider here the
Hadamard transform, because it can be efficiently implemented. Consider a n-input Boolean
function f. Let z be a Boolean vector of length 2" whose i‘h entry is f(bool(i)), i =
1,2,...,2", being bool() a function returning the binary encoding of an integer. One can
view z as the truth table of f. We then recode the Boolean constants so that they take
values {1,—1}. Namely we definey =1-2.2.

The spectrum s of a function f is a vector with 2" elements, calculated as: s = T .y,
where the Hadamard matrix T* of size k is defined recursively as follows:

T° 1
Tk

Tk-l Tk—l
Tk-1V _Tk=1 }

Since T™ is symmetric and has orthogonal columns, its inverse is 1/27-T". Thus a function
can be recovered from its spectrum by computing: y =1/2"-T".sand z=1/2-(1 - y).

Each entry in the spectrum gives some global information about the Boolean function.
For example, the first entry is so = 2" — 2| f] and is called 0**-order coefficient. The following
n entries are named first order coefficients and show the correlation of f with its input
variables. The remaining coefficients show the correlation of f with the ezclusive or of
some input variables. In particular, jt*-order coefficients show the correlation of f with the
exclusive or of j input variables.

Example 5§ Consider f($1,32,$3) = 21T + 23 (n = 3). Its Hadamard spectrum is:
(50, 51, 82, 512, §3, 813, S23, $123)7 = [=2,2,2, =6, —2, =2, =2, 0)7. The 0** order coefficient is

sSo=22~-2x5= —2. (In this case |f| = 5). The first order coefficient s, is s, =5-3 =2.
Notice that s; is equal to the number of agreements between f and xy minus the number of
disagreements. The second-order coefficient s); is s;2 = 3 — 5 = -2, i.e. the number of
agreements between f and z, @ 2 minus the number of disagreements.

A spectrum uniquely identifies a function. Some operators applied to Boolean functions
have specific local effects on the elements of its spectrum vector. In particular, comple-
menting a function corresponds to changing sign to its spectrum. Input complementation
correspond to changing the sign of the spectral coefficients related to the complemented
variables and input permutation corresponds to permuting spectral entries of the same or-
der. Moreover, substituting the input and/or output of a function with a linear combination
(i.e., exclusive or) with other inputs corresponds to swapping spectral elements of different
orders. By using these transformations we can group Boolean functions into disjoint trans-
lationally equivalent classes [14], that are classes closed under these transformations, called
here X N'PNbecause extension of the A"PA concept.

Whereas the X PN concept is important for classification of Boolean functions, it is less
relevant for matching. Indeed, replacing a cluster with a X NPAN -equivalent cell may require
the use of additional EXOR cells, thus increasing the cost of a match. If we restrict ourselves
to N PN classes, it can be shown that a APAcanonical form can be obtained applying a
sequence of transformations such that the first n 4+ 1 coefficient are made positive and the
coefficients from 1 to n+1 are in increasing order. Unfortunately, a matching algorithm based
on this canonical transformation has one main drawback: since the Hadamard transform has
2" coefficients, its computational cost is exponential in the number of inputs.

Boolean spectra can be of practical use to matching in two ways. First, they can be
used for matching by noticing that two functions are N PN -equivalent if the corresponding
spectra are equal modulo complementation and permutation of the coefficients within the
same order. Yang [38] proposed a Boolean matching algorithm where permutations and
complementations of the elements of a spectrum are attempted, to make it equal to another
one. If and only if this process is successful, then the corresponding functions are NPN-
equivalent. While the algorithm is generally efficient in early ruling out unfeasible matching,
its worst-case performance is exponential.

Second, Boolean spectra can be used as signatures. (Fragments of spectra can also be
used: for example the 0**-order coefficient is equivalent to the satisfy count). When consid-
ering P, PN, or N'PN -equivalent matching, aliasing may arise because a cluster function f
may match the spectrum of a pattern function g. being [and g just YN PANequivalent but
not N'PNequivalent. Nevertheless mismatches in Booelan spectra (or in portions thercofl)
may be used to rule out equivalence of the corresponding Boolean functions. ('larke ct al. [9]
proposed BDD-based methods for the computation of the spectrum. The main advantage
of this approach lies in the high average efficiency of BDD-based manipulation. although
the worst case computational complexity is still exponential. Moreover. the authors applied
spectral filters to speed-up matching, and gave experimental evidence on the high effecl/cost
ratio of such filters [9).

