COMPUTING PRACTICES

Program Implementation
Schemes for Hardware-
Software Systems

Rajesh K. Gupta, University of Illinois at Urbana-Champaign

Claudionor N. Coelho Jr. and Giovanni De Micheli, Stanford University

ecent advances in the design
and synthesis of integrated cir-
. cuits!2 have prompted system
architects to investigate computer-
aided design methods for systems that
contain both application-specific and
predesigned reprogrammable compo-
nents. Although a reprogrammable
microprocessor like the Mips R3000
can implement most system functionali-
ty as a program, dedicated application-
specific integrated circuits (ASICs) are
needed for performance reasons. In
this context, recent advances in ASIC
synthesis and the proliferation of
advanced and inexpensive processors
have stimulated interest in hardware/
software codesign.?

For the most part, we can apply high-
level synthesis techniques to synthesis
of systems containing processors by
treating the latter as a “generalized
resource.” However, the problem is
more complex, since the software on
the processor implements system func-
tionality in an instruction-driven man-
ner with a statically allocated memory
space, whereas ASICs operate as data-
driven reactive elements. Due to these
differences in computational models
and primitive operations in hardware
and software, a new formulation of the
problem of cosynthesis is needed.*

An early version of this article was presented at
the IEEE/ACM-sponsored First International
Workshop on Hardware/Software Codesign. Estes
Park. Colorado. September 30-October 2. 1992.

48

An overview of our
cosynthesis approach

Figure 1 illustrates our cosynthesis
approach. We specify system behavior
using HardwareC, a hardware descrip-
tion language (HDL) that has a C-like
syntax and supports timing and
resource constraints. It also supports
specification of unbounded and
unknown delay operations that can
arise from data-dependent decisions
and external synchronization opera-
tions. The particular choice of a HDL
to specify system functionality is imma-
terial for the cosynthesis formulation
here, and we could use other HDLs
such as Verilog.

The HDL description is compiled
into a system graph model based on
dataflow graphs.* The system graph
model consists of vertices representing
operations and edges representing seri-
alization of those operations (depen-
dencies). The system control flow
orders the model’s concurrent dataflow
sections.

Timing constraints are specified on
specific statements in the input HDL
description. In particular, constraints
on I/O data rates (that is, the rate at
which data is produced or consumed)
are specified using 1/O statements. For
an analysis of timing constraints, see
R. Gupta.

The system graph model is parti-
tioned based on the feasibility of a

0018-9162/94/84.00 © 1994 [EEE

hardware-software implementation and
the satisfaction of timing constraints.
The partitioning scheme relies on iden-
tifying unbounded delay operations.’
After partitioning, we have a set of con-
currently executing hardware and soft-
ware models that consist of hierarchical,
acyclic system graph models.

Since data-dependent operations can
have unbounded delays, we refer to
these operations as points of synchro-
nization and schedule them dynamical-
ly. This is achieved by using a relative
schedule of operations.’ Briefly, a rela-
tive scheduling formulation allows a
data-driven dynamic schedule of opera-
tions that is feasible under timing con-
straints. Because hardware and soft-
ware rates of execution may differ, it is
important to allow multiple executions
of individual hardware and software
modules to achieve an efficient system
implementation. Moreover, different
execution rates cause variation in rates
of communication across hardware and
software. This form of distributed com-
putation requires the use of appropriate
buffering and handshaking mechanisms.?

The software graph models are then
serialized to minimize temporary regis-
ter storage requirements. From the
serialized graph models, we generate a
corresponding C-code description.
Existing software compilers compile
the C-code into assembly code for the
target processor.

To verify the correctness of imple-
mentations, we use Poseidon, a simula-

COMPUTER

tor that performs concurrent execution
of multiple functional models imple-
mented as software or hardware.® The
hardware component can be simulated
either before or after the structural syn-
thesis phase. The former simulation is
performed at the system graph level
and the latter at the logic level.
Poseidon supports simulation of assem-
bly code for the 8051 microcontroller

and the DLX microprocessor, a RISC-
oriented load/store processor that sup-
ports the Mips R3000 instruction-set
architecture.

