
Dynamic Scheduling and Synchronization Synthesis of Concurrent Digital
Systems under System-Level Constraints

Claudionor N. Coelho Jr. Giovanni De Micheli
Center for Integrated Systems Center for Integrated Systems

Stanford, CA 94305 Stanford, CA 94305
coelho@pegasus.stanford.edu

Abstract
We present in this paper a novel control synthesis tech-

nique for system-level specifications that are better de-
scribed as a set of concurrent synchronous descriptions,
their synchronizations and constraints. The proposed syn-
thesis technique considers the degrees of freedom intro-
duced by the concurrent models and by the environment
in order to satisfy the design constraints.

Synthesis is divided in two phases. In the first phase,
the original specification is translated into an algebraic
system, for which complex control-flow constraints and
quantifiers of the design are determined. This algebraic
system is then analyzed and the design space of the specifi-
cation is represented by a finite-state machine, from which
a set of Boolean formulas is generated and manipulated
in order to obtain a solution. This method contrasts with
usual high-level synthesis methods in that it can handle
arbitrarily complex control-flow structures, concurrency
and synchronization by allowing the scheduling of the op-
erations to change dynamically over time.

1 Introduction
We consider in this paper a control synthesis technique

for system-level descriptions of synchronous systems that
are better specified as a set of concurrent routines and
their synchronizations. In these systems, the synthesis
task consists of obtaining controllers that satisfies design
and synchronization constraints.

The synthesis effort for these systems is highly depen-
dent on the complexity of the constraints used to model
the interactions of the system. When these design and
synchronization constraints do not span over the concur-
rent parts of the design, conventional high-level synthe-
sis techniques can be used to obtain reasonable (if not
optimal) controllers. However, when considering more
complex design and synchronization constraints that span
over the concurrent parts of the design, or constraints that
establish relations between the system to be synthesized
and the environment, conventional high-level synthesis
techniques often produce suboptimal results or even no
results at all, due to their local scope in synthesizing each
sequential component or data-flow graph at a time.

In order to satisfy these complex design and synchro-
nization constraints, we propose here a novel technique,
calleddynamic scheduling, that generates a minimal pool
of schedules satisfying the constraints at synthesis time,
and selects the schedule that best matches the design and
synchronization constraints at execution time.

This technique allows the synthesis procedure to con-
sider the degrees of freedom introduced by the several
concurrent parts of the design and by the environment
during the synthesis of each controller, which allows the
solution of problems that would not be synthesizable by
conventional high-level synthesis tools. Due to its gener-
ality, this technique also allows the synthesis of concur-
rent synchronous circuits with arbitrary loop and condi-
tional control structures, their synchronization, and exter-
nal constraints, which are only handled by conventional
high-level synthesis techniques in a limited way.

This paper is organized as follows. In Section 2, we
present the abstraction of the specification into an alge-
braic system called thealgebra of control-flow expressions
(or CFEs). In Section 3, we show how to represent de-
sign constraints as CFEs. In Section 4, we show how the
algebraic specification can be represented as a finite-state
machine. In Section 5, we cast problem of selecting the
schedules as an integer linear programming (ILP) prob-
lem. In Section 6, we show how the controllers for each
part of the specification can be obtained such that op-
erations are scheduled dynamically and synchronization
constraints are satisfied. In Section 7, we compare our
technique with existing methodologies for synthesis. In
Section 8, we show how dynamic scheduling and synchro-
nization synthesis can be used in the protocol conversion
example. Finally, in Section 9 we present conclusions and
possible extensions of this work. Figure 1 shows how the
different sections of this paper relate to the synthesis flow
in our tool.

2 Control-Flow Expressions
We present in this section a brief introduction to a

subset ofprocess algebras[1] that we use to model
synchronous concurrent systems, called the algebra of
control-flow expressions (or CFEs). A more complete
presentation of modeling aspects of CFEs can be found
in [7].