5 Boolean matching with don’t care conditions

Multiple-level logic networks have often several don’t care conditions, that are induced by
the interconnection of the network itself. Some of these don’t care conditions are due to
the structuring of the network prior to library binding, while others are due to the binding
process itself. When considering don’t care conditions associated with a cluster function, then
multiple matching cells can be found. It is therefore convenient to use don’t care conditions
in the search for the most desirable matching cell.

We consider here both controllability and observability don’t care conditions associated
with the cluster function f and represented jointly as fpc. We refer the reader to [12] for
the computation of fpc. We say that a pattern function g matches a cluster function f, if
g matches f where f-foec £ f< f+ foc.

5.1 Compatibility graph

Matching can be defined in terms of P, NP, or N'PN-equivalence. The first algorithm for
detecting N'PN-equivalence using don’t care conditions was proposed by Mailhot [26]. His
approach was limited to functions with four or less support variables (n < 4). Mailhot made
use of a matching compatibility graph, which is a directed graph whose vertex set is in one
to one correspondence with the NPAN -equivalent classes of functions. There are 222 such
classes for functions of four variables, but 616126 classes for function of five variables and
this explains the limitation to four variables. _

FEach vertex of the graph is labeled by a representative function of the class. Two vertices
are joined by an edge if the corresponding representative functions differ in one minterm.
Thus a path between two vertices can be associated with a set of minterms, or equivalently
with a Boolean function measuring the difference between the representative functions. We
call such function the error function.

The vertices are annotated by library elements and their costs, when the pattern functions
are in the corresponding NP AN/ class. Given a cluster function f, an A"PA -equivalence check
can map the cluster function to a vertex v € V. Such vertex always exists, because all
NPNclasses are represented by the graph. On the other hand. the vertex n:ay correspond
or not to a library element. In either cases, matching consists in finding the vertex u €
V associated with the least cost cell that is compatible with the cluster function. The
compatibility test reduces to checking whether the error function associated with the path
from v to u is included in the don’t care function fpc, which represents the tolerance on the
error. In Mailhot’s algorithm, the annotated matching compatibility graph and the paths
are computed once for all for any given library and stored. Thus matching with donl care
conditions requires just an additional inclusion test. Even though most libraries have few
cells with more than four inputs, the drawback of this approach is that it does not scale with
n due to the size of the graph.

5.2 A formula for Boolean matching with don’t care conditions

Savoj et. al [31] presented a Boolean condition for matching with don’t care conditions.
Consider a cluster function f(x) and don’t care set fpc(x) and pattern function g(y). An
expression for determining a matching with don’t care conditions can be derived by extending
expression (2) as follows:

Ve(foc(x) + f(x) & 3y(A(x,¥)9(¥))) (3)
which can be rewritten as:
Vx(3y(A(X, ¥)(fpc(x) + f(x) @ 9(¥)))) (4)

Formula (3) has an immediate meaning: for all the values of the input variables x either
the pattern function g with input assignment .A must be equal to f or fpc is true. Formula
(4) is easily derived from (3).

Example 6 Consider the cluster function f = z, & z; with fpc = z)z2, and pattern
function ¢ = g + y2. A variable assignment that assigns zj to yy; and z3 lo y, yields a
match. We verify that with (8). The input assignment function is A(X,y) = (1 &z:)(y2Dz2)-
Formula (8) is therefore Vx(3y((y1 ® z:1)(y28z2) (2122 + (21 & 72)B(31 +¥2)))). Compuling
the smoothing we obtain Vx(z\z2+ 2122+ 225+ 217)), thal is taulology. thus (3) is salisfied.

The main problem in using formulae (3) and (4) is to find the variable assignment. Savoj
et. al ([31]) proposed an algorithm based upon a search for a variable assignment that
satisfies condition (4). To expedite the search, Savoj introduced a class of filters that are
valid even for incompletely specified functions. The filters are based on the salisfy count
of the function and its cofactors. For example, if |f - fpec| > lg] no matching is obviously
possible. The interested reader is referred to [31] for details.

Boolean unification

Boolean unification is the process of finding a solution of a Boolean equation [6]. A method
for finding Boolean matching with don’t care conditions based on Boolean unification was
proposed by Chen [7]. A matching is searched for by solving a Boolean equation in which the
unknowns are the variable matching functions representing input assignments. Note that
these functions have been represented implicitly up to now by the characteristic equation
A(x,y) = 1. Given f(x), fpc(x) and g(y), we first enforce the matching condition:

f(x)®Bg(y} + foc(x) =1 (3)

which must hold for every x.
The unknowns in this equation are y = ¢(x.r), where r is an array of arbitrary functions
on x. Solving for the unknowns yields the variable matching. il one exists. The solution

method [7] uses a recursive algorithm reminiscent of the binary branching procedure for
Shannon expansion.

