Optimization of Combinational Logic Circuits
Based on Compatible Gates *

Maurizio Damiani !

Jerry Chih-Yuan Yang

Giovanni De Micheli

Center for Integrated Systems
Stanford University, Stanford CA 94305

Abstract - This paper presents a set of new techniques for the op-
timization of multiple-level combinational Boolean networks. Such
techniques are based on a temporary transformation of the network
into an internally unate one. We describe first a technique based upon
the selection of appropriate multiple-output subnetworks (consisting
of so-called compatible gates) whose local functions can be optimized
simultaneously. We then generalize the method to larger subsets of
unate gates. Because simultaneous optimization of local functions can
take place, our methods are more powerful and general than Boolean
optimization methods using don't cares , where only single-gate opti-
mization can be performed. In addition, our methods represent a more
efficient alternative to Boolean relations-based optimization procedures
because the problem can be modeled by a unate covering problem in-
stead of the more difficult binate covering problem. The method is
implemented in program achilles and compares favorably to SIS.

1 Imtroduction

Logic synthesis has been traditionally divided into two-level and
multiple-level synthesis. Two-level synthesis has been intensely
researched from theoretical and engineering perspectives, and effi-
cient algorithms for exact and approximate solutions are available
(1]

Exact optimization algorithms for multiple-level logic networks
have also been considered [2]. They are, however, generally im-
practical even for medium-sized networks. For this reason, many
efficient approximation algorithms have been developed over the
past decade. Such algorithms can be classified according to the
algebraic/Boolean type of operations they perform. Algebraic tech-
niques, such as factoring and kerneling, are described in [3].

As algebraic methods do not take full advantage of the properties
of Boolean algebra, a spectrum of Boolean optimization techniques
has been developed in parallel. Such techniques consist mainly of
iteratively refining an initial network by identifying subnetworks
to be optimized, deriving their associated degrees of freedom (ex-
pressed by so-called don’t care conditions), and replacing such sub-
networks by simpler, optimized ones.

The independent optimization of the local function of a network,
called single-gate optimization, lies at one end of the spectrum.
It has been shown [4, 5] that the degrees of freedom associated to
a single gate can be represented by a don’t care set. Once this set
is obtained, two-level synthesis algorithms can be used to optimize
the subnetwork [5].

The concurrent optimization of several local functions, called
multiple-gate optimization, lies at the other end of the spectrum.
Such methods have been shown to offer potentially better quality
networks as compared to single-gate optimization because the de-
grees of freedom of multiple gates are used simultaneously. Heuris-
tic approximations to multiple-gate optimization include the use of
compatible don’t cares [4] which allows us to extend don’t care
based optimization to multiple functions by restricting the don’t
care sets themselves. Although such methods are applicable to
large networks, the restriction placed on don’t care sets reduces the
degrees of freedom and hence possibly the quality of the results.
Exact methods for multiple-gate optimization, first analyzed in [6],
have been shown to best exploit the degrees of freedom. Unfortu-
nately these methods suffer from two major disadvantages. First,
even for small subnetworks, the number of primes that have to be
derived can be remarkably large; second, given the set of primes, it

*This research is sponsored by NSF and DEC under a PYI award and by ARPA
and NSF under contract MIP 8719546,

*Now with the Dipartimento di Elettronica ed Informatica, Universit4 di Padova,
Via Gradenigo 6/A, Padova, Italy.

entails the solution of an often complex binate covering problem,
for which efficient algorithms are still the subject of investigation.
As aresult, the overall efficiency of the method is limited, and only
relatively small networks can currently be handled.

The binate nature of the covering problem arises essentially from
the arbitrariness of the subnetwork selected for optimization. In
this paper, we develop alternative techniques for the optimization
of multiple-output subnetworks. These techniques are based upon
a temporary transformation of a network into an internally unate
one, and on an accurate choice of the subnetworks to be optimized.
The difficult binate covering step is avoided, and yet an optimiza-
tion quality superior to don’t care -based methods with comparable
efficiency is achieved because multiple local functions can be opti-
mized simultaneously. To this regard, first we introduce the notion
of compatible set of gates as a subset of gates whose optimization
can be solved exactly by classical two-level synthesis algorithms.
We show that the simultaneous optimization of compatible gates al-
lows us to reach optimal solutions not achievable by conventional
don’t care methods. We then leverage upon these results and present
an algorithm for the optimization of more general subnetworks in an
internally unate network. The algorithms have been implemented
and tested on several benchmark circuits, and the results in terms
of literal savings as well as CPU time are very promising.