Control-flow expressions abstract away the data-flow
information by focusing only on the control-flow of the
specification. The data-flow operations are abstracted by
two sets. The first set, calledactionset, associates a label
with operations that execute in asingle cycle. Multi-cycle
operations can be represented by a sequence of single cy-
cle actions. The second set, calledconditional set, as-
sociates a label with the conditional guards of loops and
alternative constructs. Boolean functions on the set of
conditionals (also calledguards) are assumed to trigger

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0175 $3.50175

SPECIFICATION
(VERILOG HDL)

CONTROL−FLOW EXPRESSIONSCONSTRAINTS
(DECISION VARIABLES)

FINITE−STATE MACHINE (M) COST FUNCTION

CONTROLLER

(Section 2)
(Section 3)

(Section 3)(Section 4)

(Section 5)

(Section 6)

FINITE−STATE MACHINE (M’)

Figure 1:Flow of the synthesis procedure from a system-
level specification

Composition HL Representation CF Expression

Sequential begin P ; Q end p � q
Parallel fork P ; Q join pkq

Alternative

if (C)
P ;

else
Q ;

c : p+ c : q

Loop
while (C)

P ; (c : p)�

wait (!C)
P ; (c : 0)� � p

Infinite
always

P ;
p!

Table 1: Link between Verilog HDL Constructs and
Control-Flow Expressions

the execution of actions.
In order to represent the control-flow of a design,

control-flow expressions incorporate the usual high-level
language constructs, namely the constructs for sequen-
tial, alternative, loop, unconditional repetition and par-
allel composition. In addition to these usual high-level
constructs, two special symbols, 0 and� represent respec-
tively a single cycle action that does not perform any
computation and executes in one cycle and a null com-
putation that executes in zero time. For example, Table 1
shows the representation of the control-flow constructs for
Verilog HDL in terms of control-flow expressions. In this
figure, we assume thatp andq denote the control-flow ex-
pressions representing the Verilog HDL code forP andQ,
the conditionalc abstracts the operationC, and the guards
c andc encapsulate the conditions for the alternative and
loop choices that must be taken during the execution of
the Verilog HDL program.

Example 1 [Ethernet Coprocessor Synchronization]In this
example, we show how to abstract a design in terms of a control-
flow expression. In the ethernet controller specified as a set of
concurrent routines [2], we focus on the routines that commu-

nicate with a microprocessor through a shared bus, namely the
routinesDMArcvd, DMAxmitandenqueue.

module DMArcvd;
always
begin

bus write;
process data

end
endmodule

module DMAxmit;
always
begin

initialize vars.
wait (tx ready);
bus read;

end
endmodule

module enqueue;
always
begin

wait (free bus);
bus read;

end
endmodule

Figure 2:Abstracted behaviors for DMArcvd, DMAxmit
and enqueue

From an abstraction and reduction of the original specifi-
cation that captures only the bus accesses, we can obtain the
descriptions of Figure 2, specified at high-level.

If we assume thata denotes the action of accessing the bus,
that executes in one cycle,c denotes the guard “transmission
is ready” and thatx denotes the guard that “bus is free”, then
we can represent the routines presented above by the following
control-flow expressions:

DMArcvd = (a � 0)!

DMAxmit = (0 � (c : 0)� � a)!

enqueue = ((x : 0)� � a)!

In these control-flow expressions, we can see the timing rela-
tion among the different components. In the control-flow expres-
sion representing the routineDMArcvd, the bus access (action
a) is executed every other cycle. Thus, 0 acts as an internal
computation that can be abstracted for the purposes of repre-
senting the system’s behavior in terms of bus accesses. In the
control-flow expression for the routineDMAxmit, the bus access
occurs only after the guardc is false. In this module, it can be
seen that first some internal computation is executed in the first
cycle, that we represent here by 0, followed by a pooling ofc

for an arbitrary number of cycles until it becomesfalse. In this
CFE, and also in the next one, action 0 in the loop represents an
idle cycle in the execution model. In the control-flow expres-
sion for the routineenqueue, the bus access occurs only when
the bus is free, which is represented here byx beingfalse 2

3 Constraint Representation
Constraints are properties that should be satisfied by

any implementation. Examples of constraints are mini-
mum and maximum timing constraints, possible resource
bindings for an operation, and possible or necessary syn-
chronizations. We specify constraints as control-flow ex-
pressions by rewritting the control-flow expression of the
specification, and by adding new control-flow expressions
whose the sole purpose is to ensure that the specification
observes the constraints. These constraints specified as
CFEs act aspassive processesof VHDL [10], but with
the difference that these expressions are used to guide
the synthesis tool during the synthesis, and not as watch-
dogs during simulation. We will consider in this paper
only synchronization and scheduling constraints. Binding
and more complex constraint specifications can be found
in [8].

