Scheduling with Environmental Constraints
based on Automata Representations

Jerry Chih-Yuan Yang
Center for Integrated Systems

US.A.

Abstract

We introduce a framework in which design information can
be represented using an automaton model. We present
a novel scheduling algorithm under environmental con-
straints where both the design and constraints are repre-
sented using automata. This model offers the advantage
of supporting different constraints (e.g. timing, resource,
synchronization, etc) with a uniform formalism. All feasi-
ble schedules are captured with a single product automaton.
The automaton is constructed and traversed using efficient
BDD-based implicit state-traversal techniques. We present
an algorithm that generates a minimum-latency schedule.
This apporach is able to exploit degrees of freedom among
interacting components of a multi-module system during
scheduling.

1 Introduction

Synthesis systems must provide ways to deal with design
specification and the representation of constraints (tradi-
tionally timing and resource). Existing high-level synthesis
tools often rely on ad-hoc methods to cope with the design
information and constraints. Moreover, the increased in-
teraction among components in system design, as well as
changing of design styles demand design tools to deal with
non-traditional constraints.

For example, when considering scheduling indepen-
dently two (or more) modules that exchange data, there
are constraints due to data transfers. These constraints
give rise to flexibility that can be used to optimize individ-
ual components. Similarly, when considering scheduling
processors that run application specific programs, envi-
ronmental constraints arise from the interaction between
hardware and software. The processor may only issue a
limited set of instructions to hardware, producing don’t
care conditions which can be used to optimize hardware.
To fully take advantage of all such degrees of freedom,
system design tools need to handle different forms of con-
straints in a uniform and efficient manner.

This paper addresses the scheduling problem under
constraints, e.g. timing, resource, and synchroniza-
tion. Scheduling problems (e.g under resource constraints
and/or release-times/deadlines) are intractable[1]. There-
fore, exact algorithms are often inefficient for large prob-
lems. Scheduling have been formulated and solved exactly
as integer-linear programming problems [2], as well as us-
ing heuristic algorithms. Gajski et. al[3] present a sur-
vey for many graph-based scheduling techniques, most of

1066-1409/94 $3.00 © 1994 IEEE

Giovanni De Micheli
Center for Integrated Systems
Stanford University, CA 94305 Stanford University, CA 94305
U.S.A.

495

Maurizio Damiani
Dipartimento di Elettronica ed Informatica
Universita di Padova, Via Gradenigo 6/A
35141 Padova, Italy

them heuristics. A specialized instance of scheduling with
synchronization constraints is dealt with in the form of in-
terface matching in [4]. However, the restrictions placed
on the communicating processes prevent the algorithm for
treating general synchronization constraints.

Recently, an exact method using BDDs to solve ILP
formulation of scheduling under constraints is presented in
[5]. By using BDDs to uniformly capture sequencing de-
pendecies and constraints, the method demonstrates that
it is efficient for scheduling under resource and timing con-
straints.

However, in a system-level design environment, all pre-
vious approaches lack the ability to capture constraints
among interacting components. Failure to do so leads
to non-optimal synthesis results because degrees of free-
dom between design and its environment are not amply
explored. For control-dominated designs, the problem is
exacerbated since the design space is more sensitive to the
constraints than datapath designs.

Our work addresses the deficiencies of previous ap-
proaches by proposing a new representation of the design
space under constraints, and an efficient exact solution
method to the scheduling problem.

We introduce a framework based on automata that
targest the representation of design space in high-level syn-
thesis. Automata modeling is able to capture design infor-
mation at many levels during synthesis[6, 7]. In this paper,
we present a method to perform scheduling for control-
dominated designs using automata. The design informa-
tion, as well as the constraints, can be uniformly treated
using finite automata as the underlying model. The au-
tomata model is suited for describing sets of schedules since
a schedule for a process can be described by the sequences
of values, or traces, which appear on its inputs and out-
puts. The set of allowable traces represents all feasible
schedules for the design, and therefore is a complete repre-
sentation of the design space. The types of constraints that
can be modelled by automata can be very general. In this
work, we show how timing, resource, and synchronization
constraints can be represented using automata.