2 Terminology

Let B denote the Boolean set {0,1}. A k-dimensional Boolean
vector x== [z1, -+, zx]7 is an element of the set B k (bold-facing is
hereafter used to denote vector quantities. In particular, the symbol
1 denotes a vector whose components are all 1).

A n;-input, n,-output Boolean function F is a mapping F:
B"+ — B™e_ A literal function, or literal, is the function ex-
pressed by a variable or its complement. A cube c is the product
of some literals. A gate refers to the local function that the output
of the gate represents. A Boolean function can also be represented
as a set using its minterms of the ON-set. For the rest of the paper,
we interchangeably use set (C, D) and function (4, -) notations to
describe Boolean functions for notational convenience.

The cofactors (or residues) of a function F with respect to a
variable z, are the functions F,, =F(z),...,z, = 1,...,z,) and
Fy =F(z1,...,z, = 0,...,z,). The universal quantification

or consensus of a function F with respect to a variable =, is the
functionV;F = Fz F,/. A scalar function F contains F (denoted

by AIDR)if K= 1 implies Fi = 1. The containment relation
holds for two vector functions if it holds component-wise.
A function F is termed positive unate in z,; if F;, DF,/, and

negative unate if F;, CF,.. Otherwise the function is termed

binate in z;. A function F positive unate in a variable z, can
always be expressed without using the literal z | [7].

The desired terminal behavior of a combinational network is
specified by two functions, ON(x) and DC(x), the latter in particu-
lar representing the input combinations that either do not occur or
such that the value of some of the network outputs is regarded as
irrelevant [5].

The functions ON and DC identify the set of possible terminal
behaviors for the network: specifications are met by an implemen-
tation, realizing a function F(x) if and only if F(x)=ON(x) for every
input x not in DC.

Another, equivalent, description of the set of terminal behaviors
is in terms of the functions Fyuin = ON - DC’ and Fpaz = ON +
DC. Specifications are met by F if

Fin Q F _C_ Fraz (1)

o . 30th ACM/IEEE Design Automation Conference®
Permission to copy without fee all or pan of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

©1993 ACM 0-89791-577-1/93/0006-0631 1.50

631

We consider hereafter specifications directly in terms of a pair
Frmin, Frmaz.

2.1 Previous Work

Most Boolean methods for multiple-level logic synthesis rely upon
two-level synthesis engines. For this reason and in order to establish
some essential terminology, we first review some basic concepts of
two-level synthesis.

Two-level Synthesis

Consider the synthesis of a (single-output) network whose output y
is' to satisfy Eq. (1), imposing a realization of y as a sum of cubes
Ck:

N
len gy=zcngma.’:~ (2)

k=1
The upper bound in Eq. (2) holds if and only if each cube cx
satisfies the inequality ek € Frnas. (3)

Any such cube is termed an implicant. An implicant is termed
prime if no literal can be removed from it without violating the in-
equality (3). For the purpose of logic design, only prime implicants
need be considered [7, 1]. Each implicant ¢ has a cost wj asso-
ciated to it, which depends on the technology under consideration.
For example, in PLA minimization all implicants take the same
area, and therefore have identical cost; in a multiple-level context,
the number of literals can be taken as cost measure [3]. The cost
of a sum of implicants is usually taken as the sum of the individual
costs.

Once the list of primes has been built, a minimum-cost cover of
Frmin is determined by solving:

N N
minimize : E akswy; subject to: Fp.in C Zakck 4
k=1 k=1

where the Boolean parameters oy are used in this context to
parameterize the search space: they are set to 1 if ¢ x appears in the
cover, and to 0 otherwise. The approach is extended easily to the
synthesis of multiple-output circuits by defining multiple-output
primes [7, 1]. A multiple-output prime is a prime of the product
of some components of Frma~. These components are termed the
influence set of the prime.

Branch-and-bound methods can be used to solve exactly the
problem. Engineering solutions have been thoroughly analyzed,
for example, in [1], and have made two-level synthesis feasible for
very large circuits.

Eq. (4) can be rewritten as

N
Vzl,...,z,., (Z akak(x) + F,I,"'"(X)> =1. (5)
k=1

The left-hand side of Eq. (5) represents a Boolean function F,

of the parameters a; only; the constraint equation (4) is therefore

equivalent to Fo=1 6)
a=1.

The conversion of Eq. (4) into Eq. (6) is known in the literature
as Petrick’s method [T].