If we restrict ourselves to PA'matching, we must limit the generality of the solutions: we
allow only functions of the form y = PN @ x for some permutation matrix P and diagonal
complementation matrix N. Unfortunately, this constraint is not enforced by equation (5).
In order to guarantee that solutions are in the desired form, a branch-and-bound algorithm
is proposed in [7] that may degenerate in the worst case to exhaustive enumeration of input
permutations and polarity assignments. Although Boolean unification is a general and inter-
esting framework for the description of matching problems, the Boolean unification algorithm
presented in [7] does not represent a significant theoretical improvement upon enumerative
procedures enhanced by efficient filters.

5.4 Matching using multi-valued functions

One recent and effective approach to Boolean matching with don’l care [36] exploits multi-
valued functions. A multi-valued function is a mapping from a n-dimensional space to the
Boolean space. The input variables can assume a finite number of values ranging from 1
to n. In symbols, a multi-valued function F is F : N* — B, where N = {1,2,...,n} and
B = {1,0}. The key idea is to represent admissible input assignments with literals of a multi-
valued function, and consequently, sets of admissible input assignments with multi-valued
cubes.

Example 7 The cluster function is f(z,,x2,23) and the pallcin funclion is g(y.y2.ys3). We
consider only input permutations for the sake of simplicily. Assume thal admissible inpul
assignments are (z1,y2), (z2,11), (Z2,¥2). (x3,31), and (x3,y3). This sl of adinissible inpul
assignments can be represented by the multi-valued cube a{z)x.g"'”.r;‘,"" "

The cubes of the multi-valued function representing possible input assignments are gen-
erated iteratively starting from a sum of products representation of the pattern function
g, the cluster function f and its don’t care function fpc. In the following description we
consider only input permutations for simplicity. The procedure has three steps.

First, the functions representing the off-set and on-set of f are obtained: forr = f'- fpc
and fon = f-fpc and cast in sum of product form. The pattern functions are complemented,
and stored also in sum of product form. We consider matching with one cell represented by
gand ¢'.

Second, for each cube p of fon and for each cube ¢ of ¢’, a multi-valued function
MvCube(p, q) is obtained. MuvCube(p,q) expresses the constraint that the only accept-
able variable assignments are those that make the two cubes disjoint. This is true if at least
one of the variables appearing in p with one polarity is associated with one of the variables
appearing in ¢ with opposite polarity. The same procedure is repeated for each cube of forr
and each cube of g. The intersection of all expressions A/vCube(p. q) so generated represents
implicitly the set of all possible input assignments that vield a match.

As a last step, feasible input assignments are extracted from the multi-valued represen-
tation, by solving a matching problem on a bipartite graph. For details, refer to [36].

Example 8 Assume that a cube in fon is p = 7,25 and a cube in ¢ is ¢ = y\yays. The
multi-valued function eztracted by p and q is MvCube(p,q) = z{'} + :z:{2 3}, The Sfunction
expresses the constraint that, in order for the two cubes to be disjoint, 1, can be associated
with y1, or z, can be associated with either y, or y3.

The computational complexity of the procedure is of the order of the product of the
cardinalities of the sum of products under consideration. This is usually not a serious lim-
itation, because most functions (that may match usual cells) have a manageable sum of
product representation, and very effective tools exist for two-level logic minimization. [3].
Moreover, for most libraries, the sum of cubes representations of the pattern functions are
usually very small and seldom larger than ten cubes. Another factor aflecting the computa-
tional complexity is that the intersection of the functions MvCube(p, ¢) is a product of sumns
form, which may require an exponential number of products to be computed. In [36] the
authors propose a heuristic that orders the selection of cubes trying to keep the size of the
intersection as small as possible. Extensions of the algorithm to deal with APA'matching
with don’t cares are straightforward and do not sensibly change the overall complexity.

6 Boolean matching for FPGAs

Binding for field programmable gate arrays may leverage specific techniques; which depend
on the architecture of the programmable modules. Whereas binding of look-up table [34)
and array based [37] FPGAs does not require matching as defined in this paper, Boolean
matching is important for antifuse-based FPGAs [18, 19, 30]. An antifuse-based FPGA
consists of an array of programmable logic modules, each implementing a logic function that
can be personalized by shorting inputs either to a voltage rail or together, by programming
the anti-fuses. The uncommitted module is modeled by a combinational, single-output
module function.