Input to Poseidon consists of model
declarations, interconnections, and cor-
responding interfaces. Each model has
an associated clock signal and clock
cycle time used for its simulation. The
interface is specified using components

HDL

specification

Compilation

Assembly
program :

| Mixed system implementation | =

Compilation

System
Structural synthesis environment
model
A
System
!/8
\
i 1] ASICnetlist Poseidon
. . (simulation)

such as wires, queues, registers, memo-
ries, and their protocols.

The rest of this article covers the
software components generated by par-
titioning the graph model shown in the
shaded area in Figure 1.

Target architecture and
assumptions

Figure 2 shows our target architec-
ture, a general-purpose processor
assisted by application-specific hard-
ware components. To simplify cosyn-
thesis, we make the following assump-
tions:

* We use a single reprogrammable
component because multiple repro-
grammable components require
additional software synchronization
and memory protection to facilitate
safe multiprocessing.

* We assume that the memory sub-
system has a single level to avoid
the complexities that arise when
analyzing and synthesizing hierar-
chical memory subsystems.

» The reprogrammable component is
always the bus master. Whereas
most processors come with facilities
for bus control, inclusion of such
functionality on an ASIC would
greatly increase total hardware
cost.

. MEMORY
ML Program

" User data
interface buffer

Micro- ﬁ
processor
Reprogrammable Application-
component specific
components

Figure 1. System synthesis procedure.

January 1994

Figure 2. Target system architecture.

49

COMPUTING PRACTICES {5 i s

Flgure3. Example of a HardwareC
process with unbounded delay operations.

¢ Finally, we assume that the repro-
grammable component contains a
sufficient number of maskable
interrupt input signals. To simplify
further, these interrupts are unvec-
tored, and each has a predefined,
unique destination address.

The target architecture consists of
the most essential elements of hard-
ware-software systems. Although sim-
plified to make the cosynthesis problem
tractable, it is general enough to imple-
ment a large class of embedded sys-
tems.

Implementation of soft-
ware components

As mentioned above, the software
component is described as a set of hier-
archical, acyclic graph models. Using
hierarchy to describe calls and loops,
the graph model pushes the uncertainty
of conditional execution paths into the
uncertainty of delay. The uncertainty of
loop executions reflects the uncertainty
as to how many times a called graph
model is executed.

Figure 3 shows a HardwareC process
description containing message-passing
receive, conditional, and loop opera-
tions. A process in HardwareC exe-

50

Figure 4. A graph model cdnlainiﬁg unb(;;nded and unknown déiﬁy operations.

cutes concurrently with other processes
in the system specification. A process
restarts itself upon completion of the
last operation in the process body.
Thus, there exists an implied outermost
loop that contains the body of the
process model. The process body can
be specified with varying degrees of
parallelism, and operations within a
process body need not be executed
sequentially.

The two graphs in Figure 4, G, and
Gioop» comprise the hierarchical graph
model for the process example. The
bold circles indicate operations with
unbounded or unknown execution
delays. Whether a graph can be imple-
mented as single or multiple routines
depends on the points of synchroniza-
tion. A simple graph model that lacks

multiple synchronization points can be
implemented as a single routine. A
hierarchical system model is imple-
mented as a set of routines, where each
routine corresponds to a graph in the
model hierarchy.

We call a program implementation a
program thread because the graph
model’s operations are serialized in
software. Thus, the software compo-
nent consists of a set of program
threads. These threads may be hierar-
chically related, or some may need to
be executed concurrently. Concurrency
can be achieved by using an interleaved
execution model as we explain later.

A program thread can be initiated by
a synchronization operation such as a
blocking receive operation (rcv_synch).
However, all operations in a thread

COMPUTER

have fixed delays, so the (unknown) delay in
executing the synchronization operation
appears as a delay in scheduling the pro-
gram thread and is not considered a part of
the thread latency. Therefore, an upper
bound on the latency of each thread is
known statically.

The graph model in Figure 4 has two
program threads, Tg and Tioep. Tp cOn-
sists of the receive operation followed
by the port-read and other operations,
while Top consists of serialized opera-
tions in the corresponding graph body
(see Figure 5).

Upon synchronization, all the opera-
tions in a given graph model will even-
tually execute. Thus, the corresponding
routines can be constructed with known
and bounded latencies. As with the
graph model, the uncertainty due to
data-dependent delay operations is
related to the individual routine’s invo-
cations. A software implementation
with dynamic invocations of fixed-
latency program threads simplifies the
software’s capability to satisfy data-rate
constraints. We can determine bounds
on software performance even in the
presence of unbounded delay opera-
tions based on its implementation of
program threads.