An important aspect of our approach is that the au-
tomata model is a specification tool, meaning that nothing
structural is implied about the final implementation. Rep-
resenting the set of possible execution traces, or schedules,
through automata allows us to reason about the behavior
of the design. Thus, our work is different from the large
body of research related to control-unit optimization [8, 9].

We propose an exact solution method to the scheduling
problem by leveraging results from implicit state enumer-



ation of FSMs using BDDs. The resulting BDD model im-
plicitly enumerates all feasible schedules that satisfy the
specification and its constraints. From this model, opti-
mization with respect to the latency is performed.

Our framework fits into a typical design process as fol-
lows. First, a design is modeled using hardware descrip-
tion language (HDL), and compiling the design into a set
of interacting automata (Section 2). Constraints are also
represented in automata form. An automaton representing
all degrees of freedom can then be generated by taking the
product of the constraint automata and the specification
automaton. If solutions satisfying the constraints exist,
then the product automaton will be non-empty (Section
3). A minimum-latency schedule is then computed from
the product automaton using a shortest path algorithm
(Section 4). We present some experimental results in Sec-
tion 5.

2 Modeling behavior with automata

In this section, we consider behavior for synchronous, se-
quential systems. A system can be viewed as a set of inter-
acting components, specified by an HDL such as VHDL,
Verilog or HardwareC. Without loss of generality, we use
HardwareC [10] as our specification language. We assume
hardware models can be interpreted as a set of operations
and dependencies [3]. Operations are assumed to be syn-
chronized to a fixed-rate clock and take a single cycle to
complete. Multiple-cycle operations are modelled by a
chain of single-cycle of operations.

Each component in the system can be modelled by the
notion of a process. Process specification can be obtained
by examining the ports through which a component com-
municates with the environment. The sequence of values
that occur on the input and output ports over time can be
used to specify the behavior of the component. A trace is
a (possibly infinite) sequence of binary values taken over
the input/output ports over each clock cycle. A processis
a set of traces that describe the input-output behavior of
the design.

An efficient finite representation is necessary in order
to rapidly manipulate traces. To this purpose an automa-
ton model is used. A non-deterministic finite automaton
is described by a finite set of S of states, a subset Z C S
of initial states, and a transition relation § : § x £ — 25,
computing the set of possible next states corresponding to
each state and input symbols . In the context of describ-
ing processes, the initial state of an automaton is also the
state at which the process begins its execution. The final
state is also the state in which all possible execution flows
for the process terminate.

It is important to note that the behaviors being mod-
eled are non-deterministic: i.e. for a given input, a set of
output behaviors is allowed. The non-determinism repre-
sents the flexibility in schedules.

Throughout the rest of the paper, we will illustrate our
concepts through the following two designs.

Example 1 (Addition Example)

The following segment of generic HDL specifies a
simple execution of loading, adding and storing
some values.

496

Figure 1: Specification automaton for computation segment
example

procedure add (A, B, C, X, Y)
in port A, B, C;
out port X, Y;

{

load A;
load B;
load C;
X =A + B;
Y=A+C;
store x;
store y;

}

We make some simplifying assumptions. The load
and store statements are executed in sequence,
i.e. there is only one physical port for I/O oper-
ations. Initially, we assume that load operations
can take infinitely to complete, and store oper-
ations take 1 cycle. The add operations require
one cycle to complete. The automaton for this
segment is shown in Figure 1. Each possible path
in the automaton describes an acceptable trace for
the execution of the HDL segment. The segment
first sequentially loads values for A, B, and C, and
then computes X = A+ B andY = A + C. The
original automaton exhibits all possible scheduling
of operations. The left path in the automaton first
computes X, followed by Y, using only 1 adder.
The middle path first computes Y then X using 1
adder. The right path computes X and Y in par-
allel, with 2 adders required. Finally, the values
for X and Y are stored sequentially. O

Example 2 (Communication Example)

This example shows how automata-based
specification can be used to model the degrees
of freedom among interacting components. We

