[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL

12. NO. 1. JANUARY 1993 25

Designing High-Performance Digital Circuits Using
Wave Pipelining: Algorithms and Practical
Experiences

Derek C. Wong, Member, IEEE, Giovanni De Micheli, Senior Member, IEEE, and
Michael J. Flynn, Fellow, I[EEE

Abstract—Wave pipelining is a technique for pipelining digi-
tal systems that can increase the clock frequency of practical
circuits without increasing the number of storage elements. In
wave pipelining, multiple coherent waves of data are sent
through a block of combinational logic by applying new inputs
faster than the delay through the logic. Ideally, if all paths from
input to output have equal delay, then the circuit’s clock fre-
quency is limited by rise/fall times, clock skew, and setup and
hold times of the storage elements. In practice, due to the above
limits and variations in fabrication, clock frequency can be in-
creased by a factor of 2 to 3 using the best available design
methods.

We present algorithms to automatically equalize delays in
combinational logic circuits to achieve wave pipelining. The al-
gorithms adjust gate speeds and insert a minimal number of
active delay elements to balance input-output path lengths in a
circuit. For both normal and wave-pipelined circuits, the al-
gorithms also optimally minimize power under delay con-
straints. We present an analysis of the algorithms and comment
on their implementation. Then we report experimental results,
including the design and testing of a 63-bit population counter
in CML bipolar technology.

A brief analysis of circuit technologies shows that CML and
super-buffered ECL without stacked structures are well suited
for wave pipelining because such technologies have uniform de-
lay. Static CMOS and ordinary ECL including stacked struc-
tures and emitter-followers do have some delay variations, de-
pending on the input patterns. A high degree of wave pipelining
is still possible in those technologies if special design techniques
are followed.

1. INTRODUCTION

AVE PIPELINING is a design method that can
boost the pipeline rate of a system without using
additional registers. In ordinary pipelined systems, there

Manuscript received May 24, 1991: revised March 27. 1992. This work
was supported by the National Science Foundation under an NSF Graduate
Fellowship, by the Center for Integrated Systems. Stanford University. CA.
and by the National Science Foundation under Contract MIP88-22961. us-
ing equipment provided by NASA under Contract NAGW 419. The dem-
onstration chips were manufactured at Signetics. Inc. CAD tools were pro-
vided by Mentor Graphics, Inc. Chip testing was performed at Triilion.
Inc. G. De Micheli was supported in part by the NSF. DEC, and AT&T
under a PYI award. Use of equipment was provided by Philips/Signetics.
Inc. This paper was recommended by Associate Editor R. K. Brayton.

The authors are with the Department of Electrical Engineering. Stantord
University, Stanford, CA 94305.

1EEE Log Number 9202983.

Clock Clock
| I
Combinational Logic
Storage Storage
Element Element
Transition regions between waves
Fig. 1. In wave pipelining. multiple coherent waves of data arc sent

through combinational logic acting as a pipeline.

is one “‘wave’’ of data between register stages. When a
new set of values is clocked into one set of registers, the
values are allowed to propagate to the next set of registers
before the first set is clocked again.

In contrast, wave pipelining is the use of multiple co-
herent ‘‘waves’’ of data between storage elements (see
Fig. 1). This is achieved by clocking the system faster
than the propagation delay between registers. In this
method, the data values at the first set of registers are
changed before the old data values have propagated to the
next set of registers. The capacitance in the combinational
logic circuit is being used to store values for pipelining.

For example, a fast 64-bit floating-point multiplier im-
plemented in combinational logic might have a propaga-
tion time of 10 ns. If we used wave pipelining and ne-
glected register setup-hold times and clock skews, the
multiplier could operate using three pipeline waves to
achieve a clock frequency of 300 instead of 100 MHz with
the same 10-ns latency. At time O ns, the first wave of
data would be clocked into the left register and begin
propagating through the logic. This first wave would reach
about } of the way through the logic before the second
wave starts at time 3.33 ns. The third wave would start at
time 6.66 ns. At this point. the first wave is 5 of the way
through the logic and the second wave is L of the way
through. When time 10 ns is reached, the results of the
first wave are stored in the right register while the fourth
wave is started from the left register. Thus, three waves
are simultaneously present in stages of the combinational
logic and the clock frequency is tripled compared to the
normal rate.

0278-0070/93%03.00 < 1993 IEEE

26 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL

Using two additional registers, the clock rate could also
be nearly tripled using regular pipelining, but the registers
would increase the input-output latency,' consume addi-
tional power and layout area, and increase the clock dis-
tribution requirements.

To achieve the highest possible wave-pipelining fre-
quency, all path delays from every starting to every end-
ing storage element must be the same. Clock skew, vari-
ations in path length, rise-fall times, and the setup time
of the storage element limit the maximum pipeline rate.

The possible advantages of wave pipelining are the fol-
lowing:

e lower power, area, and delay by using fewer stages
of storage elements;

e very high rates of pipelining without the added delay
of storage elements dominating the pipeline latency;

e wide applicability to all pipelined digital systems.

Wave pipelining has disadvantages as well:

o Requirement for specialized design algorithms to
equalize the length of all paths.

e More difficulty exists at the system level. A wave-
pipelined chip must be run within a relatively narrow
range of clock frequencies. If the chip were operated
at a substantially different frequency, the number of
waves within a logic section might be incorrect.
When a system using multiple wave-pipelined chips
is assembled, the chips must have matched speeds.

e The need to add delay buffers to lengthen some short
paths. This increases the area of some circuits.

Previous and concurrent work in this area includes the
following:

o Anderson and Cotten first described the concept as
used in the floating point unit of the IBM 360/91 [1].
[4]. The clock frequency using wave pipelining was
twice the normal frequency.

e Lin and Xia also designed and implemented an ex-
perimental computer using wave pipelining in its
arithmetic units [19].

e Fawcett described the theory of pipelined system
clocking in detail [9]. He developed detailed equa-
tions for the maximum clock rate of Earle latch sys-
tems as a function of many parameters. His experi-
mental work did not include wave pipelining,
although his clocking theory applies.

e Ekroot developed a theory of wave pipelining [8].
Assuming gates and modules with fixed delays, he
developed linear programs to determine where to in-
sert delay elements to balance the circuit. Also, he
compared the minimum clock period using wave
pipelining and regular pipelining.

e Klass and Mulder have studied the use of wave pipe-

'In this paper, the words larency and delav are used interchangeably.
They both denote the time required for a data wave to propagate from the
circuit inputs to outputs.

12. NO. 1. JANUARY 1993

lining in CMOS [13], [14]. A 4-bit adder has been
simulated with effective results.

e Gray et al. have designed and built a wave-pipelined
adder as well as wave-pipelined delay chains in
CMOS [10], [11].

e Joy and Ciesielski have developed placement and
routing algorithms for laying out wave-pipelined cir-
cuits [12].

e Lien and Burleson have applied wave pipelining to
domino logic [18].

e Chappell e al. have described a high-performance
SRAM which uses a concept similar to wave pipe-
lining called bubble pipelining. The RAM has an
access time of 3.8 ns but has a pipelined cycle time
of 2 ns [3].

Our research goal has been to develop the necessary
analytical tools and design techniques to build an actual
wave pipelining chip in VLSL, identifying and solving the
necessary practical problems enroute. We have focused
on the following arcas:

1) analyzing technologies and speed limits,

2) designing the algorithms and developing the nec-
essary CAD tools to automatically balance the de-
lays in combinational logic circuits,

3) designing, building, and testing a sample chip de-
sign.

The IBM 360/91 and the experimental computer by Lin
and Xia were designed using manual design techniques to
balance circuits of fixed-delay gates. In contrast, we are
developing new algorithms to balance the delays using
gates with adjustable delay. Unlike Ekroot’s methods,
our methods minimize power consumption and added cir-
cuitry. Also, we use gates with adjustable delay versus
power, rather than assuming fixed delays.