Two properties of two-level synthesis are worth remarking in the
context of this paper. First, once the list of primes has been built,
we are guaranteed that no solution will violate the upper bound in
Eq. (1), so that only the lower bound needs to be considered (as
explicited by Eq. (4)). Similarly, only the upper bound needs to
be considered during the extraction of primes. Second, the effect
of adding/removing a cube from a partial cover of Fmin is always
predictable: that partial cover is increased/decreased. This property
eases the problem of sifting the primes during the covering step,
and it is reflected by the unateness of F',: intuitively, by switching
any parameter o, from 0 to 1, we cannot decrease the chances of
satisfying Eq. (6). These are important attributes of the problem
that need to be preserved in its generalizations.

Don’t care -based Multiple-level Optimization

Two-level optimization is the basic engine in don’t care -based
multiple-level logic optimization, where it is used to iteratively op-
timize single-output gates in the network.

Consider a single-output subnetwork, with local output y, to be
re-synthesized. The primary output F of the overall network can
be expressed in terms of the signal y:

F=F(x,y) = y'Fy + yFy = (y1+ F,)(3'1+Fy). (7)
By replacing Eq. (7) in Eq. (1), it follows that y must satisfy:
Frin (_: y’Fy' + yFy Q Frmaz. (8)
A constraint on y similar to Eq. (1) can be obtained from Eq.
(8) as follows. The upper bound in Eq. (8) holds if and only if
¥y'Fyr C Frnar and yFy C Frag, ie.
yl g Fmaz + F;I; Y Q Fmax +F; (9)
Eq. (9) can be rewritten as
FrazFy Cyl CFrnaz + F,. (10)
Similarly, the lower bound holds if and only if Fy» + y1 2 Fpn
and Fy + y'1 D Fpnin, ie.
Fm‘"Fy’ g yl g F:nvn + F!l
Eq. (10) and (11) can be merged together, to obtain:
FrminFyr + FrnazFyr C 91 C (Frmaz + Fy)(Frn +Fy). (12)

Eq. (12) represents the exact degrees of freedom available in the
synthesis of the signal y, and is formally identical to Eq. (1): the
value of y is undetermined corresponding to those points for which
the lower bound differs from the upper bound. Such points are
the local don’t cares for y, and are denoted by DC,(x). Once
the bounds (or, equivalently, the don’t cares) for y are computed,

ordinary two-level synthesis algorithms can be applied. '

(11)

Boolean Relations-based Multiple-level Optimization

Don’t care -based methods allow the optimization of only one
single-output subnetwork at a time. It has been shown in [6] that
this strategy may potentially produce lower-quality results with re-
spect to a more general approach attempting the simultaneous op-
timization of multiple-output subnetworks.

Let y = [y1,92,---,ym) denote the outputs of a subnetwork,
to be re-synthesized, and let F(x,y) denote the network outputs,
expressed in terms of the variables y.. From equation(1), the func-
tional constraints on y are expressed by

(13)

Fm:n g F(X, y) g Fma:co

An equation like Eq. (13) describes a Boolean Relation?. The
synthesis problem consists of finding a minimum-cost realization of
Y1, ---,¥m such that Eq. (13) holds. An exact solution algorithm,
targeting two-level realizations, is presented in [6].

The difficulty with solutions to Boolean relation is twofold: First,
when trying to express Eq. (13) in a form similar to Eq. (12), the
isolation of a particular y, results in dependence of y, in the upper
and lower bounds of the expression. This makes simultaneous opti-
mization of y; ...y, difficult. Second, Eq. (13) requires a solution
to the binate covering problem in the covering step. Fast binate
covering solvers are the subject of ongoing research [8]. Never-
theless, the binate nature of the covering step reflects an intrinsic
complexity which is not found in the unate case. In particular, since
F is in general binate with respect to y, the effect of adding / remov-
ing a prime to a partial solution is no longer trivially predictable,
and both bounds in Eq. (13) may be violated by the addition of
a single cube. As a consequence, branch-and-bound solvers may
(and uvsually do) undergo many more backtracks than with a unate
problem of comparable size, resulting in a substantially increased
CPU time.

'In practice, y is re-synthesized by taking advantage also of the other internal
signals available in the network. Implicants and primes are in this context expressed
in terms of primary inputs and other network variables.

2An alternative formulation of a Boolean Relation is by means of a characteristic
equation: R(x,y) = 1, where R is a Boolean function. It could be shown that the
two formulations are equivalent.

632

Figure 1: Gates g1 and g, are compatible.

3 Compatible Gates

The analysis of Boolean relations points out that binate problems
arise because of the generally binate dependence of F on the vari-
ables y;. We introduce the notion of compatible gates in order to
perform multiple-gate optimization while avoiding the binate cov-
ering problem. In the rest of the paper, given a network output
expression F(x, y), x is the set of input variables and y is the set
of gate outputs to be optimized.

