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Algorithms for Technology Mapping Based on Binary
Decision Diagrams and on Boolean Operations
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Abstract—We describe new algorithms and a new computer-
aided design tool, called Ceres, for technology mapping of both
completely specified and incompletely specified logic networks.
The algorithms are based on Boolean techniques for matching,
i.e., for the recognition of the equivalency between a portion
of a network and library cells. A novel matching algorithm,
using ordered binary decision diagrams, is described. It ex-
ploits the notion of symmetry for achieving higher computa-
tional efficiency. We also describe a matching technique that
takes advantage of don’t-care conditions, by means of a com-
patibility graph. We then present a strategy for timing-driven
technology mapping, based on iterative improvement. Experi-
mental results indicate these techniques generate good-quality
solutions, and require short run times and limited memory
space.

I. INTRODUCTION

OGIC SYNTHESIS has been shown to be an effective

means of designing logic circuits, especially for
semicustom designs. The computer-aided synthesis of a
logic circuit involves two major steps: the optimization of
a technology-independent logic representation, using
Boolean and/or algebraic techniques, and technology
mapping. Logic optimization is used to modify the struc-
ture of a logic description, such that the final structure has
a lower cost than the original [1], [2]. Logic optimization
has traditionally been done before technology-dependent
operations, and is assumed to have already taken place in
the following.

Technology mapping is the task of transforming an ar-
bitrary multiple-level logic representation into an inter-
connection of logic elements from a given library of ele-
ments. Technology mapping is a very crucial step in the
synthesis of semicustom circuits for different technolo-
gies, such as sea-of-gates, gate arrays, or standard cells.
The quality of the synthesized circuits, both in terms of
area and performance, depends heavily on this step.

The technology-mapping transformation implies two
distinct operations: recognizing logic equivalence be-
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tween two logic functions, and finding the best set of log-
ically equivalent gates whose interconnection represents
the original circuit. The first operation, called matching,
involves equivalence checking and input assignment.
Checking for logic equivalence can be expressed as a tau-
tology, which has been proven to be coNP-complete [3].

Input assignment is also computationally complex. The
second operation, called covering, involves finding an al-
ternate representation of a Boolean network using logic
elements that have been selected from a restricted set.

The two operations intrinsic to technology mapping,
matching and covering, are computationally difficult. For
this reason, several approaches to technology mapping
have been pursued and implemented in research and com-
mercial mapping tools. Rule-based technology mappers
[4], [5] and heuristic algorithms have been proposed [6]-
[11].

In this paper, we consider an algorithmic approach to
the technology-mapping problem that extends the pi-
oneering work of Keutzer on Dagon [8] and of Detjens
[7]1 and Rudell [12] on MIS. To put our work in perspec-
tive, we briefly summarize their approach.

Most algorithmic approaches to technology mapping
attack the problem by dividing it into sub-tasks. First,
Boolean networks are partitioned into an interconnection
of single-output sub-networks, with the property that each
internal vertex has unit outdegree (i.e., fan-out). Then,
each sub-network is decomposed into an interconnection
of two-input functions (e.g., AND, OR, NAND, OT NOR).
Each sub-network is modeled by a directed acyclic graph
(DAG), called a subject graph. Finally, each subject
graph is then covered by an interconnection of library
cells, to produce the final circuit.

Finding a cover of a subject graph that optimizes area
or timing is a difficult problem. Keutzer proposed to rep-
resent library functions by trees and to use a dynamic pro-
gramming technique for optimal covering, based on fast
tree matching algorithms. A similar approach was used
by Rudell and Detjens [7], [12]. Note that the overall area
(and timing) of a mapped network depends on the parti-
tioning, decomposition, and covering tasks. However,
good results were achieved by this approach, and exten-
sions based on DAG matching presented by Detjens [7]
did not show substantial improvements.

In this paper, we consider an approach to technology
mapping that uses network partitioning and decomposi-
tion techniques similar to those used in [8], bit with dif-
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ferent matching and covering algorithms. The covering
algorithm described in this paper does not use a tree-based
representation. Instead, it used Boolean matching tech-
niques based on binary decision diagrams [13], [14] to
recognize whether a logic function can be implemented
by a library cell. The rationale for this choice is that the
representation of single-output networks by trees makes
cumbersome (and in some cases impossible) the efficient
mapping of logic functions that have multiple occurrences
of some variables into networks of gates that also have
multiple occurrences of some variables (e.g., exclusive
OR’s or majority functions). Boolean techniques uni-
formly support the description and matching of any sin-
gle-output library cell, independent of cell functionality.
In addition, Boolean matching techniques can take advan-
tage of don’t-care information.

This paper is organized as follows: We first give a brief
overview of the overall approach to technology mapping.
We describe partitioning, decomposition, and covering.
We then present an algorithm for Boolean matching, fol-
lowed by a description of the Boolean techniques used
during matching. The Boolean techniques use both com-
pletely specified and incompletely specified logic func-
tions. We then show how the don ’t-care sets are derived,
and their use in technology mapping. We comment on
performance-oriented mapping using iterative improve-
ment techniques. Finally, we present implementation is-
sues and results.

II. TecHNOLOGY MAPPING

In this section, we present the major tasks in technol-
ogy mapping. We briefly overview partitioning and de-
composition, and then present our network-covering al-
gorithm.

2.1. Partitioning

Partitioning is a heuristic step that transforms the tech-
nology-mapping problem for multiple-output networks
into a sequence of sub-problems involving single-output
networks. Partitioning is performed during the initial setup
phase and as a part of the iterative improvement of a
mapped network. We comment here briefly on the former
case. The latter is described in Section IV.

The initial partitioning scheme is achieved by grouping
vertices into single-output sub-networks, with the prop-
erty that each outgoing edge of an internal vertex recon-
verges at or before the output vertex of the sub-network.
Partitioning is also used to isolate the combinational por-
tion of a network from the sequential elements and from
the 1/0’s, where ad hoc techniques for mapping are used.
Therefore, the circuit connections to the sequential ele-
ments are removed during the partitioning step.

After the partitioning step, the circuit is represented by
a set of combinational circuits that can be modeled by
subject graphs [8]. These graphs are single-output
Boolean networks.

2.2. Decomposition

Decomposition is applied on each subject graph after
partitioning. It yields an equivalent subject graph, where
each vertex is a base function, e.g., a two-input AND/OR/
NAND/NOR function. Decomposition provides a mapping
solution for libraries that include the base functions (i.e.,
almost all libraries). We assume in the sequel that the li-
brary under consideration includes the base functions.
Decomposition also increases the granularity of the net-
work, which is beneficial to the covering step.

2.3. Network Covering

At this point, the logic circuit to be mapped has been
partitioned into subject graphs [ T';, - - - , I';], that have
been decomposed. We denote by I'ya subject graph whose
single-output vertex is v, We consider here the covering
of a subject graph I'; that optimizes some cost criteria
(e.g., area or timing). For this purpose we use the notions
of cluster and cluster function.

A cluster is a connected sub-graph of the subject graph
Iy, having only one vertex with zero out-degree v; (i.e.,
a single output). It is characterized by its depth (longest
directed path to v;) and number of inputs. The associated
cluster function is the Boolean function obtained by col-
lapsing [1] the Boolean expressions associated with the
vertices into a single Boolean function. We denote all
possible clusters rooted at vertex v; of I'y and their func-
tions by {x; 1, * * * , k; .}

As an example, consider the Boolean network (after an
AND/OR decomposition)

f=j+1
j= xy

xX= e+2z
y=a+c
z=c¢+d

There are six possible cluster functions containing the
vertex v; of the subject graph I'; (Fig. 1):

G,1 = XYy

Xx(@a + ¢

&
(5]
h

ki3 = (e + 2)y
kig=(+2@+o
kijs=( +7cT+d)y
kig=( +7c+d)@a+ o).

The covering algorithm attempts to match each cluster
function «; ; to a library element. A cover is a set of clus-
ters matched to library elements that cover the subject
graph. A cover may optimize the overall area and/or tim-
ing. The area cost of a cover is computed by adding the
cost of the clusters corresponding to the support variables
in the cluster function «;; to the cost of the library
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Fig. 1. Graph of all possible covers of j.

cover(top,equation, list,depth) {
if (depth = max.depth) {
retarm
}
if (equation is empty) {
if(mmy_am-md){ )
l;-'ﬁ.-;pu;.ﬁun(equﬁon)
cover(top,oquation,list,1)
) set.vertex mapped(top)
retam }
while list is not empty {
xf(vmx(ln)unﬂmwed){ )
‘versex(list) NULL NULL,depth)

f(vmzx(ln)-aprn.ympn)-hphuu

clac if (any fanout(veriex(list)) docs not reconverge at top) {
cover(vertex(list),NULL,NULL,depth) }

elec {
new list = get.

/* Reached search depth: stop recursive expansion */

/* First recursion on vertex "top’ */

* Copy oquation defining top criginally ¥/
PCopymgmdmmv-—nbhofﬂ:eqmudeﬁnmgwp‘/
/* Start expanding the equation ¥/

/* Covering of top is done */

/* Expand all input varisbles sequentially */

/* Inputs need to be mapped for evaluating the best cost */
/* Map input if it's not mapped already */

/* Do not try to expand primary inputs */

/* Do not expand non-reconverging mukti-fanout vertices ¢/

/* Expand the current input variable */

/* Get the support of the equation for the current variable */

/* Augment the current list of support variables */
I’Thcammvmnbleuelmmlsdmﬂ:mmteqw:m‘/

R on the new ded) *
/‘Getbdthelqnt sable fist beforc pansion */
/* Get next input veriable ¢/

/* Verify if current cquation is equivaleat to a library clement */

Fig. 2. Algorithm for network covering.

element corresponding to the cluster ; , under consider-
ation. For each vertex v; in a subject graph I';, there is
always at least one cluster function ; ; that matches, be-
cause the base functions (e.g., AND/OR) exist in the library
and the network as decomposed accordingly in the initial
step phase. When matches exist for multiple clusters, then
for any tree-like decomposition the choice of the match
of minimal area cost guarantees minimality of the total
area cost of the matched sub-graph [8], [7].

The cost of the required inverters is also taken into ac-
count at this stage. Each vertex v;, when mapped, is ini-
tially annotated with two library elements: the first one,
Con, gives the best cost for generating the oN set f, and
the second one, Corr, gives the best cost for generating
the OFF set f As soon as variable j is used as an input to
a gate that is being mapped, then Con or Copr is selected
according to the required polarity of j. If the same vari-
able j is needed at a later stage with the opposite polarity,
then an inverter is automatically taken into account.

The timing cost of a cover can be computed in a similar
way, by considering a constant delay model. The propa-
gation delay through a cluster is added to the maximum
of the arrival times at its inputs, to compute the local time
at the vertex v; [12]. When matches exist for multiple
clusters, then for any tree-like decomposition the choice
of the match of minimal local time guarantees minimality
of the total timing cost of the matched sub-graph.

The covering algorithm is implemented by procedure
cover shown in Fig. 2.