This paper discusses some of the important issues in
wave pipelining. First, we explain the frequency limits of
wave pipelining. Next, we introduce new algorithms that
balance delays to achieve wave pipelining. As a byprod-
uct, these methods can also be used to optimize power
versus delay for both normal and wave-pipelined circuits.
We then describe the results of applying these algorithms
to various example circuits. We present a wave pipelining
chip designed using these methods that actually operates
at 2.5 times the ordinary clock frequency. In Appendix
[1, various technologies are graded by their suitability for
wave pipelining. We show why ECL and CML are well
suited for this technique and why special design tech-
niques are required by CMOS.

Additional descriptions of our work can be found in
[241-127].

11. WAVE PIPELINING
A The Minimal Clock Period Relation

The maximum pipeline rate is limited by technological
parameters. Clocking the circuit at a frequency above the
limit would mix the waves of data together.

WONG e¢r al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

In Appendix I, we show that the minimum clock period
at which a wave-pipelined circuit can be clocked is
bounded by

tep > Atp + 2 % AC + tgy + Igg (1)
where

tep clock period,
tp propagation time of the longest path in the com-
binational logic,

Atp maximum difference between longest and shortest
path lengths over worst-case design, process,
and environment,

AC worst case uncontrolled clock skew,

tsn setup plus hold time for edge-triggered registers
(for latches, tgy = length of transparent period
plus hold time),
tge Worst-case rise or fall time (10%-90% voltage
swing) at the last logic stage.

In contrast, the normal clock period f¢-py Without using
wave pipelining would be bounded by rcpy > 1p + 15 (+
possibly AC depending on the design technique) where 74
is the setup time of the storage element. In most cases,
tcp can be made much smaller than f¢py by reducing the
Atp to a small fraction of fp.

B. Reducing the Minimal Clock Period

A designer would like to minimize fcp by attacking each
of its components. We assume here that 75y and 1ge are
parameters that depend on the technology. The clock skew
AC can be minimized using standard design techniques.

Therefore, we consider the problem of minimizing f¢p
by reducing Atp.

The path variation Az, arises from several sources:

¢ path differences due to design,

e process and temperature-induced variations within

one chip,

¢ data-dependent delay variations.

Process and temperature-induced variations are un-
avoidable, but their effects are limited within one chip.
Data-dependent delays can be limited by selecting the
proper technology. Using our algorithms, the worst-case
Atp can be reduced to 10%-30% of {p in most cases.

For example, assume that in a hypothetical technology
AC, tgy. and gy are equal to 500 ps each (or one gate
delay). Then the clock period is bounded by

tcp > A[p + 2 ns.

In this case, Atp can be reduced to 1 to 3 ns for a circuit
that has 7, = 10 ns (20 gate delays), leading to a clock
period 7¢p of 3 to 5 ns. Thus, two to three waves of data
can propagate simultaneously within a typical wave-pipe-
lined circuit leading to a doubling or tripling of the normal
clock rate.

C. Using Wave Pipelining in a System Design
A combinational circuit like a floating point adder is the
ideal type of circuit for wave pipelining. Typically. a sys-

27

tem designer may have one of two design goals when us-
ing wave pipelining:

1) Build the fastest possible circuit that can handle as
many waves as possible. The designer will fit the
rest of the system to the circuit after f, and f¢p are
determined.

In this case, the desired delay 1, is equal to the
critical path delay with all gate parameters set to
achieve minimum delay. The design is balanced by
a tuning algorithm that minimizes Atp while keeping
the delay equal to 7.

2) Build a circuit that has a delay 7p determined by the
design of the rest of the system. For example, this
might occur if the clock period is based on cache
speed and the semantics of the system design re-
quire that the adder be three waves deep.

In this case, the desired delay 7p is determined by
external constraints. The objective is to minimize
Atp at that delay.

Our algorithms are designed to balance the circuits to
a user-specified nominal propagation delay called Dyax
while minimizing power and added area. If desired, the
designer can iterate while varying Dyax to construct a
range of solutions with varying clock period 7cp, power.
and area.

I1I. ALGORITHMS FOR DESIGNING WAVE-PIPELINED
CIRCUITS

If possible, a wave-pipelined circuit should be designed
to have balanced paths under nominal fabrication and
temperature conditions. When a technology satisfies some
assumptions, this can be achieved by using our balancing
algorithms. In Appendix II. we showed that technologies
exist that satisty these assumptions.

Next, we describe the CAD algorithms and tools for
automatically taking a combinational logic circuit and
balancing its delays. One of the tools can also be used to
set the gate drives in both normal and wave-pipelined cir-
cuits to achieve the minimal possible power for a given
maximum delay Dyax-

Our methods are designed primarily to work with
ECL/CML circuits.

A. Problem Formulation

This section describes the algorithms that can be used
to balance the nominal I/O delays of a circuit to a given
maximum delay Dyax. If fabrication parameters such as
doping levels and oxide thickness vary little within a sin-
gle chip, the circuit will still be quite balanced under all
possible fabrication conditions within the process enve-
lope. Secondary goals in designing a circuit are to mini-
mize area and power.

The following modeling assumptions are made.:

1) The circuit is combinational without feedback.
2) Each gate propagates signals one way from inputs
to outputs.2

*Gates may have both an inverting and noninverting output.

28 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 12, NO

3) Gate delay can be adjusted by a parameter, called
gate drive.” Delay adjustment does not affect area.

4) Adjusting the delay of a gate does not affect the de-
lays of gates connected to its inputs or outputs.

5) Path delays can be increased by inserting active de-
lay elements. These elements are buffers with one
input and one noninverting output.

6) When all gates are set to maximal drive, the longest
path delay should be smailer than or equal to Dyax-
No technique can balance the circuit to Dyax if this
assumption is not met. It is straightforward to verify
when circuits meet it.

These assumptions are satisfied more easily in ECL/
CML circuit families based on bipolar circuit technology.
In ECL/CML, each gate’s delay can be adjusted by con-
trolling the gate’s tail current without affecting the delays
of other gates. We can also safely assume that gates can
be designed in this technology such that the I/O connec-
tions and total area of each gate are independent of the
gate’s drive. In addition, the gate delay is a monotonically
decreasing convex function of power. An example of a
CML gate’s power-delay characteristic is shown in Fig.
8.

Path delays are computed by adding the propagation
delays of the gates. The CAD methods do not take ad-
vantage of possible false paths.* The methods are con-
servative in that all 1/0 delays are balanced to the delay
of the longest path, which could possibly be false.

B. Rough and Fine Tuning

We propose two ways of attacking the balancing prob-
lem, inserting delay elements and adjusting gate drives.
We combine these in a multistep process to balance a cir-
cuit while minimizing power and added area:

1) Rough tuning inserts a minimal number of delay
elements so that it is feasible to balance the circuit
by just adjusting gate drives. Minimizing the num-
ber of inserted elements minimizes the added area.

2) Fine tuning adjusts gate drives so that the circuit is
nominally balanced to a delay Dyax with minimal
power consumption.

For some circuits and delay models, one tuning method
suffices to balance the circuit. However, in the general
case, we combine the two tuning methods in order to bal-
ance the circuit.

The primary goal for the two tuning techniques is to
achieve exact delay balancing, i.e., guaranteeing that all
1/O path delays are equal t0 Dyax- The secondary goal is

*Another research group [12] in wave pipelining has recently been ex-
ploring the balancing of circuit delays by instead adjusting the RC delays
of wires. This is done by altering the placement of cells and by partially
routing wires in polysilicon. Our methods work in conjunction with stan-
dard commercial place-and-route tools: we have not investigated placement
algorithms.

*A fulse path is a long path in the circuit that actually cannot be activated
by any input patterns. Since the path is never activated, it can be ignored
when computing the longest path delay.