RQST

ACK

DONE

Block A Block B

()

Figure 2: (a) Block diagram and (b) timing diagram for com-
munication example



wansition abel
writs RQST =1 (RQGST, ACK, DONE)
while (1 ACKO)

write DONE = 1

Figure 3: Automaton description for Block A.

use this example to illustrate how synchroniza-
tion constraints can be used to optimize the block.
Block A represents a component in a system to be
optimized. It interacts with another component
in the system, Block B, which acts as a synchro-
nization constraint (Figure 2.a}. From Block A’s
interaction with the environment, the implemen-
tation for Block A can be optimized. The timing
specification for Block A (Fig. 2.b) is:

Block A
1. Sends RQST signalin 1 to 3 cycles.
2. Waits (up to oo time) for ACK signal.

3. Finally, after a possibly oo time, block A
emits a DONE signal.

This type of communication can take place, for
example, in a DMA controller requesting access
for a bus. The HDL description for the block can

be written as :

procedure block_A(RQST, ACK, DONE)
out port RQST, DONE;
in port ACK;
{
write RQST = 1;
while (! ACK) {}
write DONE = 1;
reset signals;

}

/* wait for ack */

The automaton description for Block A can be de-
rived by looking at the set of traces it can accept.
For example,

1 2 3 4 5 6
RQST 0 1 - - - =
ACK - - 0 1 - -
DONE - - - - 0 1

is a valid trace for Block A (“-" denote don’t care
condition). However,

1 2 3 4 5 6 7 8
RQST o 0 0 1 - — - -
ACK - - - — 0 1 - -
DONE - - - - - - 0 1

is not a valid trace since RQ ST signal took over 3
cycles to assert, violating the timing constraint.

By constructing the set of acceptable traces,
we arrive at the automaton representation for
Block A, shown in Figure 3. O

/# write rqst in 1-3 cycles */

/* write done in >=1 cycles */

497

-

0

O
&'mln

O

J on.
(@ (b)

Figure 4: (a) Automaton for minimum timing constraints, (b)
automaton for maximum timing constraints.

3 Modeling constraints with automata

In this section we show how constraints can be modeled.
Constraints are themselves represented in automata form,
and incorporated into the design automata by forming the
product automaton[11].

The product of two automata A; and A», indicated by
A= A; ® A2. A has a state space defined by S = §; x S,
with initial states 7 = 7; x Z,. The transition relation of
Ais § =66

The underlying technique used in constraint incorpora-
tion and minimal schedule generation is the traversal of the
representation automaton. We leverage results from BDD-
based implicit techniques[12] to traverse the automata and
form their product.

One modification to the standard traversal procedure
is the introduction of a restriction function, which is used
to further restrict the product to contain only the desired
transitions. The restriction function specifies the set of
allowable transitions to next states. During each iteration
of product traversal, the restriction function is conjoined
with the set of next states to insure only the allowable set
of states are reached.

In the cases where there are no solutions that satisfy the
constraints, the product formation process will result in a
null automaton. Intuitively, this means that there is no
intersection between the design space and the constraint
space. Conversely, as long as the product is not null, there
exists a feasible solution to the problem.

Although the concepts in this paper are described in
an explicit notation, note that the actual manipulation of
automata is done in the implicit manner mentioned above.

3.1 Timing constraints

Figure (4) shows automata model for timing constraints.
We assume that each transition in the automaton repre-
sents one clock cycle. To model a minimum timing con-
straint of tmin cycles between two operations A and B,
the constraint automaton contains fmin serial transitions
to “NOOP” states, and a self-loop transition on state A
(Figure 4.a). The automaton forces at least tmin cycles
to expire before B is reached. For a maximum timing
constraint of ¢maz between A and B (Figure 4.b), each in-
termediate “NOOP” state contains a transition to state B.
State B therefore must be reached by at most t,;nas cycles.



Figure 5: Timing constraint example: (a) 3-cycle maximum
timing constraint on load A; (b) 2-cycle minimum timing con-

(a) (b)

straint on load B.

