
Optimization of Combinational Logic Circuits

Based on Compatible Gates *

Maurizio Damiani t Jerry Chih-Yuan Yang Giovanni De Micheli

Center for Integrated Systems
Stanford University, Stanford CA 94305

Abstract - Thts paper prmenta a set of new teelmiques for the np-
timtzattmr of multiple-level combtnattorud Boolean networks. Such
teehntquea are breed on a temporary tmnsfonnatlon of the networ&

tnto an internally unste one. We descrtbe tirat a teebnique baaed upon
the seleetion of appropriate multiple-output subnetwo~s (consisting

of s~c.slled comprztible gates) whose local functions can be opthntzed
sttmdtaneoualy. We then generalize the method to larger subsets of

tmate gates. Beeauae shntdtaneoua opttmizatton of local functions ean

take place, our methods are more powerful and general than Boolean
optimization methods using don t cares , where only single-gate opti.
ndzatton am be performed. In addttton, our methods rvpmaent a more
efficient alternative to Boolean rvlations-b=d opttndzation procedures
beeauae the problem can be mndeled by a mate covertng problem tn-
stead of the more difficult binate eoverhtg problem. The method ts
implemented in program achilks and compares favorably to ~S.

1 Introduction
Logic synthesis has been traditionally divided into two-level and
multiple-level synthesis. Two-level synthesis has been intensely
researched from theoretical and engineering perspectives, and effi-
cient rdgorithms for exaet and approximate solutions are available
[1]

Exact optimization algorithms for multiple-level logic networks
have also been considered [2]. They are, however, generally im-
practical even for medium-sized networks. For this reason, many
efficient approximation algorithms have been developed over the
paat decade. Such algorithms can be classified according to the
algebraic/Booleau type of operations they perform. Algebraic tech-
niques, such as factoring and kemeling, are described in [3].

As algebraic methods do not take full advantage of the properties
of Boolean algebr~ a spectrum of Boolean optimization techniques
has been developed in parallel. Such techniques consist mainly of
iteratively refining an initial network by identifying subnetworks
to be optimized, deriving their associated degrees of freedom (ex-
pressed by so-called don’t care conditions), and replacing such sub-
networks by simpler, optimized ones.

The independent optimization of the local function of a network,
called single-gate optimization, lies at one end of the spectrnm
It has been shown [4, 5] that the degrees of freedom associated to
a single gate cart be represented by a don’t care set. Once this set
is obtained, two-level synthesis algorithms can be used to optimize
the subnetwork [5].

The concurrent optimization of several local functions, called
multiple-gate optimization, lies at the other end of the speetrum
Such methods have been shown to offer potentially better quality
networks as compared to siogle-gate optimization because the de-
grees of freedom of multiple gates are used simultaneously. Heuris-
tic approximations to multiple-gate optimization include the use of
compatible don ‘t cares [4] which allows us to extend don ‘tcare
based optimization to multiple functions by restricting the don’t
care sets themselves. Although such methods are applicable to
large networks, the restriction placed on don’t care sets reduees the
degrees of freedom and hence possibly the quality of the results.
Exact methods for multiple-gate optimization, tirst analyzed in [6],
have been shown to best exploit the degrees of freedom. Unfortu-
nately these methods suffer from two major disadvantages. Fira4
even for small subnetworka, the number of primes that have to be
derived can be remarkably large; second, given the set of primes, it

*’Ihia march is sponsored by NSF and DEC under a PM awmi and by ARPA
and NSF under eontrset MIP 8719545.

tNOW Wjth tie Diptirnmto di E140nica cd hformatka, hh’erakd d pSdOVa,

Via Gm&niso WA, Padova, ltsty.

entails the solution of an often wmplex birtate covering problem,
for which efficient algorithms are still the subject of investigation.
As a result the overall efficiency of the method is limited, and ooly
relatively small networka can cumently he handled.

The binate nature of the covering problem arises essentially from
the arbitrariness of the subnetwork selected for optimization. In
this paper, we develop alternative techniques for the optimization
of multiple-output subnetiorka. These techniques are based upon
a temporaty transformation of a network into an internally unate
one, and on an accurate choice of the subnetworks to be optimized.
The difficult binate covering step is avoided, and yet so optitniza-
tion quality superior to don’t cam -baaed methods with comparable
efficiency is achieved because multiple loesl functions can be opti-
mized simultaneously. To this regard, first we introduce the notion
of compatible set of gates as a subset of gates whose optimization
cao be solved exactly by classical two-level synthesis algorithms.
We show that the simultaneous optimization of compatible gates al-
lows us to reach optimal solutions not achievable by conventional
don ‘t care methods. We then leverage upon these results and present
an algorithm for the optimization of more general subnetworks in an
internally unate network. The algorithms have been implemented
and tested on several benchmark circuits, aod the results in terms
of literal savings as well as CPU time are very prmnisiug.

