1018

IEICE TRANS. INF. & SYST., VOL. E76-D, NO.9 SEPTEMBER 1993

INVITED PAPER _ Special Issue on Synthesis and Verification of Hardware Design

Optimization of Sequential Synchronous Digital Circuits

Using Structural Models

SUMMARY We present algorithms for the optimization of
sequential synchronous digital circuits using structural models, i.
e. interconnections of combinational logic gates and synchro-
nous registers. This approach contrasts traditional methods
using state diagrams or transition tables and leveraging state
minimization and encoding techniques. In particular, we model
circuits by synchronous logic networks, that are weighted multi-
graphs representing interconnections of gates implementing
scalar combinational functions. With this modeling style, area
and path delays are explicit and their variation is easy to
compute when circuit transformations are applied. Sequential
logic optimization may target cycle-time or area minimization,
possibly under area or cycle-time constraints. - Optimization is
performed by a sequence of transformations, directed to the
desired goal. This paper describes the fundamental mechanisms
for transformations applicable to sequential circuits. We review
first retiming and peripheral retiming techniques. The former
method optimizes the position of the registers, while the latter
repositions the registers to enlarge maximally the combinational
region where combinational restructuring algorithms can be
applied. We consider then synchronous algebraic and Boolean
transformations, that blend combinational transformations with
local retiming. Both classes of transformations require the
representation of circuits by means of logic expressions with
labeled variables, the labels representing discrete time-points.
Algebraic transformations entail manipulation of time-labeled
expressions with algebraic techniques. Boolean transformations
exploit the properties of Boolean algebra and benefit from the
knowledge of don’t care conditions in the search for the best
implementation of local functions. Expressing don’t care condi-
tions for sequential circuits is harder than for combinational
circuits, because of the interaction of variables with different time
labels. In addition, the feasibility of replacing a local function
with another one may not always be verified by checking for the
inclusion of the induced perturbation in local explicit don’t care
set. Indeed, the behavior of sequential circuits, that can be
described appropriately by the relation between input and output
traces, may require relational models to express don’t care
conditions. We describe a general formalism for sequential
optimization by Boolean transformations, where the don’t care
conditions are expressed implicitly by synchronous recurrence
equations. We present then an optimization method for this
model, that can exploit degrees of freedom in optimization not
possible for other methods, and hence providing solutions of
possible superior quality. We conclude by summarizing the
major features and limitations of optimization methods using
structural models.

key words: computer hardware and design, synchronous cir-
cuits, CAD, logic synthesis

Manuscript received January 12, 1993.
t The author is with the Center for Integrated Systems,
Stanford University, Stanford, CA 94305, USA.

Giovanni De MICHELI!, Nonmember

1. Introduction

Computer-aided design (CAD) tools are routinely
used for microelectronic design.. In particular, logic
synthesis and optimization techniques have been
applied with success to product-level design of digital
circuits in the last decade. The dominant use of
semicustom design styles, based on libraries of cells (e.
g. gate-arrays and standard-cells), has motivated the
developments of digital design techniques for multiple-
level logic circuits. The goals of circuit synthesis and
optimization is to minimize the circuit delay (or area)
under area (or delay) constraints, as well as to maxi-
mize circuit testability. The optimization problems are
highly complex to solve, because the related decision
problems are intractable. Thus heuristic methods are
commonly used. '

Combinational logic design problems are well .
understood, even though better solution methods are
continuously searched for [3]. On the other hand,
sequential circuit optimization is still in a state of
evolution. Even though good methods are known,
they do not always perform satisfactorily on some
types of circuits. A better understanding of design
methods for sequential circuits is thus very important
for the development of efficient CAD synthesis tools
and for their widespread acceptance by circuit
designers.

We consider in this paper synchronous circuits,
because most digital designs have synchronous opera-
tion. Synchronous logic circuits are interconnections
of combinational logic gates and registers with syn-
chronous clocking. Feedback connections are
restricted to be through synchronous registers, to guar-
antee race-free design. = Synchronous circuits can be
modeled by the interconnection of their components,
thus using a structural view. Alternatively, the state
transitions can be described in terms of tables or
diagrams. We refer to this modeling style as behavioral
view of synchronous circuits.

Most research on sequential circuit optimization
has used state-based representations, i.e. behavioral
views. In this case, synthesis and optimization relate to
solving classical problems, such as state minimization,
state assignment and decomposition [1], [16]. There




MICHELI: OPTIMIZATION OF SEQUENTIAL SYNCHRONOUS DIGITAL CIRCUITS

are two major drawbacks of this approach. First, the
state information is explicit, but the area and path
delay information is implicit in the state-based repre-
sentation. Thus, figures of merit for optimizing state-
based representations, such as state-count or encoding-
length, are not directly correlated to the actual objec-
tives (e.g. area and/or performance). In particular,
predictions of performance improvement are difficult
to achieve when using state-based models. Second, it is
not possible to take advantage of the original circuit
structure by iteratively improving a netlist-based cir-
cuit specification.

Recently, methods have been suggested for sequen-
tial circuit optimization that use structural models and
stepwise refinement of initial circuits. The optimiza-
tion paradigm parallels combinational multiple-level
logic design, where circuit transformations are iter-
atively applied to circuits, until the objectives are met
or no feasible transformation is found. With structural
models, the area and path delay information is
explicit, while the state information is now implicit.

Synthesis and optimization methods for sequential
circuits using structural models can complement those
methods that exploit behavioral, state-based finite-state
machine models. Advantages and disadvantages exist
in both approaches. Thus it is important for CAD
synthesis systems to incorporate both.

In this paper, we survey optimization methods for
sequential multiple-level digital circuits, represented
by structural models. We assume that the original
circuit, that we would like to optimize by stepwise
refinement, is either a schematic designed by a human,
or a netlist synthesized by high-level synthesis tools or
by classical sequential synthesis programs.