Example 3 (Timing constraint) Consider
the addition computation of Example (1), suppose
we wish to impose a mazimum timing constraint of
3 cycles to the load operation on A. The resulting

product automaton after applying the constraint
is shown in Figure 5.a. The automaton models all
possible execution traces representing the behav-
ior that load A must complete in 3 cycles.

Suppose we wish to impose a minimum timing
constraint of 2 cycles on the load operation on
B. The resulting automaton is shown in Figure
5.b. The automaton models all possible execution
traces for load B to complete after the minimum
of 2 cycles. O

3.2 Resource constraints

Given a constraint on the number of instances for a par-
ticular resource, we construct a comparator automaton
for that resource. The automaton compares the num-
ber of resources and the number of instances being uti-
lized. The comparator outputs a 1 if num_instances <
num_resources, otherwise it outputs 0. The comparator
output is then intersected with the global output func-
tion. Therefore, during implicit traversal of the product
automaton, those schedules that violate the resource con-
straint (therefore causing the global output to be 0) are
not constructed, leaving only those schedules that satisfy
the constraint.

Example 4 (Resource constraint) Con-
sider the addition segment of Example (1). Sup-
pose we place a resource constraint restricting the
number of adders to one. A comparator (Fig. 6.a)
automaton testing for schedules utilizing only one
adder is constructed as part of the global out-
put function. The resulting product automaton

498

instances max#ofl _ 4
utilized resources
out
(£

Figure 6: Resource constraint example: (a) Comparator used
during implicit traversal, (b) Adder segment constrained by one
adder.

is shown in Figure 6.b. The path which computes

the additions in parallel (which requires 2 adders)

is eliminated. However, all schedules which re-

quire one adder are still present. O

3.3 Synchronization constraints

The specification and incorporation of more complicated
constraints due to interaction of a hardware module with
the environment (or between two modules) is done with a
similar procedure. The environmental constraint is speci-
fied by an automaton (derived from an HDL), and product
between the design and constraint is then formed.

Example 5 (Synchronization con-
straint)

Referring to the communication example, sup-
pose Block A interacts with a Block B, where

Block B is specified as:

Block B (constraint)
1. Waits (up to oo time) for RQST signal.
2. Outputs ACK signal in 1 to 2 cycles.
3. Waits for the DONE signal.

The generic HDL description is as follows:

procedure block_B(RQST, ACK, DONE)
in port RQST;
out port ACK, DONE;
{
while ('RQST) {}
ACK = 1;
while (! DOENE) {} /# wait for done */
reset signals;

}

The automaton description for Block B is shown
in Figure 7.a. After constraining Block A with B,
the product automaton is formed using implicit
traversal. The result, in Figure 7.b, shows all ac-
ceptable execution traces for Block A. The orig-
inal specifications for A and B specify a commu-
nication protocol which is fully blocking, i.e. the
processes wait until the required signals become
available. This type of communication can take
place, for example, in a CPU communicating with
a DMA controller. O

/* wait for rqst */

/* send ack in 1-2 cycles */



writs RQST = 1

Figure 7: Synchronization constraint example: (a) Automaton
for environmental constraint (Block B), (b) Product automaton
for Block A ® Block B.

4 Scheduling using automata

So far, we have described the formation of automaton un-
der a variety of constraints.

In general, there are many possible optimization cost
criteria. Past approaches in using automata for sequential
synthesis have focused mainly on minimization of states
among interacting finite state machines, which loosely cor-
responds to area minimization (e.g. [13]). Other sequential
logic level algorithms are surveyed in [9].

Our optimization goal is to target performance. Since
we are dealing with designs at a high-level, we take the
clock cycle as a fixed parameter and minimize the latency,
where the latency of a process is the number of clock cycles
required to execute the process.

In this section, we present an algorithm that computes
a schedule which minimizes the latency of the process us-
ing the product automaton. Despite the intractable nature
of the problem, we note that the minimization algorithm is
polynomial in the size of the product automaton. There-
fore, the challenge lies in forming the automaton of rea-
sonable size, since the problem size is not polynomially
bounded. We rely heavily on the efficiency of BDD repre-
sentation and implicit traversal procedure.