176

In the following example, we show how to represent
constraints in control-flow expressions by means of the
specification of synchronization sets and by a quantifica-
tion of the design space.

Example 2 [Synchronization Constraints] In the Example 1,
the routineenqueuesynchronizes with some “free bus” signal,
which was not specified. In fact, this signal depends on the time
the two routinesDMArcvdandDMAxmitaccess the bus, i.e. the
routineenqueuemust access the bus whenever neitherDMAxmit
nor DMArcvdaccess the bus. In order to specify the constraint
that the bus should be free when theenqueueexecutes, we use
multisets of actions that never execute at the same time. This
set is called here theNEVERset. In this example,NEVER=
fa; ag, since no two bus accesses should execute at the same
time (similarly, we have a synchronization constraint specifying
that a multiset of actions should always execute at the same
time, and we call this set theALWAYSset [8]). 2

In addition to considering the synchronization sets rep-
resented by theALWAYSand NEVERsets, we also rep-
resent quantitatively the design space in control-flow ex-
pressions by decision variables.

Example 3 [Decision Variables] In the case we want to syn-
thesize the synchronization betweenenqueueand the routines
DMArcvd and DMAxmit in the previous example, we consider
x of enqueueto be adecision variable, i.e. wheneverx is false,
then theenqueuewill be allowed to access the bus. The syn-
thesis task then becomes the assignment of values tox over
time.

Thus, the set of guards in a control-flow expressions is di-
vided into two sets of variables: the set of conditionals (which
is a part of the original specification) —c in this case — and
the set of decision variables —x. Decision variables will be
assigned over time during the synthesis of the controllers and
they will determine a scheduling of the operations over time that
satisfies synchronization constraints. The reader should notice
that any assignment over time to these decision variables rep-
resent a possible choice of a schedule for the bus access in the
routineenqueue.

A controller satisfying the synchronization constraint men-
tioned above for routineenqueuecan be given by the CFE(0�(c :
0�0)� �a)!. This CFE can be obtained from the original control-
flow expression((x : 0)� �a)! by first transforming the original
CFE into ((x0 : 0+ x0 : a) � (x1 : 0 � (x2 : 0+ x2 : a))� � a)! .
Then,x0 andx2 are assigned the valuetrue because the routine
DMArcvd accesses the bus every other cycle beginning in the
first cycle; and the variablex1 is assignedc because the routine
enqueuecan only use the bus when the routineDMAxmit is not
transmitting data (captured by guardc that meanstransmission
is ready), as presented previously.2

4 Finite-State Representation of the Design
Space

In order to obtain the solution satisfying the constraint
of a bus free of conflicts proposed in the Example 2,
we first had to convert the CFE((x : 0) � a)! into an
equivalent form with respect to unrolling. Then, Boolean
expressions were assigned to the instances of the decision
variablex in this new expression. In this section, we
will show how we can obtain an equivalent finite-state

machine representation of the original specification sat-
isfying design constraints. This finite-state machine will
represent the solution space in a compact way, since the
different choices allowed by the synthesis tool are guarded
by decision variables.

In order to build the finite-state representation, we will
use the notion of theirredundant suffixesof a control-flow
expression. Informally, asuffixof a control-flow expres-
sion p is a subexpression ofp. The set ofirredundant
suffixesof p is defined to be the set of suffixes ofp such
that no two suffixes of the set differ in the number of times
a loop or infinite composition is unrolled, in the different
permutations of the subexpressions in alternative and par-
allel compositions, and in the use of� as the null element
for sequential composition. A more formal description of
suffixesandirredundant suffixesof a control-flow expres-
sion can be found in [8].