2 Terminology
LetB denote the Boolean set {O, 1}. A kdimensional Boolean

vector x=[zl, . . . , z ~]~ is an element of the set f3k (bold-faeittg is
hereafter used to denote vector quantities. IO particular, the symbol
1 denotea a vector whose components are all 1).

A ni-inpu~ no-output Boolean function F is a mapping F:
W“ ~ f3n0. A literal function, or literal, is the function ex-
pressed by a variable or ita complement. A cube c is the product
of some litersla. A gate refers to the local function that the output
of the gate represents. A Boolean function can also be represented
as a set using its miuterms of the ON-act. For the rest of the paper,
we interchangeably usc set (~, ~) and function (+,.) notations to
deaeribe Boolean functions for notational convenience.

The cofactors (or residues) of a function F with respect to a
variable z, are the functions F=, =F(z I, . . . ,x, = 1, . . . ,z~) and

F=/ =F(zI,... ,z, = 0, z.). The universal quantification
,

or consensus of a function F with respect to a variable z, is the
function V.i F = F.i F=:. A scalar function F1 contains F2 (denoted

by F1 ~ F2) if F2 = i implies F1 = 1. The containment relation
holds for two vector functions if it holds component-wise.

A function F is termed positive unate in z i if F=, ~F=!, and

negative unate if F=, ~FzI. Otherwise the function is &med

binate in zi. A function F’ positive unate in a variable z, can

always be expressed witbout using the literal z ~ [7].
The desired terminal behavior of a combinational network is

specified by two functions, ON(x) and DC(x), the latter in particu-
lar representing the input combinations that either do not occur or
such that the vahre of some of the network outputs is regarded as
irrelevant [5].

The functions ON and DC identify the set of possible terminal
behaviors for the network: s citications are met by an implemen-

rtation, realizing a function F x) if and only if F(x)=ON(X) for every
input x not in DC.

Another, equivalent description of the set of terminal behaviors
is in terms of the functions F~,n = ON . DC’ and F~~m = ON +

DC. Specifications are met by F if
m ..-. /.\
@rein & ~ & ~maz (1)

30th ACMIIEEE Design Automation Conferencem
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, tbe
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or speeific permission. 621993 ACM 0-S9791-577-1/93/0006-0631 1.50

631

We consider hereafter specifications directly in terms of a pair
Fmin, Fro...

2.1 Previous Work

Most Boolean methods for multiple-level logic synthesis rely tqmn
two-level synthesis engines. For this reason and in order to establish
some essential terminology, we first review some basic concepts of
two-level synthesis.

Two-level Synthesis

Consider the synthesis of a (single-ou@ut) network whose output v
is’ to satisfy Eq. (l), imposing a realization of y as a sum of cubes
Ck :

N

F ~,n ~ y = ~Ck ~ Frn.x. (2)

kml

The upper bound in @. (2) holds ~ and only ~ each cube c k

satisfies the inequality
ck ~ F~~z . (3)

Any such cube is termed an implkant. An implieant is termed
prime if no literal can be removed from it without violating the in-
equality (3). For the purpose of logic design, only prime impIicants
need be considered [7, 1]. Each implicant c k has a cost ~k asso-
ciated to i< which depends on the technology under consideration.
For example, in PLA minimization all implicants take the same
are% and therefore have identical cost; in a multiple-level contexti
the number of Iiterals can be taken as cost measure [3]. The cost
of a sum of implicants is usually taken as the sum of the individual
Costa.

Once tbe list of primes has been built, a minimum-cost cover of
Fmi. is determined by solving:

N N

minimize:
x

Llkwk; subj~t to: Fmin ~ E
~,Ck (4)

k= 1 k=l

where the Boolean parameters w k are used in this context to
parametrize the search space: they are set to 1 if c k appears in the
cover, and to O otherwise. ‘Ihe approach is extended easily to the
synthesis of multiple-output circuits by defining multiple-output
primes [7, 1]. A multiple-output prime is a prime of the product
of some components of F~~=. These components are termed the
influence set of the prime.

Branch-and-bound methods can be used to solve exactly the
problem. Engineering solutions have been thoroughly analyzed,
for example, in [1], and have made two-level synthesis feasible for
very large circuits.

Eq. (4) can be rewritten as

N

v=,,...,%(x)@kCk(x)+ F~in(x) = 1 . (5)

k=l

The left-hand side of Eq. (5) represents a Boolean function F.
of the parametem a i only; the constraint equation (4) is therefore
equivalent to

F. =1. (6)

The conversion of Eq. (4) into Eq. (6) is known in the literature
as Petrick’s method [7].