III. BOOLEAN MATCHING

We consider now the matching step. Matching is used
during the covering stage, to verify if a particular cluster
is logically equivalent to an element of the library. Match-
ing can be formulated as checking the tautology between
a given Boolean function, the cluster function introduced
in Section 2.3, and the set of functions representing a li-
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brary element, for any permutation of its variables. We
also consider the polarity problem in connection with the
matching problem, because they are closely interrelated
in affecting the cost of an implementation. In addition,
we exploit the don’t-care conditions of the cluster func-
tion in the matching step. ~

We denote the cluster function by F(x,, = - -, x,). It
has n inputs and one output. We denote the polarity of
variable x; by ¢, € {0,1}, where x# = x; for ¢, = 1, x¥
= X; for ¢; = 0. We denote the don’t-care set of the clus-
ter function by DC(x, - - +, x,). We denote the library
by £: {G1, * * * , Gn}- Its elements G are multiple-input
single-output functions. We define the matching problem
as follows:

Given a cluster function F(x,, - - - , x,), its don’t-care
set DC(xy, * * * , x,), and a library element G(y,, - - - ,
¥»), find an ordering {i, - - -, j} and a polarity {¢,,
**+, ¢,}, of the input variables of &, such that either
equation (1) or (2) is true:

g(x?i’ T, x}"’j) = Q(Yh T, yn) (1)
?(xg’i, T, xfj) = g(yly T, yn) (2)
for each value of (y,, * * - , y,) and each care value of

&, .-+, x¥) ¢ DC; i.e., equation (1) or (2) holds for
all minterms in the care set.

If no such ordering and polarity exist, then the element
G does not match the cluster function §. Furthermore, if
no element in the library £: {G;, - - - , G,,} matches ¥,
then & cannot be covered by the library £. Note that when
the library contains the base function, then any vertex v
of the Boolean network has always at least one associated
cluster function that is covered by a library element: the
base function into which v is initially decomposed.

Let us define the NPN-equivalent set of a function & as

the set of all the functions obtained by input-variable ne-
gation, input-variable permutation, and function negation
[15]; we say that a function § matches a library element
G when there exists an NPN-equivalent function that is
tautological to G modulo the don’t-care set.

For example, any function & (a,b) in the set {a + b, a
+b,a+b,a+b,ab,ab, ab, ab} can be covered by
the library element G(x,, x,) = x, + x,. Note that in this
example, G(x;, x,) has n = 2 inputs, and can match n! -
2" = 8 functions [11].

3.1. Use of Binary Decision Diagrams

The matching algorithms presented here are all based
on Boolean operations. The advantage of using Boolean
operations is that logic equivalence can be established re-
gardless of the representation. For example, f, = ab +
ac + bc and f, = a(bc + bc) + bc are logically equiva-
lent, but structurally entirely different. Previous ap-
proaches used matching on trees or graphs representing
the AND/OR (or equivalent) decomposition of a Boolean
factored form (BFF). These algorithms could not detect
logic equivalence, since no graph operation can transform
the BFF of f; into f, without taking advantage of Boolean
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properties. It is important to note that different represen-
tations of Boolean functions arise because factoring is not
unique, and therefore different forms (e.g., factored
Jorms, sum of products) can represent the same function.
Therefore a covering algorithm recognizing matches in-
dependently from the representations can yield matches
of better (or at worst equal) quality than those obtained
by structural matching techniques.

Our alogrithms use binary decision diagrams (BDD’s)
as the basis for Boolean comparisons. BDD’s are based
on Shannon cofactors. A logic function f is iteratively de-
composed by finding the Shannon cofactors of the vari-
ables of f[13], [14]. We use BDD’s in the form proposed
by Bryant, where a fixed ordering of the variables is cho-
sen during Shannon cofactoring {14]. Elsewhere, these
have been called ordered binary decision diagrams, or
OBDD’s for short [16]. Bryant also introduced proce-
dures to reduce the size of BDD’s. For the purposes of
technology mapping, where a BDD representation of a
portion of the circuit to map is to be used only once, the
computational cost of reducing BDD’s is comparable to
the cost of doing one single comparison between unre-
duced BDD’s. Therefore we exploit a simple way of com-
paring unreduced, ordered BDD’s.

3.2. A Simple Boolean Matching Algorithm

A Boolean match can be determined by verifying the
existence of an assignment of the input variables such that
the cluster function F and the library element G are a tau-
tology. Tautology can be checked by using recursive
Shannon cofactors [17]. The two Boolean expressions are
recursively cofactored generating two decomposition
trees. The two expressions are a tautology if they have
the same logic value for all leaves of the recursion that
are not in the don’t-care set. This process is repeated for
all possible ordering of the variables of &, or until a match
is found.

The matching algorithm is described by the recursive
procedure simple_boolean_match shown in Fig. 3, which
returns TRUE when the arguments are a tautology for
some variable ordering. At level n of the recursion, pro-
cedure simple_boolean_match is invoked repeatedly with
arguments the cofactors of the nth variable of G and the
cofactors of all the variables of & until a match is found,
in which case the procedure returns TRUE. If no match
is found, the procedure returns FALSE. The recursion
stops when the arguments are constants; in the worst case,
when all variables have been cofactored. The procedure
returns TRUE when the corresponding values match
(modulo the don’t-care condition). Note that when a
match is found, the sequence of the variables used to co-
factor F in the recursion levels 1 to n represents the order
in which they are to appear in the corresponding library
element. The algorithm is shown in Fig. 3.

Note that in the worst case all permutations and polar-
ities of the input variables are considered. Therefore, up
to n! - 2" different ordered BDD’s may be required for
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simple.boolcan.match(f,g.dc, var Jistf,var list.g, which.var.g) {
if (dc == 1) return(TRUE)
if (f and g are constant 0 or 1) return ( f == g )
gvar = pick_a_variable(var Jist.g, which_var_g)
remaining.var.g = getremaining(var.list.g, which.var.g)
which.varf = 1
while ( which.varf < size.of(varJist.f)) {
fvar = pick.a_variable(ver list.f, which_varf)
i getremaining(var listf, which_var.f)

if (simple_boolean.match(f0,g0,dc0,
remaining.varf remaining var.g,which.var_g+1)
and simple_boolean.match(f1,g1.dcl,
remaining.var.f,remaining .var.g,whichvar.g+1)) {
return(TRUE) }

else if (simple.boolean.match(f1,80,dc0,
remaining.var £ remaining var.g which_var_g+1)
and simpleboolean.match(f0,g1.dc1,
remaining.var.fremaining var.g, whichvar.g+1)) {
rewm(TRUE) }

which.varf = which.varf + 1 }

retun(FALSE) }
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/* If leaf value of DC = 1, local match */

/% If lesf value of f and g, matches if f == g */
/* Choose the next variable from the list of varisbles of g */
/* Get list of unexpanded variables of g */

/* Starting pointer for varisbles of f %/

/* Try all uncxpended variables of f in turn */
/* Get next variable to expand */

/* Update the list of unexpanded variables of f */
/* Find Shannon cofactor of f with (fvar = 0) */
/* Find Shannon cofactor of f with (fvar = 1) */
/* Find Shannon cofactor of g with (gvar = 0) */
/* Find Shannon cofactor of g with (gvar = 1) ¥/
/* Find Shannon cofactor of dc with (fvar = 0) */
/* Find Shannon cofactor of dc with (fvar = 1) */

/* Verify that the cofactors of f and g %/
/* are logically equivalent */

/* If the previous check failed, */
/* verify that f is equivalent to the ph

of g%/

Fig. 3. Simple algorithm for Boolean matching.

each match. Furthermore, all library elements with n or
less inputs need to be considered in turn, since don t-care
information might reduce the effective number of inputs.
The worst-case computational complexity of the algo-
rithm make it practical only for small values of n. For-
tunately symmetry information can be used to reduce the
search space significantly. Therefore the average com-
putational complexity is much lower than the above
bound. Experimental results have shown that Boolean
matching is highly efficient, as shown in Section V.

3.3. Matching Completely Specified Functions

In this section we consider the matching problem for
completely specified functions; i.e., we neglect the don’t-
care set. This simplification makes possible the use of
some properties of Boolean functions that otherwise would
not be usable. In particular, there are invariants in com-
pletely specified functions that are not in the presence of
don’t-cares. Unateness and symmetry are two such prop-
erties. We propose to use these two properties of Boolean
functions to speed up the Boolean matching operation,
without hampering the accuracy or completeness of the
results. In the following sections, we introduce the two
properties as key elements to search-space reduction.
Matching techniques with don’t-care conditions will be
dealt with in Section 3.4.

3.3.1) Search-Space Reduction

The simple Boolean matching algorithm presented in
Section 3.2 is computationally expensive for two reasons.
First n! permutations of n inputs are needed before two
functions can be declared non-equivalent. Second, for
each permutation, all 2" input polarities are required be-
fore logic equivalence is asserted. Since all input permu-

tations and polarities must be tried before two logic func-
tions are declared different, then for any arbitrary n-input
cluster function, this implies that n! - 2" comparisons are
necessary in the worst case, i.e., whenever a match to a
library element fails.

We now look into methods for reducing both the num-
ber of permutations and the number of polarities during
the process of determining logic equivalence. The number
of required polarities is reduced by taking the unateness
property into account. The number of input permutations
is reduced by using symmetry information. Note that the
computational complexity is intrinsic to the Boolean
matching problem; therefore, the worst-case number of
comparisons is still n! -+ 2" for any arbitrary cluster func-
tion. However, we will show that the upper bound on
complexity is related to the functionality of the library
elements, and the most commercially available libraries
are constituted of elements that imply much-smaller upper
bounds. Therefore, for most cluster functions, the worst-
case bound is much less than n! - 2". In addition, the
average cost of Boolean matching is much lower than the
worst-case bound and it is shown experimentally to be
competitive with other matching techniques.

3.3.2) Unateness Property

To increase the efficiency of the Boolean matching pro-
cess, we take advantage of the fact that the polarity in-
formation of unate variables is not needed to determine
the logic equivalence. Therefore we define a transforma-
tion T that complements the input variables that are neg-
ative unate. For example, any function & (y,, y,) in the
set {y1 + ¥, Y1 + y2, i + Y2, Y1 + Y2, Y1¥2, Y1Y2, V1Yo,
Y1¥2 } can be represented by the set { y; + y,, y1¥,}. Note
that the polarity information must be kept for binate vari-
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ables, where both the positive and negative phases are
required to express &. By using the transformation T, we
reduce the information required for the matching and
therefore also reduce its computational cost.

As a result of using the unateness property, we redefine
the matching problem as follows:

Given a cluster function ¥ (x,, - -
element G(y;, - * -, y,), find an ordering {i, - - - ,j}
and a polarity {¢;, - - - , ¢,} of the binate variables {,
-+, 1} of &, such that either (3) or (4) is true:

*, Xx,) and a library

TF(x;, - - - ,x,f“, NN ,x}”, .o ,x,'))

= TGy, ** ", ya) 3
T(?(xi, BN ,x,‘{", N ,x?”, e ,xj))

= T(G(yi, "+, y)) CY)

The unateness property is also important for another
aspect of search-space reduction. Since unate and binate
variables clearly represent different logic operations in
Boolean functions, any input permutation must associate
each unate (or binate) variable in the cluster function to a
unate (or binate) variable in the function of the library
element. This obviously affects the number of input-
variable permutations when assigning variables of the
cluster function to variables of the library element. In par-
ticular, it implies that if the cluster function has b binate
variables, then only b! - (n — b)! permutations of the
input variables are needed. Therefore, the worst-case
computational cost of matching a cluster function with b
binate variables is b! + (n — b)! - 2°.

