IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12. NO. 3, MARCH 1993 365
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Abstract—We present a unified framework for the specifica-
tion and computation of don’t care conditions for combinational
and synchronous multiple-level digital circuits. We character-
ize such circuits in terms of graphs, logic functions and don’t
care conditions induced by the external and internal intercon-
nections. We model the replacement of a gate in a synchronous
logic network by a perturbation of the corresponding logic
function, and show that the don’t care conditions for the gate
optimization represent the bound on this perturbation. We
present algorithms to compute such don’t care conditions in both
the combinational and synchronous case. We comment on the
implementation of the algorithms and on the experimental re-
sults.

I. INTRODUCTION

OGIC SYNTHESIS techniques are used in most dig-

ital designs. Multiple-level logic optimization tech-
niques [1]-[4] are based on circuit transformations that
preserve the circuit behavior and improve its quality. Dif-
ferent flavors of circuit transformations have been pro-
posed. Optimization algorithms based on Boolean trans-
formations, such as those used in [1], [4], and [3], have
shown to be effective in reducing the circuit area and de-
lay as well as improving its testability properties.

Don'’t care conditions play a central role in the speci-
fication and optimization of logic circuits, as they repre-
sent the degrees of freedom for transforming a network
into a functionally equivalent one. In the case of combi-
national circuits, the computation of don’t care sets has
been the subject of extensive investigation. In particular,
it was shown that observability don’t care conditions could
be computed by flattening the network [2] or by using the
chain rule [5]. Since both methods may require a prohib-
itive amount of computation, algorithms for computing
observability don’t care subsets were proposed [3], [6]-
[8]. We presented first formulas for evaluating exact ob-
servability don’t care sets [9], [10] and we describe here
an improved algorithm for their computation.

Don’t care conditions in sequential synchronous cir-
cuits were considered mostly in connection with state
minimization algorithms for finite state machines [14]-
[16]. These techniques use behavioral descriptions of cir-
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cuits, in terms of state diagrams or equivalent represen-
tations [14], [15], [18]-[20]. The major drawback of this
model is its remoteness from the network implementation,
that makes it difficult to evaluate some figures of merit,
such as final area or performance.

We present in this paper a unified analysis of don’t care
conditions in combinational and sequential synchronous
multiple-level circuits, and we present novel algorithms
for the computation of don’t care conditions in both cases.
Don'’t care conditions are computed using a structural cir-
cuit model, and therefore they differ (cf., for example,
[21], [22]) from those that were previously proposed for
synchronous circuits.

Multiple-level circuits are modeled by interconnections
of combinational logic gates and registers, and attention
is restricted to synchronous single-clock operation. Such
structural representations are common in digital design.
Indeed, most designers describe (and some high-level
synthesis systems automatically generate) synchronous
circuit implementations in terms of a schematic or equiv-
alent netlist. It is important to provide iterative improve-
ment techniques of circuits having such a representation.
Structural don’t care specifications can be automatically
extracted from a structural description without resorting
to a state transition diagram (or c¢quivalent) representu-
tion. Such don’t care conditions are linked to the Boolean
transformations that allow us to directly replace subnet-
works with better ones in terms of area or speed.

Throughout the paper we use perturbation analysis as
a means to investigate local optimization problems. In
particular, we model the replacement of a gate in a syn-
chronous Boolean network by a perturbation of the gate
functionality, and we show that don’t care sets represent
an upper bound on the permissible perturbation. This
model is first presented for single- and multiple-gate op-
timization in combinational networks, and then extended
to the synchronous case.

The rest of this paper is organized as follows. In the
next section we present the model of synchronous Bool-
ean network. In Section III we present the perturbation
theory for combinational circuits, and algorithms for the
computation of observability don’t care conditions of each
gate in the network. In Section IV we generalize the the-
ory to synchronous circuits. We introduce the concept of
retiming-invariant external don’t care specifications, and
show that, similarly to the combinational case, under this
assumption the don’t care conditions on a gate can still be
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represented as the sum of a controllability and observa-
bility component; algorithms for the computation of the
observability don’t care sets presented for the combina-
tional case are then extended to the synchronous case.
Eventually, in Section V, we comment on the implemen-
tation of the algorithms and on experimental results.

Appendix I contains a review of previous work in the
combinational case, as well as an analysis of approxima-
tion techniques for the derivation of local don’t care sets
in both the combinational and synchronous case. The
proofs of theorems appearing in the text are grouped in
Appendix II.

II. Basic CONCEPTS AND DEFINITIONS

We consider, in this paper, both combinational and
synchronous multiple-level logic circuits. We assume that
these circuits consist of an interconnection of multiple-
input single-output combinational logic gates and, in the
case of synchronous circuits, of synchronous delay-type
registers, modeled by unit-delay elements.'

Fanout points are modeled by single-input multiple-
output copy gates, as shown in Fig. 1. Single clocking is
assumed for the sake of simplicity. No direct combina-
tional feedback is allowed.

We model these circuits by synchronous, multiple-
level Boolean networks. A synchronous Boolean net-
work is described by a weighted multigraph G = (V, E,
W). The elements of the vertex set V correspond to logic
gates (including copy gates). There is an edge e from a
vertex p to a vertex v with weight w if an output of the
gate in p is connected to an input of the gate in v through
a cascade of (possibly zero) w registers. A Boolean vari-
able is associated to each edge, and it is denoted by a
string (e.g., x, sample); the corresponding edge is indi-
cated by a subscript (e.g., e,, €,mpe). A variable x is said
to be a fanout (fanin) variable of a vertex v if e, is an edge
whose tail (head) end-point is ». The head and tail vertices
of an edge e are denoted by head(e) and tail(e), respec-
tively. The sets of fanout and fanin edges of a vertex »
are indicated by FO(») and FI(»), respectively. The weight
of an edge e, is indicated by w,. To represent primary
input and output variables, a source and a sink vertex are
added. An edge e, joins the source to a vertex » if x is a
primary input variable feeding the gate corresponding to
v. Similarly, an edge e, joins a vertex v to the sink vertex
if z is a primary output variable computed by the gate
corresponding to ». Note in particular that FI(source) =
FO(sink) = ¢. The number of primary inputs and outputs
are n; = | FO(source) | and n, = | FI(sink) |, respectively.
The number of variables is n, = | E]|.

Vertices represent the computational elements of the
network. In particular, each fanout variable y of a vertex
v is associated to a local function of the fanin variables of
v. For copy gates, the function reduces to identity.

'In so doing, we implicitly assume that the values taken by registers at
power-up are deleted by some suitable reset sequence.

(®

Fig. 1. (a) Synchronous Boolean network and (b) its weighted graph rep-
resentation. Vertices labeled c; correspond to copy gates. Vertices labeled
s and ¢ denote source and sink, respectively.

In general, a synchronous Boolean network may have
cyclic dependencies, i.e., its corresponding graph may be
cyclic. We assume that each cycle has strictly positive
weight, to model the restriction of breaking loops of com-
binational logic with at least one register.

A network is called definite when its graph is acyclic.
Combinational circuits are in particular modeled by
acyclic graphs, with identically zero (and therefore not
shown) edge weights. Note that this model differs slightly
from the Boolean network model described in [2] because
variables are associated to edges rather than to vertices,
and because of the explicit accounting of copy gates.

Every synchronous network can be decomposed into a
definite synchronous subnetwork, containing in particular
all logic elements, and a feedback network, realizing a
pure interconnection.

Example 1: A synchronous Boolean network and its
graph are shown in Fig. 1. It is a portion of the phase
decoder of the Digital Audio Input-Output Chip [25], that
processes an input data stream with a biphase encoding
(as generated by a CD player) and converts it to a stream
of decoded Boolean samples or detects biphase encoding
violations. The network can be represented as consisting
of a definite portion plus two feedback interconnections,
corresponding to variables y; and y,. Od

III. COMBINATIONAL NETWORKS

We denote by ® the Boolean set {0, 1}. An n-dimen-
sional Boolean vector x = (x;, * *+ + , x,) is an element
of ®". Underlining is used throughout the paper to denote
vector quantities. A Boolean function is a mapping
H:®" > ®".

The Shannon cofactors (or residues) of a function H
with respect to a variable x; are the functions H |, = H(x,,

,x=1,"- ,x)and H| ;= H(x|, - - ,x; =0,
<+ -, x,). We indicate by 3,,H and Vv, H the functions
H|, + H|, and H|,H|,:, respectively. The 3 and V op-
erators are known in the synthesis community as smooth-
ing and consensus, respectively [7]. They are also re-
ferred to as existential and universal quantifiers [32].

In the combinational case, a Boolean network realizes
in particular a function F: ®™ — ®"™, associating an n,-
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dimensional Boolean vector to each point of B ™. Due to
its embedding in a larger system, or to degrees of freedom
in the specification, external requirements do not impose
in general a unique function to be realized, but rather a
relation between input and output variables. The optimi-
zation of combinational networks under this type of spec-
ifications is the subject of ongoing research [17]. Tradi-
tionally, however, two specific degrees of freedom have
been considered: controllability don’t cares, defined as
primary input combinations that never occur, and observ-
ability don’t cares, defined as primary input assignments
for which a network output is regarded as irrelevant [2].

Controllability don’t care sets are here described by a
function CDC of the primary input variables, while ob-
servability don’t cares are indicated by a n,-dimensional
vector ODC®™. The ith component (i = 1, - -+ , n,) of
ODC*®* is a function of the primary input variables and it
represents the set of conditions for which the ith output
is not observed [2]. For ease of treatment, we define an
auxiliary n,-dimensional vector I = (1, 1, - - -, 1), and
represent CDC®™ by a vector CDC™ = CDC®"1. The
complete set of external don’t care specifications is de-
noted by DC*™ = CDC*™* + ODC*™™.

A function f?: ®™ — ® can similarly be associated to
each network variable y. This could be modeled by add-
ing, for each fanout variable y of a vertex », a contribution
y @ f” to an internal satisfiability don’t care set:

SDC™ = 2 y e f°.

eyeE

)

SDC™ is a function B! > ® describing the unfeasi-
ble assignments for the network variables, and is used
during logic optimization to express each function f” in
terms of other internal variables [7].

Due to its embedding in the logic network, each inter-
nal function 7 is usually specified incompletely as well.
Logic synthesis and optimization algorithms take advan-
tage of such degrees of freedom and refine an original
network iteratively by replacing f” by others that improve
some property of the network, typically area occupation
or timing performance. This is accomplished by first de-
termining which functions g’ can replace f”, and then us-
ing logic/timing optimization tools to select an optimal
realization.

Modifying f” into a different function g ¥ has the effect
of injecting a perturbation in the network, corresponding
to those input combinations that result in f¥ # g7. We
thus consider perturbation analysis as a tool for deter-
mining a description of the space of functions g ” that can
replace a given function f”. To this purpose, we introduce
the following definitions.

Definition 3.1: Given a variable y of a network N, we
call perturbed network N’ the network obtained by re-
placing the function f” with the function f” & 8, where §
is an added input, termed perturbation.

The functionality of a perturbed network N’ is de-
scribed by a function F”, which in particular depends on
6: F¥ = F’ (). In particular F”(0) = F and the func-
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tionality of any network N’ obtained by replacing f” with
an arbitrary function g is described by F¥(f” @ g”).

Definition 3.2: Consider a network N’, obtained from
N by replacing a function f” with g”, N’ is functionally
equivalent to N if the vector equality

F’(g” @ ) = F’(0) @

is satisfied for all observable components of F, for all pos-
sible primary input assignments.
Let?