1. JANUARY 1993

to minimize the added area and power. In this section, we
show that under some additional assumptions the balanc-
ing problem, as well as the power and area minimization
problems, have an exact solution. But we also show that
exact balancing may be hard to achieve for practical cir-
cuit models and layout methods. However, the use of
these technigues on actual designs shows that the methods
do balance the path delays within a reasonable tolerance.
Since the remaining imbalance is small compared to 7p.
wave pipelining can provide an effective means of speed-
ing up the circuit.

In practice, we propose the following procedure to bal-
ance circuit delays.

Definition Tuning Procedure:

1) First, an optional fine-tuning pass may be per-
formed prior to placement and routing using a coarse
estimate of capacitative loads.

2) Then rough tuning is performed to fix the remaining
imbalances in delay.

3) A final fine-tuning pass is performed after place-
ment and routing, when the value of each wire’s
capacitance can be extracted from the layout. Since
the gates have the same area and [/O connections
independent of the chosen gate drive, the gate drives
can be fine tuned without changing any wire rout-
ing.

4) Following fine tuning, the maximum pipeline rate
can be determined.

The optional first fine-tuning pass reduces the number
of imbalanced paths prior to rough tuning, thus reducing
the number of delay elements inserted. Because the actual
capacitances after layout can difter substantially from the
initial estimates. a final fine-tuning pass is necessary.”

In the next two sections, we present both fine and rough
tuning in detail. To make the theoretical description eas-
ier, each algorithm uses its own graph representation of
circuits.

IV. RouGH TUNING

We describe the rough-tuning problem first. As the
name suggests, rough tuning attempts to balance a circuit
by inserting buffers in the circuit to add discrete delays.

Ideally we would like to balance a circuit by fine tuning
only. because no area penalty would be involved. How-
ever. a balanced solution might not exist unless rough
tuning is used. Usually some sections of a circuit can be
balanced using only fine tuning. but rough tuning is gen-
erally required for other parts of the circuit.

Because of the nature of the problem, we usec a simpli-
fied delay model for each gate during rough tuning. In

SHowever. the use of an initial fine-tuning pass reduces the ability to
subsequently adjust for the difference between actual and estimated capac-
itances. Thus. not using an initial finc-luning pass can sometimes result in
4 solution that has more area but better balancing. This effect is covered in
more detail later in Section V1I-D. The designer can experiment to deter-
mine whether or not 1o use the initial fine-tuning pass in his/her situation.

WONG ¢t al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

particular, the propagation delay is assumed to be equal
from all inputs of each gate. Furthermore, rising and fall-
ing delays need not be represented separately because this
would have little effect on any decisions to insert buffers.
One propagation delay is associated to each output. rep-
resenting the delay from any of the inputs to that output.
This delay model is sufficient to model delays for
ECL/CML without stacked structures, which is a good
target technology for wave pipelining as discussed in Ap-
pendix 1I. The rough-tuning techniques can be extended
to more complex delay models, but the resulting delay
graphs have less elegant theoretical properties.

A. Circuit Representation

We represent circuits to be optimized by rough tuning
using a directed acyclic graph (DAG) representation.

Nodes represent the inputs and outputs of gates. Arcs
are of two types and represent 1/0 dependency within a
gate and among gates. The lengths of the two types of
arcs represent propagation delays of gates and delays of
inserted elements, called padding elements. The first set
of lengths is known, while the second set represents the
unknown of the problem. Our technique determines this
second set of lengths.

A rough-tuning DAG (called an RTDAG) is constructed
from a circuit using the following steps.

1) An output node is associated to each output (invert-
ing and noninverting) of each gate. An additional
input node is associated to each gate to represent all
its inputs.

2) Directed arcs (i, j) are defined as follows:

e Type [(internal)—i is an input node and j is an
output node of the same gate. Type [arcs repre-
sent gate delays.

e Type E (external)—j is an input node which is a
direct fanout of output node /. Type E arcs rep-
resent delays of padding elements that are in-
serted.

The arcs are numbered from 1 to NumArcs.

3) Weights on arc n = (i, j). are defined as follows:

e Type I (internal)—Weight D[n| = 0 indicating
the nominal propagation delay from any input of
the gate (represented by the node i) to an output
Jj-

e Type E (external)—Weight W[n] = 0 indicating
the amount of nominal delay to insert between the
output of a gate corresponding to i and the input
of a gate corresponding to j. Initially, all the W{n]
are zero.

4) Source and sink nodes are added to the graph. Using
type E arcs, the source node 0 is connected to all
primary input nodes, and the sink node N is con-
nected to all primary output nodes.

Fig. 2 shows an example conversion of a small circuit
to our graph representation. Nodes 1 and 4 represent the

Fig. 2. An example conversion from a circuit to a DAG for rough tuning.
Light type E arcs represent inserted delays. Bold type [arcs represent gate
delays.

inputs of the two gates. Nodes 2. 3, and 5 represent the
outputs. Heavy arcs are internal to one gate; regular arcs
are external.

The path length between two nodes along a series of
arcs is defined as the sum of the arc lengths, including
both /- and E-type arcs.

B. Problem Formulation for Rough Tuning

The selection of a gate delay model affects the capabil-
ity of a rough-tuning technique to solve the balancing
problem.

Assume first that all gate delays are equal to or are in-
teger multiples of a fixed propagation delay through a
padding element. In this case, the circuit can be exactly
balanced by an appropriate insertion of delay elements.
Similarly, any circuit can be balanced if the propagation
delay of a padding element can take any value greater than
zero.

In practice, gate delays vary, and the delay of a padding
clement must be set within the range By to Byax. The
finite range of delay of the padding element has two con-
sequences. First, the minimal number of delay elements to
be inserted along arc kis [(W1k]/Bwmax) | . Second, there
is no physical implementation of a delay if W[k] < Bw;
such delays are said to be not implementable. We assume
that Byax/Bmin = 2 (easily satisfied by gates in ECL/
CML technology).

Since some arc lengths are not implementable, rough
tuning might not guarantec the exact balancing of a cir-
cuit. For this reason, we state the rough-tuning problem
as follows:

Definition Rough-Tuning Problem: Given a combina-
tional logic circuit without feedback, find a set of imple-
mentable arc lengths W such that

1) all input-output paths have length < Dyax,

2) the length of the shortest input-output path is
maximal. (J

30 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 12, NO. 1. JANUARY 1993

Let ADg be the length of the longest path minus the
shortest path. The parameter AD measures the path length
difference due to design using the simplitied delay model.
It does not account for differences between rise and fall
delays or for gate delays that are different for each input.

An optimal solution is one that maximizes the length of
the shortest path, thus minimizing ADy. A secondary goal
is to minimize added area, i.e., minimize the number of
added delay elements £ [(W[i]/Byax)] -

C. Using Loops to Balance the Circuit

The number of paths in a polar graph may be exponen-
tial in the problem size. We therefore transform the rough-
tuning problem into an equivalent one where we balance
the loop lengths. This is the basis for the rough-tuning
algorithm presented next.

A loop is defined to be a set of arcs that form a cycle
in the underlying, undirected graph. Each loop in this
graph has a source and a sink, which are defined to be the
nodes with zero incoming and zero outgoing arcs, respec-
tively, when considering only the arcs in the loop. The
two directed paths from the loop’s source to sink are called
the sides of the loop. The length of each side is the sum
of the arc lengths, including both /- and E-type arcs. If
the lengths of the two sides are equal, then the loop is
balanced.

Suppose we augment the directed acyclic graph by add-
ing one arc of type / from source to sink with length Dy ax.

Theorem 4.1: The circuit is balanced with delay Dy«
if and only if all the loops in the graph are balanced.

Proof: 1f there were an input-output path with delay
not equal to Dyax. then an unbalanced loop could be
formed using that path plus the arc with weight Dy, 4y from
the graph’s source to sink.