Two properties of two-level synthesis are worth remarking in the
context of this paper. First once the list of primes has been built,
we are guaranteed that no solution will violate the upper bound in
Eq. (1), so that only the lower bound needs to be considered (as
explicated by Eq. (4)). Similarly, only the upper bound needs to
be considered during the extraction of primes. Second, the effect
of addirtg/removing a cube from a partial cover of F rrain is always
predictable: that partial cover is increaseddecreased. This property
eases the problem of sifting the primes during the covering step,
and it is reflected by the unateness of F-: intuitively, by switching
any parameter CY, from O to 1, we cannot decrease the chances of
satisfying Eq. (6). These are important attributes of the problem
that need to be preserved in its generalizations.

Don’t care -based Multipk-level Optimization

llvo-level optimization is the basic engine in don’t care -based
multiple-level logic optimization, where it is used to iteratively op-
timize single-output gates in the network.

Consider a single-utput subnetwork, with local output y, to be
re-synthesized. The primary output F of the overall network can
be expressed in terms of the signal y:

F = F(x, y) = Y’FYJ + YFY = (YI + FVJ)(Y’l + Fu). (7)

By replacing I@ (7) in Eq. (l), it follows that y must satisfy

Fmin ~. Y’FVI + YFV G F’rnaz. (8)
A constraint on y simdar to I@ (1) can be obtained from &q.

(8) as follows. The upper bound in E@, (8) holds if and only if
y’FvI c F~az and yF& G Fmac, i.e.

y’ C Ftmz +Fj/; Y g Fnwz +F~. (9)

Eq. (9) can be rewritten as

F~.=F9/ ~ yl ~ F~a= + F; . (lo)
Similarly, the lower bound holds if and only if Fy, + VI ~ F~,n

and FY + y’1 ~ Frnin, i.e.

FminF~/ ~ ~1 ~ F~,n + Fv (11)

Eq. (10) and (11) can be merged together, to obtain:

~a=Fv/ ~ yl ~ (Fmam + ~v)(F~,n + Fv). (12)FmanF~/ + F’

Eq. (12) represents the exact degrees of freedom available in the
synthesis of the signal y, and is formally identical to Eq. (1): the
value of y is undetermined comesponding to those points for which
the lower bound differs from the upper bound. Such oints are

(the local don’t cares for y, and are denoted by DC ~ x). Once

the bounds (or, equivalently, the don’t cares) for y are computed,

ordinary two-level synthesis rdgorithms can be applied. 1

Boolean Relations-based Multiple-1evel Optimization

Don ‘t care -based methods allow the optimization of only one
single-output subnetwork at a time. It has been shown in [6] that
this strategy may potentially produce lowerquality results with re-
spect to a more general approach attempting the simultaneous op-
timization of multiple-output subnetworks.

Lety= [Y1, Y2, .”. , ym] denote the outputs of a subnetwork,

to be re-syntlwsixed, and let F(x, y) denote the network outputs,
expressed in terms of the variables y,. From equational), the func-
tional constraints on y are expressed by

F m:. G F(x, y) q Fmaz. (13)

An equation like Eq. (13) describes a Boolean Relationz. The
synthesis problem consists of tinding a minimum-cost realization of
Yl, ..., ym such that @. (13) holds. An exact solution algorithm,
targeting two-level realizations, is presented in [6].

The difficulty with solutions to Boolean relation is twofold FirsL
when trying to express Eq. (13) in a form similar to Eq. (12), the
isolation of a particular y, results in dependence of y ~ in the upper
and lower bounds of the expression. This makes simultaneous opti-
mization of yl . . . y~ difficult. Second, Eq. (13) requires a solution
so the binate covering problem in the covering step. Fast binate
covering solvers are the subject of ongoing research [8]. Never-
theless, the binate nature of the covering step reflects an intrinsic
complexity which is not found in the unate case. In particular, since
F is in general binate with respect to y, the effect of adding / remov-
ing a prime to a partird Solution is no longer trivially predictable,
and both bounds in Eq. (13) may be violated by the addition of
a single cube. As a consequent, branch-and-bound solvers may
(and usually do) undergo many more backtracks than with a untie
problem of comparable size, resulting in a substantially increased
CPU time.

‘In prsctice, y is @synthesised by takins sdvantage slaa of the other internal
signals available in the network. Implicants and primes are in this context expreswd
in tams of primary inputs and other nehvork variables.

2An aknative formulation of a Bwdean Relation is by means of a draracteriatic
equation R(x, y) = 1, whwe 1? is a Boolean function. It could be shown that the
two formulations are equivalent.

632

G
X4

.x;n–

“Xi~

Figure 1: Gates gl and gz are compatible.

3 Compatible Gates
The analysis of Boolean relations points out that binate problems
arise because of the generally binate dependence of F on the vari-
ables Vi. We int.mduce the notion of compatible gates in order to
perform multiple-gate optimization while avoiding the binate cov-
ering problem. In the rest of the paper, given a network output
expression F(A y), x is the set of input variables and y is the set
of gate outputs to be optimized.