E®) = F'3) & F0). 3)

From Definition 3.2 it thus follows that g > can replace
£ if and only if for every x e 8™, 6 = f¥(x) ® g’ (x),

E®) + DC™ = 1. @

The points of ®™ such that 6 can be set to 1 represent
the entries of f” that can be changed (i.e., complemented)
without affecting the network behavior, and thus represent
the degrees of freedom for the optimization of f”. The set
of such points is termed don’t care set for the function f~.
In the next section we present algorithms for its extrac-
tion.

3.1. Observability don’t care Conditions

Definition 3.3: Given a perturbed network N7, the
quantity

ODC’ = F’(1) ® F’(0) 5)

is termed observability don’t care vector for the variable
y. Its ith component ({ = 1, + + + , n,) describes the set
of network assignments for which y does not affect the ith
network output.

Note that the complement of the observability don’t care
vector is the ordinary Boolean difference dF /3y of F with
respect to y. We recall here that for a function H(x) of a
Boolean variable x [5]:

H(x)® HO) = x' + H(1) ® H(0). 6

Consequently, we have E(§) = 6’1 + ODC” and (4) can
be rewritten as

8'1 + DC™ + ODC’ =1 7
which holds if and only if
ef
1 < DC™ + ODC’ = DC’. ®)

Equation (8) shows that the functionality of N is un-
changed as long as the points for which f> # g” are con-
tained in all the components of DC’, i.e., as long as the
induced perturbation is bounded by all the components of
the vector DC”.

The exact and approximate computation of ODC” has
long been recognized as a problem on its own. In the fol-
lowing section, we consider formulae for its computation.

2The function E and the perturbation  are related to the variable y. and
should be denoted by E” and &, respectively. The superscript y is dropped
for the sake of conciseness.
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1) Computation of observability don’t care sets by local
rules: In a combinational network, it is in principle pos-
sible to compute ODC” for any variable y by flattening
the network N’ and applying the Boolean difference op-
erator to the resulting expression. This operation, how-
ever, may be very time and memory consuming and often
impossible. To this regard, note also that in a logic syn-
thesis environment it would have to be repeated every time
a vertex in the transitive fanout of y is modified.

For these reasons, the computation of the ODC sets has
been recently the object of intense investigation [6], [7],
[3], [8]. We present here algorithms for their exact cal-
culations, referring the reader to Appendix I for the anal-
ysis of approximate solutions and a review of previous
work.

Consider the output variable y of a logic gate, that is
not a copy gate. If ODC” is known, then it is easy to
obtain an expression of ODC” for any fanin variable x of
the gate by [5]

y ’
oDC* = ODC’ + <£) 1 (&)
dx
i.e., by adding (3f”/dx)’ to all the components of the vec-
tor ODC”. The quantity (3f”/dx)’ represents the local
portion of ODC”.

If the network has a tree structure (i.e., each vertex has
a single fanout variable), then (9) is sufficient to obtain
all the ODC vectors by a backward traversal of the net-
work. The major problem of computing ODC vectors oc-
curs in presence of copy gates with reconvergent output
variables. In this case the observability don’t cares of the
input variable do not necessarily coincide with those of
any of its outputs, and network traversal had to be aban-
doned. Alternatively, the chain rule could be used, but its
complexity has so far limited its application (the chain
rule links the observability vector of the input variable y
of a copy gate to those of its outputs y;, y, by the equation

[5]:

2 ’
ODC’ = ODC”' & ODC” & <aa 6F> (10)

ey

involving in particular higher order derivatives).

We present here an alternative technique. For the sake
of simplicity, we describe first the case in which a copy
gate with input y has only two fanout variables, y, and y,,
and later generalize the result. Let y denote the fanin vari-
able of y, and consider the function F'*(8,, 8,) obtained
by perturbing the edges corresponding to the two fanout
variables with two variables 6;, ,. The observability don’t
care vector of y is

oDC’ = F'*(1, 1) & F*(0, 0). 1
By manipulating (11), ODC” can be rewritten as
opc’ = (F*(1, ) @ F72(0, 1))
3 (F'2(0, 1) & F'7(0, 0) (12)

where the term F’'?(0, 1) has been ‘‘added and sub-
tracted’’ in (11). From the definition of observability don’t
care sets, the first term in parentheses is ODC”' (8, = 1),
while the second parentheses describe ODC”* (6, = 0).
Note that, for , = 1 we have y, = y’ while, since é; =
0, for all feasible variable assignments it must be y; = y.
Therefore, we finally obtain

oDC’ = 0DC*|,,., & ODC™.

A different expression can be obtained by adding twice
PP (1, 0) in (11):

0DC’ = ODC™ & ODC”|,,_, .

It follows in particular that the right-hand sides of (13)
and (14) must be identical. This identity will be used ex-
tensively in Appendix I, when considering approxima-
tions to the ODC vectors.

Example 2: We contrast (13) with the chain rule and
the network flattening approach using the simple multi-
plexer circuit of Fig. 2. We are interested in computing
the ODC vector (of one component only) for the variable
y. With the network flattening approach, the expressions
associated to vertices 4, B, and C are substituted in that
of vertex O to obtain F = x;y' + x,y (the substitution of
vertex C can actually be saved if variables are associated
to vertices rather than to edges. Two substitutions are thus
essential to the method). We then obtain

13)

(14)

oDcC?

@y + 00|, ® @y + 0y,
=X 3] X4.

With the chain rule, the ODC expressions of the variables
y; and y, are first computed:

ODC” = x1 + 75, ODC” = xj + 74
Then,

3%F \'
oDC’ = (x} +22)?€(x§+zl)?7< )
3y, 9y,

= +2)® (x +21)® (x5 + xy).

Notice that in this case we need only substitute the expres-
sion associated to vertex A into ODC”, to obtain an
expression of ODC” in terms of y;. We have, however,
to perform three EXOR operations rather than one (the two
appearing in the chain rule formula plus one needed for
the higher order derivative).

Using Eq. (13), ODC”" and ODC”* are combined by
substituting the expression of vertex 4 in ODC?”, and re-
placing y, and y':

ODCY = (x1 + 25) ® (x5 + x1¥).

Thus only one substitution is performed, and only one
EXOR is actually computed, comparing favorably against
both the flattening approach and the chain rule. O

The extension of (13) to the general case of f fanout
variables is provided by the following theorem.
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1 ;
7 z =%
Oau®, (D) z-%x
Xy e Z Y=Y
:. Yo=Y

Fig. 2. Multiplexer for Example 2 and corresponding graph.

Theorem 3.1: Letyandy,, - - -, ys; f > 1 denote the
input and output variables of a copy gate; then:

oDc’ =&, 0DC”| . ... (15)

=y=y'"

2) An Algorithm for the Computation of ODC Sets

Given Eq. (15), it is now possible to visit the Boolean
network backwards from the primary outputs to its inputs
and to determine the ODC sets of each vertex also in pres-
ence of reconvergent fanout.

The following algorithm performs the computation of
the ODC sets. It uses the subset S of the vertices whose
ODC set is known. Initially § is the set of edges associ-
ated to the primary output variables.

OBSERVABILITY(G);
T = {sink};
S : = FI(sink);

while (T # V) {

select v € {V — T} such that FO(») € §

if (vertex_type(v) = = gate) {
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Us=Yg +Y¥e
Y=YyYs

Ys=¥6* %
Ye=Y3='2
W=y +Xy
Uz=yy +%

U =X B
Fig. 3. Network for Example 3 and corresponding graph.

thus possible to compute the ODC vectors for all the input
variables of ». The rule to be applied is either (9) or (15)
depending on whether the vertex represents a logic or a
copy gate. After the computation, (T U {»}, S U FI(»))
is still a connected subnetwork, by construction, and all
the ODC vectors of its variables are known. O

Example 3: We illustrate here the algorithm on the cir-
cuit shown in Fig. 3. The components of each observa-
bility vector describe the observability at outputs u, and
us, respectively.

Initially, T = {t}, § = {u4, us}, and

0 1
ovc = () ovce= (1),
1 0

First the vertices g and & are considered, and the ODC
vectors of variables ys, yi, ¥s, Vs are determined. By ap-

’

/* y denotes the fanout variable of v, y; the fanin variables. Equation (9) is used */

foreach y;, € FI(») {
0DCY = ODC® + (3f*/ay;)
}

else {

/* y denotes the fanin variable, y; the fanout variables. ODC” is computed by (15) */
oDC’ =&, 1" ODCyi|y1+1=' c=y=y

S U FI(»);

}
S:
T:=TU {»};

}

Theorem 3.2: Algorithm OBSERVABILITY com-
putes the exact observability don’t care set for each vari-
able of the network.

Proof: The algorithm clearly terminates in a finite
number of steps, as it traverses an acyclic graph in topo-
logical order from the primary outputs. At each while it-
eration, (7, S) is the graph of a connected subnetwork of
G for which the observability don’t care vectors are
known. This is certainly true initially. It remains to be
shown that this holds at the end of each iteration. With
the select operation, we determine a vertex whose fanout
variables already have their ODC vector computed. It is

plying (13) it is then possible to determine

0DC* = ODC” & ODC*|,,_,; =

*()-C)

ODC* = ODC”* & ODC*|,;_,; =

=(.)-C)

|
TN
- %
N———
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From these the ODC vectors of x;, y;, ¥, X4 are com-

puted. In particular,

opc” = <y§ " x‘>~ oDC” = <yé N x“)
Yo + 1) Vo + X4

so that, using (13),
oDc* = oDC”" & ODCyzlyl=ﬁ1

ys+x )\ _ [ xju +x,

<)’6 +x|> ? <x, + uj +x4>
X1X4

<x1 +x4>'

The product of all the components of ODC*' (in this case,
x1x4) gives the conditions for which the gate in a is not
observable at any output. O

In the end, the algorithm has computed in particular the
ODC sets of the primary inputs. When two combinational
networks are cascaded, the ODC sets at the input of the
driven network represent the external ODC sets for the
driving network.

It is important to remark that the ODC sets computed
by algorithm OBSERVABILITY may be large in size, re-
gardless of the representation chosen. Equation (13) al-
lows us to construct and evaluate approximations to such
sets. We refer the interested reader to Appendix I for for-
mulae that can be used in conjunction with algorithm OB-
SERVABILITY to approximate the ODC sets.

i

3.2. Multiple-Gate Optimization and Compatible don’t
cares

A natural extension of don’t care-based optimization
methods consists of considering optimization problems
involving more gates at a time [17]. The purpose of this
section is to analyze the problem from a perturbation anal-
ysis viewpoint, and introduce some results that will be
essential later when dealing with sequential circuits.

The simultaneous optimization of n gates, with output
variables y;, * -+, y,, can be modeled by introducing
multiple perturbations §;, - - - , §,, one for each variable.
Let F-"" "' denote the function realized by the perturbed
network. By introducing the function

E((Sl, SR 6”) = Fyl-"'vy"(al, CEICIN 6'1)
® P "0, -0, 00 (16)

the new network is functionally equivalent to the original
one if and only if

E + DC™ = |. 17

Theorem (3.3) shows that, unlike (4), (17) cannot be
reduced to a set of upper bounds on the individual pertur-
bations 6;, * - - , §,.

Theorem 3.3: Perturbations §;, - - - , §, satisfy (17) if
and only if

(Dccxt)l (EI) | 6i
(Dcext)/ (VaIE’) ' Gé

n

8,1
8,1

n

E|;, + DC*™
3;,E|s + DC™

n
n

DC™Y (Vs 5. ED |57

< 6!'1 < 361“'-,6,'—1E|6f + Dcext, i=1,--+,n.