If there were an unbalanced loop, then two unequal in-
put-output paths could always be constructed containing
the two sides of the loop. [

We can define a signed addition of all the arc weights
in each loop. If a walk is taken around a loop, the signed
addition is the sum of the weights of all arcs, taking into
account each arc’s direction. Arcs pointing in the direc-
tion of the walk are added; arcs pointing in the opposing
direction are subtracted. This sum is zero if the loop is
balanced. If each arc’s weight is a uniquely labeled vari-
able, then each loop defines a loop equation stating that a
signed sum of variables must be equal to zero in order to
balance the loop.

Then the circuit is also balanced if and only if a span-
ning set of linearly independent loops is balanced {7]. A
spanning set of linearly independent loops is simply a set
of loops corresponding to a maximal set of loop equations
that are algebraically linearly independent. The loop
equation of any other loop can be generated by linearly
combining equations of the loops in a spanning set.

Since the number of linearly independent loops is linear
in the size of the problem, this result enables us to verify
efficiently whether a circuit is balanced or not.

One type of spanning set is a set of fundamenral loops.
As stated in |7]. a spanning set of fundamental loops can
be constructed as follows.

1) Construct a spanning tree in the DAG beginning
from the source.

2) Let A represent the set of links, i.e., arcs that are
not in the tree.

3) Let L be the (initially empty) set of loops.

4) Add one link from A to the tree. This defines exactly
one loop called a fundamental loop that is added to
L. We say that the link closes the loop.

5) Repeat for all the arcs in 4.

The loops in L are linearly independent, since each link
is in exactly one loop.

The choice of a spanning tree is important because it
affects some properties of the resulting fundamental loops.
A longest-path spanning tree is a spanning tree rooted at
the source such that the tree contains a longest path from
the source to each node.

Proposition 4.1: In any fundamental loop constructed
from a longest-path spanning tree, the link is always on
the side of smaller or equal length.

Fig. 3 is an example of constructing loops based on a
spanning tree. The DAG (copied from Fig. 2) has been
assigned arc lengths indicating delay. A longest path
spanning tree has been built from the source and is shown
in heavy arcs. Each one of the links forms a loop when
added to the tree. For instance adding the arc (0, 4) forms
the loop with (0, 4) on one side and [(0, 1), (1. 3),
(3. 4)] on the other side. If each such loop has the same
length on both sides, then the circuit is balanced.

Theorem 4.2: Given a DAG representing a circuit and
a longest path spanning tree built from the source, every
link is a type E (external) arc.

Proof: The head of each arc of type I is at an output
node. The head of each arc of type E is at an input node.
(The source is considered an “‘output’” node, and the sink
is an "‘input’” node.) Since each output node has only one
incoming arc, a loop formed using a spanning tree from
the source cannot be closed at an output node. Therefore,
all loops must be closed at input nodes, and only type E
arcs have input nodes as heads. Since each link closes a
loop. each link must be type E. |

From Proposition 4.1 and Theorem 4.2, it follows that
every fundamental loop has an adjustable (type E) arc on
the side with smaller or equal total length.

D. An Algorithm for Rough Tuning

Based on the above idea of balancing a spanning set of
loops, the rough-tuning procedure balances a circuit by
inserting delay along type F arcs as necessary. The rough-
tuning algorithm has three major steps: constructing a bal-
anced solution; changing the arc lengths to minimize the
added padding elements: and implementing the arc lengths
using padding elements. The second step may be skipped
if non area-optimal, but balanced, circuits are sought.

WONG ¢t al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

Fig. 3. An example of constructing loops based on a spanning tree. The
longest path tree is shown using bold arcs.

Rough-Tuning Algorithm

1) Construct an RTDAG to represent the circuit. Add
one type I arc of length Dy 4x from the source to the
sink.

2) Build a longest path spanning tree T from the source.

3) For each link i/, insert the proper arc length W[i] to
balance the corresponding fundamental loop.

4) Apply the repadding algorithm (described in detail
later) to minimize the number of delay elements.

5) Implement the delay lengths by inserting the delay
elements.

Since the fundamental loops are linearly independent
(each link is in exactly one loop), all fundamental loops
can be balanced independently from each other.

Atstep 5, the delay lengths are implemented as follows.
For a length W[i] = By, insert [W[i]/Byax | delay
elements on arc i. (Recall that Byyy and Byayx are the min-
imum and the maximum delay of a padding element, re-
spectively).

Any weight W[i] = By;n can be implemented exactly
by adjusting the gate drives for the inserted buffers appro-
priately. For a link having n = 2 buffers, the firstn — 2
are set to delay of Byax each, and the last two are set
appropriately to remove the remaining imbalance in the
loop.

For any lengths that are smaller than By, a heuristic
method must be used to minimize the imbalance. One
method is to simply ignore any lengths smaller than By .
In this case, ADy is bounded from above by ADp < nByn
where every input-output path has at most n type E arcs
that have length < Byn.

If the constraint that the longest path must be < Dyax
can be replaced by < Dyax + 1 * Byn/2. a second
heuristic can be used. In this method. lengths greater than
By /2 are implemented with a single delay element. This
might reduce the imbalance better than the first heuristic
since ADy is often less than nByy/2. even though the
bound is still ADg < nByn. It is necessary to relax the
longest path constraint because if Dyax is as small as pos-
sible (i.e., equal to the critical path with all gates at max-
imum power in the original circuit), then the new critical
path 1, could exceed Dyax by up to nByn /2.

Note that AD; represents an upper bound on the mis-
match of the source—sink path delays. Fine tuning can fur-
ther reduce this mismatch, and in some cases, it may per-

Fig. 4. An example of an RTDAG that has been balanced and the corre-
sponding circuit with delay elements D inserted. Padded arcs are shown in
bold

fectly balance a circuit. However, the possible presence
of non-implementable delay lengths prevents a guarantee
that perfect balance ADg = 0 can be achieved.

Fig. 4 shows a simple example of how the rough-tuning
algorithm would insert delay elements. The logic gates in
the circuit have a delay of 2. By inserting a delay of 2 on
each of the two bold external arcs, the graph can be bal-
anced. Supposing that Byyy = 1 and Byax = 3. the cor-
responding circuit is then padded with a single delay ele-
ment for each of the bold arcs as shown in the diagram.

1) Achieving a minimal-area solution:

Delay lengths can sometimes be shifted from one por-
tion of a circuit to another. For instance, if delay elements
are to be placed on all the wires on one side of a gate
(either at the inputs or outputs), then some delay can be
shifted to the other side. This can reduce the total number
of delay elements when the number of wires is fewer on
the other side.

This section presents a method for systematically shift-
ing delay lengths to minimize the number of delay ele-
ments. We call this method repadding. 1t is derived from
a method described in [17] for minimizing the number of
register bits in sequential circuits by moving register
boundaries.

The problem formulation for repadding can use a sim-
plified graph model because the information about the de-
lays of the original gates is no longer necessary. The re-
quired information is the circuit topology and the position
and number of the padding elements. Therefore, a sim-
plified graph is obtained by contracting all arcs of type /
(Internal). An example of this is shown in Fig. 5. Nodes
1 and 2 correspond to the two gates. An external arc exists
for each connection in the circuit.

The delay lengths are given to the repadding algorithm
as a vector of non-negative real numbers. However, a
shifting should be performed only if the result would save
delay buffers. Shifting small amounts of delay might not
be useful and could even divide padding delay between

32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 12, NO. |. JANUARY 1993

— 1 O
+
+

Fig. 5. An example conversion from a circuit to a simplified DAG for
repadding. A simplified graph uses one node per gate and only type £
arcs.

gate inputs and outputs in a way that increases the number
of buffers.

To avoid this problem, we conservatively allow the re-
padding algorithm only to shift delays in units of By,y.
If the repadding algorithm decides to shift a delay of
Bpiax, the number of buffers will definitely be decreased.