De6nition 1 A subset of gates S = {gl,..., gk } in a Boolean net-
work with outputs y 1 . . . y~ is said to be compatible ifthefmction
F can be exprvssed in terms of the network outputs as

m

Fk=~Y3Pj+q (14)

j= 1

modulo a phase change in thevankrbles y j or I?. In ~. (14),
the finction.rpj = pj(~l,~n) andg = (I(zl,zn) ~tk?t
kpendonylj..., ym.

Compatible gates allow optimization of multiple gates without
having to solve the binate covering problem. Intuitively, compat-
ible gates are selected such that their optimization can only affect
the outputs in a monotonic or unate way, and thereby forcing the
covering problem to be unate.

Example 1 Consider the two-output circuit in Figure 1. Gates g 1
and gz are compatible because F and H can be written us

F = (z] +z3 +Zj)yl + (21 +d+~3)Y2,

H = Oy] + OY2+ ((z1 + Z3 + Z4)(ZI + Zj + ~3))’;

The compatibility of a set S of gates is a Boolean property. In or-
der to ascertain it one would have to verify that all network outputs
can indeed be expressed as in Definition (3). ‘Ibis task is poten-
tially very CPU-intensive. In Appendix A, we present algorithms
for constructing subsets of compatible gates from the network topol-
ogy only.

3.1 Optimizing Compatible Gates
The functional constraints for a set of compatible gates cso be
obtained by replacing I@ (14) into Eq. (13). From Eq. (14) we
obtain m

F~i. c ~yjpj + q G Fro.., (15)

j= 1

Eq. (15) can be solved using steps similar to that of two-level opti-
mization. In particular, the optimization steps consist of implicant
extraction and the covering steps.

Implicant Extraction

Assuming that q c Fro.=, the upper bound of Eq. (15) holds V
and only if for each product y jp; the inequality

is verified, i.e.

Yjpj G Fm.x

if and only if

yjl~Fm.z+p~; j=l,..., m. (16)

l%mes Influence sets

c1
, r

;~$~q
!JI, Y2

Q Y1,Y2
C3 x, x3x4 YI, Y2

-1-
X2X4 Y11Y2

xl X2X4 Y1,Y2
X2X4 Y2

x; Xjzj Y2
x’ x;

1
YI

x x4 YI

Table 1: Multit31eaubmt mimes for Exanmle (2).
%5

R
1$~ 00 01 11 10

001011

010010

11 1 110

100000

F- ,F-

.%’!mq+-h 01 11 10
~:1 “1 1 “1:

...
0, 0 ~:. lj o

111’10

100000

%)xx,

mJ%oo 01 11 10

001011

O*1O11

111111

101111

(4
P,

%5

lEm
+% 00 01 11 10

001:011

0, 5! “n 1 0

,11110
.- .. .:

100000

P2

m)

~gure ~ (a): Maps of Fmim, F~a.,p1,p2. (b). Maps of

max,l, ~.=,2 and of the product F~a=, 1F~a=,z. Prunes of yl
and yz are shown in the maps of F~a.,? and F~a=,z, respectively.
The map of F~a=, 1F~a=,z shows the prunes common to y 1 and YZ.

or, equivalently,

yjGFma.z,j; j=l,. ... m (17)

where Fm.=,j is the product of all the components of F~a= + p;.
~ :3; can thus appear in a two-level expression of y j if and only

~.z, j. As this constraint is identical to Ii@ (3), the prime-
extrtition strategies [7, 1] of ordinary two-level synthesis can be
used.

Example 2 Consider the optimizatwn problem for gates g 1 and gz
in Fig. (1).

From Example (l),

pl = (21 +X3 + X4)’;

p2 = (xl +X4 +x3)’.

We assume no external dim? cam set. Consequently, F ~~. =

FM.S = z1x2xj + z2Z3Z4 + xi z;(x3 + xi). ~ Karnaugh maps
of Ftiin and Fro.= ate shown in Fig. (2a), along with those of p 1

and pZ Fig. (2b) shows the maps of F~.=, 1 = F~~= + p; and

F ‘– F~a=ma.a,2 — + pi, used for the e.xmaction of the primes of Y I
and yz, respectively. The list of all multiple-output primes is given
in Table (l). Note that primes 1 through 5 can be used by both y 1
and yz.

Covering Step

Let N indicate the number of primes. For example, in the prob-
lem of Exanmle (2). N = 9. We then inmose a sum-of-uroducts
representation; as~;iated with each variabl; y j:

(18)

k= 1

with the ody restriction that ~jk = O if yj is nOt ill the itiuence

set of @. Since the upper bound of @. (15) is now satisfied by
constmction (i.e. by implicant computation), the minimization of

633

.-

M
mu””

‘“’”””’‘“1 “ 1 “i’ !QI:l

~otto

,, O*1O

moooo

Y,

Figure

xl

n

3: A miniinm-cost solution for the covering of Fmin.