Definition 1 A subset of gates S = {g1,...,9x} in a Boolean net-
work with outputs yi . . . Ym is said to be compatible if the function
F can be expressed in terms of the network outputs as

m
Fi=) 4P+ (14)
=1
modulo a phase change in the variables y; or F. In Eq. (14),
the functions p; = p;(z1,...,%n) and ¢ = q(z1,...,25) do not
dependon y,, ..., Ym.

Compatible gates allow optimization of multiple gates without
having to solve the binate covering problem. Intuitively, compat-
ible gates are selected such that their optimization can only affect
the outputs in a monotonic or unate way, and thereby forcing the
covering problem to be unate.

Example 1 Consider the two-output circuit in Figure 1. Gates g,
and g, are compatible because F' and H can be written as

F=(z;+z3+z)n + (z1 + 72 + 73)32,

H = 0Oy1 + Oz + ((z1 + 23 + z4) (21 + 23 + 23))';

The compatibility of a set S of gates is a Boolean property. In or-
der to ascertain it, one would have to verify that all network outputs
can indeed be expressed as in Definition (3). This task is poten-
tially very CPU-intensive. In Appendix A, we present algorithms
for constructing subsets of compatible gates from the network topol-
ogy only.

3.1 Optimizing Compatible Gates
The functional constraints for a set of compatible gates can be
obtained by replacing Eq. (14) into Eq. (13). From Eq. (14) we
obtain: m
Fmin g ZyJPJ +ngma17 (15)
i=1
Eq. (15) can be solved using steps similar to that of two-level opti-
mization. In particular, the optimization steps consist of implicant
extraction and the covering steps.
Implicant Extraction
Assuming that ¢ C Fpaz, the upper bound of Eq. (15) holds if
and only if for each product y;p; the inequality
yip; © Fraz

is verified, i.e. if and only if
¥;1 C Fraz +P;-; J=1...,m

(16)

1mes | Influence sets
ct z; Z§zs yL®»
o | TyzyEy L
c3 T\ T3T4 Yy, Y2
o] 224 YL
cs | zizwy YL
cs | =} v
o | =23z 2
g | =z} Y
cg Z1%T4 Y

Table 1: Multiple-output primes for Example (2).
X%

% 5
X %) 00 01 11 10 XX 00 01 11 10 Xy % 00 0t 11 10
oof1|o]1]1 ool 1o |1{1 oof 1t]1]1
o1jojo]1t1]o otf1]of1]1 0t 00 |4 |1
1Myt 1itjo it |1 [1]1 IBEERERE
10jofojo]o 1001]4(1]1 o] 111]|1]1
Fimin ,Frnax @ Py P2
x,xg}“o o1 11 10 x,,:’x'oo o1 11 _10 ,,::x‘oox ol 11 _i10
oo 1]i1] 14?1 oo[Tifo [1]1 oo] Vo [T
o] 0i1] 10 i1 1]o on| 0|t e
il T11]e ufir 1y 1]e ik
1w0jo]ojo]o 1000 |ofo wTT ofo
Fnax, Faxz Fary Finexz
®)
Figure 2: (a): Maps of Frmin, Frmaz,p1,p2. (b) Maps of

Frax,1y Fmaz,2 and of the product Fraz,1Fmaez,2. Primes of 4
and y; are shown in the maps of Finaz,1 and Finaz,2, respectively.
The map of Fmaz,1 Fmaz,2 shows the primes common to y; and y2.

or, equivalently,

ngFma:,j; j=1...,m

(17)
where Fpnagz,; is the product of all the components of F ez + p;.
A cube c can thus appear in a two-level expression of y ; if and only
if ¢ C Finaz,;. As this constraint is identical to Eq. (3), the prime-
extraction strategies [7, 1] of ordinary two-level synthesis can be
used.

Example 2 Consider the optimization problem for gates g and g>
in Fig. (1).
From Example (1),

p1 = (21 + 23 + 74)";

p2 = (z1 + 23+ 23).

We assume no external don’t care set. Consequently, F pin =
Fumaz = 212235 + 222334 + z155(73 + 74). The Kamaugh maps
of Fuiin and Fyop are shown in Fig. (2a), along with those of p,
and p;. Fig. (2b) shows the maps of Fimaz,1 = Fmas + py and
Frnaz2 = Fmas + pj, used for the extraction of the primes of y,
and y,, respectively. The list of all multiple-output primes is given
ir:ug'able (1). Note that primes 1 through 5 can be used by both y
ana y».