The library of anti-fuse based FPGAs is represented by all logic functions that can be
implemented by personalizing the logic module. Note that such library is closed by definition.
As far as library binding is concerned, two strategies can be used. Deriving the entire library
and using the Boolean matching techniques described above. or representing the library
implicitly by the module function. The first approach is used when some personalizations
are discarded, because of some electrical and physical design considerations. We consider
the second approach in this section.

Example 9 Let us consider the FPGAs marketed by Actel Inc.. (See Figure 1). In the Actl
series, the module implements the function: my = (so+ $1)(s2a + s5b) + shs|(sac+ s5d), while
in the Act2 and Act8 series it implements the function: my = (sp + $;)(s253a + (s293)'0) +

sp81(s283¢ + (5283)'d). In both cases, the module is a function of n =8 inpuls.

a
m m

S2
c —
d —

S

. 8
(a) (b)
Figure 1: Actl and Act2 modules
As an example of programming, by setting s = s, = 1, funclion m, implements the

multiplezer s;a + syb. This is achieved by providing a path from mputs 3o and s, lo the
power ratl through an anti-fuse.

There are about seven hundred functions that can be derived by programming either mod-
ules.

For the sake of simplicity, we consider only personalizations by input stuck-ats. Then,
the module function can implement any cluster function that matches any of its cofactors.
ROBDD representations can be very useful in visualizing and solving this matching problem.
Indeed, given an order of the variables of the module function and a corresponding ROBDD
representation, its cofactors with respect to the first k variables in the order are represented
by subgraphs of the ROBDD. These subgraphs are rooted at those vertices reachable from
the root of the module ROBDD along k edges corresponding to the ‘variables with respect
to which the cofactors have been taken, or equivalently to those variables that are stuck-at
a fixed value by the personalization.

When considering P-equivalence, all variable orders of the module function and the cor-
responding ROBDDs must be considered to consider all possible personalizations. This can
be done by constructing a multi-rooted ROBDD, that encapsulates the library correspond-
ing to the module function. Alternatively, this ROBDD can be represented by a canonical
table. Moreover, by PN -equivalence can be efficiently detected by using the canounical forms
described in Section 3.2. Extensions to cope with personalization by bridging have also been
proposed [15].

Example 10 Consider the module function m = s,(s2a + s4b) + s\(s3c + s4d) and cluster
function f = zy + 2’2z, shown in Figures 2 (a) and (d) respectively. Figure 2 (b) shows the
ROBDD of m for variable order: (s,,s;,a,b,¢,s3,d) and Figure 2 (c) shows the ROBDD

(9) (v) (c) (@)

Figure 2: (a) Programmable module. (b) Module ROBDD. (c) Cluster ROBDD. (d) Repre-

sentation of the cluster function.

of f for variable order: (z,y,z). Since the ROBDD of [is isomnorphic lo the subgraph of
the ROBDD of m rooted in the verter labeled s, (which is the righl child of %,). the module
function can implement f by stucking s, at 1. '

Note that other cluster functions, that can be implemented by the module Jfunclion, may
have ROBDD:s that are not isomorphic to any subgraph of the ROBDD of F tgure 2 (b). This
is due to the fact that a specific variable order has been chosen lo construct this ROBDD.

It is important to note that the method just described is applicable to any FPGA library,
as long as the module function can be modeled by a single-output logic function and the
personalization is performed by sticking-at or bridging cell inputs. We consider next specific
methods targeted to the module functions used by some vendors. These methods are faster
because module-specific.)

Murgai et al. [29] developed Boolean matching procedures specialized to the Act! and
Act2 module functions. The algorithms are complex, because both module functions are not
quite multiplexing trees. Thus the methods attempt to determine first which inputs of the
cluster function should be tied to the multiplexers’ selectors (corresponding to the OR gate
in Figure 1.) Then they attempt to bind the cluster inputs to the multiplexers’ inputs. Two
different procedures for Actl and Act2 modules are described in detail in [29).

Fortas et al. [16] addressed the problem of matching the QuickLogic module cell. which
can be modeled by a 20-input, 4-output module function. To make the problem more
tractable, they considered two fragments of the cell. called M and A respectively and shown
in Figure 3. They developed matching algorithms for such fragments. Matching fragment

\/__\

(@ (b) (c)

Figure 3: (a) The QuickLogic programmable module. (b) Fragment M. (c) Fragment A.