Figure 4 Network resulting fmm the simultaneous optimization of
compatible gates g 1 and gz.

?4, ..., y~ can be formulated as a minimum-cost covering problem

m N

(19)Fmin G q +)—;~ @j~c~P~

j=l k=l

whose similarity with Eq. (4) is evident the products cjk Pj now
playing the mle of the primes of two-level synthesis.

Example 3 In the optimization problem of Example (2), we are to
solve the covering pmbkm

Fmi. ~ ~lyl +p2~.

Using the set of primes found in Example (2), y ~ and y~ are
expressed by

W = al,lcl + al,2c2 + CY1,3C3+ n’l,4c4 + rrl,5c5+

~l,8c8 + @l,9c9

y2 = a2,1cl + a2,2c2 + @2,3c3+ a2,4c4 + a2,5c5+

qecd + a2,7c7

The optimum solution has cost 6 and is given by y 1 = z; z; +

zzxd; yz = Zx come$ponding to the a.$sig~ents
al,l = &l,z = al,3 = &l,5 = al,9 = t); al,4 = &~,8 = 1;

CY2,1= CY2,2= ff2,3 = a2,4 = a2,5 = a2,7 = O; CYZ,6= 1.

The initial cost, in terms of literals, was 12. The solution corre-
sponds to the cover shown in Fig. (3), and resulting in the circuit
of Fig. (4).

It is worth contrasting, in the above example, the mle of y 1
and YZ in covering Fwtin. Before optimization, P1w covered the
minterm8 zlzzZ$zj, Z1ZZZ4Z4, zIz2r3z4 Of F~i~, while pzyz

covered z;zjzjzj, Z\XjZ& ${~z~s~q, Z;Z;ZWA After O@i-
mization, yl and yz essentially “switched role” in the cover: p2y2

is now used for covering z 1z2x~zj, xl x2x~x4, while pl yl covers
all other minterms.

In the general case, the possibility for any of y 1, ..., y~ to cover
a minterm of Fmin is evident from Eq. (15). Standard single-gate
optimization methods based on don ‘t care [5] regard the optimiza-
tion of each gate gl, ..., g~ as separate problems, and therefore
this degree of freedom is not used. For example, in the circuit of
Fig. (1), the optimization of gl is distinct from that of ~. The
don ‘t care conditions associated to (say) y 1 am those minterms for
which either p 1 = O or such that pZyZ = 1, and are shown in the
map of Fig. (5), along with the initial cover. It can immediately be
verified that y] can only be optimized into z 1ZZZ4 + z2z4, saving
only one literal.

The don ‘t cares for yz are also shown in Fig. (5). No optimiza-
tion is possible in this case. Note also that the optimization result
is (in this particular example) independent from the order in which
gl and g2 are optimixed. Unlike the compatible gates case, it is
impossible for the covers of y] and yZ to “switch” role in covering
Fmi~.

IiEB
Xtxa @ m M!IO

. ...
w 1,: 0 :1: “...!.,,

m --~~ho

,, --00

100000

h

Figure 5: Don ‘t care conditions associated with y 1 and y2:
literal can be removed. xl

X4
r —

“%-i-%-b-F

only 1

Figure 6: Network for Example (4).

4 Unate Optimization
In the previous section we showed that in the case of compatible
gates, the functional constraints expressed by Eq. (13) can be re-
duced to Eqs. (17) and (19), which could be solved by a two-step
prm%dure similar to that of two-level optimization. We now gen-
eralize the compatible gates results to the optimization of arbitrary
subsets S of untie gates.

4.1 Optimizing Unate Subsets
Assume, for the sake of simplicity, that F is positive unate with
respect to yl,ym. We can perform optimization on the subset
of unate gates in a style that is totally analogous to compatible gates
by dividing it into implicant extractwn and covering steps.

Implicant Extraction

In this step, for each yi to be optimized, a set of maximalfinctwns
isextracted. In particular, the maximal functions of each each y i
can be expressed as Eq. (20), which is similar to Eq. (17).

Yi C Fmaz,j; i= 1,. ... m; (20)
Fmm Eq. (20), appropriate implicants can then be extracted.

Intuitively, the maximal functions are the largest functions that
can be used while satisfying the bound F ~ F ~.=. Therefore,
they represent the upper bounds on y i. We introduce the following
definition

De6nition 2 A set offinctions

{Fmm,I(x), Fmq2(x), Frn~r,rn(x)}

is said to be maximal 17
F(x, F~az,l (X), F~~Z,z(x), Fma*,~(x)) ~ F~a= (21)

and the inequality (21) is violated only when any Fm.z j is replaced

by a Larger function ~ 3 F~~~j.