The product automaton contains all the degrees of free-
dom from the original specification and the constraints. In
devising the algorithm, we distinguish between two types
of non-determinism that may exist in the behavior:

1. First, there is the non-determinism that arises from
different output schedules given constant inputs.
This corresponds to the design space satisfying
the constraints. The algorithm must choose one
minimum-latency schedule from the set of possible
output schedules. In this case, there is only one
execution path for the process, and is said to be
data-independent since the latency of the process is
independent of data inputs.

2. The second type is the existence of alternate exe-
cution paths due to runtime changes in the inputs.
We define those processes whose execution latency
depends on inputs at execution time to be data-
dependent.

499

write RQST = 1

while (1 ACK)

)
}

write DONE = 1

Figure 8: Shortest path for (a) Addition example, (b) Com-
munication example. The shortest paths are marked by dark
transitions.

We first address processes exhibiting non-determinism
of the first type. We then generalize to the second.

4.1 Solution technique for data-independent
models

For data-independent designs, all paths in the product au-
tomaton correspond to feasible schedules that satisfy con-
straints. We state without proof, the following observation
regarding the minimum-latency schedule of the process.

Proposition 1 Given an automaton representing the exe-
cution flows of a data-independent process, the set of short-
est paths from initial to final state is the set of minimum-
latency schedules.

Example 6 (Shortest path) In this ex-
ample, we show the shortest paths for both the
addition and communication examples. Starting
with the product automata, which represent the
design space after incorporating the various con-
straints, we extract the minimume-latency sched-
ules for each.

Figure 8.a shows the shortest path for the
product automaton for addition example. The
shortest path corresponds to the minimum-latency
schedule since all operations are executed at the
earliest time possible. The alternate path, going
through states 7 and 9, would require the same
latency.

Similarly, Figure 8.b shows the shortest path
for the product automaton for communication ex-
ample. The shortest path corresponds to the
minimum-latency schedule to implement Block A.

This is the minimum-latency implementation
since the execution time of Block A is 3 cycles.
This corresponds to an implementation of the
protocol in which communication is non-blocking,
where the signals can be asserted without any
waiting. This means that the communication is
taking place as fast as possible. This optimization
is only made possible because the environmental



information provided by Block B allows this de-
gree of freedom. As a side note, the similar opti-
mization can be done for Block B as well. O

Shortest path algorithm The product automaton can
be seen as a DAG with each edge of weight 1. Given a
graph in explicit representation, any single-source shortest
path algorithm (such as Dijkstra’s algorithm [14]) can be
used to solve the shortest path problem. Since the size of
automaton is likely to be very large, an explicit representa-
tion and algorithm will probably be ineffective for large de-
signs. In this section we describe a shortest-path algorithm
that can be applied in the implicit traversal framework.

Before proceeding with the algorithm, we define some
terminology. Given the product automaton’s transition
relation § : X — Y, and a subset of its domain S C X, the
image of S under § is §(S) = {6(z) : z € S}. Conversely,
given a function § : X — Y and a subset of its co-domain
T C Y, the inverse image of T under 6 is 6~1(T) = {z €
X : 8(z) € T}. Given a state set Sk, the states reachable
from S in one transition are the image of Sx under the
transition function §. Similarly, the states that can reach
a state set Sk in one transition are the inverse image of
Sk under 6. Given a function f and a variable z, the
existential quantification, or smoothing of f with respect
tozis o f = fo + far.

The algorithm is divided into two steps: a forwardand a
reverse traversal. During forward traversal, the set of next
states reachable in one transition are computed using an
image computation in each iteration. States are assigned a
label corresponding to the iteration in which they are first
reached. During reverse traversal, the set of previous states
that can be reached in one transition are computed using
the inverse-image operation in each iteration. The shortest
path is extracted by taking the state(s) with the highest
label while performing previous state computations. The
algorithm is described in Figure 9. Note that the forward
traversal can be seen as an extension of the implicit state
traversal procedure[12]. The only additional task required
is labeling to state sets during traversal.