A is easy, because it implements the conjunction of up to six variables, such that no more
than three have the same polarity. Thus this test is always performed first and, if positive,
this solution is preferred. When matching fragment M, the cluster-variable to bind to the
selector input so is chosen first. Then, a test is performed to see if both co-factors can be
implemented by gated multiplexers with the same control line. Details-of this procedure are
reported in [16].

7 A new viewpoint on Boolean matching

As presented in the previous sections, searching for a Boolean match involves some kind of
enumeration of the possible variable assignments. The efficacy of some methods is based
on clever techniques to reduce the number of alternative solutions-that must be tested.
The most advanced approaches, namely, those based on canonical forms and multi-valued
functions, avoid explicit enumeration by transforming the matching problem into checking
the satisfiability of a Boolean formula.

In this section we propose a novel approach that is more general in applicability and
retains the desirable characteristic of solving the matching problem by a simple satisfiability
check. We remove the restriction on the equality of the cardinality of the support sets for
f and g. We consider a pattern function f(x) with n variables and a library cell function
g(y) with m inputs. We describe first how we model the variable assignment function using
a circuit model. In practice, we use BDD-based symbolic manipulation techniques.

On each input of the cell represented by g we connect the output of a multiplexer whose
inputs are the cluster inputs, i.e., the support of f (Figure 4). The control inputs of each
multiplexer have the following function: the first [log;n] variables control which of the

X j—

X g
re 46,

b :I— . :

}

X Yo
¥y - Y.
a_| 2

M3

Figure 4: Transformation of the pattern function ¢ — G for matching with cluster function
f. The first two control variables of each multiplezer are for permutation control, the last
one is for polarity control.

i

external n inputs is multiplexed on the input of g. The last control variable controls the
polarity of the selected external input.

Example 3 In the case of Figure 4, consider multiplerer M. If the control variables (%
and C; are 00, the input z, is connected with y,. If the polarily conlrol variable (> is 1, the
connection with y will be inverting, therefore) will be seen on .

From our construction it is clear that the number of control variables needed is N, =
m([logan] + 1). The key observation is that the control variables ¢ can be selected in such
a way that all PNV -equivalent functions of g can be generated. (The inversion of the output
can be obtained with one more control variable for the output polarity. We restrict our
attention to PN for the sake of simplicity). _

In general, the class of functions generated by assignments to c¢ is actually larger than
all input permutations and polarity changes. It includes the cases where two or more of the
inputs of g are bridged and connected to the same cluster input with arbitrary polarity or
some of the cluster inputs is left unconnected. (Note that this is possible only when that input
is redundant because of don’t care conditions). We call the set of functions that a pattern
cell can implement via this multiplexing an eztended-PN(EPN) class. The generalization
to ENPANis straightforward.

From an algebraic viewpoint, the introduction of the multiplexers has transformed each
pattern function g(y) into a new Boolean function G(c.x). We define an EPA equivalence
relation over the set S of all the Boolean functions with n inputs: EPA -equivalence partitions
S into equivalence classes. The set of equivalence classes defined by an equivalence relation is
called quotient set. Therefore we call G(c,x) quotient funclion because it implicitly represents
an equivalence class (i.e., an element of the quotient set). Indeed all possible assigniments of
the c variables individuate all possible functions of x that belong to the same class as the
original library cell function g.

a c

|

T

b d

Figure 5: Pattern function f and quotient function G of Ezample 3.

We introduce now a Boolean formula that has at least one satisfying assignment if and
only if there exists a function £PN-equivalent to g that is equivalent to f.” Intuitively, the
formula can be explained by observing that there is an £PA matching if and only if there
exists an assignment ¢y to the control variables ¢ of G(c, x) such that G(co, x) is equal to f(x)
for all possible values of x. In other words, the variable assignment represented implicitly
by A(x,Yy) can be cast in explicit form using G(c,x) and Equation (1) is equivalent to
94(x) = G(c,x). Therefore, Boolean matching is represented by:

M(c) = Vx [G(e,x)&f(x)] (6)

The application of the universal quantifier produces a function ol the control variables
c. We will call it matching function, M(c). Observe two important facts. First, the for-
mula above can be efficiently computed in a fully symbolic way, using BDDs. Second, our
procedure finds all possible matchings given f(x) and g(y), not just a particular one.