By substituting the maximal functions for each y i, Eq. (13) can be
reduced to the following

Fmi. ~ F(x, J’) (22)

The remaining task is to find a minimum-cost covering solution for
&. (22). The following theorem, whose proof is in [9], provides
means for Ending a set of maximal functions. It also shows that
computing such functions has complexity comparable with comput-
ing ordinary don ‘t care sets.

Theorem 4.1 Maximal fimctions can be obtained m

Fm..,j = fj + Dcj (23)

where D Cj repnments the don ‘t care set associated with y j, as-
s~ingthatyk = p~a.,k,k = 1,.. .,l–l dyk = fh; k=
~+l,..., m.

This theorem states that the maximal function for vertex i depends
on the maximal functions already calculated (j < i). This means
that unlike the case of compatible gates, maximal function for a
given vertex is not unique.

634

Example 4 For the network of Fig. (6), assuming no external
don ‘t cam conditwns, we Jittd the maximal functwns for y], W, and
VS. The DCU, terms cornsspond to the observability don’t care at

Y;, computed using the Fmax of the previo~ gates.

yl = X1X; X4; yz = ~4(~4 + 22); y3 = Z4Z2 + X;xj

Maxidfinctwns &rived by Theorem (4.1) are:

~mas,I = ZIZ:Z4 + DC91 = Z4Z4 + (2: + 24)2;2:

F m.az,2 = z:(z4 + z2) + DCY2(Y1 = Frnca.,1)

= X4 + Z:Z~ + ZIZ\ + z3Z2

F max,3 = z{zj + z; Z2 + DCY3(Y1 = F~az,l, w = Fm.s,z)

= Z;X2 + z: z; + 24X4

Covering Step

Eq. (20) allows US to find a set of multiple+utput primes for
Yl, ..., y-. The covering step then consists of finding a minimum-
cost sum such that Eq. (22) holds.

We now present a reduction for transforming the covering step
to the one presented for compatible gates. We first illustrate the
reduction by means of an example.

Example 5 In Fig. (6), consider the combination of inputs x re-
sulting in Fmin(x) = 1. To each such combination we can as-

sociate the set of values of y 1, Y2, y3 such that F(x, y) = 1. For

=,+:x,(y) =instance, for the entry z 1X2X3X4 = 1001, it must be F

YI + y2y3 = 1. titusnow denote with G(y) the lefi-h-nd side of
this constraint, i.e. G(y) = yl + y2y3. Notice that G(y) is unate
in each y, and changes depending on the combination of values
currently selected for z ~, 22, 23, 24.

Anyconstmint G(y) = 1 can be represented in a canonical fotm:

G(y) = (GV:%;Y: + YI + Y2 + Y3)(G9j9;Y3 + Y] + Y4

“ “ “ (GY192!J, ~ + Y3)G/1 Y23J3= 1

whick in turn, is equivalent to the 8 constrm”nts

Gvjvjv:+ yl+ y2.+ y3 = 1

G43413+ Y2+ y3 = 1

. . . (24)
G IJ, ~,y: + !/3 =1

G ?J1t12313
= 1

By introducing an auziliaty variable z, for each y;, we can rewrite
Eq. (24) as:

G(z) + Z;YI + Z;Y2 + zjy3 = 1 V ZI, 22, Z3 .

o~ equivalently

G’(z) ~ ZjyI + Z;Y2 + zjy3 .

In this particular example, we get

(ZI + Z2Z3)’ ~ Z[y, + Z4y2 + Zjy3 .

More generrdly, corresponding to each combination x such that
F~,~(x) = 1, the constraint F(x, y) = 1 can be re-expressed as

F(x, z)+z[YI +z;Y2+... +z~Ym= 1.

The transformation shown in Example (5) is formalized by the fol-
lowing theorem (whose proof can be found in [9])

Themem4.2Letz = [Z],..., z~] denote m awriliary Boolean
variables. Eq. (22) holds if and only t~

(2s)

$=1

Eq. (25) has the same format of Eq. (15), with q and pj being
replaced by F(x, z) and z ~1, respectively. Theorem (4.2) thus al-
lows us to reduce the covering step to the one used for compatible
gates. Theorems (4.1) and (4.2) show that the algorithms presented
in Section 3 can be used to optimize arbitr~ sets of gates with
the same parity, without being restricted to sets of compatible gates
only.

5 Implementation and Results
The implementation of the algorithms presented in Sections 3 and
4 is as follows. The original networks are first transformed into a
unate, NOR-only description. All internal functions ate represented
using BDDs [10]. For each unoptimized gate g i, the following
heuristic is used. FmL we try to find a set of comptible gates for
g,, called Sc. In the case where not enough compatible gates can
be found, we find a set of gates that are unate with respect to g i,
called s..

In the case where S= is optimized we use Eq. (14) to extract
the functions Pj and q. In particular, q is extracted by simulating
the network with outputs YJ stuck-at O. The functions p j m then
extracted by simulating the network with y~ stuck-at 1, with y;; i #
j stuck-at O.