3.3.3) Logic Symmetry

One additional factor can be used to reduce the number
of required input permutations. Variables or groups of
variables that are interchangeable in the cluster function
must be interchangeable in the function of the library ele-
ment. This implies that logic symmetry can be used to
simplify the search space.

Variables are symmetric if they can be interchanged
without affecting the logic functionality [18]. Techniques
based on using symmetry considerations to speed up al-
gebraic matching were also presented by Morrison in [11],
in a different context. Reeves also used partial logic sym-
metry, as a filter during verification [19]. His technique
uses BDD’s to extract the Chow parameters [20], which
can be used to express partial logic symmetry.

Definition: Logic symmetry is represented by the bi-
nary relation 8®g on the set of inputs {x,, - - - , x,} of
F, where 8&s = {{x, x;} | Fxy, - - x, x5, * -+, x)
=F@, " ,x, " ,x, ", x,}. In the following,
we write 8®s(x;, x;) to indicate that {x;, x;} belongs to
SRs.

The symmetry property of the completely specified
functions is an equivalence relation (it is reflexive, sym-
metric, and transitive) [21], hence if {x;, x;} and {x;, x,}
are two symmetry sets, then {x;, x;} is also a symmetry
set. Being an equivalence relation, the symmetry property

of variables in logic equations implies a partition of the
variables into disjoint subsets. )

A symmetry set of a function T is a set of variables of
& that belongs to the binary relation S®g. Two variables
x; and x; of F belong to the same symmetry set if SR (x;,
x;) holds. Let us consider for example function § = x,x,.x3
+ x4x5 + x¢x;. The input variables of F can be parti-
tioned into three disjoint sets of symmetric variables: {x,,
Xy, X3}, {x4, x5}, and {x, x7}.

Symmetry sets are further grouped into symmetry
classes. A symmetry class C;, i € {1, 2, +-- }, is an
ensemble of symmetry sets with the same cardinality i and
S; = |C}| is the cardinality of a symmetry class C;. In the
previous example, there are two symmetry classes: C, =
{{xs, x5} , {x6, x7}} and C5 = {x,, x5, x3}, with §, = 2,
S; = 1. Note that all the other symmetry classes are
empty, and therefore v; ., 35; = 0.

The symmetry properties are exploited in technology
mapping as follows. Before invoking the mapping algo-
rithm, the symmetry classes of each library element are
calculated once. Symmetry classes are used in three dif-
ferent ways to reduce the search space during the match-
ing phase. First, they are used as a filter to quickly find
good candidates for matching. A necessary condition for
matching a cluster function ¥ by library element G is that
both have exactly the same symmetry classes. Hence only
a small fraction of the library elements need be checked
by the computationally intensive Boolean comparison to
see if they match the logic equation. The symmetry classes
for each library element are calculated once before invok-
ing the mapping algorithm.

Second, symmetry classes are used during the variable
ordering. Once a library element G that satisfies the pre-
vious requirement is found, the symmetry sets of & are
compared to those of G. The only assignments of vari-
ables belonging to symmetry sets of the same size can
possibly produce a match. Since all variables from a given
symmetry set are equivalent, the ordering of the variables
within the set is irrelevant. This implies that the permu-
tations need only be done over symmetry sets of the same
size, i.e., symmetry sets belonging to the same symmetry
class C;. Thus the number of permutations required to de-
tect a match is IT{_, (S;!), where g is the cardinality of
the largest symmetry set, and S; is the cardinality of a
symmetry class C;.

For example, let us enumerate the permutations for
matching functions F = y,y,(y3 + ys) + ysysand G =
iyiy + (i3 + is)isis. Function F has one non-empty sym-
metry class, C,(F), which contains three symmetry sets,
{1, ¥2}, {»3, ya}, and {ys, ys}. We associate a name, ,,
with each of the symmetry sets: C(F) = {{y;, ¥}, {3,
ya}s {5, ¥e3} = {m1, m, n3}; i.e., we represent the pair
of symmetric variables {y;, y,} by 5, the pair {y;, y,} by
72, etc. Similarly, function G has only one non-empty
symmetry class, C,, with cardinality S, = 3. We associate
a name, {j, with the symmetry sets of G: C(Q) = {{i|,
i}, i, ia}, {is, is}} = {£1, &, £3}. We then use the
labels 7 and £ to represent the different permutations of
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symmetry sets. The cardinality of the symmetry class C;
is §, = 3, and therefore there are S,! = 6 possible as-
signments of symmetry sets of & and G:

(115 £1), (2, £2), (3, §3)
5 1), (m2, £3), (m3, £2)
(115 §2), (2, £1), (13, §3)
(1, £2), (2, &3), (03, §1)
(115 £3), (2, €1, (13, §2)
(1, £3), (m2, £2), (3, €0).

Only the last assignment, where the variables of F and G
are Paired as {{ylv Y2}’ {iS’ iG}}’ {{}’3, y4}’ {i3v i4}’ {i39
ia}}, {{ys> ys}> {i1> io}}, make functions F and G logi-
cally equivalent.

The third use of symmetry classes is during the Boolean
comparison itself. Boolean comparisons are based on it-
erative Shannon cofactoring. Without symmetry consid-
erations, for an n-input function &, up to 2" cofactors are
needed. But since variables of a symmetry set are freely
interchangeable, not all 2" cofactors are different. For ex-
ample, given F = abc, where {a, b, c} are symmetrical,
then the cofactor of {a = 0, b = 1, ¢ = 0} is equivalent
to the cofactor of {a = 1, b = 0, ¢ = 0}. In general, for
a symmetry set containing m variables, only m + 1 co-
factors are different (corresponding to 0, 1, - - + , m vari-
ables set to 1). Assuming the n variables of F are grouped
into k symmetry sets of size n,, - - -, n;, (where Lt om
= n), then the number of needed cofactors is Ot o (i +
1) < 2",

Although in the worst case logic equations have no
symmetry at all, our experience with commercial standard
cells and (programmable) gate array libraries shows that
the library elements are highly symmetric. We computed
the symmetry classes C; of every element of three avail-
able libraries (CMOS3, LSI Logic, and Actel), and estab-
lished the cardinality S; of each symmetry class C; ex-
tracted. We found that the average cardinality S; of all the
symmetry sets of the library cells in the three libraries is
less than 2, as shown in Fig. 4. Therefore, the number of
permutations IT7_ ; (S;!) on the average is close to 1.

Unateness information and symmetry classes are used
together to further reduce the search space. Unate and
binate symmetry sets are distinguished, since both unate-
ness and symmetry properties have to be the same for two
variables to be interchangeable. Thus §; = S¥ + S7,
where S} is the number of sets of cardinality i made of
unate variables, S? is the number of sets of cardinality i
made of binate variables. This further reduces the number
of permutations to IT¢_, S¥ - $21 = MM_, §¥! - (S, —
SO IIY_ , §;!. Hence, when considering the polarity of the
binate variables, at most II{_, S}! S; — SH!
21" i=5) Boolean comparisons have to be made in order
to find a match.

As an example, in the Actel library act!, the worst case
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Fig. 4. Distribution of symmetry classes C;.

occurs for the library element MXT = dyc\c; + d\c\c3 +
dyc,¢y + diCy05, where S| = 7, and S = 4. In that case,
41 -31-2° = 1152 << 7! - 27 = 645 120, where 7! -
27 represents the number of comparisons needed if no
symmetry information is used.

Procedure boolean_match, a variation on procedure
simple_boolean_match, is shown in Fig. 5. It incorpo-
rates the symmetry information to reduce the search space:
permutations are done only over symmetry sets of the
same size. In addition, symmetry sets of unate and binate
variables are separated into distinct classes C; and ct.
Then only symmetry sets with the same unateness prop-
erty are permuted.

3.3.4) Determination of Invariant Properties

Unateness and logic symmetry are the two invariant
properties we utilize for search-space reduction during
Boolean matching. Since cluster functions represent ar-
bitrary portions of Boolean networks, we preprocess every
cluster function to detect possible simplification before the
unateness of symmetry properties are extracted.

In particular, the preprocessing step recognizes and
eliminates vacuous variables. Recall that an equation J is
vacuous in a variable v; if the equation can be expressed
without the use of v; [22]. Vacuous variables are detected
by checking if F,, = Fy, for any given variable v;. When
this condition is true, variable v; is vacuous, and therefore
does not influence the value of §. In that case, we arbi-
trarily set variable v; to O or to 1, to simplify the expres-
sion of function &.

Unateness is the first property to be extracted from
Boolean functions. For efficiency reasons, the unateness
determination is done in two successive steps. The first
step consists of considering a decomposition of the func-
tion & into base functions represented by a leaf-DAG and
detecting the phase of each variable of . The phase de-
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/* I leaf valve of f and g, matches if f == g %/

/* All variables of current symm sct are assigned */
/* Get next symm set in the list */

/* Try all symm sets of g with the same size (recursion) */

g-symmetry.scts = get.nextavailable_set(g symmetry size)

h(f,g.fsy y-sets,gsymmetry sets)
if (it is a match) retam(TRUE)
clse reum(FALSE) } }
fvar = pick_a_variable(f symmetry scts) /* Sclect varisbles from compatible symm sets for decomp */
gvar = pick_a_varisble(g.symmetry.scts)
O = shannon.decomposition(f,fvar,0) /* Find Shannon cofactor of f with (fvar = 0) */
f1 = shannon.decomposition(f,fvar,1) /* Find Shannon cofactor of { with (fvar = 1) */
80 = shannon.decomposition(g.gvar,0) /* Find Shannon cofactor of g with (gvar = 0) %/
gl = shannon.decomposition(g.gvar,1) /* Find Shannon cofactor of g with (gvar = 1) */
lf((boohmmh(ﬂ.sofﬂmwww)
h(fl,g 1.1 yscts,gsymmetry.sets) {
unmﬂ'RUE)} [+ Verify that the cofactors of f and g arc equivalent */
ehelf((boow&.'l&ymvywm)
1f1,40,Lsymmetry.sets,g symmetry.sets) {
reum(TRUE) } /* Verify that f and is equivalent to the complement of g */
else return(FALSE) {

Fig. 5. Algorithm for fast Boolean matching.

tection proceeds as follows. Starting at the root of the leaf-
DAG representing function &, a token representing a
positive phase is propagated depth first toward the leaves
of the DAG. When a vertex corresponding to a negative
unate function is traversed, the phase of the token passed
down is complemented. Each variable reached during the
graph traversal is annotated with the phase of the current
token. The traversal of the leaf-DAG takes at most 2n —
1 steps, where n is the number of leaves: since the net-
work is decomposed into 2-input gates, then each level in
the levelized DAG has at most half the number of vertices
of the previous level. Therefore, such a DAG with n in-
puts has at mostn + n/2 + n/4 + +-- + 1 =L,
n/2 = L2ol1/2'+1=2n—2+ 1 =2n — 1 vertices.