We survey first the state of the art in this field, by
reviewing previous work, such as retiming [13] and
peripheral retiming [14]. We consider then circuit
transformations for synchronous logic networks, with
algebraic and Boolean flavor. We present explicit and

implicit models for representing the don’t care condi- -

tions in synchronous circuits and for exploiting their
degrees of freedom in sequential optimization
methods.

2. Synchronous Sequential Circuit Structural
Model

We consider structural models of digital synchronous
circuits. Such circuits can be specified by interconnec-
tions of combinational logic gates and clocked regis-
ters. The interconnection is arbitrary but no direct
combinational feedback is allowed, to preserve the
synchronous property. For the sake of simplicity, we
assume that all registers are driven by one clock (ie.
single-phase circuits) and that latching is always posi-
tive (or always negative) edgetriggered.  Circuit
designs using master-slave registers fall in this class.

1019

We assume, again for the sake of simplicity, that clock
skew, register setup, hold and propagation times are
negligible.

We model synchronous circuits by synchronous lo
gic networks. A synchronous logic network is de-
scribed in terms of labeled Boolean variables and
Boolean equations. Each Boolean variable corre-
sponds to either a primary input/output of the circuit
or to the output of a combinational logic gate.
Boolean variables are labeled, the label being an inte-
ger that represents a discrete point on the time axis.
The notions of literal, sum and/or product of literals,
as well as function and relation over time-labeled
variables, are straightforward extensions of the usual
concepts in switching theory. In this paper, labels are
represented as parenthesized superscripts. We denote
the Boolean expressions associated with variables by
capital calligraphic letters. ' -

Example 2. 1: ‘A synchronous circuit is shown in Fig.
1(a). The circuit decodes an incoming data stream
coded with bi-phase marks, as produced by a compact-
disk player. The corresponding synchronous logic
network is described by the following set of equations:

a(n)= i(")@i("'”
b(n)= i("—l)@i("_z)
c(n)= a(n)b(n)
d™M=c"+ p, (]

oM = gmgn=1) 4. gr(m) pyin)

P = ()
§M = gn=1) _
The right-hand side of the first expression is denoted as

A, the second by B, et cetera. d
The network is modeled by the synchronous

(a)

(b)

Fig. 1 {b) Synchronous logic net-

work.

(a) Synchronous circuit.

i
- - oo e e S P et a1 v




1020

network graph, that is a directed weighted multi-graph
G(V,E, W), whose vertex set ¥=V'UV UV is
partitioned into input, internal and output vertices that
are in one-to-one correspondence with the variables
corresponding to the set of primary inputs, logic gates
and primary outputs respectively. The subscript of a
vertex is the corresponding variable. For example, we
denote the vertex related to variable i as vertex v;.

When considering the set of Boolean equations,
the dependency relation of the support variables
induces the edge set E of the graph, and the synchro-
nous delay offsets, i.e. difference in time labels, the
corresponding edge weight set W. With this model, a
direct connection between two logic gates corresponds
to an edge with zero weight, while a connection
through a register to a unit weight. A connection
through a k-stage shift register has weight k. Zero
weights are sometimes omitted in the graphical repre-
sentations. The graph is a multi-graph, because the
inputs to a logic gate may be signals with different
synchronous delay offsets, and thus be modeled by
a vertex that is head of multiple edges with different
weights. For completeness, there is also a (weighted)
edge to each output vertex in V° from the internal
vertex in V¢ corresponding to the logic gate generating
that output signal.

Example 2.2 The synchronous network graph corre-
sponding to the network of Example 1(a) is shown in
Fig. 1(b). There are two edges between v; and v, with
zero and unit weight. Note that zero-weights are not
shown. There are two unit-weighted cycles. O

For each pair of vertices joined by a path in G(V,
E, W), the path weight is the sum of the weights along
the path. We assume that each cycle (i.e. closed path)
has strictly positive weight, to model the restriction of
breaking combinational logic cycles by at least one
register.

In general, a synchronous logic network may have
cyclic dependencies, i.e. its corresponding graph be
cyclic. A network is called definite, or unidirectional ,
when the graph G(V, E, W) is acyclic. A network is
called pipeline when it is definite and all path weights
from any input to any output vertex are equal. Note
that the combinational logic network (without syn-
chronous registers) introduced by Brayton [5] is just a
special case of the synchronous logic network that is
definite and whose labels are all zeroes.

We associate a propagation delay with each gate
and corresponding vertex. For each pair of vertices
joined by a path in G(V, E, W), the path delay is the
sum of the propagation delays along the path.

3. Algorithms for Sequential Optimization

There are different approaches to optimizing synchro-
nous networks using structural models. The simplest is
to ignore the registers and to concentrate on the com-

IEICE TRANS. INF. & SYST., VOL. E76-D, NO.9 SEPTEMBER 1993

binational component, using techniques of com-
binational logic synthesis [3]. This is equivalent to
deleting the edges with strictly positive weights, and to
optimizing the corresponding combinational logic
network. Needless to say, the removal of the registers
from the network segments the circuit and weakens the
optimality.

A radically different approach is retiming. By
retiming a network, we move the position of the regis-
ters only. Hence we do not change the graph topology,
but we modify the weight set W. Leiserson and Saxe
[13] presented polynomially-bound algorithms for
finding the optimum retiming, that minimizes the
circuit cycle-time or area. Unfortunately, retiming may
not lead to the best implementation, because only
register movement is considered.

The most general approach to synchronous logic
optimization is to perform network transformations
that blend retiming with combinational transforma-
tions. Such transformations can have the algebraic or
Boolean flavor. In the latter case, the concept of don’t
care conditions must be extended to synchronous
networks. .

We review first previous work by presenting retim-
ing and a recent extension, called peripheral retiming.
Then we survey recent results -on synchronous logic
transformations using algebraic and Boolean tech-
niques. We consider last the specification of don’t care
conditions for synchronous networks, and optimiza-
tion methods with both explicit and implicit represen-
tations of don’t care conditions.