Example 4 Let the pattern function be g = 2’y and the cluster function be f = wZ. Figure
5 models G(a,b,c,d,w,z) = (c ® (2a + wa’))'(d ® (zb + wb’)), where a,c and b,d are the
control variables. We equate f to G:

6 (s B((e® {20+ wa))(d® (b4 wH)))

Then we take the consensus of the resulting expression with respect lo w and = (the order
does not matter), to get M(a,b,c,d) = ab/dd’ + a’bed. The two minterms of M(a, b) describe
the two possible variable assignments. Minterm alidd' corresponds lo assigning z lo z and
w to y without any polarity change. Minterm a’bed corresponds lo assigning = lo y and w lo
T changing both polarities. The correctness and compleleness of lhe solulion scl represented
by M can be verified by inspection.

From an implementation standpoint, the matching algorithm operates as [ollows. First
the quotient functions are computed from the ROBDDs of the pattern functions. Thanks to
the binary encoding on the control variables of the multiplexers, the size of ¢ is O(m log, n).
This is an important property, because we want to keep the number of variables in the
ROBDD representation of G as small as possible for efficiency reasons. Next. given the
ROBDD of f, the ROBDD of G(c, x)&f(x) is constructed. The last step is the computation
of the consensus over all variables in x that yields M(c).

When the cluster function is completely specified, traditional matching procedures en-
hanced with filter appears to be more efficient than our algorithm, because the tautology
check is fast and the number of checks is reduced to one in most practical cases [32]. We
will show in the following sections that our approach is applicable to a more general class of
Boolean matching problems, where traditional techniques cannot be applied.

As a final remark, note that the application of the matching function for binding anti-
fuse based FPGA libraries is straightforward. Only the programmable module function needs
to be represented, being the entire library modeled by the quotient functions. Indeed the
formulation already takes bridging into account. Stuck-at constant values can be modeled
by adding two additional inputs to the multiplexers, each one corresponding to a Boolean
constant value.

7.1 Matching incompletely specified functions

Boolean matching with don’t care conditions can be represented as a straightforward exten-
sion of formula (6). Given a cluster function f(x) with don’l cares represented by fpe(x),
there exists a match if there is a satisfying assignment to the following formula:

M(c) = Vx[G(e,x)Bf(x)+ fpc(x)] o (7)

The result of the consensus is again the matching function M(c) representing all possible
assignments of the control variables that satisfy the matching condition. Observing the
formula, two points are of interest. First, when fpc = 0, Equation (7) degenerates to
Equation (6). Second, finding a match with or without don't care conditions has the same
complexity, the only difference being that a different formula must be universally quantified
(the number of Boolean variables is unchanged).

Another interesting point is that our procedure can be applied to pattern functions and
library cell functions with different number of inputs. We can find a match even when the
minimum cost library element g compatible with f has fewer or more inputs than f.

8 Generalized matching

In the previous sections we have discussed the application of our approach to matching
problems for single-output functions, where exact solutions have been proposed. We now
consider matching of multi-output functions, a problem for which no exact solution has heen
proposed so far. We present a formula for detecting exactly when Boolean matching of
multi-output functions is possible.

Consider the scenario shown in Figure 6. We have a logic network where we identify a
set of logic blocks ¢, ¢3, ..., q: (represented by multi-output Boolean function q). Consider
the set of logic blocks that are predecessors of q, which we call f}, fs..... fi (represented
by a multi-output Boolean function f). We focus on the library binding problem for the
components f. In the traditional single-output approach, we would bind the components of

e \ 9
X i V| 6
a z I
sl |
f
1 Ll 2
|]qz
e |
fra
f, 1 q,
Xn__.

Figure 6: The general multi-output matching problem. The unbound pattern functions of f
are enclosed by the dashed line.

f one by one (possibly considering don* cares conditions). Using generalized matching it is
possible to perform concurrent binding of two or more cluster functions.

We will show that concurrent binding requires to find a group of single-output library
cells (or a single multi-output cell) that satisfy a Boolean constraint expressed as a Boolean
relation. This flavor of generalized matching will therefore be called BR-matching. Roughly
speaking, B R-matching is more powerful than matching with don’t cares, as in the case of
the corresponding technology independent optimizations.

In general, the components of f that will be concurrently mapped are called unbound. The
remaining components of f are considered as bound and will be preserved. The two limiting
cases of this situation are when only one component is considered unbound and when all
components are considered unbound. The first limiting case has already been addressed in
the previous section. We will discuss here the second limiting case (f is fully-unbound), from
which all the intermediate situations can be easily derived. In order to keep the formalism as
simple as possible, we will analyze the case of a fully-unbound, two-output cluster function
f, as shown in Figure 7. The extension to the general multi-output case is straightforward.
Moreover, we will assume that the composite function A(x) = ¢(f(x)) is completely specified
and single-output (this hypothesis will be relaxed later).