All variables used in only one phase are necessarily
unate. However, the first operation can falsely indicate
binate variables, because the algorithm relies on struc-
ture, not on Boolean operations. In the second step, the
unateness property of the remaining variables (those the
first step labeled as binate) is detected verifying implica-
tions between cofactors [22]. The unateness property of
these possibly binate variables is detected by verifying if
F,. = Ty, (negative unate variable) or if F,, = F,, (positive
unate variable). If neither implication is true, then vari-
able v; is binate.

Once the unateness information has been determined,
symmetry properties are extracted. The transformation T,
presented in Section 3.3.2, is applied to ensure that sym-
metry will be detected between unate variables regardless
of phase. We detect that two variables are symmetric sim-
ply by verifying that S®s(x;, x;) is true for that pair of
variables. Since the symmetry property is transitive, when
variable v; is symmetric to v;, and v; to v, the symmetry
of v; and v, is established without further verification.

Similarly, if v; is symmetric to v;, and v; is not symmetric
to v, then v; is not symmetric to v,. As a result, when
two variables are symmetric, the symmetry relations to
the second variable are identical to those of the first vari-
able, and do not need to be established through additional
verification. This implies that it is not always necessary
to verify all pairs of variables for symmetry. All pairs of
variables must be processed (by verifying that SRs(x;, x;)
is true) only when there is no symmetry. This is the worst
case, and n(n — 1) /2 swaps must be done, where n is the
number of equal inputs to the equation. When a function
is completely symmetric, i.e., when all inputs to a func-
tion § are symmetric, then only n — 1 swaps are needed.

The unateness property is used to reduce the number of
swaps needed. Assuming b out of the n input variables
are binate, then at worst b(b — 1)/2 + (n — b) (n — b
— 1)/2 swaps are required. At best, n — 2 swaps are
needed, when both binate and unate variables are maxi-
mally symmetric. In order to verify that swapping two
variables {v, v;} leaves & unchanged, it is sufficient to
venfy that 3‘,,,,,] = Fpy;- As in the first step, this is done
using Shannon cofactors, and a single ordering (and po-
larity) of the variables is sufficient.

Since the polarity information is relevant to binate
variables, two swaps have to be done for each pair of
binate variables, one swap for each polarity of one of the
two variables. Again, Shannon cofactors are used to check
if the two instances of the equation are the same, and, as
in the first step, only variable ordering is used.

From an implementation standpoint, symmetry classes
are established once for each library element. Each library
element is then inserted into a database, with its symme-
try sets used as the key. Library elements with the same
symmetry sets are further grouped by functionality (e.g.,
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G, =y, y2 and G, = y; + y, are grouped together in a
new entry JC of the database corresponding to functions
of two equivalent, unate inputs).

3.4. Matching Incompletely Specified Functions

The importance of the use of don t-care conditions in
multiple-level logic synthesis is well recognized [23]. We
consider here don’t-care conditions that are specified at
the network boundary and that arise from the network in-
terconnection itself [24]. Since the topology of the net-
work changes during the covering stage, don t-care con-
ditions are dynamically computed.

Therefore a technology-mapping algorithm that ex-
ploits don ’t-care sets must involve two tasks: 1) comput-
ing and updating local don’t-care sets and 2) using the
don’t-care information to improve the equality of the
mapped circuit. We present the use of don t-care sets first
and we defer their computation to Section 3.4.2.

We have considered two approaches to using don ’t-care
conditions in technology mapping. The former uses
Boolean simplification before matching a function to a li-
brary element. The latter merges simplification and
matching in a single step and it is motivated by the fol-
lowing rationale: don’t care conditions are usually ex-
ploited to minimize the number of literals (or terms) of
each expression in a Boolean network. While such a min-
imization leads to a smaller (and faster) implementation
in the case of pluri-cell design style [25] (or PLA-based
design), it may not improve the local area and timing per-
formance in a cell-based design. For example, cell librar-
ies exploiting pass transistors might be faster and/or
smaller than other gates having fewer literals. A pass-
transistor-based multiplexer is such a gate. Assuming a
function is defined by its oN set F and its don’t-care set
De:

F = (a + b)c
DE = bT

then (@ + b)c is the representation that requires the least
number of literals (3), and the corresponding logic gate is
implemented in CMOS pass-transistor logic by 6 transis-
tors. On the other hand, ab + bc requires one more literal
(4), but it is implemented by only 4 pass transistors, and
it is likely to be faster.

A second example, taken from the MCNC benchmark
majority, is also representative of the uses of don’t-cares
during matching (Fig. 6). In that example, using don’t-
cares yields better matches, and gives an overall lower
cost for the resulting circuit: the cluster function out =
Ta + Tc + Td has an associated don’t-care set DC D
Td + Tc, and can be reexpressed as OUT = (¢d(a + T).
The two expressions have the same number of literals (4),
and are therefore equally likely to be chosen by a tech-
nology-independent simplify operation (which relies on
literal count). But only one of the two exists in the library,
and that match is essential in finding the best overall cost.

These examples show that applying Boolean simplifi-
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cation before matching may lead to inferior results, as
compared to merging the two steps into a single task. For
this reason, we directly use don t-care sets in the Boolean
matching step to search for the best implementation in
terms of area (or timing).

3.4.1) Compatibility Graph

Boolean matching that incorporates the don’t-care in-
formation can be done using the simple matching algo-
rithm presented in Section 3.2. Unfortunately, when don’t
care conditions are considered, the cluster function &
cannot be uniquely characterized by a symmetry set.
Therefore the straightforward techniques based on sym-
metry sets presented in the previous section no longer ap-
ply. The simple matching algorithm would require in the
worst case n! - 2" variable orderings, each ordering re-
quiring up to 2" Shannon cofactorings. Therefore the al-
gorithm is likely to be inefficient.

Another straightforward approach is considering all the
completely specified functions JC that can be derived from
F and its don’t care set DC, by adding to F all subsets
of DC. In this case, the symmetry sets can be used to
speed up matching. Unfortunately, there are 2" possible
subsets of DEC, where N is the number of minterms in
DE. Therefore this approach can be used only for small
don’t-care sets. For large don’t-care sets, a pruning
mechanism must be used to limit the search space.

We consider in this section a formalism that allows us
to efficiently use don ’t-care sets in matching. We first in-
troduce a representation of n-variable functions that ex-
ploits the notion of symmetry sets and NPN equivalence
and that can be used to determine matches while exploit-
ing the notion of don 't-care conditions. For a given num-
ber of input variables n, let G(V, E) be a graph whose
vertex set V is in one-to-one correspondence with the en-
semble of all different NPN-equivalent classes of func-
tions. The edge set E = {(v;, v;)} of the graph G(V, E)
denotes the vertex pairs such that adding a minterm to a
function included in the NPN class represented by v; leads
to a new function belonging to the NPN class represented
by v;. Such a graph G(V, E) for n = 3 is shown in Fig.
7.

Each vertex v; in the graph is annotated with one func-
tion ; belonging to the corresponding NPN-equivalent
class of v;. The function 8, is chosen arbitrarily among the
members of the NPN-equivalent class that have the least
number of minterms. For example, vertex 4 in Fig. 7 cor-
responds to functions {abc + abc, abc + abc, abc +
ab¢, abc + @bt} and their complements. The represen-
tative function 8, for vertex 4 is {abc + abc}, but could
be any of the four functions just enumerated. The set of
functions 0; is used as the basis for establishing relations
between vertices v;. Each vertex v; is also annotated with
the library elements that match the corresponding func-
tion 6;.

The graph G(V, E) is called a matching compatibility
graph, because it shows which matches are compatible
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Fig. 6. Mapping the majority MCNC benchmark with LSI Logic library
elements. (a) Mapping without DC. (b) Mapping with DC.

Fig. 7. Matching compatibility graph for 3-variable Boolean space. Note
that no path exists between vertex 4 and vertices 8, 11, and 13.

with the given function and a don 't-care set. Note that the
size of the compatibility graph is small for functions of 3
and 4 variables, where there are 14 and 222 different NPN-
equivalent functions respectively [15], representing the
256 and 65 536 possible functions of 3 and 4 variables.
Unfortunately, for functions of more than 4 variables, the
number of NPN-equivalent functions grows very quickly
(functions of 5 and 6 variables have 616 126 and = 2 X
10" respectively [20]), although it is very sparse in terms
of the vertices corresponding to library elements. At pres-
ent, we have implemented techniques for technology
mapping using don t-care conditions for cluster functions
of at most 4 variables. Although libraries contain cells
with more than 4 inputs (see Table I), we found from ex-
perimental results of mapped networks that the majority
of the library elements used have 4 or less variables (see
Table II for the distribution of the number of inputs of
cells used for mapping 30 benchmarks). Therefore, it is a
reasonable implementation decision to use don’t-cares
only for cluster functions whose fan-in is less than or equal
to 4.

TABLE 1
NUMBER OF k-INPUT CELLS INCLUDED IN THE FULL ACT1 AND THE LSI
LOGIC LIBRARIES

Number of
Cells in the
Library Percentage of Total
Number of Inputs actl LSI actl LSI
1 1 2 0.1% 2.5%
2 8 12 1.1% 14.8%
3 47 22 6.7% 27.2%
4 210 20 30.0% 24.7%
5 285 6 40.7% 7.4%
6 128 8 18.3% 9.9%
7 21 0 3.0% 0.0%
8 1 9 0.1% 11.1%
11 0 2 0.0% 2.5%
TABLE 11

NUMBER OF k-INPUT CELLS USED IN MAPPING 30 BENCHMARKS WITH THE
FuLL AcT1 AND THE LSI LoGic LIBRARIES. A DEPTH OF 5 was USED
DURING COVERING

Number of Cells

Used Percentage of Total
Number of Inputs actl LSI actl LSI
1 305 2110 2.9% 12.9%
2 3176 6816 30.7% 41.8%
3 2998 2705 29.0% 16.6%
4 3685 4583 35.6% 28.1%
5 182 103 1.8% 0.6%
6 0.0% 0.0%

For functions of 4 variables and less, the compatibility
graph is constructed once and annotated with the library
elements. Each vertex v; in the graph is also annotated
with the paths p; from the vertex v; to a vertex v; corre-
sponding to library element G, € £. The set of paths P;¢
= {Pios Pirs * * * » Pim} Tepresents all the paths from ver-
tex v; to the vertices corresponding to library elements.
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Each path represents the set of additional minterms dif-
ferencing the function 6; corresponding to v; from the
function 6; of v;, where v; corresponds to a library ele-
ment. Therefore, checking if a function & is logically
equivalent (modulo the don’t-care set DC) to a library
element G, € £ is the same as verifying that vertex v;
(corresponding to function F ) has some path p; to vertex
v, (corresponding to library element G,), such that the
corresponding minterms are in the don't-care set DC.