In the following sections, we describe
a code-level transformation of the data-
dependent loop operations that makes
it possible to observe imposed I/O rate
constraints. In cases where such trans-
formations are not possible, we use
processor interrupts, along with bounds
on the number of interrupts and inter-
rupt latencies, to ensure satisfaction of
rate constraints.

Rate constraints and software perfor-
mance. We derive the data-rate con-
straints on the software component’s
I/O from the corresponding constraints
on system I/Os. A data-rate constraint
on an input (output) specifies a lower
bound on the samples per second that
the I/O data can consume (produce). In
a deterministic software component,
that is, a software component with
known and bounded execution delays,
precise data rates can be computed and
checked against corresponding data-
rate constraints. However, the presence

January 1994

of an unbounded delay operation
between consecutive read (write) oper-
ations requires computation of statisti-
cal measures — such as the distribution
of input data value and interarrival
time — to determine the rate of data
production and consumption.

Data-dependent loop operations are
major contributors to the variability of
data rates, since the delay due to these
operations consists of active execution
times rather than idle-wait-type delays
encountered by the external synchro-
nization operations. In some cases, we
can avoid statistical measures by trans-
forming the dynamic loop execution
model into a corresponding pseudostat-
ic loop execution model, as follows.

Figure 6 shows a software compo-
nent that reads a value and then per-
forms the data-dependent delay opera-
tion shown in Figure 7. The ASIC
sends data to the processor on port x at
an input rate constraint of p samples
per second. The processor’s function is
modeled by the HardwareC process
fragment in Figure 7a, wherein x is a
Boolean array that represents an inte-
ger. In its software implementation, this
behavior is translated into the two pro-
gram threads in 7b, one performing the
read operations

R S S R S R A e R

For the HardwareC process in Figure
7a, the overall execution time of the
While statement determines the inter-
val between the read operation’s suc-
cessive executions. Due to the variable-
delay loop operation, the input data
rate at port x is variable and is depen-
dent upon the value of x as a function
of time. For each invocation of thread
T1, there are x invocations of thread T2
before thread T1 can be resumed. In
the absence of any other data-depen-
dency to operations in the loop body,
thread T1 can be restarted before com-
pleting all invocations of thread T2 by
buffering the data transfer from thread
T1 to T2. Further, if variable x is used
only for indexing the loop iterations,

T

and the other per-
forming operations
in the body of the
loop. For each
execution of
thread T1, there

| Processor |

are x executions of

Figure 6. A mixed implementation that reads a value

thread T2. followed by a data-dependent delay operation.
process test(, ...) [Thread T1 Thread T2
o i loop_

} x(n):

®

detach

Figure 7. v(a) HardwareC process fragment; (b) program threads.

51

process test(x, ...)
in port x [SIZE]
{

integer repeat-count =0 ;

readx;
repeat-count = repeat-count + X;
while (repeat-count >=0) .
{
<loop-body>
repeat-count = repeat-count-1

(a)

Thread T1
read

add op
detach

()

Thread T2

loop_synch
<loop-body>
repeat-count—
detach

Figure 8. Transformation of (a) data-dependent loop into (b) a pseudostatic loop.

the need for an interthread buffer can
be obviated by accumulating the value
of x in a separate loop counter as
shown in Figure 8. We call this loop
construct a pseudostatic loop because
data-rate constraints on I/Os affected
by the data-dependent loop operation
statically determine an upper bound on
the loop body’s number of iterations.

A pseudostatic loop implementation
assumes that there is a repeat-count
counter associated with every loop and
that a loop body must execute as long
as its repeat-count is a nonzero num-
ber. Additionally, the corresponding
loop body does not use the repeat-
count for any purpose other than keep-
ing a count of the remaining iterations.
Under such conditions, the above com-
ponent can be transformed into two
program threads, where one thread
reads port x and increments the repeat-
count for the loop body contained in
the other thread.