Example 4 [Suffixes of a Control-flow Expression] The
suffixes of the control-flow expression(a � b � c)!, i.e. the un-
conditional repetition ofa, followed by b, followed by c, are
(a � b � c)!, a � b � c � (a � b � c)!, b � c � (a � b � c)!, c � (a � b � c)!,
a � b � c � a � b � c � (a � b � c)!, b � c � a � b � c � (a � b � c)!, etc . . . 2

Example 5 [Irredundant Suffixes of a CFE] The set of irre-
dundant suffixes of(a � b � c)! are(a � b � c)! , b � c � (a � b � c)! and
c � (a � b � c)!, since all other suffixes of(a � b � c)! correspond to
different number of unrollings of the infinite composition, e.g.
a � b � c � (a � b � c)! is equivalent to(a � b � c)!. 2

We consider here the finite-state Mealy machineM =
(I; O;Q; �; �; q0) to represent the design space, whereI
is the set of input variables toM , O is the set of output
variables ofM , Q is the set of states ofM , q0 is the
initial state ofM , � is the transition function ofM , i.e.
� : Q� 2I ! Q, and� is the output function ofM , i.e.
� : Q� 2I ! 2O.

The Mealy machineM is related to a finite-state ma-
chine representation ofp in the following way. The set
of input variables ofM corresponds to the set of condi-
tionals and decision variables ofp. The set of outputs of
M corresponds to the multiset of actions ofp. For each
irredundant suffixs of p, we associate a stateqs 2 Q. In
particular, the initial stateq0 corresponds toqp.

In order to associate the transition(�) and output(�)
functions ofM with the suffixes ofp, let the control-
flow expressionss1 and s2 be irredundant suffixes of
p such thats1 = f : fa1; � � � ; ang � s2 + t, for f be-
ing a Boolean function over the set of conditional and
decision variables,fa1; � � � ; ang being some multiset of
actionsa1; � � � ; an, and t some control-flow expression.
Since s1 and s2 are suffixes ofp, then �(qs1; f) = s2
and �(qs1; f) = fa1; � � � ; ang in M . We can interpret
these equations in the following way. The multiset of ac-
tions fa1; � � � ; ang represents the actions that execute at
the same time ins1 whenever guardf is true. Since every
action executes in one cycle,fa1; � � � ; ang also executes
in one cycle. Thus,s2 represents the state of the system
obtained by a one-cycle simulation ofs1 if the Boolean
guardf is true.

Note that the Mealy machine described above does not
take into consideration any synchronization constraints

177

(ALWAYSand NEVERsets). Thus, we still have to re-
move fromM the transitions that violate these synchro-
nization constraints (invalid transitions) and the states that
are unreachable due to the deletion of some transitions
(unreachable states).

Valid transitions are obtained by checking that in a
transition if at least a certain action is included in some
multiset of actions of theALWAYSset, then all actions
in this multiset should be executed in the transition. Fur-
thermore, this transition should not include any multiset of
actions of theNEVERset. Reachable states are obtained
by eliminating the states ofM which are not reachable
from the initial state after removing invalid transitions and
other unreachable states.

x:a

(a.0) ω || (0.(c:0)*.a) ω || ((x:0)*.a) ω

0.(a.0) || (c:0)*.a.(0.(c:0)*.a) || ((x:0)*.a)
ω ω ω

(a.0) ω
|| (c:0)*.a.(0.(c:0)*.a) || ((x:0)*.a)

ω ω

c x:a

x c:a + x c:0 x c:a

0

1

2

Figure 3:Mealy machine for Synchronization Problem in
Ethernet Coprocessor

Example 6 [Mealy Machine for Synchronization in Ether-
net Coprocessor]For the ethernet coprocessor system of Exam-
ple 1 represented by the control-flow expression(a �0) !k(0�(c :
0)� � a)!k((x : 0)� � a)! , if we consider the setsALWAYS= ;
andNEVER= ffa; agg, we obtain the finite-state Mealy ma-
chine of Figure 3 that is composed only by reachable states and
valid transitions. 2

5 Optimal Assignment of Decision Vari-
ables

The finite-state Mealy machineM = (I; O;Q; �; �; q0)
obtained in Section 4 withQ representing the set of reach-
able states and� representing the set of valid transitions
contains the possible degrees of freedom that the synthesis
can use during the synthesis of the description.

We should remember that the setI of M corresponds
to the set of conditionals and decision variables of the
control-flow expression, so our synthesis problem will be
an assignment of the decision variables to Boolean vari-
ables that minimizes some cost function. Note that each
decision variable will be decided for each state in the
worst case, so depending on the state of the system, dif-
ferent choices may be selected.