Therefore, new arc lengths are defined as the pair
WxlG, DI, Wyl(i, HI) for each are (i, j):

Wxli,)1 = [WIG. j)]/Buax]

Wyl@, D1 = WIG. DI/ Buax — WxlG, j)].

Shifting padding elements from the outputs to the in-
puts of gate i is represented by a signed integer variable
R[i] associated to each node i. Given a vector R repre-
senting repadding, the corresponding lengths on the arcs
are

Wil) = WxlG, Dl + R[j] — RIi].

The formula R[i]*(indegree (i) — outdegree (i)) is the
change in the total number of padding elements due to a
repadding by R[i] at node i. (Indegree (i) and outde-
gree (i) are the number of incoming and outgoing arcs,
respectively, at node i.)

The repadding problem can be formulated as a linear
program corresponding to a minimum-cost network flow
problem:

Find a vector R to minimize LR[i](indegree|i] — out-
degree[i]) subject to:

R — R[JI =
R[0] = R[N]

The constraints guarantee that the solution does not have
negative arc lengths [17].

The quantity indegree (v) — outdegree (1) measures the
reduction in ZWx[i] if one unit of delay is shifted from
the input arcs of node v to the outputs. Therefore, the
linear program also minimizes the desired function
Wy lil.

Wxl(i, j)] for all arcs (i, j).

0 for source 0 and sink N.

1l

The minimum-cost flow problem can be solved by either
the matching algorithm of Edmonds and Karp [16] or by
the Simplex algorithm. We have chosen the second route
to leverage the use of powerful linear problem solvers
[21]. Therefore, the steps for achieving an optimal solu-
tion are as follows:

Repadding Algorithm

1) Construct the simplified graph model and the cor-
responding linear program.

2) Compute R by solving the linear program.

3) Compute the new arc lengths using

Wil Dl = Weli, Hl + RLj1 — RI.
4) Recompute the full arc lengths using
W'li) = Wxlil * Byax + Wylil * Byax-

Fig. 6 shows a simple example of repadding. The cir-
cuit and simplified RTDAG on the top are prior to repad-
ding. Suppose that By,x = 4. so that the delays of 4 on
the two arcs from node 2 to the sink N correspond to
[1, 0] when split into the vector [Wy, W,]. The solution
of the repadding linear program shifts the delay to the arc
from node 1 to 2. After converting back to ordinary delay
units, the arc from node 1 to 2 now has a delay of 4. The
revised circuit is then as shown on the bottom.

2) Remarks on Repadding:

¢ It can be shown that every basic optimal solution is
an integral vector [17], [22]. This ensures that only
entire units of delay can be shifted.
® When an output has multiple fanouts and more than
one fanout arc has a positive delay length, the phys-
ical implementation can share delay elements, rather
- than implementing multiple delay chains. It is pos-
sible to use a linear program to minimize the total
number of padding elements including the effects of
sharing padding elements. The details are not re-
ported here, but a similar formulation has been re-
ported [17].

E. Properties of Rough Tuning

The rough-tuning algorithm has the following proper-
ties:

1) For a circuit whose gate delays are integer multiples
of the padding element delay, the rough-tuning algorithm
is guaranteed to balance the circuit with a minimum num-
ber of padding elements.

2) For circuits using delay elements that have an ad-
justable delay from Byy to Byax, the rough-tuning al-
gorithm is guaranteed to balance a circuit to within
ADy < nByn, where every input-output path has at most
n type E arcs with length less than By . (The inequality
is sharp since nBy;y would result only if the » arcs had
delay equal to Byn.)

3) For circuits where all the padding delays are imple-
mentable (i.e., either 0 or = By,y), rough tuning bal-
ances the circuit exactly.

WONG et al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

Fig. 6. An example of repadding. (a) The circuit and DAG prior to repad-
ding. (b) The revised circuit and DAG after repadding.

4) For circuits using adjustable delay clements, the
method locally minimizes the number of added delay ele-
ments. The repadding algorithm is a very good heuristic,
but may not guarantee a globally optimum solution be-
cause it finds a global minimum for the function EWj[i]
rather than the true cost function £ [W[i]/Byax | . The
division of the arc lengths by Byax. while ensuring that
the repadding can only improve the circuit, restricts the
search space, thus preventing a guarantee of global opti-
mality.

5) The theoretical computational complexity of the
rough-tuning algorithm is dominated by the solution
method for the minimum-cost flow problem. In practice,
the Simplex algorithm for solving the linear program is
superlinear with respect to the problem size.

V. FiNE TuNING

The fine-tuning algorithm is presented as follows. First,
we describe a model of the circuit as a directed acyclic
graph. Then we formulate two related problems: fine tun-
ing and power minimization. We show that a solution to
the fine-tuning problem can be derived from a solution to
power minimization. Then we show that the power-
minimization problem can be solved by a linear program.
Finally, the effects of uncertain delays and other practical
considerations are presented.

A. Circuit Modeling Using a Fine-Tuning Directed
Acyclic Graph
We model the circuit using a polar weighted directed
acyclic graph. This graph uses a more complex delay
model than that used by rough tuning. In particular, rising
and falling delays are distinct, and delays from each gate
input are independently specifiable. A fine-tuning DAG
(FTDAG) is constructed from a circuit using the follow-
ing steps:
1) Each node i is in one-to-one correspondence with a
gate output i. (Note that in ECL/CML, there are
two outputs per gate.)

33

2) A directed arc (I, j) exists if the gate corresponding
to j takes { as an input. We number all the arcs from
1 to NumArecs.

3) Each arc (i, j) indicates gate delay by a tuple length
(rising delay R, falling delay F, unate flag U) where
* R is the delay of j’s gate from the tail i to cause

a rising transition at j.
¢ Fis the delay of j’s gate from the tail / to cause

a falling transition at j.
¢ U indicates whether j’s gate output is positive

unate, negative unate, or not unate, with respect

to the tail input. The unateness property is de-
fined as follows for each input/output combina-
tion of a logic gate:

In a positive unate input/output combination, ris-
ing transitions at the input can only cause rising
transitions at the output. Falling transitions at the
input only cause falling transitions at the output. All
input/output combinations in AND and OR gates are
positive unate.

In a negative unate input/output combination, ris-
ing transitions at the input can only cause falling
transitions at the output. Falling transitions at the
input only cause rising transitions at the output. All
combinations in NAND and NOR gates are negative
unate.

In a nonunate input/output combination, the tran-
sition direction at the input does not determine the
transition direction at the output. All combinations
in XOR gates are nonunate.

Each input/output combination should be treated
individually because gates can have some combi-
nations that are positive unate and some that are
negative unate. For instance, ECL gates typically
have both true and complementary outputs.

4) A source node O is connected to all primary input
nodes, and a sink node N is connected to all primary
output nodes.

An example conversion from a circuit to a correspond-
ing DAG is shown in Fig. 7. In the example, three global
inputs go to outputs 1 and 2 through an or/Nor gate. Three
arcs are drawn from the source node to each node 1 and
2 representing the delays through that or/NOR gate. Sim-
ilarly, output 2 goes through an or gate to output 3. The
corresponding arc goes from 2 to 3 and represents the OR
gate’s delay.

Path Delays: A source-sink path is a sequence of nodes
and directed arcs leading from the source to the sink. Path
delay denotes a pair (X, Y) where

X delay to rising transition at sink
Y delay to falling transition at sink.

The path delay is the sum of the arc lengths, taking into
account whether the corresponding gates are positive
unate, negative unate, or non-unate. The corresponding
arcs for each gate inherit the same unateness property as
the gate. For a path consisting of positive-unate arcs

34 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 12. NO. 1. JANUARY 1993

o—

L

0
Fig. 7. DAG for fine tuning. Each global input or gate output is connected
to all of the nodes in its fan-out.

1 - - - n, the path delay is
<_§ R[], ,Z} F[i]>.
Using a series of arcs for negative unate gates, the path
delay equals
(++ + R[n—2] + Fln — 1] + R[nl,
-+ Fln — 2] + R[n — 1] + F[n].