Covering Step

Let N indicate the number of primes. For example, in the prob-
lem of Example (2), N = 9. We then impose a sum-of-products
representation associated with each variable y ;:

N
yi=) ok (18)
k=1

with the only restriction that a;x = 0 if y; is not in the influence
set of cx. Since the upper bound of Eq. (15) is now satisfied by
construction (i.e. by implicant computation), the minimization of

633

e "ﬂ\l'.;'L_‘LL
o] wliFela]al/
o | mio]oiffi]le
° il iilitffo
° wiojojolo
1/ Fnin

Figure 4: Network resulting from the simultaneous optimization of
compatible gates g, and g».

Y1, ... ,Ym can be formulated as a minimum-cost covering problem
m N

Frmin C q+zza1k0kp,- (19)
=1 k=1

whose similarity with Eq. (4) is evident, the products c;x p; now
playing the role of the primes of two-level synthesis.

Example 3 In the optimization problem of Example (2), we are to
solve the covering problem

Frin C p1y1 + p21p2.

Using the set of primes found in Example (2), y1 and y, are
expressed by
Y1 = a101 + 01,202 + 1,363 + ay,4c4 + oy 565+

«y,8¢8 + a1,9C9
y2 = o2,1¢1 + @2,2¢2 + a2,3¢3 + az,4c4 + 2,565+
a2,6C6 + a2,7¢7

The optimum solution has cost 6 and is given by y, = ziz) +
TaT4; Y2 = 213, corresponding to the assignments

ap=apz=az=as=a1,9=0;, apg=as=1;

mr=oz=os=azs=azs =a27=0; as=1.

The initial cost, in terms of literals, was 12. The solution corre-
sponds to the cover shown in Fig. (3), and resulting in the circuit

of Fig. (4).

It is worth contrasting, in the above example, the role of y,
and y» in covering Fr..n. Before optimization, piy1 covered the
minterms z22%3T4, T1T2T3T4, Z12233T4 Of Frnin, while pays
covered z{ziziz}, TiriTsr), T\z22324, T{T)T3T4. After opti-
mization, y; and y, essentially “switched role” in the cover: p2y»
is now used for covering z1z2z4z}, T1z275x4, While piy; covers
all other minterms.

In the general case, the possibility for any of y1,...,ym to cover
a minterm of Fy,iy is evident from Eq. (15). Standard single-gate
optimization methods based on don’t care [5] regard the optimiza-
tion of each gate gi1,...,9m as separate problems, and therefore
this degree of freedom is not used. For example, in the circuit of
Fig. (1), the optimization of ¢, is distinct from that of g,. The
don’t care conditions associated to (say) y are those minterms for
which either p; = 0 or such that p2y2 = 1, and are shown in the
map of Fig. (5), along with the initial cover. It can immediately be
verified that y; can only be optimized into zz2z5 + z274, saving
only one literal.

The don’t cares for y, are also shown in Fig. (5). No optimiza-
tion is possible in this case. Note also that the optimization result
is (in this particular example) independent from the order in which
g1 and g» are optimized. Unlike the compatible gates case, it is
impossible for the covers of y) and y» to “switch” role in covering

min.

634

Y1
Figure 5: Don’t care conditions associated with y, and y,: only 1
literal can be removed. -

x4 ™ .

x4

Figure 6: Network for Example (4).
4 Unate Optimization

In the previous section we showed that in the case of compatible
gates, the functional constraints expressed by Eq. (13) can be re-
duced to Egs. (17) and (19), which could be solved by a two-step
procedure similar to that of two-level optimization. We now gen-
eralize the compatible gates results to the optimization of arbitrary
subsets S of unate gates.

4.1 Optimizing Unate Subsets

Assume, for the sake of simplicity, that F is positive unate with
respect to y1,...,Ym. We can perform optimization on the subset
of unate gates in a style that is totally analogous to compatible gates
by dividing it into implicant extraction and covering steps.
Implicant Extraction
In this step, for each y; to be optimized, a set of maximal functions
is extracted. In particular, the maximal functions of each each y;
can be expressed as Eq. (20), which is similar to Eq. (17).
% € Fmas,jij=1,...,m;
From Eq. (20), appropriate implicants can then be extracted.
Intuitively, the maximal functions are the largest functions that
can be used while satisfying the bound F C F,.,,. Therefore,

they represent the upper bounds on y ;. We introduce the following
definition:

Definition 2 A set of functions
{Fma,,,(x), Fm.,,,z(x), ey Fma,,m(x)}
is said to be maximal if
F(X, Frnaz,1(X), Frmaz,2(X),. .., Frmaz,m(X)) C Fmas (21
and the inequality (21) is violated only when any F 1, ; is replaced
by a larger function ¥ D Fraz;.