(18)

Theorem (3.3) has two important consequences, that
illustrate the added difficulties of dealing with multiple
perturbations with respect to single perturbations: first,
each individual perturbation 6; may have a lower bound
to satisfy, which depends on §;, , - - * , 8,; second, also
the upper bound on é; is a function of §;, j # i. To remove
the first such difficulty, we determine sufficient condi-
tions in terms of upper bounds only, for (17) to hold.

Theorem 3.4: If perturbations &y, * * * , 8, satisfy
51'1 o= DC™ + ODCyilai,"’ ,6;—1(61'4-1! Tt 5'1)
+ kz 5k(0DCyk|5{,. .. ,6;<—1)' (19)
#i

then (17) holds. Moreover, the bounds expressed by eq.
(19) are maximal, in the sense that no minterm of the
primary inputs or perturbations can be added to their right-
hand side and still represent a set of solutions of (17).
Theorem (3.4) expresses sufficient conditions for (17)
in terms of upper bounds on perturbations only. Such
bounds still depend, however, on other perturbation sig-
nals. Elimination of such dependencies (for example, by
means of the consensus operation) would result in com-

patible don’t care sets [3], [8] fory;, <« , ¥
Definition 3.4: Don’t care vectors ODCY;i =1, -+ ,
n are termed compatible if:
1) none of them depends on any of §;, - * + , ,;
2)
81 =€ DC* + ODC”, i=1---,n (20)

represent sufficient conditions for (17).

Compatible don’t cares are said to be maximal if no
cube in terms of the primary inputs can be added to them
and (20) represent sufficient conditions for (17).

The use of compatible don’t care sets allows us to op-
timize all gates independently with conventional mini-
mization algorithms. Network traversal methods for ex-
tracting compatible don’t care conditions are reviewed in
Appendix I.

3.3. Controllability don’t care Conditions

In the previous sections we analyzed the problems of
determining don’t care specifications (in terms of don’t
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care sets) for the internal functions of combinational and
synchronous circuits.

As a network N interacts with other networks, it limits
their controllability and observability. In a logic synthesis
environment, it is therefore important to determine the
controllability and observability don’t cares induced by a
circuit on its environment.

The observability don’t care conditions of a network
driving N are the observability don’t care sets associated
to the primary inputs of N. These are computed by OB-
SERVABILITY upon termination. We thus divert our at-
tention on computing the controllability don’t care con-
ditions for a network driven by N. These represent the
combinations never asserted at the outputs of N:

Definition 3.5: The output controllability don’t care
set of a network N, realizing a function F, is the set
CDC*™" < 8™ of output combinations that cannot be as-
serted by the network, when presented with inputs in 8"
N (CDC™Y'.

The set (CDC™)’ is also called the image of (CDC")’
with respect to the function F. Image computation tech-
niques have, therefore, been considered for the compu-
tation of CDC™.

The approach considered here consists of computing the
controllability don’t care sets associated to successive
cutsets of the network, moving the cutset from the pri-
mary inputs to the primary outputs, as outlined in the fol-
lowing pseudocode.

CONTROLLABILITY(G, CDC.,,);

T = {source};

S = FO(source);

CDcou! = CDcext;

while 7 # V) {
select » € V — T such that FI(») € §;
foreach fanout variable y of » {

CDC*™ = CDC*™ + f, ® y

}

foreach fanin variable x of » {
CDC™ = v (CDC*™;

}
T:=TU {};
S =8 U FO(»);

return CDC;

In CONTROLLABILITY, (7, S) form a connected
subgraph of the network graph G, which is iteratively in-
cremented by adding a suitably chosen vertex ». The fol-
lowing example illustrates the details of the algorithm on
the circuit of Fig. 3.

Example 4: Consider the problem of computing the
impossible assignments for the variables u; and uy, given
the external don’t care set:

CDC™ = x|x,,.
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The first step of CONTROLLABILITY consists in se-
lecting the vertex a and computing the controllability don’t
care set of the variables x;, x,, u;, obviously still x| x, .

The fanout point b is selected next. The new cutset is -
formed by the variables x;, y;, ¥2, X4, and its associated
controllability don’t care set is given by x x; + y;y, +
2y - By selecting the vertex ¢, adding the term u, ® (y,
+ x;), and computing the consensus w.r.t. the variables
x; and y,, we obtain for the cutset {u,, y,, x4},

CDC™ = V,, ,,(x X, + y17, + Y2y, + Wy, %,

+ougy + ouyx) = uyx, + uyy,. (1)
Vertex d is then selected. For the cutset {u,, u3} we thus
have

CDC*™ =V, (uyx, + u,y, + Uy, X,
! !’ 1 ’
+ Uy, + ugxy) = u,u,.

The algorithm then completes by processing vertices e, f,
g, and h, thus reaching the primary outputs with the out-
put don’t care set CDC*™ = u,. O

IV. SyNcHRONOUS NETWORKS
4.1. Terminology

In order to describe the terminal behavior of a syn-
chronous circuit, we need to take into account the evo-
lution of the network variables over time, and reason in
terms of sequences of values such variables take. We
consider a discretization of time in integer time points <
={-o, -+, —1,0,1, - -+, o}, and assume the
observed operation of the network to begin convention-
ally at time n = 0, after some initializing (or reset) se-
quence is applied. By this choice, meaningful inputs
(namely, the reset inputs) are initially applied at some time
point < 0; consequently, in order to capture correctly the
behavior of the network variables over time, we consider
sequences of values over a time interval [—r, +oo) for
some suitably chosen r = 0.

Given an arbitrary finite set 8, a sequence s of elements
of 8 is a mapping s:[—r, +o) — 8. The set of all pos-
sible sequences of elements in $ is conventionally de-
noted by 8¢ [11]. For example, the set of Boolean se-
quences is denoted by ®“. The set of possible input and
output sequences of a n;-input, n,-output synchronous cir-
cuit are denoted by (®8™)” and (® ™), respectively. The
sequences of values taken by the |E| internal variables of
a synchronous circuit are similarly elements of (& Elyo,

Several techniques are available to describe sets of se-
quences [12], [11]. They do not easily lend themselves,
however, for use in a compact structural description of
sequential hardware, For this reason we consider here de-
scribing such sets by means of synchronous Boolean
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expressions. For a variable x, a synchronous literal (or,
shortly, a literal) x, (x,) represents the set of sequences
whose value of variable x is 1 (0) at time point n. A syn-
chronous Boolean expression S is a finite expression in
terms of synchronous literals, sums and products being
defined in the usual way. In particular, a cube of syn-
chronous literals is their product. Hereafter, we do not
distinguish between synchronous expressions and the sets
they describe. As a synchronous Boolean expression con-
tains literals with time labels in some finite time interval
[t;, %], they can only describe particular sets of se-
quences, namely those whose values in [z, 1,] satisfy the
expression.

We define a retiming operation on sets of sequences
and expressions as follows. The retiming s; of a sequence
s€8”is

s = {2 € 8%zy4y = s,Vn € [r, +)}.  (22)

The retiming of a set of sequences by £ is the union of the
retiming of each of its elements.

The retiming (x,), of a literal x,, by k is the literal x,, . ;.
The retiming S, of a synchronous expression S by & is the
retiming of all its literals by k. It can be verified that the
definition of retiming on expressions is consistent with the
corresponding one for sequences: the set described by S,
is the retiming by k of the set described by §.

The operations defined on ordinary Boolean expres-
sions and sets, such as cofactoring and quantification,
carry over naturally to synchronous Boolean expressions
and the corresponding sets. For notational convenience,
we introduce the operations 3, and V,, denoting smooth-
ing and consensus of a synchronous Boolean expression
with respect to all the literals with time label n.

4.2. Don’t care Conditions in Synchronous Networks

The terminal behavior of a synchronous circuit is en-
tirely described by the correspondence it establishes be-
tween input and output sequences, i.e., between elements
of (8™ and (B™)“. Due to its embedding in a larger
system, (or possibly to degrees of freedom in the speci-
fication), external requirements do not impose a unique
correspondence between input and output sequences, but
rather a relation between them. Intuitively, this is due to:
a) not all sequences are usually possible at the inputs of a
synchronous circuit, and b) for a given input sequence,
usually more responses are allowed. The task of synthesis
and optimization would then consist of determining an
optimal synchronous circuit whose terminal behavior sat-
isfies that relation.

Such a broad description of don’t care conditions is out
of the scope of the present paper. We rather focus our
attention on don’t care conditions that can be described
by sets, namely: an external controllability don’t care
set (CDC™ c (® ™)), representing input sequences that
cannot occur at the network inputs, and an external ob-
servability don’t care set, representing conditions for
which some of the output values are not observed. Similar

to the combinational case, external observability don’t
care conditions are represented by vectors. More specifi-
cally, the ith component of the observability don’t care
vector ODC;* represents the conditions under which the
ith primary output of the network is not observed at time
n. We also assume that each component of ODC:" is a
subset of (®™)“. We denote

DC* = CDC™1 + ODC:". (23)

The following example illustrates some contexts in
which external don’t care conditions arise. Methods for
extracting and using such information are the object of the
present chapter.

Example 5: Consider the circuit of Fig. 4, initialized
by (b_4, b_3, b_5) = (1, 0, 1). We thus take r = 4, and
consider sequences in the interval [—4, + o).

The limited controllability of the inputs of N, is re-

- flected by the set of its impossible input sequences. For

example, u, v, is an impossible input sequence for N,:
for u, to be equal to 1 it must be @, = b, = 1; but b, =
1 implies v, ., = 1. Hence, for N,,

U, vy € CDC™ (24)

As a consequence of the initializing sequence, output v
cannot assume the value O at time —3, —1:

U’,3 + ULI o= CDCex'.

vV, €[—4, +o).

Finally, it could be verified that v cannot take value O
twice consecutively; consequently,

vivi,, € CDC™ vn = —4,

The interconnection of the two networks limits the ob-
servability of the primary outputs of N,. In particular, the
output of N, can be expressed in terms of # and v as

F,=u,_+v,.1 +u, v,

The value of v, can be observed at the output of N, only
at time #n or at time n + 1. In particular, v, is observable
at time n if y,_; = 0 and u,_,; = 1. The observability
don’t care of v at time n can thus be described by the
function:

ODC, =ty + Yoo1 = Up_1 + U,

while the observability at time n + 1 is described by
0DCZ,n+1 = (yn+lun)' SUpy) B Upyy + ur,t-

Sufficient conditions for never observing v, at the primary
output of N, are described by

oDC: = ODC.,,0DC%,, ., |

in particular containing the cube u,, _ , u,,. Since u, = a,b,,
thena,_b,_(a, + b;) belongs to the component of the
external ODC set of N, associated to output v. O

In the combinational case, the conditions for replacing
a single-output subnetwork are completely stated by (8).
Namely, f” can be replaced by g’ when the induced per-
turbation é is bounded by a set DC”?, which can be ex-
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e

Fig. 4. Interconnected synchronous Boolean networks.

al.l®

tracted from the network structure and functionality, and
forms the don’t care set for the variable y. Once DC” is
computed, any Boolean optimizer can be used to optimize
f? using DC” as don’t care set.

The synchronous case is more complex. In particular,
the expressions g ” that can replace f” cannot always be
described by a bound on the induced perturbation. This is
shown by the following simple example.