Let us define M(v;) as the number of minterms of the
representative function 6; of vertex v; in a given n — di-
mensional Boolean space, and the distance between two
vertices v; and v; as D(v;, v;) = |M(v;) — M(y;)].

Then the number of paths from vertex v; to any other
vertex (including itself) of the compatibility graph is
2% =MD For a 4-variable compatibility graph, the total
number of paths for the entire network is 375 522. This
is reasonable from an implementation point of view, since
each path is represented by 16 bits, and thus the entire set
of paths occupies approximately 750 kilobytes. Note that
in general not all paths need to be stored, since the ele-
ments of the library usually represent only a subset of all
possible NPN-equivalent classes.

If we consider all possible combinations of minterms,
the maximum number of paths |P; | between a vertex v;
and a library element v, is

2" — MYw;) 2" — M(vy)
|Py| = i, :
D, vy) 2" — M(v;)) — M(vy)

The first term of the expression for |P; | represents all the
combinations of minterms that can make a function of
M(v;) minterms into a function of NM(z;) minterms, in
an n-dimensional Boolean space. The second term of the
expression represents the combinations of minterms that
yield a function of 2" — IM(v,), i.e., the complement of
the functions computed for in the first part. Although this
upper bound function grows exponentially, experimental
results show that the actual number of paths between any
pair of vertices is much smaller. For the 4-variable com-
patibility graph, the maximum number of paths between
any two vertices is 384, corresponding to vertices v; =
abcd and v; = abed + a(bd + ©d). Given that M(v;) =
1 and M(z;) = 5, it is clear that the actual number of
paths is much smaller than the worst case of 4004 calcu-
lated with the above formula. This is due to the fact that
not all combinations of added minterms will make func-
tion 6; logically equivalent to 6. In some cases, it is even
impossible to reach some library element v, from vertex
v;. For example, in Fig. 7, vertex v, cannot reach vertices
vs, V11, V13- In addition, some paths do not need to be
recorded, because their head vertex does not correspond
to a library cell.

The matching of a cluster function § to a library ele-
ment is redefined in terms of the compatibility graph as
follows. For cluster functions with no applicable don’t-
care set, only procedure boolean_match is used to find
the vertex vg € G(V, E) corresponding to the NPN-equiv-
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alent class of cluster function § (without using HC). Since
the graph represents all possible functions of 4 or less
variables, then there exists a vertex in the graph which is
NPN-equivalent to F. At the same time vertex vg is found,
the algorithm computes the transformation 3 representing
the input ordering and polarity on the inputs and output
such that 3(F) = 05. The transformation 3 is applied to
the don’t-care set DC, to generate a new expression,
3(DEC), consistent with the representative function 65 of
vs. There exists a match to the library cell G if there is a
path in the graph G(V, E) from vs to vg (possibly of zero
length) whose edges are included in the image 3(DC) of
the don’t-care set DC of F. It is necessary that don’t care
sets are transformed by the operator 3 before the path in-
clusion is checked, because paths in the compatibility
graph are computed between representative functions 6;.
The algorithm for graph traversal is shown in Fig. 8.
It is invoked with the vertex found by algorithm bool-
ean_matching and the image 3(DC) to the corresponding
don’t-care set as parameters. When finished, the algo-
rithm returns the list of all the matching library elements,
among which the minimum-cost one is chosen to cover F.

3.4.2) Computation of Relevant Don’t-Care Sets

Don’t-care sets are classified into two major categories:
external DC’s, and internal DC’s [23]. External DC’s are
assumed to be provided by the user along the network
specification. They represent conditions that never occur
on the primary inputs of the circuit and conditions that are
never observed on the primary outputs. Internal DC’s oc-
cur because of the Boolean network structure. They are
further classified into controllability don’t-cares and ob-
servability don’t-cares. Controllability don’t-cares rep-
resent impossible logic relations between internal vari-
ables. Observability don’t-cares represent conditions un-
der which an internal vertex does not influence any pri-
mary output.

The existence of controllability and observability don’t-
care sets represent two different (but complementary) as-
pects of a network. Controllability don’t-care sets are re-
lated to the logic structures in the transitive fan-in of a
vertex, whereas observability don’t-care sets are related
to the logic structures in the transitive fan-out of a vertex
in the Boolean network. The dynamic programming for-
mulation of technology mapping implies the network to
map is modified starting at the primary inputs, and is com-
pleted when all primary outputs are processed. The tech-
nology-mapping operation modifies the logic structure of
the network, and potentially modifies the internal don’z-
care sets. Therefore, don’t-care sets should be calculated
dynamically, as the boundary of the mapped network
moves from primary inputs to primary outputs (Fig. 9).

Controllability don’t-care sets are conceptually easily
computed: a vertex is being mapped only when all its
predecessors are mapped. Then all the logic functions ex-
pressing a vertex are known, and it is straightforward to
extract the controllability don’t-care sets from them. For
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de.match(f,dc) {
vertex = get.vertex(f)
NPN _orientation = cast_to_same NPN _class(vertex.f)
NPN.dc = change NPN(dc,NPN . oricntation)
for (all paths p; in versex) {
if (inchuded(p:NPN.dc) {
Jist(vertex cover Jist) } }

remrn(cover.list) }

/* Find stasting point in the compatibility graph */

/* Find how f and the vertex are related */

/* Transform dc as f was transformed into the veriex function */
/* Find which paths to library clements are covered by dc */

Fig. 8. Algorithm for compatibility graph traversal using don’t-cares.

Fig. 9. Example of a partially mapped network.

a subset of variables Y that are inputs to a gate or a sub-
network, the controllability don’t-care sets (CDC) rep-
resent the impossible patterns for the variables Y. The
CDC sets can be derived from the satisfiability don’t-care
sets (SDC) by taking the iterated consensus of SDC on
the variables different from Y, where the satisfiability
don’t-care set' is defined as SDC = Li @ &, [23]. For
example, for x = ab, the satisfiability don’t-care is SDC,
= x @ (ab) = Xab + x(@ + b). Controllability don’t-
care sets can be computed in a straightforward manner
from SDC for a particular subset of variables {a, b, c,
*++ }. Given the satisfiability don’t-care set SDC = Li
@ F,, each variable j of SDC not in the cutset {a, b, c,

* -} is eliminated by intersecting SDC |; with SDC |;
i.e., CDC(a_b't_ NN ’(f) = H,-,g {a,b,c,- - .)H,!=0 (Ej @ 3‘:,)
For example, let the subset of variables be {x, a} and
SDC = xab + x(E + b). The CDC{x.a} = SDC Ib
SDC |5 = xa. The controllability don’t-care sets are com-
puted dynamically as the mapping operation proceeds
through the network (Fig. 10). Altematively, the CDC
can be computed using images and a range computation
algorithm [26], [27], [28], [29].

Observability don’t-care sets deal with the successors
of vertices. They denote conditions under which a vari-
able does not influence any primary output. For example,
in the network x = at, t = b + c, t is unobservable when
a = 0 (in that case, x = 0 regardless of the value of 7).

'Recall that a Boolean network is defined by a set of equations { = §F,.
Therefore the condition (i # F) = i @ &, can never occur.

By the very nature of dynamic programming techniques,
when a vertex is being processed, its successors are not
yet mapped. This implies that the exact observability of a
vertex is known only after the mapping is completed. Note
that unless the observability don’t-cares are recomputed
each time a vertex is modified, it is not possible to use the
full ODC set for all the vertices [30]. Therefore, compat-
ible subsets of the ODC need be used, as described in
[31]. Although good algorithms have been proposed to
compute compatible observability don’t-care sets [32],
[33], efficient implementations are far from trivial, and

we decided not to include them at present. The results re-
ported in Section V therefore represent only the use of

controllability don’t-care sets. .

Note that when (DC U F = 1), orDC U F = 1, then
the algorithm finds a match with the constant value 1 (0
in the second case). This is always preferred to any other
match, since it has a cost of 0. As a result, for every cell
mapped to a library element, there exists at least two con-
trollable input patterns (i.e., it is possible to generate
these patterns from the primary inputs), such that the out-
put of the cell is O for one pattern and 1 for the other. This
is a necessary condition to make a network testable. As-
sume that the library cells consist of testable gates (i.e.,
such that internal nodes are controllable and observable
from the cell input/output pins). Then our method guar-
antees that the mapped circuit is 100% testable for stuck-
at faults with the recently proposed Ipp, testing method
[34], [35]. However, cell controllability is not sufficient
for achieving 100% testability by using standard testing
methods. Indeed, it is possible that the output of a cell is
not observable at the primary outputs when the control-
lable input patterns are applied to that cell. But by using
a post-processing step involving standard ATPG and re-
dundancy removal techniques [36], the mapped network
can be made 100% testable for single stuck-at faults. The
post-processing step could in principle be eliminated by
computing observability don’t-care conditions. In prac-
tice this goal is hard to achieve, since the network is
mapped from primary inputs to primary outputs and the
observability of a vertex being mapped depends on por-
tions of the network yet to be mapped.

IV. PERFORMANCE-DRIVEN MAPPING

We now introduce an ensemble of operations to deal
specifically with the optimization of delays through the
network, in conjunction with technology mapping. We
consider a delay model of the network with
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updufw) {

PP

= unused.

611

/* Add all SDCs between veriex and current CDC cut sct */

unused_support p
new.odc = sdc U carrent.cdc

new.cutset = veriex U {support(current.cdc) \ unusedsupport}

for (v € support(new.cdc), but ¢ new.cutset)
new.cdc = consensus(new cdc, v)
return{new.odc)

recursivexor(eq, vertex, list)
©q = equation(vertex)
sdc = xor(eq, vertex)
for (v € support(eq), but not in list)
sdc = sdc U recursivexor(v,list)
return(sdc)

1

PP ive(vertex,list)
©q = equation(vertex)
for (v € support(eq) and in list)
if (last.fanout(v) = vertex)
unused support = unused_support U v
for (v € support(eq) and not in list)
unused.support

cdc) /* Get list of cut set vertices now covered by vertex */
1* Updase CDC with SDC previously calculated */
/¢ Update CDC cut set */

/* Eliminate unused variables ¥/

= unusedsupport LU unused.support.recursive(v,list)

Fig. 10. Algorithm for dynamic controllability don’t-cares caiculation.

& intrinsic (unloaded) gate delay;

C load capacitance at a gate output;

6 + a - C total gate delay;

a;= (® + a - C + max g;) arrival time at the

output of gate v;, where g; is the arrival
time at a gate input, with gate v; € fan-
in(v)).

In our formulation of the problem, we are given the set
of arrival times {a;} of the primary inputs, together with
the set of required times {r,} of the primary outputs. For
synchronous circuits with period T, we assume the input
arrival times to be 0, and the required times at the outputs
(i.e., register inputs) to be T — #,,. We use the concept
of slack [37], [38], [39], where the slack s; at a certain
vertex v; corresponds to the difference between the re-
quired time at that vertex r; and the arrival time g;, i.e.,
s; = rj — a;. Therefore, time-critical nets are those with
negative slacks.