We concentrate in this paper on the fundamental
mechanisms for circuit transformations. The transfor-
mations themselves can be driven by an overall
performance-oriented (or area-oriented) optimization
algorithm, that selects the transformation type and the
targets. We refer the reader to references [2], [5], [10],
[12], [15] for details and examples of overall optimiza-
tion strategies. ,

3.1 Retiming

The original retiming algorithm was presented first by
Leiserson and Saxe. A later paper [13] encompasses all
their major contributions to the solution of the prob-
lem. The circuit cycle-time (or area) can be minimized
by moving the register position, subject to area (or
cycle-time) constraints. We review here cycle-time
minimization only. While retiming a circuit, the com-
binational component is not modified. Therefore
optimizing the cycle-time by retiming is orthogonal to
performance-optimization by combinational logic
speed-up [17].

Leiserson showed that the minimum clock period
corresponds to some path delay between a pair of
vertices of the synchronous logic network. Therefore
the search for an optimum cycle-time can be reduced to

1 el R e



MICHELI: OPTIMIZATION OF SEQUENTIAL SYNCHRONOUS DIGITAL CIRCUITS

O ey

(a)

(b)

1021

%D—::D—

(d

Fig.2 (a) Circuit fragment. (b) Network fragment. (¢) Circuit fragment

after retiming.
omitted.)

verifying whether a retimed circuit can operate at a
given clock rate.

To formalize the retiming problem, we associate a
retiming vector to the network, whose entries are in
one-to-one correspondence with the vertices. Each
element represents the amount of register units moved
from the outputs of the corresponding gate to its
inputs. (Negative entries represent the opposite regis-
ter movement). The retiming of the corresponding
variable is equivalent to adding the retiming entry to
its label. The retiming of an algebraic expression the
retiming of all its variables. We denote the retiming of
a variable or an expression by an integer k by the
operator R*(-). The weight on each edge is increased
by the retiming of its head and decreased by the retim-
ing of its tail.

Example 3. 1: Consider the circuit fragment shown in
Fig. 2(a), whose network is shown in Fig.2(b). A
retiming of vertex v by 1 leads to the circuit fragment
of Fig.2(c), whose network is shown in Fig.2(d).
Note that the fragment can be expressed by the equa-
tions: xM=cr-Ngm; oM=gMpM pefore retiming
and xM=cMgm; cM=gr-Dp-1 after retiming.
Thus retiming vertex v, by 1 corresponds to adding 1 to
the label of variable ¢. (Note that c**V=ab"™ is
equivalent to ¢™=a""""p""".) O

A necessary condition for a valid retiming is that
the weights of all the edges remain non-negative. A
second necessary condition is that the weight on any
path whose propagation delay exceeds the cycle-time
must be at least one. This condition is equivalent to
stating that in any valid implementation the delay of
any path with zero registers (weight) is bounded from
above by the cycle-time.

Both conditions can be represented by linear in-
equalities in terms of the entries of the retiming vector.
Therefore, the retiming decision problem can be cast
into solving a set of inequalities, or equivalently check-
ing for positive cycles 'in a representative graphs.
Retiming can be solved exactly by the Bellman-Ford
Algorithms in O(|V|*) time [13], or by more efficient

(d) Network fragment after retiming.

(Zero weights are

relaxation schemes that can exploit the sparsity of the
network. It can also be cast as a mixed integer-linear
program and solved by the simplex algorithm.
_ Despite the fact that retiming guarantees a global
minimum cycle-time, it has not been used much by
logic synthesis systems. The main reasons are the
following.: Retiming was conceived for communica-
tion networks and not for logic networks. The assump-
tion of constant gate delay is invalidated by the fact
that gate fanouts change as registers move. At times,
performance-optimal implementations require adding
several registers and may have unacceptable area. Note
that when wiring is taken into account, excessive area
correlates to degraded performance. Moreover, retim-
ing neglects the possibility of restructuring the com-
binational component of the network, which is the
source of the propagation delay. e
Extensions to retiming have been proposed, such
as retiming for multiple-phase circuits [4].

3.2 Peripheral Retiming

Peripheral retiming is a novel technique introduced by
Malik et al. [14] to leverage combinational logic syn-
thesis as much as possible in sequential circuit design.
Peripheral retiming can be thought of as defining a
boundary (periphery) around a circuit and extracting
all registers from the region inside the boundary. This
allows the designer to apply combinational logic tech-
niques to the region (e.g. the combinational speed-up
algorithm [17]) and to return later the registers to that
region so that the optimized circuit is equivalent to the
original one.

In order to extract the registers from a region, the
corresponding network must be definite. Cyclic net-
works can be cut by removing feedback edges. Periph-
eral retiming can be applied in correspondence with
different cuts [14], using a sliding window paradigm.
An important degree of freedom in peripheral retiming
is that edges crossing the periphery can have temporar-
ily negative weights. This corresponds to borrow some




1022

IEICE TRANS. INF. & SYST., VOL. E76-D, NO.9 SEPTEMBER 1993

(@)

Fig.3 (a) Synchronous network and circuit. (b) Modified network and

circuit by peripheral retiming.
combinational optimization.
final retiming.

time from the environment (outside the periphery), to
extract the registers. '
Example 3.2: Consider the synchronous circuit of
Fig. 3(a) [14]. One AND gate is redundant, but com-
binational techniques cannot detect it, when operating
on the network fragments obtained by removing the
registers. Figure 3(b) shows the circuit after periph-
eral retiming, where the registers have been pushed to
the periphery of the circuit. Note that one register has
negative weight, corresponding to borrowing time
from the environment.
The result of applying combinational optimization to
the peripherally retimed circuit is shown in Fig. 3(c),
where the redundancy is detected and eliminated. The
circuit after retiming is then shown in Fig. 3(d). Note
that no negative delay is left in the circuit. O
Two issues are important to apply this method.
First, the determination of the circuit class for which
peripheral retiming is possible. Second, the characteri-
zation of the combinational transformations for which
there exist a valid retiming, so that negative weights (if
any) can be removed.