For paths with some non-unate arcs, the idea of a unique
path delay cannot be applied. However, maximum and
minimum delays for a path can be defined. For instance,
suppose that the head of arc i/ represents the output of a
nonunate gate. The maximum rising path delay up to arc
i is defined recursively as

dyax -riseli] = max (dyax —riseli — 11

+ R[], dyax -rarLli —

This dyax - rise [{] may be used for any maximum delay
computations with arcs beyond arc i.

11 + R[iD.

B. Problem Formulation for Fine Tuning and Power
Minimization

Let us now define the fine-tuning problem and the nec-
essary information to formulate it.

1) Definition: Combinational Logic Circuit with Fine-
Tuning Information: A combinational logic circuit with
fine-tuning information is a circuit represented by a DAG
with the following delay model:

1) Drive (power or current) P[i] for each gate i.

2) Load capacitance L[] for each gate output /.

3) Power limits Py [i] and Pyux [i] for each gate i.

4) Two delay functions for each arc (i, j) where node
J is an output of gate k:
fli, j, 01(power P[k], load L{j]) = maximum time
from a transition on tail i to a falling transition at
head j.

1800

1600

1400

1206}

g
| et
L~

<
3
% 1000 \
<
& 800 \
3
o \

600 <

400

200

o
0 200 400 600 800 1000

Gate Current (in uA)

Fig. 8. Monotonically decreasing, convex delay versus power curve plot-
ted for a typical CML gate.

fli, j, 11(power Plk], load L[j}) = maximum time
from a transition on tail i to a rising transition at
head j.
We assume that these functions are convex and
monotonically decreasing with respect to power
(Fig. 8). Technologies nearly always satisfy these
assumptions over reasonable power bounds Py and
Pyax-

5) A user-specified delay Dy;ax.

6) DIi, 0] is the maximum delay from source to a fall-
ing transition at node i.

7) D[i, 1] is the maximum delay from source to a ris-
ing transition at node i.

2) Definition: Fine-Tuning Problem: The following is
the fine-tuning problem.

Given a combinational logic circuit with fine-tuning in-
formation, find a vector of gate drives P such that

¢ all input-output paths have delay < Dyax
¢ the length of the shortest path is maximal. t

A secondary goal is to minimize total power consump-
tion L/_, P[i] where n is the number of gates.

Let AD be the difference between the lengths of the
longest and shortest I/O paths. Ideally, the difference AD
should be zero. The finite range of tunability of the indi-
vidual gates and the asymmetry in rise and fall delays may
prevent the existence of an exactly balanced solution. We,
therefore, consider first fine tuning under some simplify-
ing assumptions and show exact balancing techniques.
Then we show how the complete fine-tuning problem can
be solved with a guaranteed bound on AD.

When gates have different rising and falling delays, a
solution with AD = 0 might not even exist. For instance,
consider a small circuit of one gate with different delays
for rising and falling output transitions. By definition, AD
is not zero but instead equal to the absolute difference be-
tween rising and falling delays. We therefore postulate a
restriction of the fine-tuning problem, called a symmetric
fine-tuning problem.

WONG et al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

We develop a method for finding a solution to the sym-
metric fine-tuning problem. This method also solves the
full fine-tuning problem with a guaranteed bound on AD.
If AD is small with respect to the other components of
fcp, then an efficient wave-pipelined implementation can
be constructed.

3) Definition: Symmetric Fine-Tuning Model: 1f the
gates in a fine-tuning problem all have rising delays equal
to falling delays, i.e.,

fli, j. O1(P, L) = fli, j, 11(P, L) Vi. j, P, and L

then it is a symmetric fine-tuning problem. U

The fine-tuning problem is closely related to the power
minimization problem which is formulated as follows:

4) Definition: Power Minimization Problem: Given a
combinational logic circuit with fine tuning information,
find a vector of gate drives P such that 1) all input-output
paths have delay < Duax and 2) the total power con-
sumption L}_, P{i] is minimal.

C. Solution Method

We now explain how to solve the power minimization
problem. Later, we show when and why the solution to
power minimization is also the solution to the fine-tuning
problem.

The power minimization problem can be efficiently
solved as a linear program by approximating the nonlinear
delay functions f(P, L) by piecewise-linear functions.
This is possible because the functions are assumed con-
vex. In practice, the delay functions are roughly hyper-
bolic and can be well approximated with a few line seg-
ments. Without this simplification, we would have a
nonlinear program whose solution would be costly for
large circuits. The following formulation can also be ap-
plied to the full fine-tuning problem, since it is formulated
in terms of separate rising and falling delays.

This linear programming formulation is related to a
nonlinear program used by Marple [20] for optimizing
MOS circuit power under timing constraints.

1) Linear Program: A weighted power minimization
problem can be formulated as the following linear pro-
gram:

n—b n

Minimize P = -21 P[] + B * Zh Pl

i= i=n—bh+
where gates 1 - + - (n — b) are the original gates, (n — b+1)
<+ (n) are the delay buffers, and 0 = B < 1isa
weighting factor discussed later. The total number of gates
is n, and the number of buffers is b. The following con-
straints apply.

1) Power constraints

Py il = Pli] < Pyaxli] for each gate i.
2) Source boundary constraints

D0, 0] = D[0, 11 = 0.

35

3) Sink delay constraints
DIN, 0] = Dyax
D[N, 1] < Dyax-

A

4) Graph delay constraints
We build delay constraints from each arc (i, j)
depending on the arc’s unate flag U. Let x be the
gate corresponding to output j.
If U is positive unate:

Dli, 1] + fli, j, NP, LIjD = DLj. 1]

DIi, O] + fli. j. 01(PIx]l. L[jD = DLJj. 0.
If U is negative unate:

Dli, 1 + fli. j, 0)(PIx]. LL1jD = DIj. 0]

Dli, 0] + fli, j, H(Plx], LIjD = D[J. 1].
If U is not unate:

Dli, 1] + fli, j. WP LTjD = DLj. 1]
Dli, 11 + fli, j. ON(P[x], LLjD = D[}, 0]
DIi, 0] + fTi. j. O1(PIx]. L[j]) = DLj. 0]
Di, 0] + fli, j, N(PI], L1jD = DLj. 11.

IA

By replacing each nonlinear function f(P, L) (where L
is a constant) by a piecewise-linear function, these con-
straints can be made linear. One linear constraint is su-
perimposed on each line segment of the piecewise-linear
function. Since the function is convex, each such con-
straint is binding only along its line segment. This turns
each constraint above into a set of linear constraints, each
using P only as a linear variable.

D. Equivalence of Fine-Tuning and Power-Minimization
Problems

At this point, we first explain how and when power
minimization solves the symmetric fine-tuning problem.
We address the full fine-tuning problem later.

Let P be the optimal solution to the power minimization
problem. We say that an inequality constraint is active at
the optimal solution P if the two sides of the constraint
are actually equal, i.e., the constraint is at its limit. We
define delay constraints to be those stated in items 3 and
4 of the weighted power minimization linear program.
Since all delays are equal for rising versus falling, the
delay variables for rising and falling transitions are also
equal, i.e. D[i, 1] = DI[i, 0] vi. Therefore, each arc either
has all or none of its corresponding delay constraints ac-
tive.

Theorem 5.1: Any source-sink path where all arcs have
active delay constraints has length Dyax.