We already mentioned in Section 2.3 that dynamic pro-
gramming techniques can be used to optimize timing as
well as area. But there is an important difference between
the two optimizations: evaluating the area cost of a par-
ticular vertex mapping involves only vertices already
mapped (predecessors of the vertex), whereas evaluating
the timing cost involves also the successors of the vertex
being mapped. Successors are needed because the capa-
citive load on the output of a gate influences its rise and
fall times. Since the dynamic programming technique im-
plies that the successors of a vertex being processed are
not yet mapped, then the capacitive load on its output is
not known. Therefore specific methods to deal with delay
have to be introduced. Binning has been proposed by Ru-
dell [40], where each vertex is (possibly) mapped for all
the possible capacitive loads on its output. We propose a
different heuristic solution, involving iterative mapping of
the network. The first mapping of the network includes

only the optimization of area. Then, the portions of the
network that do not meet the timing constraints are iter-
atively remapped. This method has the advantage that the
entire environment of a vertex is known when it is re-
mapped. In particular, the capacitive load driven by the
vertex is known exactly.

It is important to remark that a solution under given
timing constraints may not exist. Therefore our strategy
is to perform a set of transformations leading to a mapped
network that either satisfies the constraints or cannot be
further improved by the transformations themselves.

In order to be efficient, iterative remapping has to be
powerful enough to modify substantially the portions of
the network that do not meet the timing constraints, i.e.,
the vertices with negative slack. To converge to a good
solution in a finite number of steps, it must also be mono-
tonic. We propose an ensemble of three techniques to
achieve this goal:

® Repartitioning modifies the original partition of
multi-fan-out vertices.

® Redecomposition changes the two-input decomposi-
tion, taking into account delay information.

® Buffering adds buffer to large fan-out gates on the
critical paths.

The three operations are described next, and a description
of their integration in the iterative process follows.

4.1. Repartitioning

Repartitioning takes place after a first mapping has been
done, using the traditional partitioning technique outlined
in Section 2.1. Repartitioning targets multiple-fan-out
vertices that do not meet the timing constraints. The goal
is to change partition-block boundaries, by merging sub-
ject graphs, to have other (and possibly more) choices
when matching (and redecomposing) the vertices along
the critical paths. Merging multiple-fan-out subject graphs
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means the merged portions have to be duplicated for the
other fan-outs to achieve the original functionality.
Consider, for example, the subcircuit in Fig. 11, where
a gate j is a multiple-fan-out vertex on the critical path.
The original arrival time q; at its output is ; = max (a;)
+ 8, + o - C;, where g; is the arrival time on the inputs,
9; is the intrinsic delay of gate j, a; is the fan-out-depen-
dent delay factor, and C; is the fan-out. Assuming g, is
the latest arriving input, we can reexpress q; as a; = §, +
a;+ C + & + a5 + C;. Assuming one ot the output fan-
outs is on the critical path, duplicating vertex j, with the
new gate driving the critical path only, we get (Fig. 12)
aj’ = 61 + o (C[ + C[J) + 61- + Q; Cjk,anda]-" = 6, +
oy * (C[ + Cl_[) + (S} + (> 700 (Cj - C,'k), where
aj new arrival time for the critical path,
aj new arrival time for the other fan-outs of j,
C; input capacitance of j at input /,
Cj input capacitance of gate &, which is the gate cor-
responding to the fan-out of j on the critical
path.

Then, the difference in delay is Agj =aj —a; =«
Cy + a; - (Cy — C), and Ag) = a —a;=o " C; —
a; * Cy. The arrival time of the fan-in vertices of v; are
also modified by the duplication process. The difference
indelay is Aa] = a/ —a, = o - Cj.

This example shows some important properties for ver-
tices with multiple fan-outs:

* Duplicating gates per se reduces delay along the crit-
ical paths, when (a;y * C; — a; © Cy < 0). This is
usually the case, and it can be verified on a case-by-
case basis.

¢ The fan-ins of the duplicated vertex are slowed down
by the addition of one gate load (¢, - Cy.

For a particular vertex that does not meet the timing
constraints, it is therfore simple to verify how much can
be gained by duplication, and whether or not the dupli-
cation affects other critical nets. In particular, if all the
inputs of the vertex to duplicate have a single fan-out,
then duplication is always a good solution. In addition,
the duplicated vertex can now be merged forward into the
next partition (it is now a single fan-out vertex). Mapping
can be redone at this point on the modified partition, pos-
sibly improving delay even more.

4.2. Redecomposition

Redecomposition is used both alone or in combination
with repartitioning. The goal is to bring late-arriving sig-
nals of a partition closer to its output. Redecomposition
has (like decomposition) two important side effects:

® It influences the list of library elements that may
cover a subject graph.

* It influences the critical path through the Boolean
network.

The first point is related to the fact that different decom-

aj-ﬁ -»aj'cj.omax(a.')
=&J *“j'cj*q”’l <G

Fig. 11. Delays in a subcircuit.

3 =5 +u‘-'cjk4q + 0y -((:I +c|j )

Fig. 12. Delays in a subcircuit after gate duplication.

positions might give rise to different possible covers. For
example, given f = a + b + bc, the following decom-
positions imply very different covers:

ﬁ=a+X| _f2=X2+Z2

n=y+tz x=a+ty

y, = bc y, = bt

3 = be Zp = be.

In particular, the decomposition f; allows the xoRr x; =
b¢ + bctobe mapped, whereas in decomposition f;, the
XOR gate cannot be found (because variable a appears as
an input to the same gate as y, = b¢). We address the
first point by heuristically trying to keep repeated literals
together during the decomposition. The second point is
important because decomposition can be used to push late-
arriving signals closer or further from the output, possibly
reducing or lengthening the critical path. This problem
has been addressed by Singh [41] and Paulin [42].

Redecomposition implies unmapping a portion of
mapped network, changing its base function decomposi-
tion, and then remapping the modified block. It is a ten-
tative process, in that mapping the redecomposed parti-
tion does not necessarily give better results. We therefore
isolate subgraphs being redecomposed, and use the new
decomposition only when it produces better results. The
evaluation of the value of a redecomposed (and re-
mapped) partition is fairly simple and involves two steps.
First, since the subcircuit under consideration has a single
output, we can just compare the arrival times of the orig-
inal and redecomposed partition blocks. Second, we check
if the input loads have increased, and, if so, if any other
critical net was created.

The redecomposition algorithm we are using follows
the same principle that Singh [41] proposed. One signif-
icant difference is that we use BDD’s instead of kernel
extraction for the decomposition. After a subgraph T is
isolated for redecomposition, its inputs are ordered in de-
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redecompieq) { ,
oq.list = get.inputlist(eq) /* Gat support of equation */
ordec.input lis(eq.list) /* Order support by arrival times (lateet first) */
bdd = crests.seduced.bdd( ) /¢ Create BDD with previows order */

/* Transform BDD into Boolean Fectored form */
{
if (low(bdd) == ZHRO) {
if (hi == ONE) P fex®
(crests scruation(LITERAL,controLvar(bdd))
olee { pf=xhe
g = create.product. d),
)
rewrn(eq) } }
oles i (low(bdd) we ONE) {
if (high(bdd) w= ZBRO) ri=x"e
g = crests comp Lvar(bdd))
rewrm(eq)
oloe { Prfsx"+h®
oq = crestesum.of{complement(control.var(bdd)),
remrn(eq) } }
olos {

if (high(bdd) == ZBRO) { e f=xtlY

= w«:wvb-(bdd)).

revern(eq) }

slae if (high(bdd) m= ONB) { Pruxelef

oq = creats sum_of{contsoLvar(bdd), )

rouemieq) } }

elee { Pfex’lexh?
3] = crestoproduct.of{complemsnt(controlvar(bdd)),
d-wmuu-(ud)),)
oq = createsum.ol(s],s2)
return(eq) } }

Fig. 13. Algorithm for BDD-to-Boolean-network conversion.

creasing order of their arrival times. That input list then
specifies the order in which the variables are processed
during the BDD extraction. After the BDD is reduced, it
is then retransformed into a standard Boolean network,
which is finally mapped. Procedure redecompose trans-
forms a Boolean network into one where the latest arriv-
ing inputs are closer to the output (Fig. 13).

For example, let us reconsider the Boolean network de-
scribed in Section 2.3:

f=j+t
j=xy

x=e+ 2
y=a+c
z=7¢+d.

Assume vertex v; does not meet its timing requirement,
and that the arrival times of the inputs to the partition
block rooted by v; are {a, = 10.0, a. = 12.0, a, = 5.0,
a, = 7.0}. The variable ordering used for creating the
BDD representing j would be {c, a, e, d}. The resulting
BDD is shown in Fig. 14, together with the two-input
gate decomposition derived from the BDD.

4.3. Buffering/Repowering

Buffering and repowering are used as last resorts, when
the two other methods failed. Repowering is used first,
using gates with more drive capability for vertices with
high fan-out that are on critical paths. After repowering,
buffering is used to speed up nets with large fan-outs,

Fig. 14. BDD and corresponding Boolean network.

when neither redecomposition nor repartitioning can be
applied, or they would modify other critical nets.

4.4. Iterative Mapping

The three techniques outlined above are integrated in
an iterative procedure. After a first area-oriented map-
ping, arrival times and required times are computed for
each gate in the network. The required times on the out-
puts are assumed to be given, and so are the arrival times
on the inputs. The difference between arrival time and re-
quired time, or slack, is computed for each gate. The gates
that have negative slacks are then operated upon in re-
verse topological order, where primary output gates ap-
pear first, and primary input gates appear last.

Redecomposition and repartitioning are used iteratively
until the constraints are satisfied (i.e., no negative slack)
or no more improvement is possible. Since each step is
accepted only if it speeds up the target gate without af-
fecting negatively the slacks on surrounding gates, this
process is guaranteed to complete in a finite number of
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TABLE III
MAPPING RESULTS FOR AREA (ACTEL ACT] LIBRARY). ‘‘RTIME’’ INDICATES THE RUN TIME IN SECONDS ON A DECsTtATION 5000
Ceres
MIS2.2 Depth 3 Depth 4 Depth 5

Circuit cost rtime cost rtime cost rtime cost rtime
C6288 1649 139.0 1425 85.6 1425 86.5 1425 87.1
k2 1308 4408.0 1209 131.9 1209 170.5 1209 253.3
C7552 1250 501.3 1117 97.4 1100 123.6 1062 178.3
C5315 957 264.8 899 79.2 887 107.2 831 151.2
frg2 941 869.3 1049 103.9 1045 141.6 844 193.1
pair 823 179.9 872 69.2 813 90.3 716 120.7
x1 761 630.1 827 95.4 825 150.6 807 328.5
C3540 658 295.0 641 45.3 628 62.0 608 101.9
vda 651 3103.5 543 46.1 543 61.4 543 91.7
x3 637 288.1 639 54.8 620 74.9 527 108.1
rot 570 254.7 583 48.4 582 73.8 551 137.5
alud 521 1702.5 561 44.9 559 72.0 550 147.7
C2670 431 177.3 379 28.4 359 39.0 317 64.4
apex6 378 65.2 399 23.2 400 30.5 399 45.6
C1355 371 53.2 176 12.5 178 15.1 178 22.2
terml 360 368.0 380 29.3 365 44.6 302 72.0
x4 346 160.9 433 32.5 428 49.0 368 79.5
alu2 297 623.8 325 24.3 329 41.2 320 90.1
frgl 286 83.9 277 30.1 271 51.6 271 120.6
C1908 283 87.2 266 15.9 265 21.5 263 34.0
ttt2 217 167.9 283 23.4 283 37.5 249 69.0
C880 193 47.0 191 11.0 182 14.9 178 23.0
C499 178 51.8 176 9.9 176 14.1 168 21.1
example2 175 50.8 179 11.1 179 14.5 175 21.5
apex7 147 44.6 149 9.8 150 13.3 142 19.3
my_adder 128 38.6 112 8.8 96 11.8 64 14.4
C432 125 35.9 93 7.5 93 10.4 93 17.2
5 Im 124 120.0 132 12.2 131 21.2 129 44.7
z4ml 106 96.8 113 10.2 113 17.4 91 33.7
c8 103 45.9 143 11.1 136 15.9 116 22.7
Total 14 974 14 955.0 14 571 1213.4 14 376 1677.9 13 496 2715.1
100% 1.0 97.3% 0.08 96.0% 0.11 90.1% 0.18

steps. If this process fails in meeting the constraints, the
gates with negative slacks are first repowered, and if nec-
essary buffered.