The problem of synthesizingM = (I; O;Q; �; �; q0)
corresponds to finding a submachine
M 0 = (I0; O;Q0; �0; �0; q0) such thatQ0 � Q, �0 � �,
�0 � �, andI0 being the set of conditional variables ofI,
since the decision variables are assigned Boolean values
by the procedure described in this section. In addition

to that,M 0 is also the minimum cost submachine ofM
with respect to the objective function specified by the de-
signer [8]. This objective function orders the different
solutions with respect to minimum latency or minimum
area. Minimum area is represented by associating a cost
function� with each resource corresponding to an action.
Thus, each actiona whose cost is defined as�(a), will
increase the cost of the implementation if a transition of
M with outputa is also a transition ofM 0.

The selection of a cost function for minimum latency
can also be computed in a similar way. If some decision
variablex determines when the execution of a action will
be delayed by one cycle, which we represent by action
0, then the cost of the implementation will be increased
every time there is a transition withx being true in M 0.

The submachineM 0 should further satisfy some other
constraints. For example, although several different
schedules and bindings may exist for an action, only one
such schedule and binding must be taken at any partic-
ular cycle, i.e. M 0 should be able to make determinis-
tic choices about its schedules and bindings at any state
q 2 Q.

In the synthesis ofM 0 from M , we have to identify
which states will be included inM 0 and which transitions
will be part of the transition function forM 0. In order
to determine the states ofM which will be part of the
states ofM 0, we create a Boolean variableyp for each
stateqp of M . If the Boolean variableyp is set to 1, our
interpretation will be that the stateqp will belong toM 0.
We will denote the stateqp by p in the remaining of this
section.

In order to determine a subset of the transitions ofM 0,
we subdivide each guardf of a transition�(qp; f) into
two conjoined parts. The first part contains only decision
variables and the second part contains only conditional
variables. Let us call the first partfx and the second part
fc. Now, for each stateqp and for each different Boolean
formula fc of qp, we create a Boolean variablex(qp;fc)

for each decision variablex 2 x. The solution of the
integer linear programming (ILP) problem will determine
assignments to variablesx(qp;fc), which in turn will de-
termine assignments of Boolean values tofx. If fx is
evaluated to 0, then the transition�(qp; f) will not belong
to M 0. If fx is evaluated to 1,�(qp; f) will belong to
M 0. This notation will be used in the description of the
set of characteristic equations for the example below.

Example 7 [ILP Equations for Synchronization Problem]
Let us consider the finite-state Mealy machine of Figure 3 for
the synchronization problem presented in Example 2. For this
finite-state machine, the set of 01-ILP equations that quantifies
the valid assignments to the decision variablex is shown below.

y0 = 1

y1 � (x(0;1)y0 _ x(2;c)y2) = 0

y2 � y1(x(1;c) _ x(1;c)) = 0

x(0;1) = 1

x(1;c) = 1

x(1;c) + x(1;c) = 1

178

x(2;c) = 1

(x(0;1) _ y0)(x(1;c)x(1;c) _ y1)(x(2;c) _ y2) = 0

The first set of equations represent the transition relation of
M in terms of the decision variables and states. The first state
of M (0) is always a state ofM 0. State 1 will be a state ofM 0

if 0 is a state ofM 0 and the transition�(0; x) is in M 0, which
is represented by assigning 1 tox (0;1); or if state 2 is a state of
M 0 and the transition�(2; xc) is in M 0, which is represented by
assigning 1 to the Boolean variablex (2;c). A similar reasoning
yields the third equation.

In the second group of equations, we represent set of valid
assignments for each state and conditional expression. The first
equation states that the only possible choice for state 0 is to
make a transition to state 1, and thus,x(0;1) should be assigned
to 1. Similarly, whenc is falseon state 1, since the only pos-
sible choice is a transition to state 0, this transition should be a
transition ofM 0. In the transition between states 1 and 2, there
are two possible choices whenc is true, and only one of those
transitions should be assigned toM 0.

In the third set of equations, we guarantee that for any causal-
ity constraint of the typea�(x : 0)� �b, wherea andb are actions
andx is a decision variable, at least one state ofM 0 will have
x assigned tofalse, i.e. b will eventually be scheduled.