(20)

By substituting the maximal functions for each y;, Eq. (13) can be
reduced to the following:

Foiin g F(x) Y) (22)
The remaining task is to find a minimum-cost covering solution for
Eq. (22). The following theorem, whose proof is in [9], provides
means for finding a set of maximal functions. It also shows that

computing such functions has complexity comparable with comput-
ing ordinary don’t care sets.

Theorem 4.1 Maximal functions can be obtained as

Fmaz,j = fj + DC; (23)
where DC; represents the don’t care set associated with y ;, as-
suming that y. Frae, k= 1,...,5~ 1 and gy, = fr;k =
J+1,...,m

This theorem states that the maximal function for vertex ¢ depends
on the maximal functions already calculated (; < t). This means
that unlike the case of compatible gates, maximal function for a
given vertex is not unique.

Example 4 For the network of Fig. (6), assuming no external
don’t care conditions, we find the maximal functions for y,, ¥, and
y3. The DC,, terms correspond to the observability don’t care at
yi, computed using the Fmax of the previous gates.

Y1 = 2123743 Y2 = 23(%a + T2); Y3 = Z3%2 + 7122
Maximal functions derived by Theorem (4.1) are :

1 I ! t_!
Frazy = z12324 + DCy, = 2324 + (23 + 24) 2122

Fmaz,2 = E;(.’E.g + -"52) + DCyz(yl = Fmaa:,l)
= x4+ zézé + .1:11:5 + T3
Fmaa:,3 = zézé + 1‘;1'2 + DCyg(yl = Fma:z,l, Y2 = Fma=,2)

I t ! ’
= 2302+ 2122 + z423

Covering Step
Eq. (20) allows us to find a set of multiple-output primes for
¥1, ..., ¥m- The covering step then consists of finding a minimum-

cost sum such that Eq. (22) holds.

We now present a reduction for transforming the covering step
to the one presented for compatible gates. We first illustrate the
reduction by means of an example.

Example § In Fig. (6), consider the combination of inputs X re-
sulting in Frin(x) = 1. To each such combination we can as-
sociate the set of values of y1,y2,ys such that F(x,y) = 1. For
instance, for the entry £ 12223x4 = 1001, it must be F,,,;,;“(y) =
¥ + y2y3 = 1. Let us now denote with G(y) the left-hand side of
this constraint, i.e. G(y) = y1 + y2y3. Notice that G(y) is unate
in each y, and changes depending on the combination of values
currently selected for z 1, z2, T3, Ta.

Any constraint G(y) = 1 can be representedin a canonical form:

G(y) = (Gyryper + 91 + 12+ 93)(Gylyty, + 11 + 1)
"'(Gwyzy; + 93)Gyyyaps = 1
which, in turn, is equivalent to the 8 constraints

G+ Nt nt+ p =1

tylyst »r+ 3 =1
ylysy
e (24)
Gyyayt y3 =1
=1

v
By introducing an awxiliary variable z, for each y;, we can rewrite
Eq. (24) as:

G(z) + 2131 + 292 + 2393 = 1

or;, equivalently,

YV z1,22,23 .

G'(z) C ziy + 2292 + 233
In this particular example, we get
(21 + 2223) C ziy1 + 2592 + 2393 .

More generally, corresponding to each combination x such that
Fpun(x) = 1, the constraint F(xX,y) = 1 can be re-expressed as

FX,z)+ziy1+ 20 +...+2mym=1.

The transformation shown in Example (5) is formalized by the fol-
lowing theorem (whose proof can be found in [9]):

Theorem 4.2 Let z = [z1,...,2m) denote m auxiliary Boolean
variables. Eq. (22) holds if and only if

m
Frin C F(x,2) + Z v5(2;1)
7=l
Eq. (25) has the same format of Eq. (15), with q and p, being
replaced by F(x,z) and 2,1, respectively. Theorem (4.2) thus al-
lows us to reduce the covering step to the one used for compatible
gates. Theorems (4.1) and (4.2) show that the algorithms presented
in Section 3 can be used to optimize arbitrary sets of gates with
the same parity, without being restricted to sets of compatible gates
only.

(25)

635

5 Implementation and Results

The implementation of the algorithms presented in Sections 3 and
4 is as follows. The original networks are first transformed into a
unate, NOR-only description. All internal functions are represented
using BDDs [10]. For each unoptimized gate g, the following
heuristic is used. First, we try to find a set of comptible gates for
gs, called S.. In the case where not enough compatible gates can
be found, we find a set of gates that are unate with respect to g,
called S,.