Example 6: Consider the circuit in Fig. 5. The output
Z, 1s expressed in terms of the primary inputs by z, = x,
® x,_1. It can easily be recognized that the inverter can
be replaced by a simple connection, i.e., f* = x' can be
replaced by g7 = x. In this case, f* @ g” = 1. Had (8)
been applicable, then we should conclude that DC? = 1,
i.e., that the inverter can also be replaced by a constant 0
or 1, which is clearly false. O

The full analysis of such internal degrees of freedom is
the subject of ongoing research [23]. In the framework of
this paper, we consider don’t care conditions that can be
expressed by a set, as it is then possible to take advantage
of efficient existing optimizers, such as ESPRESSO [26].

In the next section, we consider the case of definite net-
works, and present a derivation of don’t care conditions
associated to a single-output subnetwork in that case. In
Section 4.4 we leverage upon the results for definite net-
works and obtain don’t care conditions for networks with
feedback.

4.3. Definite Networks

The acyclic structure of definite networks makes it pos-
sible to express their primary outputs at any time n by a
synchronous Boolean expression F, in terms of their pri-
mary inputs. Similarly, all internal variables y can be as-
sociated an expression f” in terms of primary inputs. This
could be modeled by adding, for each time point n, a con-
tribution y, @ f7 to an internal satisfiability don’t care
set SDC™ < (®'E1y*. Again, SDC™ is regarded as a tool
for mapping degrees of freedom associated to a gate in
terms of other internal signals, and will not intervene di-
rectly in the subsequent analysis.

The effect of modifying a local function on the network
functicnality is expressed by means of a perturbed net-
work. Let F; denote the function realized by the network
perturbed in correspondence of an edge e,, and P the
longest path from the vertex head(e,) to the primary out-
put. The output F}, depends in general on g, - - - , §,_p,
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Fig. 5. Circuit example.

that is, F), = F,(6,, - **, 8,_p). In particular, F, =
F, (0, - -+, 0), and the functionality of any other net-
work obtained by replacing f* with some other function
g’ is described by F,(f7 @ g5, * =, fa_p ® g5-p),
i.e., by simply replacing the perturbation & by its expres-
sion.

Similarly to the combinational case, we introduce the
function:

def
E,(6,, - ,0,-p) = Fﬁ(‘sn, crr,0,-p)

® F,0,---,0) (25)

and define g * to be equivalent to f” (g” = f”) if and only
if

E,+DC*=1 wn=0. (26)

Equation (26) represents the constraint equation on the
perturbation &, for the terminal behavior of the network
to result unchanged. Example 6 showed that it is not pos-
sible to explicit (26) in an equivalent form of type (f* &
g’ < DC’. 1t is however important for logic optimi-
zation to determine a set DC” such that a constraint of
typef’ @ g” < DC” is sufficient to guarantee the validity
of (26).

In the remainder of this section we present a formal
derivation of don’t care sets for logic optimization start-
ing from the formulation of functional equivalence pro-
vided by (26), and algorithms for their extraction. In par-
ticular, first we derive bounds of type 6, € DC} vn = 0,
where DC), is some suitable set of sequences that depends
on the time-point n considered. This infinite set of con-
straints is then transformed into a single bound (f” &
g1 < DC’. Eventually, algorithms for the extraction of
the set DC” are presented.

1) Observability don’t care Conditions

The methods presented here rely upon the definition of
observability don’t care conditions for synchronous net-
works. In particular, the observability don’t care set of a
value y,, at time n represents the conditions for which a
perturbation of y,, is not observed at the primary outputs
at that time point:

Definition 4.1: We call observability don’t care
function of y the function:

ODCﬁu,n(anv T, 6m+19 6m-—l, T, 6n—P)
=Fﬁ(5", v ,6m+lv L‘sm—l’ tte yan—P)
WFﬁ(‘Sm 76m+1’0’ 6m—1’ ’6n—P)-

27
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Note that, in the present case, ODC}, , may depend on
perturbations of y,., m' # m. Clearly, ODC}, ,; ,+\ =
(ODC, )i, so that in practice the P + 1 expressions
ODC} ,;n =0, - - -, Pare sufficient to completely spec-
ify the observability don’t care function of y.

Example 7: Expressions of the observability don’t care
conditions for the xNOR gate in Fig. 4 are

ODC%,O =Yy + u'_l; ODC{)QI = yi + u(’).

These expressions contain the internal variable y. Its sub-
stitution with its expression f° @ & explicits the depen-
dencies from é:

ODC&Q =y & 6-1 + u’.l,
ODC%‘I =u & v & 61 + u('). (]

The simplest solution to (26) occurs when all paths from
a gate to the primary output have the same length P. In
this case, E, = E, (3,_p) only, and Eq. (26) reduces es-
sentially to the combinational case:

8,.p1 S ODC}_p, + DC  Wnz=0. (28)

A network is said to be a pipeline if for each vertex all
paths to a primary output have the same length. Eq. (28)
shows that don’t care sets fully describe the degrees of
freedom for the optimization of these networks. Note also
that for pipelines the computation of don’t care sets is a
straightforward extension to that for the combinational
case, represented by P = 0 in (28). These don’t care con-
ditions are essentially those considered by retiming/re-
synthesis techniques [13].

When considering arbitrary definite networks, how-
ever, a vertex has in general multiple paths of different
length to the primary output, so that the function E, has
multiple dependencies upon §,, * ** , §,_p, and the as-
sociated don’t care conditions expressed by (26) are cor-
respondingly more complex. It is possible, however, to
take advantage of the results of Section 3.2 on multiple
perturbations. In particular,

Theorem 4.1: If a perturbation § satisfies

ext
O,k S DCT* + ODC_y ulsi_ssiie - 500

k=0,---,P 29)
for every n = 0, then (26) holds.

Theorem 4.1 is a direct application of Theorems 3.3
and 3.4 to (26); its proof is, therefore, omitted.

For a given time-point n = 0, Theorem 4.1 provides P
+ 1 bounds on §, (there are actually only n + P + 1
bounds for n = —P, - - -, —1). The actual bound on
each 8, is their intersection:

min(P+1,n+P+1)

8,1 < CDC*™* + kI_IO
. (ODCf,Xik + ODCz;,n+k|6p;+1,' .. ,5;,,_,()Vn
> —P. (30)

Equation (30) has an intuitive interpretation: a gate out-
put can be altered at time n (8, can be set to 1) correspond-
ing to those input sequences that either do not occur (rep-
resented by CDC®), or that make the perturbation
unobservable at any time in the future. These conditions
are represented by the product of the observability don’t
care sets at different time points in (30). It is, therefore,
convenient to define a function

ODC% (6,,_], T, 6n-P)
min(P+ L,n+P+1)

- I

+ 0DC¥1,n+k|572+1,' c ,6;.+k)'

representing such observability don’t cares.

Example 8: We model the optimization of the XNOR
gate of Fig. 4 by the search of feasible perturbations §.
The constraints expressed by (29) are given by

8, S DC + ODC3,,

(ODC}Y

(3D

and
8,—1 € DC* + ODC,_ |5,

where ODC} , and ODCY | are taken from Example 7,
and DC;* = CDC®™ is taken from Example 5. By sub-
stituting such expressions in (30),

6, € CDCCX' + ODC;",’,,ODCf,,,,+l|5,;+,

n

CDC™ + (v,_, ® 8,_1 + u’_y)

“Uns1 ® Upyy +ouy)
and, in particular,
ODC}) = (V-1 ® 8,_1 + u,_y)

) (un+l & Unti + ur,l) D

2) Retiming-Invariant don’t care Conditions

Equation (30) expresses an infinite number of bounds
on the signal 8, one for each time point. In order to per-
form logic optimization we need to reexpress such bounds
in a finite form. To this regard, we need the following
definition.

Definition 4.2: We call retiming-invariant compo-
nent DC™ of an external don’t care specification DC the
set of sequences s € DC§" such that s, © DC§™ vk = 0.

Example 9: In Example 5, CDC™ for N, was shown
to contain the sets described by the cubes v, v}, v§v],

-+, as well as by the literals v_5; and v’;. All se-
quences in v_,vg are in DC", as the sets described by
vy v} are in CDC™ € DC wvn = 0. Similarly,
u_,vy S DC". The set v’ ,, instead, is not, as its retim-
ing v} _, is not always contained in DC;* (otherwise, v
would be constantly 1, which is clearly false). Similarly,
the seta_;b_,(agy + bg) belongs to the retiming-invariant
component of the external don’t care set of N, as
Gn-1b,_1(a, + b)) € ODCX € DC vn = 0.
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The following theorem translates the infinite set of con-
straints represented by (26) into a finite one. As a side
result, it shows that the retiming-invariant component of
an external don’t care specification is also the only useful
external don’t care specification for the logic optimization
of a definite network.

Theorem 4.2: Two functions f” and g~ are equivalent
if and only if foré, = f} ® g3,

E, + DC" = 1. (32)

It is in practice convenient to assume that CDC®* can
be expressed by means of a retiming-invariant component
CDC" and an initialization part, CDC™":

o

CDC®™ = CDC™ + kZO CcDCT (33)
both expressed by synchronous Boolean expressions with
literals in the reference interval [—r, 0]. CDC™t de-
scribes in particular the set of impossible input values over
the interval {—r, 0], while CDC}, describes the set of im-
possible values for the input variables in some interval [n
— r, n}, for arbitrary n = 0. We also assume external
observability don’t care specifications to retiming-invar-
iant.

As a consequence of these assumptions and of Theorem
4.2, (30) can be rewritten simply as

&1 =(f" ® g”1 < CDC" + ODC}.  (34)

The set provided by (34) is not yet directly suitable for
logic optimization, because of the dependency of ODC?
ond_;, - -+, b6_p. Given the similarity of this problem
with that of extracting compatible don’t care sets in the
combinational case, we present, in Appendix I, algo-
rithms for the extraction of subsets of ODCY free from
such dependencies.

Alternatively, from the equation y, = f) @ §,, it is
possible to write 6, = y, @ f7, and obtain an expression
of ODC{interms of y _, * - - , y_p. The use of this type
of information would allow the insertion of feedback dur-
ing the optimization process, as shown in Example 10.

Example 10: From Example 9, CDC" = (u_, +
v’ )v is an appropriate choice for N,. The observability
don’t care of y is given in Example 9. Its expression in
terms of y_; is given by

Och = (u'_l + y_l)(u, @ v + u('))

The map of such don’t care conditions for the xNOR gate
is shown in Fig. 6(a).

Elimination of 6_;, from the expression of ODC} by
consensus results instead in

ODC5 = u’_l(u, o v, + u6)

The map of this don’t care set is in Fig. 6(b), and it shows
that the XNOR gate can be optimized into the simpler AND
gate uv, as depicted in Fig. 7. Expressions in terms of
u_y, v_;, y_ are also possible, corresponding to situa-
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Fig. 6. (a) Don’t care conditions for the XNOR gate of the network in Fig.
4, (b) don’t care conditions neglecting the terms containing y_,.