In the cases where more than one shortest path exists,
the algorithm can do one of two things: if only one path is
required, then algorithm picks one state to follow in during
reverse traversal. If all shortest paths are desired, then the
reverse traversal must be performed for each of the possible
states in each iteration.

Example 7 Using Figure 8, we perform the
shortest path computation using the above al-
gorithm. For the addition example, following
the state labeling in Figure 8.a, the run of the
algorithm looks like:

forward reverse
s.0: 1 s.7: 12
s 1: 2 4 8_6: 11
8.2:3 5 s_5: 10 (picking 1 path)
s_3: 6 s.4: 8
5.4: 7 8 s.3: 6
s.5: 9 1 s_2: 5
s_6: 11 s_1: 4
s_7: 12 s.0: 1

The resulting path can be traced by following
the reverse traversal starting at so to sz, corre-

500

ForwardTraversal (A) {
So = InitialState (A);
i=1;
while (FinalState (A) € S;)
Si = image(Si—_1) — U;;; Sj;
i=it+ 1

control_steps = 1;

ReverseTraversal( A, control steps) {
n = control.steps;
sn = FinalState(A);
i=n;
while (i > 0) {
3 = inverse-image(S;) n Si—1;
t=1—-1;
}
}

Figure 9: The implicit shortest path algorithm.

sponds to the darkend path in the figure. For
communication example, it can be easily ver-
ified that the shortest path is through states
1,4,6,1. O

4.2 Solution technique for data-dependent

models

Given automata models whose execution latencies depend
on input changes, we can easily extend the shortest path
concept from the previous section. Since the input val-
ues are not known at synthesis time, paths for all possible
input data values must be explored. In other words, a fea-
sible schedule for data-dependent operations is one that
contains an implementation for all possible combinations
of input data values. The minimum-latency schedule is
the feasible schedule that has the lowest number of control
steps.

For processes with data-dependent operations, there are
two types of variables in the product automaton BDD:
state variables, which describe sequencing within an exe-
cution flow; and input data variables, which describe alter-
nate execution flows due to data dependencies. A product
automaton for data-dependent designs can be transformed
into a data-independent one by removing the nondeter-
minism of the input data variables. This is achieved by
applying the smoothing operation on the input data vari-
ables. The result is a product automaton BDD that con-
sists of state variables only. We then use the same short-
est path algorithm of the previous section to compute the
minimum-latency schedule.

5 Results

The communication example shows the utilization of en-
vironmental constraints arising from component interac-
tion. The degrees of freedom explored can not be achieved
by previous scheduling algorithms. Individually scheduled,
Block A and Block B would require blocking mechanisms
in its synchronization. Using the automaton model, since



Benchmark Control steps | BDD size [ cpu(sec)
ged 4 884 5.6
diffeq (1 alu) 5 3290 13.3
tseng (1 alu) 5 7299 49.0
parker86 (1 alu) 10 7704 103.8
ecc.encode 18 15438 155.2
ecc.decode 19 2788 90.4

Table 1: Resource constrained scheduling results

multipliers | ALUs | Control steps | cpu(sec)
3 3 15 357.3
2 3 15 273.2
1 3 16 §51.3
3 2 17 605.9
2 2 17 673.1
1 2 17 1010.7
3 1 28 536.2

Table 2: Elliptic schedule variances due to changes in re-
sources

Block A can be scheduled with Block B as a constraint,
the communication is made non-blocking, which results in
a faster schedule and probably less hardware in the imple-
mentation.

We have implemented a version of the automata frame-
work and the scheduling algorithm described in this pa-
per. We use HardwareC as our entry HDL to describe our
processes and constraints. HERCULES is used to translate
the description into a control-flow graph intermediate form
known as SIF. From SIF, the set of interacting automata
is built and the product automaton is formed. The last
step is to extract the shortest path which consists of the
minimum-latency schedule.