In the case where S, is optimized, we use Eq. (14) to extract
the functions p; and q. In particular, q is extracted by simulating
the network with outputs y, stuck-at 0. The functions p; are then
extracted by simulating the network with y, stuck-at 1, with y;;¢ #
7 stuck-at 0.

In the case of optimizing arbitrary unate network S,, Theorem
(4.1) is used to determine the maximal functions for each y,. Note
that optimizing S. is preferable because for a set of m compatible
gates, m + 1 simulations are needed to obtain all the required don’t
cares . For 8,, two simulations (with y, stuck-at-0 and stuck-at-1)
are required for the extraction of the don’t care set of each variable
¥,, resulting in a total of 2m simulations.

A set of primes for the gate outputs is then constructed. Because
of the large possible set of primes, we limit our prime selection to
single-literal primes only. The BDD of F(x, z) is then built, and the
covering problem solved. Networks are then iteratively optimized
until no improvement occurs, and eventually folded back to a binate
form. The algorithms presented in this paper were implemented
in C program called achilles, and tested against a set of MCNC
synthesis benchmarks.

Table (2) provides a comparison of achilles with SIS using
script.rugged. The column Initial Stat. lists the network statistics
before optimization, where /nt. is number of internal interconnec-
tions and gates is the gate count. The column Interconn. shows
number of interconnections after optimization. The gates column
compares final gate counts. Literal column shows the final literals
in factored form. The results in the table show that achilles per-
forms better than SIS for all figures of merits. In particular, achilles
does 11% better than Sis in factored literals.

Note that script.rugged was chosen because it is the most robust
script of the SIS script suite, and it matches closely to our type of
optimization. Our objective was to compare optimization results
based only on Boolean operations, namely compatible gates ver-
sus don’t cares . The script.rugged calls full_simplify[11], which
computes observability don't cares to optimize the network.

The table shows that the achilles runtimes are competitive with
that of SIS. In this first implementation, we are more interested in
the quality of the optimization than the efficiency of the algorithms,
therefore an exact covering solver is used. We can improve the run-
time in the future by substituting a faster heuristic or approximate
solvers (such as used in ESPRESSO [1]).

6 Conclusion

In this paper we presented a comparative analysis of approaches
to multi-level logic optimization, and presented new algorithms for
simultaneous multiple-gate optimization. The algorithms are based
on the notion of compatible gates. We identify the main advantage
of the present approach over previous solutions in its capability of
exact minimization of suitable multiple-output networks, by means
of traditional two-level optimization algorithms. Preliminary exper-
imental results show an improvement of 11% over existing methods.

Appendix A Finding Compatible Gates

In this section, we describe an algorithm for finding compatible
gates based on network topology. In this analysis, we make the
assumption that the network is transformed into its equivalent NOR-
only form. In this case, the parity of a path is simply the parity of
the path length.

In defining Equation (14) for compatible gates, it is evident that
the dependency of F on y1,...,ym must be unate. In order to
increase the chances of finding sets of compatible gates, it is thus
convenient to transform a network into an internally unate one. This

Tnitial Stat. Interconn. Literals(fac) Gates CPU time
Circuit Int. | Gates | Achilles SIS | Achilles | SIS | Achilles | SIS | Achilles SIS
cm85a 108 63 6/ TT 42 46 31 34 1.5 12
cml62a 113 60 99 102 47 49 41 52 1.8 1.3
pml 130 60 67 78 47 52 31 36 1.6 1.3
9symml 375 152 288 325 163 | 186 88 | 101 108.4 64.2
alu2 924 262 366 570 303 | 362 215 | 23t 309.7 403.0
alu4 1682 521 902 | 1128 612 | 703 420 | 487 1612.6 | 1718.5
apex6 1141 745 1009 | 1315 687 | 743 589 | 639 115.1 30.3
C499 945 530 913 945 505 | 552 498 | 530 202.1 133.6
C880 797 458 643 731 355 | 409 295 | 342 340.6 30.7
C1908 936 489 828 891 518 | 542 445 | 482 422.1 138.8
Table 2: Optimization Results. Runtimes are in seconds on DEC5000/240.

is done by duplicating those gates whose fanouts contain reconver-
gent paths with different inversion parity. The resulting network is
therefore at most twice the size of the original one. In practice, the
increase is smaller.

Definition 3 A network is termed unate with respect to a gate g if
all reconvergent paths from g have the same parity of inversions.
A network is internally unate if it is unate with respect to each of
its gates. All paths from g to a primary output z; in an internally
unate network has parity =, which is defined to be the parity of g
with respect to z;.