Fig. 7. An optimized version of network N, of Fig. 4.

tions in which registers and/or feedback paths are
added. O

3) An Algorithm for the Observability don’t cares in
Definite Networks

For multiple-output networks, observability don’t care
conditions are again expressed by vectors ODC} ;; k =
0, - - - P. It is possible to extend the operations used in
the extraction of the observability don’t care sets to the
synchronous case as follows. If ODCY ; is known for the
fanout variable y of a vertex », then it is easy to obtain
the corresponding expression for a fanin variable z of »
from

y
wz

ODCf) k= (ODC%’) k= wlw, + <—"—
’ ' 0z
Equation (35) is essentially identical to (9) of the com-
binational case, the only difference consisting in account-
ing for the delay w, by appropriately retiming the ODC
function of y. It is similarly possible to extend to the syn-
chronous case (15) for copy gates. We present the exten-
sion for the case of two fanout variables, the general case
being then straightforward.
Let y and v, z denote the input and output variables of
_a copy gate. The function F”? describes the function of
the perturbed network with the two perturbations 6%, 8°.
If follows that

ODCy = F?(6y, = 1,6, = 1)
: ® FPisl, =0,85, =0). (36

By adding twice the term F**(8,, = 0, 6, = 1), by ma-
nipulations similar to those leading to (13) we obtain

ODC} , = ODC, & ODC:, i, -y,

> 1. (35)

= ODCS,k —wy 9 ODC(Z),k - Wyl vo= yé)wy 37N
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The extension of the OBSERVABILITY algorithm is as
follows. P denotes the longest path in the network graph
G.

OBSERVABILITY(G);
T = {sink};
S = FI(sink);

while (7 = V) {
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tional don’t care conditions, as the feedback interconnec-
tions of N, are not directly controllable or observable. For
example, some feedback sequences may be never asserted

select v € V — T such that FO(») € §;

if (vertex_type(») == gate) {
foreach y € FI(») {

for (j =0,j < P,j ++)ODC}; = (8f%,/d,0)'1 + (ODCg; ),

15

else {
y = FI(»)
for (j =0, <P,j++){

oDC}; = (&

}

S =S U {FIn)};

T=TU {v};

}
We illustrate here the algorithm on the network N, of

Fig. 4.

Example 11: The longest path in the circuit is P = 1.
The algorithm begins by computing ODC§, = y2,,
ODC}, = 1, ODC}y = 1 and ODC}}| = z,. The vertex
corresponding to the NAND gate is then selected, to obtain
ODC3lo = ')’ + y%,, ODC}, = 1, ODCY, = 0 and
ODC4!| = (»1)" + y}. It is now possible to compute, by
(37),

ODC} o = ODCYo & ODCYolyi—y = (b)) + y%,
ODC}, = ODCY,, & ODCY\|,1=ys = i + ud.

In the end, the functions ODCYy = v + (') + y*,
and ODC§’, = v{ + y, + u} are determined, so that

ODC} o = ODCYy & ODCio|uy=us = (wou'1y%)’

ODCY, = ODCY', & ODCE,\ |, = Wou'iy2y)'.

0.

Approximations to (36) entirely similar to those for the
combinational case are also possible. Methods allowing
us the computation of the final observability ODC”, with
no need for the individual observability don’t care sets
ODC3 4, k = 0, + - -, P are in particular desirable; one
such method is presented in Appendix I.

4.4. Cyclic Networks

A cyclic network N can be decomposed into a definite
subnetwork N, plus a feedback network consisting purely
of interconnections (see, for example, Fig. 8(a)).

Intuitively, the simplest approach to the optimization
of N, consisting of optimizing its definite portion N, by
the algorithms of Section 4.3, may neglect some addi-

FO(v)| Yk )
-1 ODCO,j|yk+ 1,0=" " * =Y|FOm),0 =y0)

by the network and may therefore be considered as an
external controllability don’t care condition for N,. Sim-
ilarly, some values of the feedback input may be never
observed at the primary outputs, thereby resulting in an
external observability don’t care condition of the feed-
back outputs of N,. In this section we present techniques
for extracting external observability and controllability
don’t care sets for the subnetwork N, of an arbitrary cyclic
network, that are able to capture the existence of feedback
interconnections.

1) Observability don’t care Conditions

For the sake of simplicity, we consider here single-out-
put single-feedback networks, the extensions to the more
general cases being relatively straightforward. The func-
tionality of N can be described by means of the functions
realized by N,, namely the output function F and the feed-
back function S. The feedback signal s, satisfies the re-
lation
© L, 8a-p)  (38)

Sy, = S(X,,, T s Xp—py Sy—1s T

where P denotes the maximum path length in N,. The
modification of a network function f” into a different
function g’ modifies in general the functionality also of
the feedback network. It is thus convenient to describe the
behavior of a modified network by means of two pertur-
bation signals, at the logic gate and feedback input, re-
spectively, as shown in Fig. 8(b). The perturbation sig-
nals are here denoted by & and o, respectively. The
behavior of the perturbed network is described by the out-
put function F3 (8, o) and by the feedback function S7, (8,
0). (The notation maintains implicit their dependency on
8, *°* ,0,_pand oy, *** , 0,_p.)

In particular, F, = F%(0, 0) and S, = $3(0, 0). As g,
represents the perturbation of the feedback input, it obeys
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(b)
Fig. 8. (a) Decomposition of a cyclic network into a definite subnetwork
and interconnection feedback. (b) Perturbed network for the optimization
of the AND gate.

the recurrence equation:
def
0, = §30,0) @ S, 0) = (Ep)". (39)

The output equivalence of the original and perturbed net-
works is described by the function

E, = F3(0,0) & F}(, o). (40)
The function g is equivalent to f7 if
E,+DC*=1vn=0 41)

where é = f¥ @ g’ and o satisfies (39).

The external observability don’t care set for S is con-
structed by determining a bound on the perturbation o, for
(41) to hold: as o, models the perturbation of the feedback
function at time n, its bound represents implicitly an ob-
servability don’t care set for S,. To this end, we introduce
the following auxiliary equivalence functions:

Ef, o F(8, o) & F2(0, 0)
EE, 2 F20, o) ® F0, 0)
ES, < 516, o) & S0, 0)
ES, = 52(0, 0) & S52(0, 0). 43)

The following theorem allows us to split the problem of
bounding ¢ and & into two smaller subproblems, concern-
ing ¢ and & separately, and represented by (44) and (45),
respectively.

Theorem 4.3: 1f the perturbations 68, o, resulting from
changing f” into a different local function g’, are such that

E,+DC®=1vn=0 (44)
El,+DC™*=1vn=0 45)

then g” can replace f°.

42)
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changed, without changing the network behavior. As the
feedback input is generated by the feedback function, the
bound represents an observability don’t care set for that
function. Equation (45) is thus ultimately reduced to an
observability don’t care set associated to the feedback
output.

To determine this set, an iterative algorithm is used:
the feedback output is initially assumed perfectly observ-
able, and a bound on ¢ is determined by means of the
algorithms in Section 4.3. This don’t care set is then used
as an external don’t care condition on the feedback output
to build iteratively larger bounds on the perturbation o.
More in detail, initially we set ODC} oy = 0 Vn = 0
(the symbol (m) denotes the iteration count), and then
ODC;, (m + 1 is derived by solving

El, + CDC™ + ODC® = 1 (46)

ES, + CDC™ + ODCS, (y = 1

0.

(47)

by means of the techniques presented in Section 4.3°.
Theorem 4.4 proves the correctness of the approach.
Theorem 4.4: Suppose

0, € CDC™ + ODC} (py j=—P,+ -+, ~1 (48)
El,+ CDC™ + ODCS (,y = 1¥n 20 (49)

then,
0, © CDC™ + ODC} ¢y ¥Vn = —P (50)

and (45) holds.

From Theorem 4.4 (45) can now be replaced by (49),
which represents a constraint on the perturbation 6 only.
Once a specification ODC;, (.., is computed (by reaching
convergence or by stopping the iteration at any arbitrary
m), a don’t care set ODC for all internal variables y can
be found by solving, with the technique presented for def-
inite networks, (44) and (49).

Equation (48) is most easily satisfied if s_p, * - -
are determined by a reset sequence (as it is often the case),
so that automatically o; = 0, j = —P, - - -, —1. Inter-
estingly, in this case (48) can be interpreted as providing
degrees of freedom in the choice of the reset values s _p,

T, 8.

We conclude by showing that each iteration improves
on the size of the observability don’t cares:

Theorem 4.5: For every m = 0 and n = O,
ODC;, (m+1y 2 ODC;, (y-

Example 12: We derive here the observability don’t
care set ODC}, for the cyclic network of Fig. 8. The long-
est path is P = 2, and we assume ODC;" = 0vn = 0.

Initially, ODC}, (¢, = 0. Consequently,

s S—1

1 5 @ao
OoDCy , = < >; oDCy |, = >; OoDCy , = < )
’ 1 ay+a & (a_;(s_; ® o_)) s + ay + ai

We solve (45) by suitably bounding g,,. This bound rep-
resents the extent to which the feedback input can be

3Assuming the retiming-invariance of external don’t care conditions re-
duces the problem to that of computing ODC}; n =0, - - - , P.
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and, therefore,
ODC{)’“) = (S_l -] 0'_1) (a(') + a; Wa_l) (Sl Tao).

Note that ODCj (.., depends, in general, on future values
of 5. This dependency can be eliminated by taking advan-
tage of (38). By working out the algebra, in this case we
obtain

ODC 1y = (s-1 ® a_))a_;(@) + a;s_,).

At the second iteration, ODCy (4, is used as external ob-
servability don’t care set, and

ODCp 3y = (s-1 ® o_pa_ (@) + a)(s_, + a_,5_))

is obtained. The third iteration could then be shown to
result in ODCy (3, = ODCj (5. Note that ODC? depends
on past values of s as well as of the perturbed signal ¢ =
s ® o. As we allow the change of the feedback function
during optimization, the original signal s cannot be con-
sidered available, and all internal functions must be ex-
pressed in terms of r. It follows in particular that the de-
pendencies from s in ODC* must be dropped, resulting in
this case in ODC*® = r_,a_aj. Fig. 9 shows the network
of Fig. 8, optimized using this external don’t care set.

0.

2) Controllability don’t care Conditions

In a cyclic network, the feedback interconnection can
be regarded as a constraint imposed on the feedback input
of the definite portion N,. As a consequence of this con-
straint, even if no external don’t care set is applied, in
general only a subset of sequences is possible at the inputs
of N,; that is, the feedback interconnection can be re-
garded as inducing an external controllability don’t care
set at the inputs of N;. We consider in this section the
problem of determining a representation of the retiming-
invariant portion of such a don’t care set.

[2]

Fig. 9. The network of Fig. 8, optimized using its sequential observability
don’t care set.

[—r, 0], of a retiming-invariant controllability don’t care
set for the definite subnetwork N,. Note that this is in
particular a set of impossible sequences of inputs and
feedback values. From Definition 4.2, CDC ™4 must then

satisfy
CDC™ ¢ cDC*%vn = 0. (52)

Since CDC™¢ represents impossible values of the inputs
in [n — r, n], (52) can be simplified into

CDC™? ¢ B, (53)
where the sets B,, n = 0, * + - , o are defined by
By = CDC™ + CDC" + 5, ® S;
Bn+1 = Vn—r(Bn + CDC:+1 + Sp+1 & sn+l)' (54)

One way of obtaining CDC™¢ could then consist of
starting from an initial estimate CDC%j, for example
given by the intersection of a finite number of the bounds
B,, suitably retimed, and then of iteratively shrinking that
estimate by intersecting it with further bounds, until con-
vergence. The corresponding pseudocode is outline in the
procedure RET INV. Theorem 4.7 below shows that
RET_INV, started with a suitable initial estimate, does in-
deed converge in a finite number of steps, in particular to
a set satisfying (52).