In this case, we can provide a bound
on the rate at which port x is read by
scheduling the read thread T1 after m
iterations of the loop body. (Care must
be taken to avoid overflow of this
counter. Generally, overflow can be

avoided if m is greater than or equal to
the average value of x. In the extreme,
we can guarantee that it will not over-
flow if m is greater than the maximum
of x, which is equivalent to assigning
worst case delay to the loop operation.)
Next we consider the problem of
software synchronization and schedul-
ing mechanisms that make a
hardware/software design feasible.

Control flow in the soft-
ware component

Our model for software components
relies on sequential execution of each
thread. Concurrency is achieved
through interleaved execution of the
threads. Multiple program threads
starting with unbounded delay opera-
tions can also be created out of a graph
model. Therefore, software synchro-
nization is needed to ensure correct
ordering of operations within and
between the different program threads.

With multiple threads, we represent
the control flow with a directed flow
graph in which the nodes represent

@ Thread T1 BeforeT1
‘
<bordy> -
enqueue (T2) on cFIFO After T1
@ @ , enqueue (T3) on oFIFO
@ ®) ©

Figure 9. (a) Flow graph with control dependencies; (b) linearized set of opera-
tions; (c) enqueue operation on control FIFO,

52

individual program threads and the
edges indicate control dependencies
(Figure 9a). Since the total number of
program threads and their dependen-
cies are known statically, we construct
the program thread so that it observes
these dependencies.

The threads are identified by unique
tags. A tag can be, for example, its
entry point into the code memory. A
runtime FIFO (first in, first out) called
control FIFO maintains the identifier
tags of the threads that are ready to run
based on control flow (but may still be
waiting for data). Before detaching,
each thread performs one or more
enqueue operations to the FIFO for its
successor threads. In Figure 9b, Body
refers to the linearized set of opera-
tions from the corresponding graph
models. Control dependency from
thread T1 to T2 is built into the code of
T1 by the enqueue operation on the
control FIFO (Figure 9c).

A thread dependency on more than
one predecessor thread (that is, a multi-
ple indegree or fanin node in the flow
graph) is satisfied by ensuring multiple
enqueue operations for the thread by
means of a counter. For example, a
thread node with an indegree of two
would contain a synchronization pre-
amble code as indicated by the While
statement shown in Figure 10a. T1 is
enqueued by T2 and T3, since there are
dependencies from T2 and T3 into T1.
Therefore, T1 must wait for control to
be transfered from T2 and T3. This
control transfer is achieved by counting
the number of times T1 is enqueued in
the control FIFO.

Control transfer for multiple fanin
nodes entails program overheads that

COMPUTER

Thread T1 @ @
while (count |=2) ' line, main};
int current = MAIN;
count = count + 1
detach
}
<body>
count=0
enqueue<successor
threads>on cFIFO #include “line.c”
detach #include “circle.c”
(a) (b)
void main() {
resume(SCHEDULERY);
Figure 10. (a) Thread with multiple input control dependen- J;

cies; (b) directed flow graph.

add to the corresponding threads’
latency. For this reason, an attempt
should be made to reduce multiple
dependencies for a program thread
through careful dependency analysis. In
case of multiple outdegree nodes in the
flow graph, we serialize the enabling of
successor threads.

We have addressed the problem of
achieving concurrency through inter-
leaved execution in software.® The dif-
ferent program threads can be imple-
mented as program subroutines that
operate under a global task scheduler
(or the main program). We can signifi-
cantly reduce the overhead or number
of cycles for each interthread control
transfer operation by placing program
subroutines in a cooperative, rather
than hierarchical, relationship and
implementing them as coroutines.!? For
a DLX microprocessor,9 a coroutine
implementation of program threads
constitutes an overhead of 19 cycles.
We achieve this low overhead by deter-
mining coroutine transfers in our model
at compilation time, and thus an effi-
cient use of registers prevents the high
overhead costs of more general transfer
schemes.

Another scheme for software imple-
mentation is to construct a program
routine using description by cases.!! In
this method, we construct a single pro-
gram with a unique case assignment for
each thread (in a rather large condi-
tional in the final program). A set of
global state registers is used to store the
state of execution of each thread. The
overhead due to this scheme depends
strongly upon the processor’s instruc-
tion-set architecture. For the DLX
microprocessor, the overhead amounts to
35 cycles for each interthread transfer
operation. With so-called CISC proces-

January 1994

do {
Figure 11. Main

program of the
graphics controller
software
component.