An objective function for minimum latency can be given by
miny0x(0;1)+y1(x(1;c)jx(1;c))+y2x(2;c), where in this equation
j represents Boolean disjunction and+ represents arithmetic
addition.

An assignment satisfying these equations is given byy 0 =

y1 = y2 = 1, x0;1 = x1;c = x2;c = 1, x1;c = 0. 2

The general method for obtaining the set of ILP equa-
tions for a machineM can be found in [8]. It was not
added here due to the lack of space.

6 Controller Synthesis Using Dynamic
Scheduling and Synchronization Synthe-
sis

We show in this section how the assignment procedure
for the decision variables of a system-level design will
lead to the dynamic scheduling of operations over time.

When considering the synthesis problem for concur-
rent descriptions, we may require the selection of differ-
ent schedules over time for an operation. Let us consider
the precedence constrainto1 ! o2 (operationo1 must
be executed before operationo2 is executed) of a model
that executes concurrently with some other models. Be-
cause of synchronization constraints or tight resource con-
straints, the synchronization among the concurrent parts
of the design may require that the relative schedule of
o2 with respect too1 to depend on the other models. In
this case, the schedule of operationo2 will be determined
from a pool of schedules at execution time. We define the
dynamic selection of a schedule from a pool of schedules
the dynamic schedulingproblem.

The situation presented in the previous paragraph also
occurs in the domain of control-flow expressions. For
example, in the control-flow expressiona � (x : 0)� � b,
wherea and b are actions andx is a decision variable,
we may have a situation in whichx is assigned three
consecutive times 1 and a following 0 (resulting in the

schedulea �0 �0 �0 � b) for some sequence of states ofM 0

and a 0 (resulting in the schedulea � b) for some other
sequence of states ofM 0. This implies that depending
on the state of execution of the other concurrent models,
either the first or the second schedule would be selected.

We now show how we can obtain a controller for the
original models fromM 0 that uses the dynamic schedul-
ing and synchronization. This controller is obtained by re-
verting the assignments to the original specification. More
formally, for the submachineM 0 = (I0; O;Q0; �0; �0; q0),
for which an assignment to the decision variables of
the system represented by the CFEp = p1k � � �kpn
was obtained in the previous section, we build machines
Mi = (Ii; Oi; Q

0; �i; �i; q0) for each concurrent partpi of
p. Mi will be a controller for this concurrent part ofp.

The setIi of inputs ofMi corresponds to the set of
conditional variablesI. The set of outputs ofMi corre-
sponds to the multiset of actions ofp i, which is a subset
of O, respectively, sincepi is a subexpression ofp. The
transition function�i has the same transitions of�0. The
output function�i is a restriction of�0 such that the out-
puts are restricted toOi.

Let us interpret this new transition function� i and the
output function�i. Suppose we computed the finite-state
machine representationN for pi alone. In this finite-state
machine representation, let us assume a state transition
and an output generation that is dependent on some deci-
sion variable. After synthesizing the finite-state represen-
tation for p, and obtainingM i, the transition ofN was
replaced by one or more transitions which depended only
on the conditional variables. Even if the number of states
in N and Mi does not agree, there will be equivalent
transitions forN andMi such that for each two equiva-
lent states ofN andMi, there will be two corresponding
transitions. This equivalence exists becausepi is a subex-
pression ofp. Thus, this change in the transition function
can be interpreted as if the decision variable ofpi were
assigned the Boolean expression associated with the tran-
sition of �i. Thus, this mechanism allows the dynamic
reconfigurability of the system according to the system’s
state, based on the conditionals.

0

1

2

(a.0) ω || (0.(c:0)*.a) ω || ((x:0)*.a) ω

0.(a.0) || (c:0)*.a.(0.(c:0)*.a) || ((x:0)*.a)
ω ω ω

(a.0) ω
|| (c:0)*.a.(0.(c:0)*.a) || ((x:0)*.a)

ω ω

0 c : 0

c : 0c : a

Figure 4:Finite-State Machine for Control-Flow Expres-
sion ((x : 0)�:a)!

Example 8 [Controller for model enqueue] For the eth-
ernet coprocessor example discussed before, wherep =

DMAxmitkDMArcvdkenqueue, machineM 0 is given by the

179

finite-state machine of Figure 3 after assigning the instances of
the decision variablex to the values determined in the previous
section.