RET_INV(CDC™, CDC", CDCTyt, r)

{ .
TMP = CDC%¢;
repeat {
CDC™? = TMP;

TMP = CDC™?V _, ., (CDC™ + CDC™? + 5, & S,);

} until(TMP == CDC™9),
return (CDC™%;
}

We assume CDC®* to be represented by an expression
like (33), where CDC™" and CDC" have literals in the
interval [—r, 0]. In order to describe the initialization of
the feedback variables, we assume CDC™ to be in terms
of input and feedback values, and CDC" to be in terms
of inputs only.

The controllability don’t care set CDC®*¢ of N, is thus
given by

CDC*™¢ = cDC™ + ZJO (CDCE + 5, ® S,). (51)

We derive a representation CDC™¢, with literals in

Theorem 4.6: Let CDC%s! be any synchronous Bool-
ean expression, with literals in [—r, 0], satisfying
CDC,* € B,;n =0, * - -, r; then RET_INV converges
in at most 2¢* V" steps, and upon termination it returns
a retiming-invariant portion of CDC*"¢, satisfying (52).

We illustrate the computations of RET_INV on the cir-
cuit of Fig. 8.

Example 13: A reset sequence (s_,, b_,) = (0, 0);
(s-1, b_1) = (0, 0) is applied to the circuit of Fig. 8, so
that

(‘:Dc‘i“it =853 + S, + a_, + a_;.
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No other external don 't care conditions are assumed, i.e.,
CDC"™ = 0, and a value r = 2 is chosen. The feedback
function is S = (a-; + a_p) + aua_;s_; +
a_;a_,s_,s" ;. From (54), the bounds corresponding to
n=20,1,2are

By=s,+s1+a,+a,+s &S
=5 ,+ 85, +s+a,+a_,
Bi=V_5,+sy+ta,+a +s5+s5 @8
=s_,+sp+a_+s ® (@ + a)
B,=V_j(s_., +s6+a_, +s & (a) + ay)

+5 0 85)=s5+s5 & (@) + a)

+ 5, ® (a1ap + ay59).

The largest initial estimate CDC ?(’]‘)i is represented by the
intersection of the above upper bounds, suitably retimed:

CDCT¢ = (By)o(B))-1(By)-»

a_,(s'y + s_ja’ ) + s (a_, + s_,aly)

I

+ 50 ® (@_;a_, + s_jag).

The second estimate CDCY;{ is obtained by RET_INV is
given by

CDC§ = CDCTV _3(CDC) 1 + so @ So)
=s',a_5 + (5_25_)) & (a_a’,)
+ 50 ® (@_a_, + s_1ap)
Similarly,
CDC%Y = CDCi¢v _3((CDCHD -y + 5 @ Sp)

s_psti@ly +ay) +sby(saby)

+ 55 @ (al_la'_z + S_lao).

It can then be verified that CDC%§ = CDC%¢, bring-
ing RET_INV to convergence.

The network can be optimized by using CDC™ as an
external, retiming-invariant, don’t care specification for
the optimization of N;. An optimized network is in par-
ticular shown in Fig. 10. O.

The finite-state machine model of a synchronous net-
work decomposes the network into a special definite por-
tion (namely, such that P = 1), and a set of feedback
lines, whose associated variables are termed state vari-
ables. This model can thus be regarded as a special case
of the one considered here. RET_INV can similarly be re-
garded as a generalization of state traversal algorithms for
finite-state machines, with the set of possible feedback
values in an arbitrary interval [—r, O} (contained in
(CDC™ 9"y replacing the set of reachable states.
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[]

a .

S
1"
Fig. 10. The network of Fig. 8, optimized using its sequential controlla-
bility don’t care set.

Two aspects that distinguish RET_INV from finite-state
machine traversal are, however, worth remarking. First,
RET INV considers values on the feedback wires over
predefined, but otherwise arbitrarily long intervals, rather
than values at individual time-points. Second, it extracts
a set of impossible sequences of input and feedback val-
ues, as opposed to focusing on impossible feedback com-
binations only.

We conclude by observing that the simultaneous use of
controllability and observability don’t care information,
derived from the existence of feedback, may lead to op-
timization errors, as evidenced by Example (14) below:
intuitively, using observability don’t care conditions at the
feedback output may change the set of feedback se-
quences, thereby possibly invalidating the controllability
don’t care set.

Example 14: The observability and controllability don’t
care sets associated to the feedback wire in the circuit of
Fig. 8 were derived in Examples 12 and 13, respectively.
As optimized realization, obtained by using both don’t
care specifications, is shown in Fig. 11, and is not equiv-
alent to the original machine. For example, corresponding
to the input sequence (ay, a,, ay, a3, a4) = (1, 0, 0, 0,
0), the network output is (1, 0, 1, 1, 1), while the correct
output would be (1, 0, 1, 1, 0).

4.5. Controllability don’t care Sets in Synchronous
Networks

The controllability constraints induced by a network on
its environment can be represented by the set of sequences
that cannot be asserted by the network outputs:

Definition 4.3: The output controllability don’t care
set of a synchronous network N is the set CDC®' <
(®™)* of sequences over the interval [0, + oo) that cannot
be asserted by the network, when driven by an input se-
quence in (8™ N (CDC*)’' spanning the interval [r,
+00).

In Section 4.5 external controllability don’t care sets
were expressed by the sum of a retiming-invariant com-
ponent, expressed by CDC", and an initializing portion
CDC™*_ Following that framework, we are interested in
deriving (possibly incomplete) representations of CDC**
by means of an initializing portion CDC™"*" and a retim-
ing-invariant component CDC™°". In particular, we con-
sider expressions in the reference interval [—r, 0]. We
restrict our attention to definite networks, as the case of
cyclic networks is captured essentially by (52), reducing
the feedback interconnection to an external controllability
don’t care set for the definite subnetwork N,.
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a :Z>_s

F

Fig. 11. Incorrectly optimized version of the network of Fig. 8.

The following algorithm is a direct extension of CON-
TROLLABILITY to the present case, and computes a set
CDC®"" of impossible output combinations in a refer-
ence interval [—r, 0].

CONTROLLABILITY (G, P, CDC", r);
T = {source}

S = FO (source) .

CDC™*™ = £?__, CDC};

while T # V {

select v € V — T such that FI(») € §;

T:=TU {»};

S =8 U FO(®»),

P, = longest_path (»);

foreach fanout variable y of » {

is P = 1, so that the initial estimate of CDC™ " is

0
CDCH o = k=2_1 CDCY = (u_, + v'5)v",

+ (uoy + v ).
The fanout point of variable u is selected first. Its longest
path from the primary outputs is NEW P = 1; conse-
quently, first
CDC™™ = (u_y + v )V + (u_y + v 0}
0
+ k_zz(uk O u +u @ u,%)

0; n ++)CDC™™ = CDC™™ + f} & y,;

foreach fanin variable x of » CDC™™ =V, ,_ . p, ... o (CDC™™);

for(n = —(P, + r);n <
}
T:=TU {v};
S =S8 UFO(®);

} .
return (CDC™°";

Similar to the combinational case, CONTROLLABIL-
ITY traverses the network from the primary inputs, iter-
atively moving an initial cutset (defined by the connected
subgraph (S, T)) to the primary outputs, and computing
the controllability don’t care set associated to each cutset.
As the outputs in an arbitrary interval [n — r, n] are func-
tions of the primary inputs in the interval {[n — r — P, n],
the impossible input combinations in this interval are de-
termined first, represented by the initial estimate:

0
CDCri,out — Z

k=-—(r+P)

CDCE. (55)

For each selected vertex, first its longest distance P, from
the primary outputs is determined. As the outputs in the
interval [—r, 0] can depend on the vertex outputs only in
the interval [—(r + P,), 0], for each fanout variable y of
v only the contributions y, & f; n € [—(r + P,), 0] are
necessary.

The consensus rule is then applied, similarly to the
combinational case. We illustrate CONTROLLABILITY
on the circuit of Fig. 7.

Example 15: We take r = 1, and assume an input don’t
care set as determined in Example 5;

CDC" = (u_; + v ) v}

Initially, T = {source}, § = {e,, e,}. The longest path

is constructed, and then the dependency from u is elimi-
nated by consensus in u_,, u_,, uy. This results in

CDC™™ = (ul, + vipv, + () + o)y
0
+ 2 u}( o ui.
k=2
The AND gate is then selected. After adding the terms y, @
(vxi}); k = =2, —1, 0 and removing by consensus all
dependencies from the fanin variables of v (namely, v and
2
u),
CDC™™ =y o (uy)' + y- 1l + yo(ud)’
+ yougu'y + yliut ul,.
Variables u and y are then similarly processed, to obtain
CDC™" = 2, (Y2) + (30 + ¥aytiz
+ Y2036 + Y2 (31 %
Eventually, the output gate is selected. Its longest path to
the primary output is trivially 0, so that 2, ® (z, + y,): k

= —1, 0 are added. The elimination of the dependencies
from y and z produces the final estimate

CDC™™ = ¢ ({H

V. IMPLEMENTATION AND RESULTS

The algorithms presented in this paper have been im-
plemented in C and tested on several synchronous bench-
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TABLE 1
BENCHMARK STATISTICS

Circuit inputs outputs literals registers feedback longest path
S208 11 2 166 8 8 1
5298 3 6 244 4 14 2
S244 9 11 269 15 15 1
S444 3 6 352 21 15 2
$526 3 6 445 21 21 1
S641 35 24 537 19 11 2
$820 18 19 757 5 5 3
S832 18 19 769 5 5 3
$1196 14 14 1009 18 0 3
S1238 14 14 1041 18 0 3
S1494 8 19 1393 6 6 1
$9234.1 36 39 7900 211 90 6

TABLE 11

COMPUTATION OF THE OBSERVABILITY don’ care

SETS. THE APPROXIMATIONS PRESENTED IN APPENDIX I
WERE USED FOR THE CIRCUITS LABELED (*)

Circuit CPU time BDD Nodes
$208 0.9 1280
5298 2.1 889
S344 2.1 2015
S444 4.1 4547
$526 5.6 3289
S641 10. 2645
5820 19.0 11788
$832 18 6679
S1196(*) 234 305622
S1238(*) 17.9 398591
$1494(*) 19.6 12623
S§9234.1(%) 151.4 456071

TABLE III
OPTIMIZATION RESULTS
r=P~P r=P+1 r=P+2

Circuit literals registers CPU time literals registers CPU time literals registers CPU time
5208 72 8 16 58 8 21 52 8 24
5298 109 12 27 102 12 44 99 12 51
S344 131 15 31 127 16 41 122 15 49
S444 144 19 29 131 18 41 127 17 51
$526 216 20 31 188 21 34 149 21 41
S641 209 14 53 187 15 64 150 14 88
5820 260 5 59 255 S 69 243 5 73
5832 261 5 65 245 5 98 245 5 188
S1196 531 15 194 531 15 194 531 15 194
51238 609 15 238 609 15 238 609 15 238
51492 582 6 91 569 6 191 565 6 236
$9234.1 747 176 785 462 174 987 398 177 1686

mark circuits. The benchmark statistics are shown in
Table 1.

All functions were represented internally by their
BDD’s [30], [31]. This choice renders in particular trivial
the convergence test for the fixed-point algorithms, used
for deriving external don’t care conditions in cyclic net-
works.

The choice of the feedback interconnections to be cut
affects the internal observability of all the internal nodes,
and therefore in general the synthesis results. A minimum
feedback set algorithm [34] was used for the choice of the

feedback variables. The number of cuts and the longest
paths (in terms of register counts) that resulted by this
choice are reported in the columns labeled feedbacks and
longest path P, respectively, in Table I. These parameters
are obviously affected by choice of the feedback vari-
ables: for example, for the benchmark s344, a cut based
on a depth-first network traversal [35] resulted in P = 10.