Proof: Let D[i] = D[i, 0] = D[i, 1] denote the de-
lay variable at each node i. Consider the head / and tail 1
of each arc along the path. Since each arc has active con-
straints, the delay variable D[/] exactly equals the delay
variable D[f] plus the delay of the arc. The delay vari-
ables at the sink node, therefore, equal the sum of the arc

36 IFEE TRANSACTIONS ON COMPUTER ADED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOLL 120 NO

lengths. Since the final arc leading into the sink has active
constraints. the final delay variable D[N] equals Dyyax-
Therefore. the sum of the arc lengths also cquals Dypas.

This leads to the following theorem:

Theorem 5.2: Given a combinational logic circuit with
a symmetric fine-tuning model. if P is a solution to the
power minimization linear program such that all delay
constraints are active, then P is also a solution to the sym-
metric fine-tuning problem for the same circuit and Dy
with AD = 0.

Proof: Every arc on cach input-output (1/0) path has
an active delay constraint. Since Theorem 5.1 applies to
each 170 path, all such paths have length Dyyyy. There-
fore. the difference AD between the longest and shortest
1/0 paths is zero.

Unfortunately. a solution to power minimization might
not satisfy the assumptions of Theorem 5.2. because some
power constraints might become active or because there
might not be enough independent “tuning points’™ in the
circuit.

It is interesting to note that both maximum and mini-
mum power bounds on buffers can prevent the guaranteed
existence of a fully balanced solution. Indced. the lower
bound on power Py (corresponding to a finite maximuim
delay Byjay) might be active for some gate drives. possi-
bly preventing the corresponding delay constraints from
becoming active. The presence of a finite upper bound
Pyiax On power (corresponding to a minimum delay Byx
> 0) might prevent a circuit from being fully balanced
by rough tuning. If any delay greater than O could be in-
serted by rough tuning to balance cach independent loop.
then the circuit would have enough tuning points to be
subsequently balanced by fine tuning.

Removing the upper bound on power is theoretically
sufficient to allow rough tuning to balance the circult at
the expense of some added area. However, for practical
circuits bounds on power are mandatory.

In typical technologies. actrive delay clements have a
certain minimum delay Byx > 0. so the rough-tuning
algorithm balances the circuit to a certain ADg which
might be greater than zero. Theretfore. in the following
discussions. we assume that ADg might be a positive
number.

In Section VI. we return to discussing the imbaluance
AD which may remain after the entirc tuning process.
Next. we derive straightforward bounds on AD for the
cases when delays have an uncertainty range or when ris-
ing and falling delays are different.

E. Properties of the Algorithm When Delays are
Uncertain

Due to process variations and temperature-induced ef-
fects within one chip and data-dependent delays. a gate’s
speed is not perfectly controllable relative to other gates
within a chip.

Theorem 5.3 Balancing using Uncertain Delays: Sup-
pose each arc (i. j) has a delay d|7. j| that has maximum

1. JANUARY 1993

value dy sy licj]. Then a parameter « is used to measure
speed variations that do not track within a chip. Suppose
every d|i. j] can be bounded using

(1 — wdywli.jl = dlicjl = daaxlis j1

for some a. 0< o=l

If the tuning procedure is performed using the
dyas lie J17s as the delays and the solution has a bound
AD. then a similar bound AD- can be defined to include
the effects of uncertain delays

ADy = a(Dyys — AD) + AD.

Proof: 1 the dyaw li. J1's were the actual delays.
then the shortest path would have fength Dyax — AD. In
this case. the actual delay of cach gate along the shortest
path is at least (1 — a)dygas lie j). Therefore, the true
shortest path is at least (1 — o) (Dyax = AD) in length.
Subtracting this from the longest path Dyax yields the

(.

above constraint on AD-. i

£ Solving the Full Fine Tuning Problem

When rising delays do not equal falling delays. the
power minimization method is a reasonable heuristic for
a difficult problem. Since each gate has only one power
parameter which controls a rising and falling delay per
output. solutions with nearly balanced delays may not
even exist in some cases.

The following procedure defines the use of power min-
imization to solve the full fine-tuning problem.

1) Given a combinational logic circuit with fine-tuning
information. define

o dyaxrrlic /]

— max(rising delay. falling delay) of arc (i, J)
LIRS TR

= min(rising delay. falling delay) of arc (i,).

These delavs are defined from the delay functions

Flicj. OLPIx] LD and fli. j. 1(PIx], L|/j]) once the

corresponding gate drive Ply| and output capacitance
L] j] are known.

3y Assume that cach arc (i,) has delay dysrelic g
bounded by

(0 dyap liej1 = danrelicj1 = dyiaxrelic J)

for some a. 0< =<l

3) Perform the tuning procedure on this circuit. During
rough tuning. the dyayre s are used as the delays. During
fine tuning. power minimization is performed on the cir-
cuit using both the rising and falling delays.

Theorem 5.4: Full Fine Tuning: 1f P is the solution o
the power minimization problem in the final finc-tuning
pass of the above procedure. then P also solves the full
fine-tuning problem with

AD < a(Dyss - ADg) + AD

WONG et af.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

where ADj is the remaining imbalance which would result
from solving the corresponding symmetric fine-tuning
problem using the dyaxre i, j1’s for both rising and fall-
ing delays.

Proof: Let us examine the solution of the symmetric
fine-tuning problem which uses the dyax re [i, j1’s for both
rising and falling delays. Each path can keep the same
length or become shorter if we substitute the actual non-
symmetric rise-fall delays and keep the power settings
constant. Therefore, all gates in the full fine-tuning so-
lution should have the same or lower power than in the
symmetric fine-tuning solution.®

In the worst case, we assume that no gates are set at
any lower power. The shortest path in the symmetric fine-
tuning problem has length Dysx — ADs. In the worst case,
this path delay is composed entirely of the larger of the
rising/falling delays on each arc, i.¢., only dyaxrrlis J1's.
The shortest path in the full fine-tuning solution must
therefore be at least (1 — «)(Dyax — ADg) in length.
Subtracting this from the longest path Dyax yields the
stated limit on AD.]

Remarks:

e If negative unate logic is used, then the rise—fall dif-
ferences tend to cancel out over a number of gate levels,
so the actual AD can be much lower than the bound in-
dicates.

e ECL emitter-followers have more discrepancy be-
tween rising and falling delays at low power levels. Set-
ting the minimum power Py relatively high for emitter-
followers can, therefore, help to reduce AD.

VI. THE OVERALL TUNING PROCEDURE

Consider the overall tuning procedure described ear-
lier. The first step is an optional initial fine-tuning pass
which sets the gate drives using the linear program de-
scribed above with estimated capacitances. The second
step is rough tuning, which yields an estimate of the re-
maining imbalance ADjy in the circuit based on the arcs
which have unimplementable lengths. Then the circuit is
laid out, and actual capacitances are extracted. A final fine-
tuning pass adjusts gate drives, taking into account the
extracted capacitances.

Let AD, denote the worst-case difference in path delays
using the fine-tuning gate delay model to analyze the cir-
cuit after rough tuning. The calculations are performed
using the estimated capacitances used in rough tuning.
Any difference between AD, and ADy solely reflects the
use of the fine-tuning rather than rough-tuning, delay
model.

Ideally, we would be able to guarantee that AD after
the final fine tuning pass would always be less than AD,
after rough tuning. Unfortunately, for the following rea-
sons it is difficult to guarantee tight bounds on AD under
general circumstances:

e Since the inserted buffers might cause some for-

PR . .
This claim requires that the power versus delay curves are convex and
monotonically decreasing, as assumed earlier.

37

merly shorter paths to have maximal length Dyax. the fi-
nal fine-tuning solution might be different from the initial
fine-tuning solution created prior to rough tuning. In the
worst scenario, the revised solution could have new short
paths which cause the imbalance AD to be greater than
AD,.

e The actual capacitances used in the final fine-tuning
pass may differ significantly from the estimated capaci-
tances used in the initial fine-tuning pass and rough tun-
ing. In the worst case, some gates might not have a suf-
ficient tuning range to balance the circuit with the changed
capacitances.