For peripheral retiming, the circuits must be

modeled by definite synchronous logic networks with

(c) Optimized network and circuit after
(d) Synchronous ‘network and circuit after

the following property [14]. When considering any I/
O pair (€ V’, ;€ V?), no two paths v, -*+, ¥; must
differ in path weights and for any I/O path v;, **-, v; the
weight must equal the sum of two integers a:+48;
associated with v; and v;. This is a fairly strong
restriction. For example, the circuits of Fig. 1 and 8 do
not satisfy this condition, while that of Fig. 3(a) does.
Obviously pipelined networks satisfy the assumptions
for peripheral retiming.

Let us consider now the applicable logic transfor-
mations. Malik et alii showed that a valid retiming of
a peripherally retimed network requires non-negative
input/output path weights. Obviously, it is always
possible to retime a peripherally retimed circuit whose
topology has not changed, by restoring the original
position of the registers. Nevertheless, some com-
binational logic transformations may introduce input/
output paths with negative weights. When this hap-
pens, the transformations must be rejected. '

The importance of peripheral retiming stems from
the fact that the optimization of the register position
can be performed in conjunction with the optimization
of the combinational logic. The paradigm for periph-
eral retiming allows us to separate the two tasks, and

QT T euan——— " | o




MICHELI: OPTIMIZATION OF SEQUENTIAL SYNCHRONOUS DIGITAL CIRCUITS

therefore leveraging powerful existing synthesis pro-
grams.

Recent related work by Dey et al. [6] has shown a
way of partitioning synchronous circuits into sub-
networks, called consistent corollae, defined on the
basis of signal reconvergence. They showed that such
corollae satisfy the assumption of peripheral retiming.
Dey proposed a general method for circuit optimiza-
tion, based on corolla partitioning, peripheral retiming
and combinational logic resynthesis.

3.3 Algebraic Transformations for Synchronous
Circuits

Unfortunately, many synchronous logic networks do
not satisfy the assumptions for performing peripheral
retiming. Notable examples are those where two paths
with different path weight reconverge, as for example
those shown in Figs.1 and 8. In this case, circuit
optimization can be performed by combining retiming
and combinational logic transformations. We call
synchronous algebraic transformations the extensions
of the algebraic transformations for combinational
logic [5] that incorporate local retiming.

Examples of synchronous algebraic ‘ transforma-
tions are synchronous elimination, substitution, extrac-
tion and decomposition [11]. They are extension of
the corresponding combinational transformations [5].
In this section, we call fanin (fanout) set of a vertex
the subset of vertices that are tail (head) of an edge
whose head (tail) is that vertex, and we denote the set
by FI(:) (FO(-)).

The elimination of a variable with label (n+k) is

(a)

1023

the replacement of the variable by its corresponding
expression retimed by k. Given two internal vertices
v: and v;E FI (v,), the elimination of v; into v; is the
elimination of variable j in all its occurrences in the
expression ¢ for v, The elimination of vertex v; is its
elimination into all the vertices in FO(v;). Note that
the elimination of a variable with label zero is equiva-
lent to the elimination used in combinational logic
synthesis [5]. The elimination of a variable with
non-zero label corresponds to merging two logic gates
that are separated by a register, by shifting the register
to the inputs of the gate corresponding to the variable
being eliminated. An example is shown in Fig. 4,
where variable ¢*~" has been eliminated. This corre-
sponds to merging of the AND and OR gates into a
complex gate, and to shifting of the registers to its
inputs.

Let us consider now substitution (also called
resubstitution) {5] for synchronous logic networks.
Let ¢, %, O and R be algebraic expressions of
Boolean functions. Then ¥ is a synchronous divisor of
¢ if 3 k<0 such that #=R*(¥#) Q+ R and R*(¥)
O +¢. Given two internal vertices v; and v; such that
the expression £ is a synchronous divisor of ¢, the
substitution of v; into v; is the factoring of ¥ as R*(j)
O+ R. An algorithm for synchronous division was
presented in Ref. [11]. The algorithm takes as inputs
two synchronous expressions .¢, £ and it attempts to
divide ¢ by R*(¥#) for decreasing values of k starting
from 0. Standard division algorithms are used [5] with
arguments that are syntactically modified copies of .,
¥ where labeled variables are aliased. The algorithms
terminates successfully when a non-trivial quotient Q

(b)

Fig.4 (a) Fragment of synchronous network: xM=gmy cr-1); M=
a™b™. (b) Example of synchronous elimination: xM=dm 4 gr-Npn-1)

-
|

ot

(a)

(b)

Fig.5 (a) Fragment of synchronous network: xM=gn-D4 pn, M=
an=Detm 4 ptn-Dem  (b) Example-of synchronous substitution: x™=a'"="
+b‘"); y(n)=x(n—l)c(n).




1024

is found, i.e. R*(¥) @ +¢. Otherwise it terminates
when k is such that at least a variable in R*(¥) has
label smaller than the corresponding variable in ¢,
thus insuring the lack of any non-void quotient for any
current or smaller value of k.

Note again that the divisors defined in Ref. [5] are
a subset of the synchronous divisors and therefore
substitution with zero retiming (i.e. k=0) is equiva-
lent to substitution in combinational logic. The substi-
tution of a variable with non-zero retiming corre-
sponds to adding one (or more) register between two
gates to simplify the latter. An example is given in Fig.
5. The complex gate corresponding to variable y"" is
simplified by using variable x® retlmed by —1, i.e.

R (xM) = x-1),

The extraction of a common sub-expression of
expressions ¢ and §# corresponding to two vertices
v; and v; is the addition to the network of a vertex v,
(with the related edges) corresponding to a common
synchronous divisor of ¢ and # and to the factoring
of ¢ and £ in terms of the new variable /. Similarly,
the decomposition of an expression ¢ its replacement
by the expression: R*(j) Q+ R, where j is a new
variable, its corresponding expression ¢ is a synchro-
nous divisor of ¢, k is an integer and R*(j) Q +¢.
The decomposition of a vertex v; implies the addition
to the network of vertex v;, Decomposition can be
applied recursively to v; and v;.