We have run our algorithm on a set of standard high-
level synthesis benchmarks. We impose resource con-
straints on selected benchmarks in order for our tool to
solve more difficult instances of scheduling problems. The
choice of a good variable ordering to form the product au-
tomaton is crucial to the feasibililty of the method. It
is possible to construct an effective ordering because the
automaton structure is known a priori. In Table (1), we
show the time it takes to to construct the product au-
tomaton and produce the minimum-schedule. The BDD
size refers to the largest intermediate BDD encountered.
The resource being constrained are included in parenthesis.
The runtimes are in seconds on a DecStation 5000/240.

As an example, we vary resource constraints on elliptic.
Table (2) shows the number of control steps as number
of multipliers and ALU are varied. We assume that both
ALU and multiplier take 1 cycle to complete. When we
restrict the maximum timing constraint to less than 15
cycles (with no resource constraints), no feasible schedule
exists.

6 Conclusion and future work

In this paper, we have demonstrated a novel way of using
an automaton formulation for design representation and
synthesis under general environmental constraints. In par-
ticular, we demonstrated that scheduling can be performed
using environmental constraints (such as flexibility due

501

to interaction with other components). These constraints
are more general than the traditional resource/timing con-
straints.

We have shown that efficient state representation and
traversal techniques can be extended to the high-level syn-
thesis domain, in particular to scheduling. The experimen-
tal results show that it is feasible to apply our method to
practical examples.

7 Acknowledgement

Jerome Fron implemented the SIF to automata compiler.
The authors would like to thank David Ku for his com-
ments. This research is sponsered by NSF-ARPA, under
grant No. MIP 9115432.

References

[1) M. Garey and D. Johnson, Computers and Intractability.
W. Freeman and Company, 1979.

[2) C. Gebotys and M. Elmasry, Optimal VLSI Architectural
Synthesis: Area, Performance and Testability. Kluwer
Academic Publishers, 1992.

D. Gajski, N. Dutt, A. Wu, and S. Lin, High-level Syn-
thesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

D. Filo, D. C. Ku, C. N. Coelho, and G. D. Micheli, “In-
terface optimization for concurrent systems under timing
constraints,” JEEE Transactions on VLSI Systems, vol. 1,
no. 3, pp. 268-281, Sept. 1993.

I. Radivojevi¢ and F. Brewer, “A new symbolic technique
for control-dependent scheduling,” tech. rep., U.C. Santa
Barbara, Deptartment of Electrical and Computer Engi-
neering, Oct. 1993.

J. Fron, J. C.-Y. Yang, M. Damiani, and G. D. Micheli, “A
synthesis framework based on trace and automata theory,”
in International Workshop on Logic Synthesis, pp. 5cl-
5¢15, 1993.

M. Damiani, “Non-deterministic finite state machines and
sequential don't cares,” 1994. To appear in proceedings of
European Conference on Design Automation.

G. Saucier, M. C. Depaulet, and P. Sicard, “Asyl: A rule-
based system for controller synthesis,” IEEE Transactions
on CAD/ICAS, pp. 1088-1097, Nov. 1987.

P. Ashar, S. Devadas, and A. R. Newton, Sequential Logic
Synthesis. Kluwer Academic Publishers, 1992.

D. Ku and G. De Micheli, High Level Synthesis of ASICs
Under Timing and Synchronizaetion Constraints. Kluwer
Academic Publishers, June 1992.

Z. Kohavi, Swiiching and Finite Automata Theory. New
York NY: McGraw-Hill, 1978.

0. Coudert and J. Madre, “A unified framework for the for-
mal verification of sequential circuits,” in JCCAD, Proceed-
ings of the International Conference on Computer-Aided
Design, pp. 126-129, Nov. 1990.

J. Kim and M. M. Newborn, “The simplification of sequen-
tial machines with input restrictions,” JEEE Transactions
on Computers, pp. 1440-1443, Dec. 1972.

T. Cormen, C. Leiserson, and R. Rivest, Introduction to

Algorithms. San Francisco CA: McGraw Hill, 1990.

(3]

(4]

(5]

G

(8

[9]

—

[10]

(1]

{12]

[13]

[14]