#include “transfer_to.h”

int 1astPC[MAXCOROUTINES] = {scheduler, circle,

int *controlFIFO_out = (int *) 0xaa0000;
int *controlFIFO = (int *) 0xab0000;
int *controlFIFO_outak = (int *) 0xac0000;

int nextCoroutine;

void scheduler() {
resume(LINE);
resume(CIRCLE);
while(!RESET) {

nextCoroutine = *controlFIFO;
) while ((nextCoroutine & 0x4) 1= 0x4);
resume(nextCoroutine & 0x3); } }

sors, this scheme reduces the overhead
by reducing the amount of ALU opera-
tions and slightly increasing memory
1/0O operations.

Hardware-software
synchronization

Given the software component’s seri-
al execution, a data transfer from hard-
ware to software must be explicitly syn-
chronized. Using a polling strategy, we
can design the software to perform pre-
meditated transfers from hardware
based on its data requirements. This
requires static scheduling of the hard-
ware component. In cases where soft-
ware is communication limited, that is,
where the processor is busy-waiting for
an I/O operation most of the time, such
a scheme would be sufficient. With no
unbounded delay operations, the soft-
ware component in this scheme can be
a single program thread and data chan-
nel, since all data transfers are serial-
ized. However, this would not support
any branching or reordering of data
arrivals, since dynamic scheduling of
operations in hardware would not be
supported.

To accommodate different rates of

software/hardware execution with
unbounded delay operations, we use
dynamic scheduling of different threads
based on availability of data. One
scheduling mechanism is the above-
mentioned control FIFO that attempts
to ensure that data items are consumed
in the order produced. The hardware-
software interface consists of data
queues on each channel and a control
FIFO that receives and holds the
enabled program threads’ identifiers in
the order they arrive. The control FIFO
depth is sized with the number of
threads of execution, since a thread
execution is stalled pending availability
of the requested data.

The contro! FIFO and associated
control logic can be implemented either
in hardware as a part of the ASIC or in
software. If the control FIFO is imple-
mented in software, the FIFO control
logic is no longer needed, since the con-
trol flow is already in software. In this
case, the data-available lines from data
queues are connected to the processor’s
unvectored interrupt lines, where the
respective interrupt service routines are
used to enqueue the thread identifier
tags into the control FIFO. During
enqueue operations, the interrupts are
disabled to preserve the software con-
trol flow’s integrity.

53

COMPUTING PRACTICES

Table 1. A comparison of control FIFO implementation schemes.

Scheme Program Synchronization Input Data Rate™ Output Data Rate™!
Size Overhead (cycles/coordinate) (cycles/coordinate)
Delay line circle
(bytes) (% cycles) average peak average peak
Hardware CFIFO 5972 0 81 535.2 330 76.4 30
Software CFIFO 6,588 50.0 95 749.5 502 106.8 31
Optimized software CFIFO 6,360 294 95 651.0 407 94.0 31

Results

To illustrate the effectiveness of
hardware/software interface implemen-
tation, we present a portion of a design
for a graphics controller that outputs
pixel coordinates for lines and circles
given the end coordinates or radius.
The system design’s final implementa-
tion consists of line- and circle-drawing
routines in the software component
and an ASIC that performs initial coor-
dinate generation and coordinate trans-
fer to the video RAM. The software
component has two execution threads
corresponding to the line- and circle-
drawing routines. Both program
threads generate coordinates used by
the ASIC. The data-driven dynamic
scheduling of program threads is
achieved with a three-deep control
FIFO. The circle- and line-drawing pro-
gram threads are identified by identifi-
er numbers 1 and 2, respectively. The
program threads are implemented by
using the coroutine scheme described
above. Figure 11 shows the main pro-
gram of a hardware control FIFO
implementation.