Synchronous "algebraic transformations can be
combined with combinational logic transformation
and global retiming. In particular, it was shown that
synchronous elimination can be applied to gates that
are head of critical paths and synchronous substitution
to gates that are tails of critical paths. In both cases,
such transformations are often the only ones that can
locally improve the cycle time. Unfortunately, it was
also shown that the frequency in which such transfor-
mations can be applied successfully in real circuits is
low.

3.4 Boolean Transformanons for Synchronous Cir-
cuits

Boolean transformations for logic synthesis exploit the
full power of the Boolean representation and the use of
don’t care sets. Hence, overall optimization results are
potentially better than those achieved by using alge-
braic methods only. Boolean simplification is an
example of a Boolean transformation. It consists of
replacing a local function (modeling a logic gate) of a
synchronous logic network by a simpler one, where
simpler may relate to smaller area and/or delay. Let us
consider a generic vertex of the network, say v,. The
replacement of a local function f, with another one gx
can be seen as a local perturbation §=fDgx. The
replacement (perturbation) is feasible as long as the
input/output behavior of the network does not change.

IEICE TRANS. INF. & SYST., VOL. E76-D, NO. 9 SEPTEMBER 1993

An area/delay optimal replacement can be chosen
among the feasible ones.

A key problem for sequentlal optimization is
checking the feasibility of a perturbation. In the
combinational case, it is possible to associate with each
vertex of network a local.don’t care set, represented as
a Boolean function over network variables. The inclu-
sion of the perturbation in the local don’t care set is
then a necessary and sufficient condition for the feasi-
bility of the replacement. In other words, local upper
bounds on the perturbation can be derived from the
overall network.

In the sequential case, it is also possible to com-
pute the perturbation induced by a local replacement.
Similarly, it is possible to compute local don’t care
conditions, that can be expressed by Boolean functions
and represented, for example, by sum of products of
labeled variables. Differently from the combinational
case, the inclusion of the perturbation in the local
don’t care set is a sufficient but not necessary condition
for the validity of the replacement [8], [9].

The reason for the difference can be explained
from a theoretical point of view as follows. Whereas
the input/output behavior of combinational networks
can be represented as Boolean functions, the input/
output behavior of sequential networks is naturally
represented by a relation between input and output
traces. The relational model encapsulates wider
degrees of freedom in finding equivalent representa-
tions. Unfortunately, these degrees of freedom cannot
always be represented in terms of local Boolean func-
tions.

From a practical standpoint, there are two major
approaches for implementing Boolean transformations
that exploit don’t care conditions. The former is to
compute explicit 1ocal don’t care sets, whose bounding
the perturbation guarantees that the transformation is
feasible. This approach entails an extension of the
methods for computing combinational don’t care sets.
Unfortunately, it may not capture all feasible transfor-
mations, and therefore is suboptimal. The latter
method is to represent the don’t care sets in an implicit
way, by using a relational representation. The added
complexity of this approach is rewarded by the possi-.
bility of representing all the degrees of freedom for
sequential optimization at any vertex of the synchro-
nous logic network.

3.4.1 Explicit Don’t Care in Conditions Synchro-
nous Networks

As in the case of combinational circuits, don’t care
conditions are related to the impossible patterns that
are input to a (sub-) network, called controllability
don’t cares and to those for which the outputs are not
sampled, called observability don’t cares. Differently
from the combinational case, observability don’t care

i B T £ A [T



MICHELI: OPTIMIZATION OF SEQUENTIAL SYNCHRONOUS DIGITAL CIRCUITS

sets represent the observability of a variable at present
and future times. In general, don’t care conditions in
synchronous circuits may contain time-invariant and
time-dependent components. Only the use of the for-
mer is straightforward for logic simplification. The
latter may relate to the circuit initialization or to
periodic patterns produced by the circuit [7].
Example 3.3 Consider the circuit of Fig. 6. Let us
consider the input controllability don’t care condi-
tions for network N.. Assume that the network is
initialized by the sequence (5%, %, b-2) = (1,0, 1).
The limited controllability  of the inputs of N is
reflected by the set of its impossible input sequences,
denoted by CDCi,. For example, u™v**! is an
impossible input sequence for N;. Indeed for ‘™ to be
equal to 1 it must be a™=5"=1; but b =1 implies
v"*N=1. Hence, for N;.

UMy CDCip; ¥V n=—4.

This is an example of a time-invariant don’t care
condition.

As a consequence of the initializing sequence, output v
cannot assume the value 0 at time —3, —1. Hence:

v+ v CDCy.

This is instead an example of a transient don’t care
condition, due to the initialization of the network.
The interconnection of the two networks limits the
observability of the primary outputs of Ni. We com-
pute now the output observability don’t care condi-
tions for variable v of M.

In particular, the output of N; can be expressed in
terms of » and v as:

x(n)=y(n—l)+y'(n)+ wn-n
=g/ 4 -1 4 u(n)®v(n)-

The value of v™ can be observed at the output of N;
only at time 7 or at time n+1. In particular, ¥ is
observable at time 7 if y™ V=0 and ¥*"V=1. The
observability don’t care of v at time n can thus be
described by the function:

ODC {B=u'""V+ y(n-D= (=14 y(n-D
while the observability at time n+1 is described by:
ODC &= (ym+hym)’
=yr(n+1)+ um
= u(n+l)® v(n+l)+ ur(n).

Sufficient conditions for never observing v at the
primary output of N, are described by:

ODC,m=O0DC {& ODC &
in particular containing the cube "™V #’™.  Since

uM=gWpM then (g"*-Vp'-D) (g™ 4 p'™M) belongs
to the observability don’t care set of N, associated with

1025

output v, Thus a’*"Va’™ is an input sequence for
N, that represent a situation when output v'® is not
observed by the environment. O

The computation of the controllability and obser-
vability don’t care sets associated with the variables of
a sequential network can be achieved by network
traversal methods, for definite networks, and by iter-
ative methods for cyclic networks. We refer the inter-
ested reader to Ref. [7] for details.