MachineMi, which is the controller for the modelenqueue,
is shown in Figure 4. This controller corresponds to the CFE
(0 � (c : 0 � 0) � a)! , which was shown earlier to be a solution to
this problem. 2

It should be noted that the finite-state machine we
obtain by the procedure above does not guarantee any
minimality with respect to the number of states, but it
only gives a finite-state machine that satisfies the origi-
nal constraints and has a minimal cost. We use the state
minimizer Stamina[14] to obtain the minimum number
of states for the finite-state machine implementing the
control-flow expressionpi. In fact, in Example 8, an
implementation with minimum number of states can be
obtained with just 2 states.

7 Comparisons and Limitations
In this section, we compare our procedure to schedule,

bind and synthesize synchronization schemes with previ-
ous approaches. Although a great deal of work has been
reported for scheduling and binding techniques [4, 9, 5,
6, 15, 3, 13, 11], we will compare our method with exact
methods that were solved as a 0-1 ILP, such as [6, 13].

When compared to other 0-1 ILP techniques [6, 13],
our methodology appears as a more general technique for
the scheduling problem, because it can handle loops, syn-
chronization and multi-rate execution of concurrent mod-
els. However, the penalty paid for a more general method
is the number of variables to be solved by the ILP, which
is greater by a constant factor with respect to these other
exact approaches.

If we consider the finite-state machine representation
M of a control-flow expressionp with ns states,nc
conditionals andnd decision variables, then the number
of variables in the worst case will be on the order of
O(nsnd2nc). Note, however, that in practical terms this
upper bound is never reached, since not all decision vari-
ables will be evaluated in every state and not all possi-
ble expressions on conditionals are evaluated at the same
time. If we compare this complexity with the complexity
of the 0-1 ILP method of [6], we note thatns is related to
the number of control-steps an operation can be scheduled
in [6], nd is related with the number of operations to be
scheduled in [6] andnc = 1 in [6], since no conditional
paths are allowed.

8 Implementation and Results
We implemented a program to synthesize controllers

with dynamic schedules from control-flow expressions in
12,000 lines of C, and a 0-1 ILP solver using Binary
Decision Diagrams (BDDs) in 3,000 lines of C.

Since the technique presented in this paper is targetted
for the synthesis of concurrent systems under synchroniza-
tion, which is a new area, there are no standard bench-
marks yet. Thus, instead of comparing our approach with
the existing techniques for scheduling and binding using
standard benchmarks, we will show an application of this
technique for optimizing synchronous circuits for protocol
conversion from high-level specifications.

PCI

SDRAM CONTROLLER

READ

WRITE

REFRESH

SDRAM

i486

Figure 5: Protocol Conversion for PCI bus computer

8.1 Protocol Conversion
In this section, we show how we can use synchro-

nization synthesis in order to synthesize the controller for
converting the PCI bus protocol [12] into a synchronous
DRAM protocol. In particular, we will provide here the
conversion between reading and writing cycles of a PCI
bus into synchronous DRAM cycles. Figure 5 shows the
diagram of computer using a PCI bus, and a synchronous
DRAM (SDRAM) memory bank. Both protocols allows
single or burst mode transfers, with the difference that
SDRAMs burst mode are limited to at most 8 transfers
on the same row that are one cycle apart from each other.

Informally, a PCI bus cycle begins with a address
phase, followed by one or more data phases. Wait states
can be inserted in the data phase by either the micropro-
cessor or by the memory. For burst mode transactions,
we assume here a linear increment of the address space.

The synchronous DRAM reading protocol begins by a
row address selection (RAS) phase followed by a column
address selection (CAS) phase. After the CAS phase, and
a fixed number of cycles, the SDRAM will produce data
at a rate of one word/cycle.

We implemented the four models for the reading and
writing cycles of the PCI local bus and the SDRAM in
230 lines of a high-level subset of Verilog HDL. These
models are predefined libraries that can synchronize with
any circuit. We thus use the technique of synchronization
synthesis in order to synthesize a combined controller that
is smaller than the two separate controllers.