Table 1 compares the performance
of different program implementations
using control FIFO in hardware and
software. The hardware implementa-
tion of a control FIFO with a fanin of
three, when synthesized and mapped to

LSI Logic 10K Library of gates costs
228 gates. An equivalent software
implementation adds 388 bytes to the
software component’s overall program
size. Note that the cost of hardware
control FIFO increases as the number
of data queues increases. On the other
hand, software implementation of con-
trol FIFO using interrupt routines to
perform enqueue operations offers
lower implementation costs with a 50-
percent increase in the thread latencies.
For software implementation of control
FIFO, the enqueue and dequeue opera-
tions are described in C and are then
compiled for DLX assembly. The over-
head for enqueue and dequeue opera-
tions is reduced further by manually
optimizing the assembly code for these
operations (see Optimized software
CFIFO in Table 1). This onetime opti-
mization does not affect the program
threads’ C-code description, and it
reduces program size and program
thread overhead (to 29.4 percent) and
improves the data output rate. Note
that we express data I/O rates in terms
of the number of cycles it takes to input
or output a coordinate. Due to the
data-dependent behavior of program
threads, the actual data I/O rates would
vary with the value of the input data. In
this simulation, the input rate is for a
simultaneous drawing of a line and a
five-pixel radius with a width of 1 pixel

Table 2. Software component for system examples.

each; the results are accurate to one
pixel. An input rate of 81 cycles per
coordinate corresponds to approxi-
mately 0.25 million samples per second
for a processor running at 20 MHz.
Similarly, a peak circle output rate of
30 cycles per coordinate corresponds to
a rate of 0.67 million samples per sec-
ond. An implementation of line- and
circle-drawing program threads for the
graphics controller that uses
interthread buffering has a total pro-
gram size of 5,788 bytes for a 62-per-
cent overhead delay per program
thread.

Though instructive, the line- and cir-
cle-drawing algorithms do not fully
exploit the potential of a mixed imple-
mentation. However, a more computa-
tionally intensive operation like spline
generation or operations involving
floating-point arithmetic would greatly
benefit by mixed program implementa-
tions. As an example of complex sys-
tem design, consider an Ethernet-based
network coprocessor. This processor is
modeled as a set of 13 concurrently
executing processes that interact by
means of 24 send and 40 receive opera-
tions. The total HardwareC description
consists of 1,036 lines of code. A mixed
implementation with a software com-
ponent containing 17 cases using
description by cases takes 8,572 bytes
of program and data storage, but it

Example Program implementation Program Size Max. Delay
bytes cycles
Graphics controller Coroutines, Hardware CFIFO 5972 806, 859
Network coprocessor Description by cases, Hardware CFIFO 8,572 56
54 COMPUTER

reduces the overall cost of the ASIC by
23 percent from 10,882 gates to 8,394
gates using LSI Logic 10K Library of
gates. The execution unit resides in the
software component and executes most
of the frame assembly and disassembly
operations. The mixed implementation
meets the following performance
requirements: a maximum propagation
delay of 46.4 microseconds (us), a maxi-
mum jam time of 4.8 pus, a minimum
interframe spacing of 67.2 us, and an
input bit rate for a 10-Mbit/second
operation using Ethernet protocol.
Table 2 lists the software characteristics
for the graphics controller and the net-
work coprocessor.

eprogrammable processors
Roffer a promising means to

realize low-cost embedded
applications. Where possible, portions
of system functionality can be delegat-
ed to the software component instead
of to ASICs.

Software component design for such
systems poses interesting problems
because serial program execution must
interact with concurrent hardware
operations. In our approach to system
synthesis, we implement the software
component as a set of program routines
called threads. We preserve the concur-
rency inherent in the system model by
interleaving the execution of threads.
Further, dynamic scheduling of fixed
latency threads avoids unnecessary seri-
alization of operations in a graph model.

However, even with the simplified
target architecture, accurately charac-
terizing and synthesizing the software
component is challenging, and our
work represents only a first step toward
system software synthesis. We are now
working to extend this model to include
the effects of hierarchical memory
schemes and the reduction of commu-
nication overheads by using channel-
sharing and data-encoding schemes. B

Acknowledgments

This work has benefitted enormously
from discussions with Martin Freeman of
Philips Research. This research was spon-
sored by NSF-ARPA, under grant No. MIP
9115432, and by a fellowship provided by

January 1994

the Center for Integrated Systems and
Philips. The second author was supported by
the fellowship 200212/90.7 from CNPg-
Brazil.