Whenever A = 1, we know that the function ¢ must be ¢ = 1 as well (their outputs
coincide). The opposite holds when h = 0. We can translate this simple observation in a
Boolean constraint:

g(f)®h(x) 1 (3)

that must hold for each value of x. Notice that the support of ¢ is not x, but the vector f
(in our case consisting of fi and f2). We want to test if two library functions ¢, and ¢, (or a
two-output library element) can implement block f, without changing the external behavior
of h. We will use the quotient functions G(c;,x) and (2(cz,x) that implicitly represent
the £PN classes. The constraint (8) enforced on all input vectors hecomes:

T

»
w
0
A ——

._.t___

Figure 7: A typical ezample of situation where BR-matching is applicable.

M(c11c2) = Vx[q(Gl(clax)t Gg(Cz,X))@h(X)] (9)
We clarify the meaning of this Boolean formula through an example.

Example 5 Consider a block f with three inputs (1), z3, x3) and two oulpuls f, and [,
that are connected to the inputs of an AND gate. We have q = f f. Assume that the global
function is h = z,z% + 3. The Boolean constraint enforced by this structure is:

(fifa)(zaza + 23) + (f; + f2)(2)25 + 2225) 1

which is the characteristic equation of the following Boolean relation:

T1T2T3 f1f2
000 | {10,01,00}
001 {11}
010 | {10,01,00}
011 {11}
100 {11}
101 {11}
110 | {10,01,00}
111 {11}

We consider EPmatching for the sake of simplicity. Qur candidelc library ccll funclions
for BR-matching of block f are gi1(y1,y2) = (y132)' for fi and g2(y),¥2) = (n133) for fo. We
need N. = 2 * 4 control variables for Pmatching (two control variables for each inpul of the
library cells). The quotient functions are: Gy = ((¢|cyz) + ¢ cam2 + 1 G xa) (hciry + ycazr +
c3cyz3)') and Gy = ((c5cz1 + cheeTz + €5C573)(Chca Ty + Crcaa + Crcpzs)’)’

We replace in the ezpression of the Boolean constraint all the occurrences of f, f; with G,
and G, and we compute the consensus with respect to x,, x, and x3. The resulting maiching

Xy | — }
|
AND f
{ gai= *3
X
2 ! XOR |— XOR |—
! | e
|
I xoR |4 % | ANDI I
X3 | | Xq

Figure 8: Application of BR-matching on a multi-output sub-block.

Junction M is M(cy,ca,...,C8) = cjchcaccicecrcy + c1chc5cicicscicy [representing all allowed
input assignments). There are two minterms because of the symmetry of the library element
N

Notice that formula (9) reduces to formula (6) if the block f has one output. The number
of control variables needed is N, = m;([logz2(n)] + 1) + mz([loga(n)] + 1) where m, and m,
are respectively the number of mput.s of the library cells g, and g¢2. and n is the numiber of
inputs.

The general fully-unbound multi-output case (when the block f has & outputs) is the
same as the two-output case above described. From a practical standpoint, however, the
complexity of BR-matching increases very rapidly with the number of outputs of block f.
First, the number of control variables is O(k m log; n). Second, the number of possible groups
of library cells to be tried is O(|L|*¥) (where |L| is the number of cells in the library).

Let us now consider the general case in which only some of the cluster functions of block
f are unbound. For each unbound component, the quotient function G of a candidate library
cell will be inserted in Equation (9), while the bound cluster functions will be left untouched.
The advantage of this approach is that it can be applied to situations where the number
of control variables needed for fully-unbound BR-matching is too high, or the number of
possible groups of library cells is excessive.

Moreover, many libraries include multi-output cells (like full adders and decoders). We
can restrict the use of BR-matching to the multi-output cells predefined iu our library. In
this case, if a matching input variable assignment exists. it must be the same for all output
functions, thus the dependence from k of the number of control variables disappears. T'he
quotient function for a multi-output cell does not have more control variables than the
quotient function of a single-output cell with the same number of inputs.

Example 6 We will consider EP-matching for the sake of simplicily. Assume thal we have
a simple library containing 4 cells: two-input XOR (Cost = 2), lwo-inpul AND (Cosl = 2),
inverter NOT (Cost = 1), two-input ANDI (logic funclion imin), Cost = 3). An implicit
cell is the “WIRE” (cost zero). We want to optimize the mapped network of Figure 8.