In the caae of optimizing arbitrary unate network S., Theorem
(4.1) is used to determine the maximal functions for each y,. Note
that optimizing S. is preferable because for a set of m compatible
gates, m + 1 simulations are needed to obtain all the required don’t
cares. For S., two simulations (with yj stuck-at-O and stuck-at-l)
are required for the extraction of the don ‘t care setof each variable

Y, ~resulting in a ~~ of 2m sim~~ions.
A set of primes for the gate outputs is then constructed. Because

of the large possible set of primes, we hit our prime selection to
single-literal primes only. The BDD of F(x, z) is then built, and the
covering problem solved. Networks are then iteratively optimized
until no improvement occurs, and eventually folded back to a bioate
form. The algorithms presented in this paper were implemented
in C program called achilles, and tested against a set of MCNC
synthesis benchmarks.

Table (2) provides a comparison of achilles with SIS using
script. rugged. The column Initial Stat. lists the network statistics
before optimization, where ht. is number of internal interconnec-
tions and gates is the gate count. ‘Ihe column Intemonn. shows
number of interconnections after optimization. The gates column
compares final gate counts. Literal column shows the final literals
in factored form. The results in the table show that achiffes per-
forms better than SIS for all figures of merits. In particular, achilfes
does 11% better than SIS in factored literals.

Note that scnpt.rugged wsz chosen because it is the most robust
script of the SIS script suite, and it matches closely to our type of
optimization. Our objective was to compare optirrtixation results
based only on Boolean operations, namely compatible gates ver-
sus &n ‘t cams . The script. rugged calls jiLrimpltfi[l 1], which
computes observability don ‘t cares to optimize the network.

The table shows that the achilles runtimes are competitive with
that of S1S. In thii first implementation, we are more interested in
the quality of the optimization than the efficiency of the algofitbms,
therefore an exact covering solver is used. We can improve the run-
time in the future by substituting a faster heuristic or approximate
solvers (such as used in ~PRESSO [1]).

6 Conclusion
In this paper we presented a comparative analysis of approaches
to multi-level logic optimization, and presented new algorithms for
simultaneous multiple-gate optimization. ‘l’he algorithms are based
on the notion of compatible gates. We identify the main advantage
of the present approach over previous solutions in its capability of
exact minimization of suitable multiple-output networks, by means
of traditional two-level optimization algorithms. Preliminary exper-
imental results show an improvement of 11% over existing methods.

Appendix A Finding Compatible Gates

In this section, we describe an algorithm for finding compatible
gates baaed on network topology. In this analysis, we make the
assumption that the network is transformed into its equivalent NOR-
ooly form. In this case, the parity of a path is simply the parity of
the path length.

In defining Equation (14) for compatible gates, it is evident that
the dependency of F on y 1, ..., y~ must be unate. In order to
increase the chances of finding sets of compatible gates, it is thus
convenient to transform a network into an internally unate one. This

635

is done bv dtmlics

I“’al s tat. Interconn. LItcrats(fat) Grdes CPV
Circuit 1%’ Gates Achilles SIS Achilles S1S Achilles SIS Achilles
cm85a 108 63 67 77 42 46 31 34 15
cm162a 113 60 99 102 47 49 41 52 1:8

pml 130 52 31
9symml 375 1: 2;: 3;: 1:; 186

alu2
88 1:!

262
10$!

303 362 215 231
alu4 1%% 521 ;~ lTJ

309.7
612 703 420 487 1612.6

~e6 1141 745 1009 1315 687 743 589 639
945 530

115.1
913 945 505 552

C880 797 458
498 530

643 731
202.1

355 409
C1908 936 489

295 342 340.6
828 891 518 542 445 482 422.1

Table 2 Optimization Results. Rtmtimes are in seconds on DEC500W240.

[g those gates whose fattouts contain reconver-
gent path; wih different inversion parity. The resulting network is

COMPATIBLES starts by Iabetii
as no ~ates in that cone can belong to

&erefore at most twice the size of the ofiginal one. In &mXice, the
increase is smrdler.

Definition 3 A network is temred unate with respect to a gate g if
all reconvergent paths from g have the same parity of inversions.
A network is internally unate if it is unate with respect to each of
its gates. All paths from g to a primary output z ~ in an internally
unate network has parity xi, which is &fined to be the parity of g
with respect to z:.

Theorem (3.1) below provides a sufficient conditions for a set S
of gates to be compatible. Without loss of generality, the theorem is
stated in terms of networks with one primary output. The following
auxiliary definitions are required:

Definition 4 The fanout gate set and fanout edge set of a gafe
g, indicated by FO(g) and FOE(g), respectively, are the set of
gates and interconnections contained in at least one path from g to
the primary output.