Theorem (3.1) below provides a sufficient conditions for a set S
of gates to be compatible. Without loss of generality, the theorem is
stated in terms of networks with one primary output. The following
auxiliary definitions are required:

Definition 4 The fanout gate set and fanout edge set of a gate
g, indicated by FO(g) and FOE(g), respectively, are the set of
gates and interconnections contained in at least one path from g to
the primary output.
The fanout gate set and fanout edge set of a set of gates S =
{91,...,9x}, indicated by FO(S) and FOE(S), respectively, are:
|5}]

FO(8) = U FO(g:); FOE(S)= U FOE(g);

=1
Theorem A.1 In a NOR-only network, let S = {g,,...,9m} be
a set of gates of parity =, and not in each others’ fanout. Let
Y1, ..., Ym denote the respective outputs. The following proposi-
tions hold:

1) if each gate in FO(S) with parity * has at most one in-
put interconnection in FOE(S), then the primary outputs can be
expressed as in Eq. (14) for some suitable functions p ; and q;

2) if each gate in FO(S) with parity =' has at most one input
in FOE(S), then it can be shown that the output can be expressed
as in Eq. (14).

(26)

i=1

The proof can be found in [9].

Theorem (A.1) also provides a technique for constructing a set of
compatible gates directly from the network topology, starting from
a “seed” gate g and a parameter (rule) that specifies the desired
criterion of Theorem (A.1) (either 1 or 2) to be checked during the
construction. The algorithm is as follows:

COMPATIBLES(g, rule)
label_fanout(g, FO);
S ={g}
for(t = 0;{ < NGATES;i++) {
if ((islabeled(g;) = FALSE) & (parity(g:) = parity(g))) {
label_fanout(g:, TM P);
compatible = df s.check(gi, parity(g), rule)
if(compatible) {
label_fanout(g;, FO);
}S =8SU {g.'};

COMPATIBLES starts by labeling “FO” the fanout cone of g,
as no gates in that cone can belong to a compatible set containing
g. Labeled gates represents elements of the set FO(S). All gates
g that are not yet labeled and have the correct parity are then
examined for insertion in S. To this purpose, the fanout of g, that
is not already in FO(S) is temporarily labeled “T'M P”, and then
visited by df s.check in order to check the satisfaction of rule. If
gi is compatible, it becomes part of S and its fanout is merged with
FO(S). The depth-first traversal of df s_check is stopped whenever
the primary outputs or gates already in FO(S) are reached, or a
violation of rule is detected.

References

[1] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimiza-
tion for PLA optimization,” IEEE Transactions on CAD/ICAS, vol. 6,
no. 5, pp. 727-750, Sept. 1987.

E. L. Lawler, “An approach to multilevel boolean minimization,” ACM
Journal, vol. 11, no. 3, pp. 283-295, July 1964.

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level logic optimization system,” IEEE Transactions
on CAD/ICAS, vol. 6, no. 6, pp. 1062-1081, Nov. 1987.

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The trans-
duction method - design of logic networks based on permissible func-
tions,” IEEE Transactions on Computers, vol. 38, no. 10, pp. 1404—
1424, Oct. 1989.

K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R.
Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“Muttilevel logic minimization using implicit don’t cares,” IEEE
Transactions on CAD/ICAS, vol. 7, no. 6, pp. 723740, June 1988.

R. Brayton and F. Somenzi, “An exact minimizer for boolean rela-
tions,” in /ICCAD, Proceedings of the International Conference on
Computer-Aided Design, pp. 316-319, Nov. 1989.

E. J. McCluskey, Logic Design Principles With Emphasis on Testable
Semicustom Circuits. Prentice-Hall, 1986.

S. W. Jeong and F. Somenzi, “A new algorithm for the binate covering
problem and its application to the minimization of boolean relations,”
in ICCAD, Proceedings of the International Conference on Computer-
Aided Design, pp. 417-420, 1992.

M. Damiani, J. Yang, and G. De Micheli, “Optimization of combina-
tional logic circuits based on compatible gates,” tech. rep., Computer
Systems Laboratory, Stanford University, 1993.

R. E. Bryant, “Graph-based algorithms for boolean function manipu-
lation,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677-691,
Aug. 1986.

H. Savoj, R. K. Brayton, and H. Touati, “Extracting local don’t cares
and network optimization,” in ICCAD, Proceedings of the Intema-
tional Conference on Computer-Aided Design, pp. 514-517, Nov.
1991.

[2]

31

[4]

{51

fe]

7

(8]

91

(10

1

636