It is important to remark that the simplest case for
don’t care computation is the one of pipeline net-
works. In these networks, all reconverging paths have
equal weights and hence the don’t care express the
network constraints in terms of variables with the same
time label. In other words, the presence of registers in
pipeline networks does not add to the complexity of
the don’t care set computation, which is equal to that
of combinational networks. It is interesting to note
that peripheral retiming can always. be applied to
pipelined networks, so that all registers can be moved
to the circuit periphery for computing the don’t care
conditions.

Once the local don’t care sets have been computed,

" Boolean simplification can be applied by invoking, for

example, a two-level logic minimizer on the local
function and the associated don’t care set. This is a
straightforward extension of Boolean simplification of
combinational networks to functions with time labeled
variables. In practice, the time labeled variables are
aliased by other variables when the minimizer is in-
voked. 3

Example 3. 4 Consider the network N, of Fig. 6. Let
us consider the optimization of the function for vari-
able y™=u™@v™ The local don’t care conditions

N, N,

.,__E]G(_‘ )

Fig. 6 Interconnected networks.

| <

Fig. 7 Optimized network N,.




1026

for this variable include % Vu'™+ "Dy a5
derived in the Example 3. (The first term is contained
in ODC,m and the second in the time-invariant compo-
nent of CDC;r for Nz.) Let us rename the variables, for
the sake of clarity. Let u=u™; y=v"; w=u""",
Then, we want to minimize y=uv+u'v with don’t
care set wu'+wv. Since 'V is included in the don’t
care set, we can write y=uv. Returning to the labeled
notation, the local function can be replaced by y™'=
u™y™  with a savings of two literals, by Boolean
simplification, as shown in Fig. 7. O

3.4.2 Implicit Don’t Care Conditions in Synchro-
nous Networks

In the case of synchronous circuit optimization, there
may exist feasible replacements of local functions
whose corresponding perturbations are not included in
the local explicit don’t care set. It may then be
necessary to resort to a relational model if we want to
consider all possible degrees of freedom for optimiza-
tion. :

Example 3.5 Consider the network of Fig. 8(a).
Assume that the external don’t care set is empty, for
the sake of simplicity. It can be easily verified that the
inverter can be replaced by a direct connection, leading
to the simpler and equivalent circuit of Fig. 8(b).

We try to interpret this simplification with the methods
reviewed before. First, note that the network has two
input/output paths of unequal weight, ruling out the
use of (peripheral) retiming techniques. Second, note
that the inverter can be removed, even though the
perturbation is d=x""@x™=1. If the perturbation
had to be included in the local don’t care set, this
could lead us to the erroneous conclusion that the
local don’t care set DCym=1, and hence that y could

o [

=

(b) X y

N z

(c) Dy

-

Fig.8 (a) Example of a non-retimable but optimizable circuit.
(b) Optimized circuit implementation. {(c) Other circuit imple-
mentation.

IEICE TRANS. INF. & SYST., VOL. E76-D, NO. 9 SEPTEMBER 1993

be replaced by a permanent TRUE or FALSE value.
0
As we stated before, whereas the inclusion of the
perturbation in a local don’t care set is a sufficient
condition for equivalence, it is by no means necessary
in the case of synchronous networks. Therefore we
must search for general conditions for checking the
feasibility of replacements. The most general terminal
specification of a synchronous circuit is its trace set.
Hence transformations are feasible when they yield
indistinguishable behavior in terms of input/output
traces, for all time-points (possibly excluding the exter-
nal don’t care of the network).
Example 3.6: Consider again the network of Fig. 8
(a) and assume that the external don’t care set is
empty. The input/output behavior of the network is:

M =x""Px" "V n20.

Consider subnetwork M; shown inside a box in the
Figure. Any implementation of M, is valid as long as:

PPy V=x""Px" VY n20.

The above equation represents the constraints on the
replacement for subnetwork M. Possible solutions are
the following: '

o yM=x""/n20. This corresponds to the origi-

nal network, shown in Fig. 8(a).
o yW=x"n=0. This corresponds to removing
the inverter, as shown in Fig. 8(b). (It can be
derived by noticing that the parity function is
invariant to complementation of an even number
of inputs).
o yM=xMPx"-VPy VY nz0. This solution
can be derived by adding the term @y*~" to both
sides of the equation. The corresponding circuit is
shown in Fig. 8(c).
Note that the last implementation of the network
introduces a feedback connection. O

Equating the terminal behavior of the original
network and of the one embedding the local replace-
ment gives rise to an implicit synchronous recurrence
equation, that relates the network variables at different
time-points. The synchronous recurrence equation
specifies the network and implicitly all the degrees of
freedom for its optimization. Hence don’t care condi-
tions are represented implicitly. Circuit optimization
based on synchronous recurrence equations is widely
applicable to sequential synchronous circuits. In
general, optimization algorithms must insure a feasible
solution that satisfies some optimality criterion. Feasi-
bility implies finding a function and initial conditions
(for the replacement) that satisfy the synchronous
recurrence equation at all time-points of interest [8].
Optimality may be related to area or delay estimates.

Damiani et alii [8], [9] proposed a method for
computing a minimum sum of product replacement,
under the simplifying assumption that no further cycles

11 i




MICHELI: OPTIMIZATION OF SEQUENTIAL SYNCHRONOUS DIGITAL CIRCUITS

are introduced in the network. We present here the
highlights of the method, by elaborating on an exam-
ple. A tabulation of the possible values of the vari-
ables leads to the specification of a relation table,
relating the possible input and output traces that sat-
isfy the equation.