References

1. D. Gajski, Silicon Compilation, Addison-
Wesley Publishing, Reading, Mass.,
1988.

2. R. Camposano and W. Wolf, High-Level
VLSI Synthesis, Kluwer Academic
Publishers, Norwell, Mass., 1991.

3. Presentations at the Int’l Workshop on
Hardware/Software Codesign, 1992,
1993.

4. R.K. Gupta and G. De Micheli,
“Hardware-Software Cosynthesis for
Digital Systems,” IEEE Design & Test
of Computers, Vol. 10, No. 3, Sept. 1993,
pp. 37-53.

5. G. De Micheli et al., “The Olympus
Synthesis System for Digital Design,”
IEEE Design & Test of Computers, Vol.
7, No. 3, Oct. 1990, pp. 37-53.

6. R.K. Gupta, Cosynthesis of Hardware
and Software for Digital Embedded
Systems, doctoral dissertation, Stanford
Univ., Palo Alto, Calif., 1993.

7. R K. Gupta and G. De Micheli,
“System-Level Synthesis Using
Reprogrammable Components,” in
Proc. European Design Automation
Conf., IEEE CS Press, Los Alamitos,
Calif., Order No. 2645-02T, 1992,

pp. 2-7.

8. R.K. Gupta, C. Coelho, and G. De
Micheli, “Synthesis and Simulation of
Digital Systems Containing Interacting
Hardware and Software Components,”
in Proc. 29th Design Automation Conf.,
IEEE CS Press, Los Alamitos, Order
No. 2822-02, 1992, pp. 225-230.

9. J.L. Hennessy and D.A. Patterson,
Computer Architecture: A Quantitative
Approach, Morgan-Kaufmann, Menlo
Park, 1990, pp. 89-137.

10. M.E. Conway, “Design of a Separate
Transition-Diagram Compiler,” Comm.
ACM, Vol. 6, No. 7, July, 1963, pp. 396-
408. :

11. P.J.H. King, “Decision Tables,” The
Computer Journal, Vol. 10, No. 2, Aug.
1967.

Rajesh K. Gupta is an assistant professor in
the Department of Computer Science at the
University of Illinois at Urbana-Champaign.
His primary research interest is the design
and synthesis of VLSI circuits and systems.
He also maintains an active interest in com-
puter architecture and communication sys-
tems.

Gupta received BTech in electrical engi-
neering from the Indian Institute of
Technology, Kanpur, India in 1984, an MS
in electrical engineering and computer sci-
ence from the University of California, at
Berkeley, in 1986, and a PhD in electrical
engineering from Stanford University in
1993. From 1986 to 1989 he was employed at
Intel Corporation, where he worked on
VLSI design as a member of the design
teams for the 80386-SX, 80486, and Pentium
microprocessor devices. He is coauthor of a
patent for a PLL-based clock circuit.

Claudionor N. Coelho Jr. is a doctoral stu-
dent in the Department of Electrical
Engineering at Stanford University. His pri-
mary research interests are high-level syn-
thesis, system-level synthesis, and verifica-
tion. He received a BS degree in electrical
engineering and an MS degree in computer
science from the Universidade Federal de
Minas Gerais, Brazil in 1988 and 1990,
respectively.

Giovanni De Micheli is an associate profes-
sor of electrical engineering and, by cour-
tesy, of computer science at Stanford
University. His research interests include
computer-aided design of integrated circuits,
with particular emphasis on automated syn-
thesis, optimization, and verification of
VLSI circuits. From 1984 to 1986 he worked
at IBM’s T.J. Watson Research Center,
where he was project leader of the Design
Automation Workstation group.

He received a Dr. Eng. degree in nuclear
engineering from the Politecnico di Milano,
Italy, in 1979, MS and PhD degrees in elec-
trical engineering and computer science
from the University of California, at
Berkeley, in 1980 and 1983, respectively. De
Micheli has published extensively and serves
as associate editor of Proceedings of the
IEEE and IEEE Transactions on VLSI
Systems and of Integration: the VLSI
Journal. He is a fellow of the IEEE, and he
was granted a Presidential Young
Investigator award in 1988.

Readers can contact the authors through
R. K. Gupta at the Digital Computer
Laboratory, University of Illinois at Urbana-
Champaign, 1304 West Springfield Ave.,
Room 2214, Urbana, IL 61801; e-mail rgup-
ta@cs.uiuc.edu.

55