The fanout gate set and fanout edge set of a set of gates S =

{91 , gk }, indicated by FO(S) and FOE(S), respectivel~ am:

Isl pi

FO(S) = u FO(gi); FO-E(S) = U FOE(gi); (26)
isl i= 1

Theorem A.1 In a NOR-only network let S = {gl, . . . ,g~} be
a set of gates of parity ir, and not in each others’ fanout. Let

Y1, y~ denote the respective outputs. The following proposi-
tions hold:

1) if each gate in FO(S) with parity ir has at most one in-

put inte~onnection in FOE(S), then the primary outputs can be
expressed as in Q. (14) for some stu”table functions p j and q;

2) 1~each gate in FO(S) with parity x’ has at most one input
in FOE(S), then it can be shown that the output can be expressed
as in Eq. (14).

The proof can be found in [9].
Theorem (A. 1) rdso provides a technique for constructing a set of

compatible gates directly from the network topology, starting from
a “seed” gate g and a parameter (rule) that specifies the desired
criterion of Theorem (A. 1) (either 1 or 2) to be checked doring the
construction. The algorithm is as follows:

COMPATIBLES(g, Wle)
label- fanout(g, FO);
s = {g};
for[i = O:i < NGATES: i + +) (

fi ((tk&&led(g~) = FALS@ & (parity(ga) = parity(g))) {
label-f anout(ai. TMP):

me
SIS

T
1.3

42
403.0

1718.5
30.3

133.6
30.7

138.8

‘FO [e fsnout cone of a.
I compatible set containti”g’

g. Ix$eled gates represents elements (the set FO(S). All gates
gi that are not yet labeled and have the correct parity are then
examined for insertion in S. To this purpose, the fsnout of g i that
ia not already in FO(S) is temporarily labeled “’TMP”, and then
visited by dfsdteck in order to check the satisfaction of rule. If
gi k compatible, it becomes part of S and its fanout is merged with
FO(S). The depth-first traversal of df s_check is stopped whenever

the primary outputs or gates already itI FO(S) are reach@ or a
viol~tion o_fTU1; is deb-cted.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

R. Rudell and A. Sangiovanni-Vincmtelli, “Multiple-valued minimiza-
tion for PLA o@misstion~ IEEE Transactions on CAD/ZCAS, vol. 6,
no. 5, pp. 727–750, Sept. 1987.

E. L. Lawler, “An approach to multilevel boolean minimimtion~ ACM
Journal, vol. 11, no. 3, pp. 283–295, July 1964.

R. K. Braytq R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level logic optimization system: IEEE Transactions
on CAD/7CAS, vol. 6, no. 6, pp. 1062-1081, Nov. 1987.

S. Mumgz Y. Ksmbaysshi, H. C. Lai, and J. N. CuItiney, “’Ihc trans-
duction method - design of logic networks based on permissible func-
tions; IEEE Tmnsactiurs on Computers, VOL 38, no. 10, pp. 1404-
1424, Get. 1989.

K. A. Bartlctq R. K. Brayton, G. D. Hschtel, R. M. Jscoby, C. R.
Mcs-risen, R. L. Rudell, A. Sangiovamti-Vhcentelli, and A. R. Wang,
“Multilevel logic minimization using implicit don’t cares: IEEE
Transactions on C.4LMCAS, vol. 7, no. 6, W. 723–740, June 1988.

R. Brayton and F. Somenzi, “An exact minimizer for boolean rela-
tions: m ICCAD, Proceedings of the Intemationai Cot#erence on
Computer-AidedDesign, pp. 316-319, Nov. 1989.

E. J. McCtuskey, Logic Darign Principles With Emphasis on Testable
Sem”cf4@O?nCircuits. Rentice-Hall, 1986.

S. W. Jcong and F. Somenri, “A new algorithm for the binate covering
problem and its application to the minimization of boolean relatioq”
in ICCAD, Proceedings of the International Ccrrfermce on Conrputer-
Ai&d Design, pp. 417420, 1992.

M. Damiani, J. Yang, and G. De Micheli, “Optimization of combina-
tions logic circuits based on compatible gates,” tech. rep., Computer
Systems Laborstory, Starfrxd University, 1993.

R. E. Bryan& c.Grsph-bssedalgoriUuns for boolean function marripu-
lstion~ IEEE Transactions on Computers, vol. 35, no. 8, pp. 677-691,
Aug. 1986.

H. Savoj, R. K. Brayto~ and H. Touati, “Extracting 10CSJdon’t cares
and netwcrk optimization: in ICCAD, Praceeaihgs of the Intema-
tionat Conference on Computer-Aided Design, ~. 514–517, Nov.
1991.

comp~tibIe =’~~s~heck’(gi, parity(g), rtde)
if(cornpatible) {

label-f anout(gi, FO);
S= SU{gi};

}

}
}

636