We present results on the computation of the observa-
bility don’t care sets as well as on the overall logic opti-
mization, in Tables II and III, respectively. Table II re-
ports the peak size of the observability don’t care sets in
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terms of BDD node count as well as the global CPU time
spent in their computation. The results of logic optimi-
zation, in terms of literals and CPU time, are shown in
Table II. As no information about reset sequences or reset
states is available, a reset sequence consisting of r con-
secutive zeros was selected for each circuit. The param-
eter r was then assigned the values P, P + 1, P + 2;
feedback don’t care conditions and logic optimization
were performed for each of these values. Delay elements
were assigned finite cost, equivalent to 4 literals. It was
thus in principle possible to trade off combinational com-
plexity by the addition of delay elements.

VI. SUMMARY

In this paper we presented an analysis of don’t care
conditions in combinational and synchronous networks.
The target of the analysis was the derivation of don’t care

conditions that could be used in particular for the opti-.

mization of synchronous circuits at the structural (i.e.,
netlist) level.

We thus assumed circuit specifications directly in terms
of networks (e.g., interconnections of gates and delay ele-
ments), rather than representations with the explicit no-
tion of state, such as state diagrams. We think that this
model can support better optimization techniques by it-
erative improvement, where local combinational or se-
quential gates are iteratively replaced, because of the pos-
sibility of evaluating directly area and performance
variation due to optimization.

In order to derive such don’t care conditions, we have
developed a perturbation analysis of the network, where
the replacement of a local logic function is modeled by a
perturbation of its functionality. Don’t care conditions that
can be used by current logic optimizers are only upper
bounds on the possible perturbations.

In the case of combinational networks, it was shown
[2] that a single upper bound on the perturbation of a sin-
gle gate describes all the don’t care conditions for that
gate. For sequential networks, this is in general not the
case. Describing don’t care conditions entails being able
to reason in terms of sequences of values taken by inputs
and internal variables, and upper bounds on the perturb-
ing sequences (as can be used by ordinary logic optimiz-
ers) represent some (but not all) the degrees of freedom
in replacing the gates.

Algorithms for deriving and approximating such bounds
have been derived and tested on several large sequential
benchmark circuits, and used for their logic optimization.
Unlike classic sequential logic optimization, where the
number of registers was a priori minimized, and then the
resulting combinational logic iteratively optimized, the
present approach offers a greater degree of flexibility, by
allowing the insertion of delay elements where justified
by the benefit in the overall complexity of the logic. This
property makes it possible to explore different tradeoffs in
the distribution of the logic between combinational and
sequential elements.

APPENDIX |

In this Appendix we analyze the problem of approxi-
mating observability don’t care sets by formulas that can
replace (15) in the OBSERVABILITY algorithm. Ap-
proximations to ODC sets are needed in order to reduce
the size of their representation and possibly avoid the flat-
tening operations discussed in Sect. (3.2). Some of such
approximations essentially coincide with methods for ex-
tracting compatible don’t care sets, which are considered
in Section (8.2). In Sect. (8.3) approximation methods are
extended to the case of synchronous circuits.

1.1 Previous Work

Several methods for approximating the observability
don’t care sets by a single backward traversal of the net-
work have been proposed in the past [1], [3], [6], [7].

We use here (13) for examining the quality of these
approximations. For simplicity, we restrict our attention
to single-output networks (so that the ODC vectors have
only one component) and to a copy vertex with only two
output variables, as shown in Fig. 12.

We define the auxiliary quantities.

ag = 0DCy1Iy=0, a, = oDpc” |y:|,

by = ODC”|,_o, b, = ODC*|,_, (56)

I

so that

ODC” = ayy' + a;y; ODC” = byy' + byy. (57)

By substituting these expressions in (13) and (15) the fol-
lowing identity must hold:

ODC” = (agy" + a1y) @ (bgy + by y")
=(ay +a1y')® (byy + by). (58

Any assignment ag, a;, by, b, violating identity (58) is,
therefore, contained in the satisfiability don’t care set of
the network. Namely,

a, ® a, ® by ® b, © SDC™, (59)

The Karnaugh map of ODC” in terms of ay, a,, by, by,
and y is shown in Fig. 13, where 1’s denote the observ-
ability don’t care, 0’s the observability care, and — de-
notes the impossible assignments given by (59), i.e., the
satisfiability don’t cares.

All previous approaches approximate ODC’ by some
other function of ay, a,, by, b;, and possibly, y. The qual-
ity of any such approximation can thus be measured by
the number of covered 1’s in the Karnaugh map.

We contrast various approaches referring to the graph
of Fig. 12, and denote an approximation to ODC” by
ODC”. The most “‘conservative’’ simplification is taken
in the program MIS-II, as reported in [1]. There, ODC”
is computed by assuming that the variables z;, z, are fully
observable. The observability ODC? of each variable Yi»
¥, is thus obtained from (5) bL neglecting the first term of
the sum. In our case, each ODC” is independent from any

other variable y;, i.e., oDC» ¢ apa, and 0DC” c beb,.
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Fig. 13. Model of ODC” in terms of the variables aq,, a;, by, b,. Circles
represent the approximation given by (60).

oDC” is computed as the product of ODC”* and ODC?”;
therefore, ODC” € aga, byb,.
In [7], the following approximation is proposed:

ODC” = v,,(0DC”) = aya,
ODC” = v,,(0DC™) = byb,

ODC, = ODC”" ODC” = aya, byb,. (60)

According to this approximation, first the portions of
ODC” independent from y;, j # i are computed, i.e., the
observability don’t care vectors of the fanout variables are
decoupled. 1t is then possible to form their product to ob-
tain a correct approximation. Note that, with this ap-
proach, it is necessary to have explicitly ODC” in terms
of all variables y; and, therefore, flattening operations may
be required. These approximations capture at most the
circled minterms in the map of Fig. 13, i.e., only two 1’s
out of the possible eight.

Muroga proposes in [3] an apparently better approxi-
mation. It consists in computing only obc” =

v, ODC” = byb,, and to compute oD¢” according to
ODC” = ODC”' ODC” = (ayy' + a,y)byb,. (61)

The portion of ODC” covered with this second approach
is shown in Fig. 14. Interestingly, the accuracy is not
greater than that of (60). Note, however, that (61) re-
quires fewer computations: only ODC”* needs to be in-
dependent from y,. To this purpose, a further simplifica-
tion is used at the vertex where the actual reconvergence
occurs (for example, in Fig. 12, it would be used at vertex
E). It consists in computing the portion of ODC? that is
independent from z;, namely

0DC® = v, 0DC?. (62)

The approximation of ODC?”* that can be obtained in this
way is thus automatically independent from y;, and can
be used directly in (61).
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Fig. 14. Approxiination of ODC” provided by (65).

Finally, Savoj et al. in [8] propose a better approxi-
mation. In the case of two fanout variables it reduces to
computing first

0DC” = ¥,,0DC” + ODC*(0ODC”Y'.

and then

(63)

ODC” = ODC” ODC™. (64)

Muroga’s method is in practice used to avoid the flatten-
ing operations in (63), that is,

0DC? = v, 0DC? + ODC2(0ODC?)  (65)

is computed. Although the set computed by (63) or (65)
are larger than what provided by (61) and (62), still when
(64) is applied (61) is obtained again. All methods pro-
posed so far, therefore, capture essentially the same por-
tion of the ODC sets, although with different degrees of
computational efficiency. The common idea is that of ap-
proximating the observability don’t care sets of ODC”",
ODC” by subsets that can then be multiplied. For this
reason, we introduce the following definition.

Definition 8.1: For a copy gate with input variable y
and output variables y;, y, * - - , y, the subsets ODC¥
ODC?” are said to be decoupled if

n
ob¢’ = I1 ob¢¥ ¢ opc’.

i=1

(66)

The methods reviewed in this section can then be re-
garded as strategies for obtaining decoupled ODC sub-
sets.

Several other approximation strategies can be derived
from (13). They can readily be obtained by expanding the
EXOR’s appearing in (13):

0DC’ = ODC” ODC”|,, .,
+ (0DC*)Y (ODC™' |, _
+ 0DC?0DC”|,,
+ (0DC?) (ODC”) |,y (67)

If subsets of ODC” and (ODC”)’ are available, then 67)
automatically provides a subset of the true ODC” [9]. (67)
also shows that

0DC? = ODC” ODC*|,,.,, + ODC”0ODC”|,,_,,
(68)

is also a subset of ODC”. In order to compare this latter
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approximation with the previous ones, we rewrite it in
terms of ag, a;, by, b;:

ODC’ = (ayy' + a1 y)(boy + by ')
+ (@y + a;y )by + bry. (69

The maximum coverage provided by (69) is shown in Fig.
15. Solid circles correspond to the maximum coverage
provided by the first product term in (68), while dashed
circles correspond to the second one. Notice that both of
them cover strictly more of the map of ODC” than the
original approximations. Although flattening operations
may be required to explicit the dependencies on y;, y,,
these can be stopped at any time and be replaced by con-
sensus operations to eliminate any undesired variables. It
is thus possible to consider different CPU time tradeoffs.

1.2. Compatible don’t care Sets by Local Rules

Equation (19) provides maximal bounds on the pertur-
bations §,, * - - , §,. Such bounds, however, depend on
some of the perturbations 6, themselves. A maximal com-
patible don’t care set ODCY can be obtained from (19) by
observing that, since §; S oDCY forj=i+1, - ,n,
the expressions 5,.(015‘@1‘)';]' =i+1, - ,n, represent
external don’t care conditions that can be added to
ODC”. Consequently,

oDC” = Va.-ﬂ.---.5H<ODCY'|5.'.-»-,5.'V1

+ % 5,-(0073”‘)'), i=1,-",n
j=i+1

(70)

is a maximal compatible don’t care set [8].
In the case of two perturbations 6;, 6,, (70) would in
particular result in

0DC” = ODC”|y;

ODC” = ODC*|,(ODC” |5; + (ODC?').  (71)

We analyze here the possibility of computing maximal
compatible don’t care sets for all gates in a network by a
single backward traversal. Similarly to the case of full
don’t care sets, we need different rules for logic and copy
gates. Consider a logic gate with output y and inputs y,,
©**, y,- Given a don’t care set ODC”, maximal com-
patible don’t care sets associated with the input variables
Y1, *** , Y, can be found by applying directly Eq. (70)
to ODC” = ODCY + (8f*/dy)’.

In particular, for two input variables only, ODC”|y;
and ODC”" |;; are just the ODC sets of y;, y,, respectively,
and

oDC* |;,0DC” |5
= 0DC”|;0DC|,, = v ,,0DC™".

Equation (71) then coincides with the approximations (62)
and (65).

byb,

0 b0b1

HpH( 11 -0 ] -

B

y=0

Fig. 15. Our approximation for the ODC sets, as provided by (67). Solid
circles represent the coverage provided by the first product, dotted circles
the coverage provided by the third one.
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It is important, however, to distinguish the use of (70)
(or (71)) in the context of approximating ODC sets and
of computing compatible don’t care sets. For example, in
the circuit of Fig. 12, when using (70) for approximating
don’t care conditions, we consider the portion of the ODC
set of z, which is independent from z,, and the full ODC
set of z3 can be computed. When computing compatible
don’t care conditions, instead, the portion of ODC,, ac-
tually compatible with those of z, and z, needs be com-
puted. The compatibility requirement, therefore, shrinks
the ODC set that could be associated to z;.