Example 3.7: Consider again the network of Fig. 8
(a). The corresponding synchronous recurrence equa-
tion is: -

y"”@y"’“’=x""’®x""'”V n=0.

that can be tabulated as follows:

2™ gin=n) || gtm) yln=1)
0 0 {00,11}
0 1 {01,10)
10 {01,10}
11 {00,11})

The second column of the table shows the possible
output traces in conjunction with the input traces. [J

Circuit optimization can be done by using a rela-
tion minimizer that finds the optimum function for the
subnetwork to be replaced that is compatible with the
corresponding Boolean relation [3]. Compatibility
must be insured for all time-points. Alternatively, the
solution can be determined by representing the desired

replacement by a truth table in terms of unknown -

coefficients. Constraints on the feasible values of the
coefficients can be inferred from the relation table.
Obviously, truth tables satisfying the constraints corre-
spond to feasible network replacements. Among these,
an optimal solution may be chosen.

Example 3.8: Assume that network N, of Fig. 8 is
replaced by a function specified by the following truth
table: :

RUTGEETE
0 0 fo
0 1 N
1 0 f
11 fr

We can now re-express the constraints of the relation
table in terms of the coefficients. Consider output
traces {00, 11} implying y™=y"~", or equivalently
(2™, x*1) =f =D (x"D, x=2) . The corre-
sponding input traces are {000, 001, 110, 111}. For
input trace 000, (0, 0) =F®-1(0,0) implies fo=/o
or equivalently (f5'+ /%) (fi+4)=1. For input trace
001, £ (0,0)=f"""(0,1) implies fo=fi or equiva-
lently (f'+/) (o+f)=1. Similar considerations
apply to the remaining input traces {110, 111} and to

1027

those related to-output traces {01, 10}. . The resulting
constraints on the coefficients, excluding the tautologi-
cal ones and duplications, are:

(' +A) (h+A) =1
B +f) (+ L) =1
' +£) (h+f) =1
K +£) K+ ) =1
&+ /) (et o) =1

Solutions are: fo=1; fi=1; £,=0; =0 and £=0; fi
=0; f;=1; fi=1. The first solution corresponds to
selecting y™=x"", while the second to ym=x". 0

With this formalism, the possible solutions are the
sets of coefficients that make all the clauses true.
Among the feasible solutions, an optimal one can be
chosen to satisfy any particular property, e.g. delay or
number of literals. The search for a feasible or opti-
mum solution requires solving a binate covering prob-
lem, which is a minimum-cost satisfiability problem.
The binate nature stems from the fact that coefficients
can appear in the clauses with both polarities. Exact
and heuristic methods can be used for the optimal
synthesis of the function [8], [9].

We summarize here the most important points of
this approach. First, the direct synthesis of a function
that replaces a subnetwork is used instead of the
classical Boolean optimization step. Second, the
degrees of freedom (represented by don’t care condi-
tions in classical Boolean optimization) are represent-
ed implicitly as constraints implied by a synchronous
recurrence equation. Third, the synthesis methods
involves the minimization of a Boolean relation or the

solution of a binate covering problem in terms of

unknown coefficients of the truth table of a Boolean
function.

This synthesis technique allows us to define a
circuit transformation that is applicable across registers
even in presence of reconverging paths with different
weights. Therefore, it is the most general transforma-
tion that can be applied among those described here. It
subsumes Boolean simplification and division. Unfor-
tunately, the solution to this problem is hard to
achieve, because it involves binate covering - and
because the problem size grows exponentially with the
number of inputs of the subnetwork being replaced.
Nevertheless, the method has been shown to be widely
applicable to circuit optimization [8], [9], by limiting
the size of the support of the local function to be
replaced.

4. Conclusions

Logic-level optimization of synchronous digital cir-
cuits can be performed by using structural network
models and by applying circuit transformations. This




1028

approach has advantages over those using state-based
models, because area and path delays are explicit in the
representation and the effect of circuit transformation
can be evaluated precisely. The disadvantage of struc-
tural modeling style is its lower level of abstraction
and hence the potential larger amount of information
required to describe a circuit, when compared to state
transition diagrams.

Several optimization algorithms have been

proposed for sequential circuits using structural
models. Retiming can be used to select the optimum
register positions. Peripheral retiming extends the
retiming concept to extract the registers from a region,
where combinational optimization can be applied.
Algebraic and Boolean transformations mix com-
binational logic restructuring with local register move-
ment. The overall circuit optimization can be perfor-
med by executing a sequence of transformations of
different types, as for combinational multiple-level
logic optimization. The nature of the system driving
the logic transformations can be very general [2], [5],
[10], [12], [15].
: Results on using structural optimization tech-
niques have been very encouraging [6]-[9], [11], [14].
Nevertheless there are still open problems that will
stimulate further research in the field. The most impor-
tant issue that needs to be addressed is understanding
the relations between transformations on structural
models and optimization of state-based ones. Indeed
logic transformations that affect registers change the
state count and their encoding, as well as state minim-
ization and encoding change the underlying structure
of the circuit. Understanding and predicting the
modification of both the structural and behavioral
views of sequential circuits is important from both a
theoretical and practical standpoint. Other open prob-
lems are related to perfecting the logic transformations,
by making them more efficient and applicable to sub-
circuits of larger size. For example, Boolean transfor-
mations using the synchronous recurrence equation
model require solving an intractable problem of
exponential size in the number of the inputs of the
subcircuit (or function) to be replaced. This motivates
the development of smart heuristics.

Acknowledgments

This research was sponsored by NSF/ARPA, under
grant No. MIP 9115432 and by DEC jointly with
NSF, under a PYI Award program.

References

[1] Ashar, P., Devadas, S. and Newton, A. R., Sequential Lo
gic Synthesis, Kluwer, 1991.

[2] Bartlett, K., Cohen, W., De Geus, A. and Hachtel, G.,
“Synthesis and Optimization of Multilevel Logic under
Timing Constraints,” IEEE Trans. Comput. -Aided Des.

IEICE TRANS. INF. & SYST., VOL. E76-D, NO.9 SEPTEMBER 1993

(3]

(4]

(s

(6]

]

]

[9]

[10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

Integrated Circuits & Syst., vol. CAD-5, no. 4, pp. 582- -
596, Oct. 1986.