Table 2 shows the number of states for the controllers
in terms of a Mealy machine, when each part is synthe-
sized separately, and when the controller for both models
is generated as a single controller. (which is highly desir-
able, since both parts are highly synchronized).

States States States Execution
Model PCI SDRAM PCI + SDRAM Time
READ 7 15 34 3.5 s
WRITE 6 7 30 1.6 s

Table 2: PCI/SDRAM Protocol Conversion Example

9 Conclusions
We considered in this paper the synthesis problem for

system-level designs specified as a set of concurrent and

180

interacting parts. We presented a tool to allow the synthe-
sis of concurrent descriptions, that considered arbitrarily
complex control-flows, concurrency and synchronization.
For these specifications, the conventional solution of hav-
ing a single schedule for the different operations was not
adequate. Thus, we developed a method that at execution
time selected the best (with respect to a cost function)
schedule from a pool of schedules, which were deter-
mined by external constraints.

The specification and the constraints were modelled by
an algebraic model called control-flow expressions, and
the design space was modelled by a finite-state repre-
sentation. The dynamic scheduling and synchronization
synthesis was then performed on this finite-state represen-
tation, and this synthesis problem was solved exactly with
an 0-1 ILP formulation.

As future work, we are currently investigating how
to reduce the number of variables to be solved by the
ILP solver. One solution would the abstraction of the
concurrent models with respect to the synchronization.
This would reduce the number of states of each abstracted
model, and would thus reduce the number of states of
the finite-state machine representation for the control-flow
expression of the full specification.
Acknowledgements

This research was sponsored by NSF/ARPA, under grant No.
MIP 9115432. The first author was supported by the scholarship
200212/90.7 from CNPq/Brazil, and also by a fellowship from
Fujitsu Laboratories of America.

References
[1] J. C. M. Baeten.Process Algebra. Cambridge University

Press, 1990.

[2] Benchmarks of the 1992 high-level synthesis workshop.

[3] D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli.
Interface optimization for concurrent systems under timing
constraints.IEEE Transactions on VLSI Systems, 1(3):268–
281, September 1993.

[4] L. Hafer and A. Parker. Automated synthesis of digital hard-
ware. IEEE Transactions on CAD/ICAS, c-31(2), February
1982.

[5] Y.-H. Hung and A. C. Parker. High-level synthesis with pin
constraints for multiple-chip designs. InProceedings of the
Design Automation Conference, pages 231–234, June 1992.

[6] C.-T. Hwang, J.-H. Lee, and Y-C Hsu. A formal approach
to the scheduling problem in high-level synthesis.IEEE
Transactions on CAD/ICAS, 10(4):464–475, April 1991.

[7] C. N. Coelho Jr., D. Ku, and G. De Micheli. An algebra
for modeling concurrent digital circuits. InACM Interna-
tional Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, 1993.

[8] C. N. Coelho Jr. and G. De Micheli. Analysis and synthesis
of concurrent digital circuits using control-flow expressions.
Technical report, Stanford University, 1994.

[9] T. Kim, J. W. S. Liu, and C. L. Liu. A scheduling algorithm
for conditional resource sharing. InProceedings of the In-
ternational Conference on Computer-Aided Design, pages
84–87, Santa Clara, November 1991.

[10] R. Lipsett, C. Schaefer, and C. Ussery.VHDL: Hard-
ware Description and Design. Kluwer Academic Publishers,
1989.

[11] P. Marwedel. Matching system and component behaviour
in mimola synthesis tool. InProceedings of the European
Design Automation Conference, pages 146–156, March
1990.

[12] PCI Local Bus Specification Revision 2.0.

[13] I. Radivojević and F. Brewer. Symbolic techniques for op-
timal scheduling. InProceedings of the Synthesis and Sim-
ulation Meeting and International Interchange – SASIMI,
pages 145–154, Nara, Japan, October 1993.

[14] J.-K. Rho, G. D. Hachtel, F. Somenzi, and R. M. Jacoby.
Exact and heuristic algorithms for the minimization of in-
completely specified state machines.IEEE Transactions on
CAD/ICAS, 13(2):167–177, February 1994.

[15] K. Wakabayashi and H. Tanaka. Global scheduling inde-
pendent of control dependencies based on condition vectors.
In Proceedings of the Design Automation Conference, pages
112–115,June 1992.

181