V. IMPLEMENTATION AND RESULTS

The algorithms presented in this paper have been im-
plemented in a program called Ceres. Ceres consists of
approximately 55 000 lines of C code, of which 30 000
lines were encapsulated as the SLIF Tools, and reused by
other logic optimization programs within the Olympus
synthesis system [43]. Ceres can be used either interac-
tively or in batch mode. It reads a structured, sequential
logic description as its input in the SLIF format [39]. The
input format allows for hierarchy, combinational logic,
sequential elements, and tristate buffers. Annotations can
be attached to gates or signals, to specify additional in-
formation (capacitance, delay, power requirements, etc.).
Various output formats are supported (such as LSI Log-
ic’s, Actel’s ADL, Mentor’s M, Berkeley’s EQN), for
compatibility with other synthesis tools. A Unix-shell-
like interface handles interactive operations, with built-in
alias, history, pipes, and help facilities.

We compared Ceres to the technology mapper included
in UC Berkeley’s mis2.2. The two programs were run on

the MCNC benchmarks, on a DECstation 5000. For area
optimization, the technology mapper in mis2.2 was run
with the default options (which allow matches across
multi-fanout vertices?). For delay optimization, the tech-
nology mapper in mis2.2 was run using the map —n 1
command, which indicates delay is to be chosen as the
principal cost metric. Note that all benchmarks were first
technology-decomposed in mis2.2, in order to have an
identical starting point. The rationale for this style of
comparison is to show the effectiveness of Boolean
matching techniques compared to other matching tech-
niques. Therefore, there was a need to establish an iden-
tical starting point. For all experiments, we used the LSI
Logic 1si_10K and Actel actl libraries as target technol-
ogies.

Tables I1I and IV show mapping results for area. These
results reflect the use of Ceres and mis2.2 on unoptimized
MCNC benchmarks. Ceres was run using various cover-
ing depths, which allow trade-offs between run times and
quality of results. Table III represents circuits bound to
the Actel library, which has a large number of elements

Note that although using Boolean techniques does not preclude such
matches, the current version of Ceres does not recognize them. Therefore,
resuits could be further improved by incorporating that method.
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TABLE IV
MAPPING RESULTS FOR AREA (NO DON’T-CARES, LSI LOGIC 1sI_10K LIBRARY). ‘'RTIME'’ INDICATES THE RUN TIME IN SECONDS
ON A DECSTATION 5000

Ceres
MIS2.2 Depth 3 Depth 4 Depth 5

Circuit cost rtime cost rtime cost rtime cost rtime
C6288 2429 73.7 2241 53.6 2241 52.4 2241 55.9
k2 2182 149.0 2302 110.5 2302 185.3 2302 340.5
C7552 2699 127.1 2797 95.0 2780 139.0 2749 234.2
C5315 1959 86.1 2103 49.0 2002 114.7 1987 192.3
frg2 2045 122.7 1915 90.5 1869 149.1 1712 254.7
pair 1505 68.7 1529 61.4 1525 96.2 1483 165.7
x1 1410 103.1 1498 85.6 1498 175.7 1491 459.4
C3540 1192 67.6 1208 48.1 1201 78.5 1186 155.8
vda 1039 71.6 1090 45.6 1090 71.7 1090 119.5
x3 1285 68.0 1250 52.0 1254 81.2 1095 130.4
rot 1108 70.7 1120 50.7 1121 91.1 1122 107.1
alud 1009 78.8 1015 48.5 1015 94.6 999 229.5
C2670 862 45.8 909 22.0 887 49.8 893 93.2
apex6 714 33.6 680 24.5 680 35.2 680 59.3
C1355 561 27.9 404 15.5 404 20.4 402 329
term] 721 449 706 33.6 687 57.3 573 107.2
x4 690 43.6 734 33.2 734 56.9 643 96.8
alu2 565 443 588 29.8 587 56.7 576 140.2
frgl 579 453 595 37.2 595 71.2 592 210.0
C1908 592 394 600 21.6 600 30.9 587 56.5
w2 429 335 425 23.1 421 39.2 377 73.3
C880 342 22.5 314 16.8 314 25.0 309 44.7
C499 421 24.6 406 14.0 406 18.7 404 29.2
example2 354 23.6 371 14.7 371 20.9 352 33.1
apex7 283 20.0 285 14.0 285 19.0 268 28.7
my_adder 242 17.8 224 13.4 223 18.1 216 24.4
C432 221 17.8 215 12.4 215 17.9 215 329
f51m 234 21.1 197 14.5 197 25.0 191 55.0
c8 237 19.1 221 12.6 218 16.7 215 23.7
cht 211 16.6 204 11.5 204 14.5 188 18.8
Total 28 120 1628.5 28 146 1154.9 27 926 1928.9 27 138 3604.9
100% 1.0 100.0% 0.7 99.2% 1.2 96.3% 2.2

with repeated literals. In this case, results show that using
Boolean operations for matching leads to both better im-
plementation and faster run times when comparing to pat-
tern matching based comparisons: results range from 3%
better area for more than 12-times-faster run times, to 10%
better area for 4-times-faster run times. Table IV shows
results using the LSI Logic 10K library. This table shows
again how Ceres can trade off quality of the results for run
time. In particular, results comparable to those of mis2.2
are obtained with 30% faster run times, or 4% better re-
sults at a cost of a doubling in run time.

Tables V and VI also show mapping results for area,
but taking don’t-care information into account. The re-
sults are shown both for circuits that were optimized be-
fore mapping and for circuits that were not optimized be-
fore mapping. For both the Actel and LSI Logic
technologies, the results show that using don ’t-cares dur-
ing the technology-binding operation improves the quality
of the results when operating on both optimized and un-
optimized circuits. Circuits in the first category were op-
timized using UC Berkeley’s mis2.2 with the standard
script, which involves technology-independent opera-
tions. It is worth noticing that the results of operating on
nonoptimized circuits using don ’t-care information some-

times are better than the ones of optimized circuits mapped
without using dont-cares. This indicates that the use of
don’t-care during the technology-mapping phase effec-
tively does some limited logic synthesis, which is tradi-
tionally thought of as a technology-independent opera-
tion. Table V, for which the Actel library was used, shows
the use of dont-care information leads to area improve-
ments of 9% and 8% on unoptimized and optimized cir-
cuits respectively. Table VI, for which the LSI Logic li-
brary was used, shows area improvements of 8% and 6%
in corresponding cases. Calculation of don’t-care is com-
putationally intensive, requiring large amounts of mem-
ory and CPU time. As a result, run times increase by a
factor of 10 to 20 when using don 't-care information. For
some examples we use subsets of the full don’t-care set,
to keep reasonable run times. In some cases, even the cal-
culation of subsets of the don ’t-cares involves a very large
amount of memory, and the program runs out of space.
In tables V and VI, the top portion represents results using
subsets of the don 't-care sets, and the bottom portion rep-
resents results using the full don’t-care sets.

Fig. 15 shows the area/delay trade-off curve for differ-
ent circuits. Note that all the points on these curves are
obtained as successive results during the delay optimiza-
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TABLE V
MAPPING RESULTS FOR AREA (USING DON’T-CARES, ACTEL ACT] LIBRARY). ‘‘RTIME’’ INDICATES THE RUN TIME IN SECONDS ON A
DECSTATION 5000
Original circuits Optimized circuits
No DC With DC No DC With DC
Circuit area rtime area rtime area rtime area rtime

frg2 844 194.7 774 2960.7 369 33.4 361 463.3
x1 807 327.5 761 2979.2 172 353 166 171.9
alud 550 147.5 443 1356.9 457 111.3 410 1151.3
apex6 399 459 387 431.8 451 77.0 420 682.2
i6 348 25.0 346 607.7 150 18.0 150 199.8
C1908 263 34.1 248 7687.3 195 26.2 193 7279.5
x4 368 79.4 329 517.4 182 13.9 179 140.1
terml 302 73.2 237 721.0 104 27.2 102 146.7
frgl 271 120.0 249 715.2 106 37.4 106 181.2
x3 527 108.5 549 1388.4 426 64.7 409 587.6
vda 543 92.5 542 1250.6 278 27.0 266 326.7
x1 807 327.5 761 2938.9 172 351 166 172.2
C1355 176 12.5 170 4040.4 172 9.4 170 3650.3
C499 168 20.6 170 3321.8 172 19.8 170 3157.1
C432 93 18.1 92 305.7 390 135.0 232 1481.1
f51m 128 47.5 121 146.9 71 21.5 72 110.8
alu2 320 90.1 254 369.2 253 65.0 212 303.7
2 249 70.9 147 262.2 92 14.3 89 74.3
i5 178 18.7 178 67.8 66 4.1 66 9.2
example2 175 22.0 150 92.5 160 17.9 149 105.9
c8 116 10.8 74 92.5 66 5.6 54 57.2
apex7 142 19.4 122 105.6 129 18.9 102 166.9
cht 124 222 111 116.5 84 5.0 84 329
9symml 94 33.2 94 114.8 101 36.8 103 116.4
z4ml 91 34.6 35 119.5 33 8.5 25 34.5
sct 83 17.2 80 533 35 6.1 33 65.2
lal 77 12.7 75 353 39 59 37 50.8
Total 8243 2026.3 7499 32 799.1 4925 880.3 4526 20 919.1
1.0 1.0 0.91 16.2 0.60 0.43 0.55 10.3

1.0 1.0 0.92 23.8

TABLE VI

MAPPING RESULTS FOR AREA (USING DON’T-CARES, LSI Logic 1si_10K LIBRARY). ‘‘RTIME’’ INDICATES THE RUN TIME IN
SECONDS ON A DECSTATION 5000