Notice that the mapping cannot be improved with Boolean methods using don’t cares because
the external don’t care set is empty and the XOR on the outpul does not zntroduce any ODC
on its fan-ins.

We apply BR-matching to the multi-output cluster function consisting of the first XOR
and the AND {enclosed in the dashed boz f). The Boolean condition for BR-matching is:

sz.rz.za(h(GIG; + GIIG2) + h'(GlG2 + Gll l2))

Only the cell groups that give a lower cost than the current one (Cost 4) must be
considered. The candidate cell groups are listed in the following table.

[CosT | CLUSTER |
0 WIRE-WIRE

1 WIRE-NOT NOT-WIRE

S 2 NOT-NOT WIRE-AND XOR-WIRE
WIRE-XOR

3 NOT-AND AND-NOT XOR-NOT NOT-XOR
ANDI-WIRE WIRE-ANDI1

The number of control variables needed is 4+ 2 = 8 in the worst case (lwo two-input cells
and three primary inputs), but we will need only 3 *2 = 6 for our restricted candidate set of
groups.

Applying BR-matching, we find that WIRE-ANDI is a correct replacement. The quolienl
functions are Gy = c,c&az1 + dyc2zz + a1chz3 (for WIRE) and G; = (chcyz + Geaza +
cacyz3)(chchzy + ChceT2 + cscsza) (for ANDI). The matching function is M = &165ch¢46565.
The final solution is shown in Figure 8. The optimized network has a lower cost and is fan-
out free. Notice that this replacement could not have been found with traditional methods,
unless resorting to technology-independent optimizations.

From the example above we can draw some general observations. First, generalized
matching is well suited for re-mapping or local optimization. Heuristics must be developed
that direct the re-mapping effort on regions of a large network where improvements are
required. Second, the efficiency of our procedure will improve if methods that avoid the
generation of useless library cell groups are developed.

Finally, we can further generalize B R-matching to the case when the block A itself is
incompletely specified or described by a Boolean relation [1]. - -All flavors of genceralized
matching can be expressed as a satisfiability problem on a suitably extended space.

9 Conclusions

In this work we have reviewed several techniques for Boolean matching to be used by library
binding tools. Although traditional techniques based on iterative tautology check enhanced
with filters are effective for matching completely specified functions, more advanced ap-
proaches have been described that efficiently deal with incompletely specified functions. A
paradigm shift is taking place: all new techniques solve Boolean matching by transforming
it into a satisfiability problem in a different Boolean space.

In the same direction, we described the novel concept of generalized matching, that en-
ables concurrent matching of multi-output functions and exploits all local degrees of freedom
available for the choice of library cells. Generalized matching is more powerful than Boolean
matching with don’t cares and can be extended to FPGA matching in a straightforward way.
We believe that generalized matching is practically appealing as an aggressive optimization
step after traditional library binding.

Acknowledgements

This research is supported by NSF under contract number MIP-9421129.

References

{1) L. Benini, M. Favalli and G. De Micheli, “Generalized matching, a new approach to
concurrent logic optimization and library binding,” in International Workshop on Logic
Synthesis, May 1995.

[2) R. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation”, IEEE
Transactions on Computers, Vol. C-35, No. 8, August 1986, pp: 677-691.

[3] R. Brayton, G. Hachtel, C. McMullen and A. Sangiovanni-Vincentelli, Logic Minimiza-
tion Algorithms for VLSI Synthesis, Kluwer, 1984.

[4] J. R. Burch and D. E. Long, “Efficient Boolean function matching.” in ICCAD. Pro-

ceedings of the International Conference on Compuler-Aided Design, pp. 408-411, Nov.
1992.

[5] K. Brace, R. Rudell and R. Bryant, “Efficient implementation of a BDD) package,” in
DAC, Proceedings of the Design Automation Conference, pp. 40 45, June 1993.

[6] F. Brown. Boolean reasoning. Kluwer Academic Publishers, 1990.

[7) K.-C. Chen, “Boolean matching based on Boolean uniﬁcatiou.;," in ICCAD, Proceedings
of the International Conference on Computer-Aided Design, pp. 346-351, Nov, 1993.

[8] D. 1. Cheng and M. Marek-Sadowska, “Verifying equivalence of functions with unknown
input correspondence,” in EDAC, Proceedings of the European Design Aulomation Con-
Jerence, pp. 81-85, March 1993.

E. M. Clarke, K. L. McMillan et al., “Spectral transforms for Large Boolean Functions

with application to technology mapping,” in DAC, Proceedings of the Design Auloma-
tion Conference, pp. 54-60, June 1993.