In the case of copy gates, the general rule linking max-
imal compatible don’t care set of the input variable to
those of its fanout variables is complex. For simplicity,
we consider here only the case of a copy gate with only
two fanout variables.

Let é;, - + - , 8, denote n arbitrary perturbations of the
network, corresponding to n network variables z;, ¢ - -,
z,. The observability don’t care set for a variable y, com-
patible with those of z;, - - - , z, is provided by (70):

oDC” = val,..,ﬁn<oz)cy + Zl 5,-(01’)‘611')'). (72)
i=

Suppose y is the input variable of a copy gate, with out-
puts yy, y,. From (13), it then follows that

oDC? = Va..---,a,.KODCy] + -21 6j(0b‘(/?"")’)
j=

3 <ODCﬁ|y,=y, + 2 aj(OD"c“Zf)')]. 73)
i=

The two expressions within the parentheses in (73) re-
semble the ODC sets of y,, y,, compatible w.r.t. z;,
* , Z,. Unfortunately, the consensus operation is not
distributive w.r.t. the XNOR operation; consequently, the
maximal compatible don’t care set of y is not in general
derivable from those of y;, y,, and (73) shows in partic-
ular that the full don’t care sets ODC”', ODC”* are nec-
essary.

Following the approach outlined in Section (8.1), by
taking decoupled subsets of ODC”' and ODC™ it is pos-
sible to approximate the XNOR operation in (73) by a prod-
uct. Since consensus is distributive w.r.t. the AND oper-
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ation, it is possible to write
n
0oDC’ = \151,..,5"(01)01 + 2 61-(0DC"")'>
j=1
TV b
n
. <0DC”|W=>., + % Bj(ODCZf)’>
) 2

= 0DC» 0DC™. (74)

Equation (74) is the one considered in [3], [8]. The fol-
lowing example shows that the set provided by (74) is not,
in general, maximal.

Example 16: Consider applying (70) and (74) to derive
compatible don’t care sets for the gates of the network
shown in Fig. 16, by backward network traversal. Clearly,
ODC” = 0. The observability don’t care set of z is com-
puted according to

ODC*? = <§§> =0

0z 75

Next, in order to compute the don’t care set of a, first
the compatible don’t care sets of x and y are determined:

0DC* = 0; 0DC’ =0 (76)
and eventually their product is formed:
ODC* = ODCY0DC* = 0. an

Using (73) would have resulted in ODC® = 1. This
result is intuitively correct: since the don’t cares associ-
ated to each of w, z are identically O, no gate can be
changed, and the compatible don’t care set associated to
a coincides with the full don’t care set. O.

1.3. Approximations for Synchronous Networks

In the previous sections it was in particular shown that
by using decoupled don’t cares it is possible to simplify
(13) into (61).

This property carries over to synchronous networks.
Moreover, we show below that by this approach it is pos-
sible to avoid computing the individual sets ODCY , for
each network variable and each time point k = 0, .-,
P and instead compute directly approximations ODC? of
the final observability don’t cares.

Different rules are given for logic and copy gates. For
a logic gate with output variable y, by combining (35) and
(31) we obtain for each input variable z:

P Y\’
ODC} = kI_IO <01)c>w‘z,,( + <af—“’> >

0z
y ’ P
afw‘) + II

oDC>,
k=0 wak

(78)
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Fig. 16. Circuit topology for the analysis of Compatible observability don’t
care.

which is, except for the retiming of ODC” by w,, identical
to (9) of the combinational case.
For a copy gate with input variable y and outputs v, w,
by combining (36) and (31):
P
ODC} = kl:Io (ODC*™ + ODC§, & ODCG k| yo =)

(79)
If ODCg; and ODC"|, , are approximated by decou-
pled subsets, then,

~

oDC}

P
AL opce + 0bC;, ,0DT 1)

I

P
kI_IO (ODC§™ + ODC? )

R
. kI_IO (ODCE™ + ODC?, 1)

(ODC{ODCY),,. (80)

Equations (78) and (80) identical to the corresponding
rules for combinational circuits (except for a simple re-
timing operation) and allow us to compute directly
O[)t‘{, without considering the observability at different
time points.

AprpENDIX 11

Proof of Theorem (3.1): Let &;, + -+, d; denote the
perturbations associated to the f fanout variables. The fol-
lowing identity can be easily verified:

ODC® = F»» "Y1, -+ 1)
@ Y, - -, 0)
= (P, - 1)
=) F}’l)’2"'}’[(0, 1, s, 1))
‘@'(F)’lﬂ"')y(o’ 1’ e, 1)
@FYIYZ"')’[(O’ O’ ]’ s, 1))
T @ (PO, -+, 0, 1)
® F'? YO, - - -, 0)). 81
Equation (81) can be rewritten as:
oDC = &_ |\ F'» Y| yim ==y
BTy (82)
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Equation (15) then follows by observing that each term of
the sum in (82) is precisely ODC”| , 0.

-+|—"'=y/—y

The proof of Theorem (3.3) requires the following
lemma ([32, pp. 158-161]):

Lemma 8.1: For a function H(§;, - * - , 6,), the equa-
tion
H=1 (83)
holds if and only if
H' |z € 6,1 < H|s, (84)
and
3, H=1. (85)

Proof of Theorem 3.3: 1t follows immediately by
taking H = E + DC®" and applying iteratively Lemma
(8.1) to the functions

s E + DC™. (86)

O

Theorem (3.4) can similarly be proved using the fol-
lowing lemma.

Lemma 8.2: For a function H(§,, * - - , 6,), if
5,1 < H|,, 87)
and
H|s; =1 (88)

then (83) holds. Moreover, the upper bound in (87) is
maximal.

Proof of Lemma 8.2: Equations (87) and (88) rep-
resent sufficient conditions for (84) and (85), and there-
fore for (83). This proves the first assertion. To prove the
maximality property, suppose by contradiction that the
upper bound (87) can be replaced by a bound

851G (89)

for some function G such that, for some assignment of its
arguments, all components G take value 1, while there is
a component of H|;, taking value 0. Corresponding to
that assignment, (89) would indicate that one can choose
8, = 1 and still satisfy Eq. (83). On the other hand, cor-
responding to that assignment, H = H|;, and therefore at
least one component of H takes value 0, a contradiction.
The bound expressed by (87) must therefore by maximal.
O
Proof of Theorem 3.4: By taking H = E + DC*™

and by iteratively applying Lemma 8.2 to the functions

Elsj....0 +DC™  i=1,-n (90)
it follows that
61 C Els;...50.00 + DC™  i=1,---,n
oD
and
Els ... + DC™ =1 92)

represent sufficient conditions for (17) and
E|5(’...’5i’ + DCeXt = 1; i = 1, st ,n. (93)

If the perturbations §; satisfy (91), the terms
8 (E|s;,---.5i_1,5) can be regarded as external don’t care
conditions and therefore added to the r.h.s. of Eq. (91).
By arguments similar to those used in Lemma 8.2, such
bounds are also maximal.

Since E|s; ... 5, = F(0, ,0 @& FO,:---,0)
= 1, (92) certainly holds. To complete the proof, it is
then sufficient to show that the right-hand side of (91) is
identical to that of eq. (??). On the other hand,

Els,....5i1,5 + DC™
=(F@©0, --,0,1,8.y, - ,8) + DC™)
® (FPO, -+ ,0 + DC™)
= ((Fy(o’ .o ’0, 1’ 6i+l’ P 96n)
+DC™) & (FP©, - -+ ,0,84+1, ", 6,
+ DC™) & (Els;,.- 5,5 + DC™).
By using (93) and by recognizing that
(F*©, = -+, 0,1, 841, "+, 8,) + DC™)
®(FO, - ,0),84y, ", 8) + DC™)
= ODC”|y;,....5_, + DC™ (94)
it then follows
Els;.. 5.6 + DC™
= (ODC”|s;.... 5,50 + DC*YT1 (95
thus proving the required identity. O

Proof of Theorem 4.2: Suppose, by contradiction,
that (32) holds, but that there are a value n* and an input
sequence s such that (26) does not hold.

It then follows that, for that particular assignment, E,«
= 0 and DCZ¥ = 0. Corresponding to the retiming by
—n* of s, Eo 0. Moreover, it must be DC™ = 0 or
otherwise, by the definition of DC 1 the set of sequences
(S_n+)n+ (containing in particular s) would be in DCg¥,
thereby contradicting s € DC+. Consequently, corre-
sponding to s_,« the Lh.s. of (32) takes value 0, a contra-
diction.

Only if: Suppose, by contradiction, that there exists an
input sequence s such that the Lh.s. of (32) takes value
0, but such that (26) holds for every n. For that sequence,
Ey = 0 and DC™ = 0. Consider the retiming by an ar-
bitrary k of s. Again, by the time-invariance of the net-
work, corresponding to s; E; = 0, and therefore in order
to satisfy (26) it must be DC{". Therefore, s, € DC*
vk = 0, and by the definition of DC®™ it should be s €
DC®™, contradicting the assumption that s ¢ DC*™. O

Proof of Theorem 4.3: 1t is sufficient to observe that,
from (42),

— - F
En - Eb,n & Ea,n =2 6,nE§‘n'
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Consequently,
E, + DC* 2 (Ef, + DC*)(EL,, + DC™)  (96)

and, by hypothesis, both factors in the right-hand side of
(96) are 1. |

As the proof of Theorem 4.4 requires that of Theorem
4.5, the latter is proven first.

Proof of Theorem 4.5: By induction on {m). The
assertion is trivially true for m = 0. To prove the induc-
tive step, recall that the expressions of ODC; (, +, and
ODC;, (ny are derived applying (31) to the definite sub-
network N,. Each factor appearing in (31) has the form:

ODC piimy + ODC, yiiloisn - ahas C2))
for the expression of ODC;, ¢y, while it has the form:
ODC;-H(,(m—l) + ODCfx,n+k|o,;+1,-“.U;.+k (98)

for ODC;, (.. Since, by the inductive assumption,
ODCrikimy 2 ODCjirim_1y, each factor of
ODC;, (1 +1y is not smaller than the corresponding of
ODC;, (my, and consequently ODC3;, (,+1, 2 ODC; (5.
O
Proof of Theorem 4.4: We first prove (50) by induc-
tion on n. To this regard, observe that (50) holds by hy-
pothesis forn = —P, - - -, —1. As for the inductive step
note that, by (39), proving (50) is equivalent to showing
that ES + CDC*™™ + ODCS, (., = 1.
Since E; = E§, & E‘,f,,,, by recalling (49) it suffices to
prove

ES, + CDC™ + ODCS (y = 1. (99)

On the other hand, from Theorem 4.1, having o,_, <
CDC® + ODC3, (y is a sufficient condition to ensure

Ej , + CDC™ + ODCS (,,_ 1y = 1. (100)

Since, by Theorem 4.5, ODC3, (y 2 ODC;, ¢, - 15, (100)
implies (99). We finally recall that ODC;, represents an
observability don’t care condition for the perturbation o;
consequently, (45) holds by construction.
Proof of Theorem 5.1: To prove convergence, it suf-

fices to observe that

1) CDC™ represents a subset of combinations of val-
ues for the input variables in the interval [—r, 0], of which
there is only a finite number, namely 2" *¢*D;

2) at each iteration, CDC¥,, ., S CDC%,,, i.e., the
sequence of sets CDC¥,,, is monotonically nonincreasing.

In order to prove (52), it is sufficient to observe that by
construction

t
CDCi! € CDC™ + X (CDC} + 5, @ S,)

CDC™ %yt > 0.

U

1o
O
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