Original circuits Optimized circuits
No DC With DC No DC With DC

Circuit area rtime area rtime area rtime area rtime

frg2 1754 229.4 1525 2928.9 594 40.9 578 408.2
x1 1695 382.2 1560 2939.7 327 43.8 317 169.2
alud 999 174.3 894 1302.2 836 130.8 785 1060.7
apex6 680 52.2 679 335.8 803 93.0 799 646.3
i6 581 62.3 579 400.0 318 24.8 318 213.7
C1908 596 40.7 588 7701.7 462 32.6 464 7322.0
x4 670 88.7 595 481.9 317 18.7 313 125.7
term1 598 81.7 450 651.3 219 34.0 217 138.6
frgl 583 144.1 506 705.4 227 46.6 226 182.3
x3 1125 115.7 1117 1265.6 750 75.3 720 526.2
vda 1078 113.4 1077 1046.6 520 33.7 511 265.1
x1 1695 382.2 1560 2942.0 327 435 317 169.2
C1355 404 24.4 403 4025.9 410 23.4 410 3624.7
C499 406 23.3 425 3068.1 410 233 411 3123.2
C432 202 22.1 166 267.8 779 153.1 437 1381.6
f51m 244 52.9 241 172.3 146 28.1 147 100.1
alu2 570 102.6 431 328.1 470 75.7 425 264.2
ttt2 453 73.7 302 188.1 193 18.5 186 63.8
is 356 23.5 356 67.4 198 7.3 198 12.0
c8 249 27.2 182 77.9 128 14.0 123 59.5
apex7 269 234 244 192.2 265 23.2 227 139.7
cht 231 26.6 200 83.7 127 7.9 127 22.8
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TABLE VI (Continued)

Original circuits

Optimized circuits

No DC With DC No DC With DC
Circuit area rtime area rtime area rtime area rtime
9symml 214 37.6 215 100.3 216 43.5 216 116.5
z4ml 181 42.7 180 127.6 68 12.3 65 39.6
sct 144 20.3 142 47.0 86 9.6 83 61.4
lal 156 16.2 157 36.9 94 9.6 96 48.8
Total 16 133 2383.4 14 774 314844 9290 1067.2 8716 20 285.1
1.0 1.0 0.92 13.2 0.58 0.45 0.54 8.5
1.0 1.0 0.94 19.0
Delay (ns) Area VS Delay
35.00
30.00
]
1
25.00 ‘
20.00 '\
15.00 \\
10.00 i
5.00 —_
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Fig. 15. Example of area/delay tradeoffs.

tion iterations. It is possible for the user to choose be-
tween any of these implementation during a single run of
the program. In Tables VII and VIII we show the results
for both the smallest (area optimization) and the fastest
(delay optimization), as an indication of the range of pos-
sibilities from which a solution can be selected. Compar-
ative results of Ceres and mis2.2 in Table VII show that
for the Actel library, the fastest implementations are 20%
faster and 5% smaller when using Ceres. Table VIII
shows results using the LSI Logic library, where the fast-
est implementations are 7% faster and 24 % smaller when
comparing Ceres to mis2.2.

VI. CoNCLUSION

This paper has presented an ensemble of new methods

for technology mapping. Efficient ways of using Boolean
techniques were described, among which was the extrac-
tion of symmetries as a means of reducing the number of
computations during logid-equivalence recognition. Re-
sults have shown that for libraries containing many gates
with repeated literals, Boolean methods are very efficient
in terms of both execution time and quality of the resuits.
For example, Ceres finds very good solutions for libraries
of field-programmable gate arrays, which fall into that
category.



618

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. S, MAY 1993

TABLE VII

MAPPING RESULTS FOR DELAY (NO DON’T-CARES, ACTEL ACT1 LIBRARY). ‘‘RTIME’’ INDICATES THE RUN TIME IN SECONDS ON A

DECSTATION 5000

MIS2.2 Ceres
Smallest Fastest
Circuit delay area rtime delay area delay area rtime
C6288 1365.6 2458 422.1 891.9 1425 835.7 2028 608.7
C7552 192.2 1880 945.0 172.7 1062 148.8 1567 433.1
C5315 222.6 1401 499.8 197.8 831 186.3 960 230.5
frg2 164.4 1243 146.5 272.2 844 110.9 918 370.2
pair 169.4 1518 138.8 150.9 716 130.2 1074 271.8
x1 51.6 250 107.0 102.3 807 93.0 851 349.2
C3540 306.4 1022 273.0 290.8 608 265.8 682 155.6
vda 75.4 931 574.3 95.2 543 79.4 669 127.4
x3 82.8 700 282.4 117.2 527 87.0 668 140.0
rot 205.4 504 128.2 318.5 551 192.9 1133 398.1
alud 246.2 615 179.3 312.0 550 258.9 1183 188.0
C2670 182.4 567 185.6 215.2 317 179.8 342 83.6
apex6 107.0 611 132.5 104.6 399 83.7 583 47.7
C1355 220.4 606 108.6 126.4 176 116.4 253 40.4
terml 83.8 333 135.6 128.1 302 124.8 313 85.8
x4 59.6 373 149.2 101.4 368 65.1 397 104.1
alu2 208.6 355 104.0 287.2 320 199.8 1214 208.5
frgl 71.8 85 38.7 79.4 271 74.4 299 133.4
C1908 207.8 429 131.9 195.6 263 170.6 457 50.8
te2 58.6 190 81.7 115.2 249 83.7 306 85.2
C880 175.0 296 79.1 171.1 178 145.1 318 50.9
C499 129.0 334 88.4 128.3 168 114.3 233 27.2
example2 90.6 296 38.8 109.9 175 65.1 251 38.7
apex7 95.4 203 65.4 117.8 142 107.3 177 39.3
my_adder 264.8 159 45.1 157.8 64 148.8 129 29.6
C432 199.6 231 62.5 200.6 93 182.1 168 56.2
f5 Im 68.0 105 52.8 56.5 129 56.5 129 47.9
c8 46.2 132 53.9 49.4 116 46.5 173 66.4
il0 293.8 2142 688.0 518.1 1232 305.2 2002 348.9
dalu 188.2 1490 803.7 213.0 909 169.2 1224 344.7
i7 62.2 637 620.4 55.8 398 329 402 97.1
i6 54.4 460 387.1 55.8 320 23.6 328 79.9
count 254.6 127 44.0 166.5 63 83.7 119 12.7
comp 116.4 121 41.1 111.4 60 95.7 250 46.6
i4 41.4 158 60.0 57.8 122 57.8 122 36.1
cht 50.0 160 62.1 32.9 124 32.9 124 22.5
ce 34.6 63 32.0 27.9 3t 27.9 31 4.6
Total 6447.2 23 185 7988.6 6505.2 15453 5181.8 22077 5461.4
1.0 1.0 1.0 1.01 0.67 0.80 0.95 0.68
TABLE VIII

MAPPING RESULTS FOR DELAY (No DON’T-CARES, LSI Logic LSI_10K LIBRARY). ‘‘RTIME’" INDICATES THE RUN TIME IN

SECONDS ON A DECSTATION 5000

MIS2.2 Ceres
Smallest Fastest

Circuit delay area rtime delay area delay area rtime
C6288 84.2 5963 92.0 106.9 2263 106.9 2263 206.9
C7552 43.0 5210 133.0 34.1 2611 25.5 3072 438.8
C5315 22.7 4113 107.1 30.7 1981 28.6 2208 169.5
x1 7.9 764 29.0 11.4 1695 9.0 1709 462.8
C3540 32.9 2423 69.7 42.1 1214 323 2951 462.5
vda 14.3 2260 i41.6 19.9 1078 10.7 1432 214.7
x3 11.6 2013 56.7 15.8 1125 8.5 1423 2119
rot 18.6 1345 39.8 37.4 1117 20.1 1866 341.6
alu4 29.7 1434 40.5 45.5 993 27.8 2399 332.8
C2670 23.8 1705 54.7 32.9 864 22.6 1225 90.0
apex6 9.7 1339 38.3 12.7 674 10.8 721 62.8
C1355 19.6 1373 32.0 15.9 404 15.9 404 21.8
term1 11.0 861 32.0 15.0 598 12.7 745 114.4
x4 10.1 1014 34.2 14.0 670 6.7 765 142.2
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TABLE VIII (Continued)

MIS2.2 Ceres
Smallest Fastest
Circuit delay area rtime delay area delay area rtime

alu2 27.5 747 26.4 36.8 568 22.1 1261 250.8
frgl 9.3 223 15.9 15.9 583 9.0 613 237.8
C1908 20.8 1234 39.4 29.3 596 23.9 1348 106.4
tte2 7.4 528 22.4 15.0 452 8.2 572 113.3
C880 17.1 737 26.0 223 309 12.7 1444 124.0
C499 13.6 935 26.8 17.1 406 16.4 884 93.6
apex7 9.6 485 20.1 13.5 270 8.1 516 74.3
my_adder 21.0 348 16.3 39.1 256 17.8 682 97.2
C432 20.1 524 19.8 28.3 202 25.6 256 36.3
fSim 7.6 257 15.4 7.3 244 6.5 248 62.9
c8 6.05 321 18.3 7.3 249 6.1 338 45.6
i10 40.6 5529 143.6 81.3 2638 58.4 2731 283.0
dalu 36.4 3855 94.7 31.9 2090 23.8 3015 535.8
i7 20.8 1742 60.8 6.2 762 39 779 107.4
i6 17.3 1474 46.2 22.6 580 2.7 684 131.8
count 18.0 243 15.4 28.5 112 7.6 279 43.2
comp 11.8 251 15.5 11.6 151 11.3 219 19.3
i4 7.2 500 24.8 5.7 208 5.0 300 229
cht 6.4 507 18.4 9.5 231 3.8 254 55.0
cc 4.6 163 13.3 5.5 74 34 87 10.6
Total 662.3 52 420 1580.1 869.0 28 268 614.4 39 693 5723.9

1.0 1.0 1.0 1.3 0.54 0.93 0.76 3.6

The introduction of don’t-cares during the technology-
binding phase allows for better logic simplification, since
the cost metric can be more closely tied to the final real-
ization of the circuit. It was shown that for both optimized
and unoptimized circuits, the use of don’t-care informa-
tion leads to better results.

Finally, iterative mapping was introduced as a way to
improve delays that do not meet user-defined timing con-
straints. Various techniques are applied in sequence,
which monotonically improves the critical paths. It is
therefore possible to trade off between area and delay in
the final implementation.

The use of don’t-care sets during technology mapping
opens new ways of conceiving logic synthesis, with less
separation between technology-independent and technol-
ogy-dependent transformations. Current results are posi-
tive, and indicate the usefulness of migrating traditionally
technology-independent synthesis techniques into the
technology-dependent domain. However, it is important
to remark that the technology-mapping techniques shown
here are not a substitute for technology-independent logic
synthesis. Moreover, the techniques presented can be fur-
ther extended by considering observability don’t care sets
and by relying on a sparse compatibility graph to detect
logic equivalence of functions of more than 4 inputs in
the presence of don ’t-cares.
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