Brayton, R., Hachtel, G. and Sangiovanni, A., “Multilevel
Logic Synthesis,” IEEE Proceedings, vol. 78, no. 2, pp.
264-300, Feb. 1990.

Bartlett, K., Borriello, G. and Raju, S., “Timing Optimiza-
tion of Multiphase Sequential Circuits,” IEEE Trans.
Comput. -Aided Des. Integrated Circuits & Syst., vol. 10,
no. 1, pp. 51-62, Jan. 1991.

Brayton, R. K., Rudell, R., Sangiovanni-Vincentelli, A.
and Wang, A. R,, “MIS: A Multiple-Level Logic Optim-
ization System,” IEEE Trans. Comput. -Aided Des.
Integrated Circuits & Syst., vol. 6, no. 6, pp. 1062-1081,
Nov. 1987.

Dey, S., Brglez, F. and Kedem, G., “Partitioning Sequen-
tial Circuits for Logic Optimization,” Proceedings of 3rd
International Workshop on Logic Synthesis, Research
Triangle Park, 1991. .

Damiani, M. and De Micheli, G., “Don’t care
Specifications in Combinational and Synchronous Logic
Circuits,” IEEE Trans. Comput.-Aided Des. Integrated
Circuits & Syst., Mar. 1993, and CSL Technical Report,

" CSL-TR 92-531, 1992.

Damiani, M. and De Micheli, G., “Synthesis and Optim-
ization of Synchronous Logic Circuits from Recurrence
Equations,” Proceedings of EDAC, pp. 226-231, 1992.
Damiani, M. and De Micheli, G., “Recurrence Equations
and the Optimization of Synchronous Logic Circuits,”
DAC, Proceedings of the Design Automation Confer-
ence, Annaheim, pp. 556-561, Jun. 1992.

Darringer, J., Brand, D., Gerbi, J., Joyner, W. and Trevil-
lyan, L., “LSS: A System for Production Logic Synthe-
sis,” IBM Journal of Research and Development, vol.
28, no. 5, pp. 537-545, Sep. 1984.

De Micheli, G., “Synchronous Logic Synthesis: Algo-
rithms for Cycle-Time Optimization,” IEEE Trans.
Comput.-Aided Des. Integrated Circuits & Syst., vol. 10,
no. 1, pp. 63-73, Jan. 1991.

De Micheli, G., “Performance-oriented synthesis in the
Yorktown Silicon Compiler,” IEEE Trans. Comput.
-Aided Des. Integrated Circuits & Syst., vol. CAD-6, no.
S, pp. 751-765, Sep. 1987. .
Leiserson, C. and Saxe, J., “Retiming Synchronous Cir-
cuitry,” Algorithmica, vol. 6, pp. 5-35, 1991.

Malik, S., Sentovich, E.M., Brayton, R.K. and
Sangiovanni-Vincentelli, A., “Retiming and Resynthesis :
Optimizing Sequential Networks with Combinational
Techniques,” IEEE Trans. Comput. -Aided Des. Inte-
grated Circuits & Syst., vol. 10, no. 1, pp.74-84, Jan.
1991.

Muroga, S., Kambayashi, Y., Lai, H. and Culliney, J.,
“The Transduction method-Design of Logic networks
based on permissible functions,” IEEE Trans. Comput.,
vol. 38, no. 10, pp. 1404-1424, Oct. 1989.

Saucier, G., de Paulet, M. C. and Sicard, P., “ASYL: A
Rule-Based System for Controller Synthesis,” IEEE
Trans. Comput. -Aided Des. Integrated Circuits & Syst.,
vol. CAD-6, no. 6, pp. 1088-1097, Nov. 1987.

Singh, K., Wang, A., Brayton, R. and Sangiovanni, A.,
“Timing Optimization of Combinational Logic,”
Proceedings of ICCAD, pp. 282-28S5, 1988.




MICHELI: OPTIMIZATION OF SEQUENTIAL SYNCHRONOUS DIGITAL CIRCUITS
1029

Giovanni De Micheli is Associate

Professor of Electrical Engineering and, ;
by courtesy, of Computer Science at Stan- S e
ford University. From 1984 to 1986 he o AR
worked at the IBM T.J. Watson Research . g LA e e
Center, Yorktown Heights, New York,

where he was project leader of the Design

Automation Workstation group. Previ-

ously he held positions at the Department

of Electronics of the Politecnico di

Milano, Italy and at Harris Semiconduc-

tor, Melbourne, Florida. He received a Dr.Eng. degree, Summa

cum Laude, in Nuclear Engineering from the Politecnico di

Milano, Italy, in 1979, a M.S. and a Ph.D. degree in Electrical

Engineering and Computer Science from the University of

California, Berkeley in 1980 and 1983 respectively. Dr. De

Micheli was granted a Presidential Young Investigator award in

1988. He received the 1987 Best Paper Award for the best paper

published on the IEEE Transactions on CAD/ICAS and two

Best Paper Awards at the Design Automation Conference, in

1983 and in 1993. His research interests include several aspects

of the computer-aided design of integrated circuits with particu-

lar emphasis on automated synthesis, optimization ' and

verification of VLSI circuits. He is co-editor of the book: Desi ;
gn Systems for VLSI Circuits: Logic Synthesis and Silicon i it e - T
Compilation, Martinus Nijhoff Publishers, 1987 and co-author of o P
the book: High-level Synthesis of ASICs under Timing and

Synchronization Constraints, Kluwer, 1992. He was also co-

director of the Advanced Study Institute on Logic Synthesis and

Silicon Compilation, held in L’Aquila, Italy, under the sponsor-

ship of NATO in 1986 and in 1987. Dr. De Micheli is a Senior

Member of IEEE. He is associate editor of the IEEE Transac-

tions on VLSI Systems and of Integration: the VLSI Journal.

He was technical and general chairman of the International

Conference on Computer Design-ICCD in 1988 and 1989 respec-

tively. He has served as member of the technical committee of the

ICCD, ICCAD and DAC Conferences.