Under these circumstances, we can consider two alter-
native power minimization algorithms. The first is normal
power minimization, i.e., with the weight 8 = 1. This
method performs well heuristically.

The second method is to use a weighted sum of the
powers as the goal function to reduce the likelihood of
new short paths. In this case, 8 is set to a small positive
number much less than 1. This causes the linear program
to prioritize so that it minimizes the power of all regular
gates first. The delay buffer powers will be minimized af-
terwards only to “*fill in’” the short paths. The delay buffer
powers will each be reduced until a delay or power con-
straint becomes active. For sufficiently small 3, no con-
straints that were active before rough tuning will be deac-
tivated during the final fine-tuning pass, due to the
addition of buffers. In this sense, the second method is an
improvement over the first method. In practice, 8 should
be small, e.g., 0.001, but not so small as to cause nu-
merical problems. If actual capacitances could be as-
sumed to be equal to the original estimates, this method
would guarantee that AD is less than or equal to AD,.

When capacitances change substantially, the results are
heuristic. One method that can improve the result is to
leave power margins during the first fine-tuning pass by
restricting the gates to a middle subset of their power
range. This leaves some margin that can help compensate
for capacitances that are different from the estimates. This
is discussed in more detail in Section VII-D.

Although a precise bound on AD is not possible when
capacitances change, in practice, the tuning procedure
performs very well. This will shown by the small AD
achieved in the demonstration chip described in Section
VII-C despite actual capacitances which do in fact vary
substantially from the initial estimates.

One additional note is that ECL/CML gates are ac-
tually tunable in small discrete steps rather than continu-
ously because resistors have integral dimensions in VLSL.
A general property of linear program solutions is that the
solution lies at the intersection of linear programming
constraints where possible. Therefore, during the con-
struction of the fine tuning linear program the piecewise-
linear approximations of each delay versus power curve
should be done so that the breakpoints correspond to ac-
tually implementable resistor values. Many of the gate
drives are then set to implementable values exactly. The
remaining rounding error should be small compared to

RE] IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

other components of Azp. After rounding. the maximum
and minimum paths can be computed again to get a re-
vised Atp.

VII. EXPERIMENTS WITH WAVE-PIPELINED DESIGNS
A. Algorithm Implementation

The rough- and fine-tuning graph algorithms have been
implemented in about 6500 lines of C code. excluding the
netlist parser and linear program solver.

The fine-tuning program reads a circuit and gate library
description in a netlist language called Stantord Logic In-
terchange Format (SLIF). As described earlier. fine tun-
ing produces a linear program for power minimization.
This is then input to a standard linear program solver
called MINOS [21] that uses the Simplex method to solve
for the vector P. The fine-tuning program then produces
a modificd SLIF circuit file with all the gate drives set.

The rough-tuning program reads the same circuit file.
performs the rough-tuning algorithm. and writes a modi-
fied circuit file with buffers inserted. As an optional in-
termediate step. it produces a linear program for repad-
ding to be solved using MINOS. The solution is read to
create a rough-tuned circuit with minimal added area.

B. Example Applications

We now present the results of applying this method to
four example circuits.

1) Adder Circuits: The first two circuits are a 4-bit
carry-lookahead adder slice and a 16-bit carry-lookahead
adder using 4-bit slices. To demonstrate the benefits of
rough tuning alonc, we assume fixed delays of 1 for the
gates (corresponding to gates set al high power) so that
fine tuning becomes unimportant. The padding elements
have adjustable delays between 1 and 3 units, and each
padding element is assumed to take 3 /4 of the area of an
average gate. As shown in Table 1. rough tuning is re-
quired to balance the circuits to a small AD.

2) Multiplier Circuits: The second two circuits are the
partial-products generator plus carry-save adder sections
of 4 X 4 and 8 X 8-bit combinational CML multipliers.
The partial-products generator is an array of AND gates,
and the carry-save adder section is a Wallace tree using
3.2 counters without Booth encoding [23]. Fach 3-2
counter is implemented using two levels of OR/NOR gat-
ing. which therefore requires the use of each input and
output in both true and complement.

Approximate CML gate delay and capacitance models
were developed based on simulations of ECL circuits in
HS3.5. a 1.5-pm Bi-CMOS technology from Signetics.
The shortest paths take one nominal-power gate delay
(0.4 ns).

The results shown in Table II were achieved using an
initial fine-tuning pass followed by a rough-tuning puss.ﬂ

“Table 1 is a revised version of a tuble that appeared in [24] and {25]
It contains corrections to the number ot buffers added by rough tuning on
Multd x4 and Mult8 x 8. The carlier numbers were unfortunately too high
due to a programming error.

INTEGRATED CIRCUITS AND SYS1 EMS. VOL. 120 NO. 1 JANUARY 1993
TABLE]
Exanrelk Rovah TUNING RESULTS
Circuit Addd! Addle'
Size 20 134
Padding Elements 11 86
Depth (gate levels) 4 8
Estimated Increase In Area 29.1% 48.1%
Dy + 8
AD (betore) 5% 87.5%
AD (after) 0 0%
Fotal Runtime (uVAX 3200) <0.01h 0.01h
Rough-Tuning Run Time <0.01h 0.01 h
“The run-times for Add4 and Add16 are estimated.
TABLE I
Exasirrr Conpined TUNING RESULTS
Cireunt Multd x4 Mult8 x 8
Size 90 498
Pudding Elements 10 49
Depth (gate lesels) s 9
Estimated Increase In Area 8.3% T.44%
D 2.0ns 4.0 ns
ADibetore) 80 90 %
AD (alter) 6.6% 12.2%
Power (after) 90 mW 377 mW
Total Runtime (DEC 3000/125) 0.049 h 2911
h
Rough-Tuning Run Tune 0.005 h 0.025
h

The final fine-tuning pass was not performed since the cir-
cuits were not laid out.

The runtime of the combined tuning procedure is dom-
inated by fine tuning which solves a large linear program
to set the gate currents. The rough tuning procedure takes
only a tiny portion of the runtime because it solves a
smaller linear program.

In most technologies. including CML., rising delays
are not exactly equal to falling delays. This causes some
difference in path lengths that is difficult to completely
remove. In this case. about 5% -10% of D can be added
to the given AD to include the difference between rising
and falling delays in CML.

The power consumption is the global minimum for the
specitied delay Dyjax- Increasing the allowed delay would
reduce the power. The run time is substantial for
Mult8 X8 but may be reduced for large circuits using
hierarchical design techniques and possibly by using a
solution method other than the Simplex algorithm.

The increase in arca is substantially smaller for the
Wallace tree circuits than the adder circuits due to the
basic regularity of Wallace trees plus the use of tunable
gates and delay bufters.

Rough and fine tuning make these circuits wave-pipe-
lineable. In all four cxamples. AD is changed from almost
Dy to nearly zero.

C. A4 63-Bir Population Counter
In order to fully test the wave-pipelining concept. we
have designed a demonstration chip. The physical design

WONG ¢t al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

39

Fig. 9. Photomicrograph of wave pipelining demonstration chip.

of this chip and tests on fabricated chips are described in
detail in [27]. In this paper. we primarily describe the
results of using the CAD algorithms to design this chip.

The chip was designed to be a demonstration of wave
pipelining rather than a commercial circuit. The logic
circuit performs a 63-bit population counter function. i.e..
it takes 63 parallel inputs and produces the number of 1's
in that string as a binary number. This function is similar
to a section of a high-speed combinational muitiplier. The
number of levels of logic is only slightly shorter than that
required for a 64 X 64 multiply.

The circuit is a combinational logic circuit with 21 lev-
els of logic and a nominal longest path delay of 8.5 ns
plus 1 ns for the input/output drivers. After tuning, the
path length difference due to design is about 1.1 ns, ex-
cluding the effects of differences in rising versus falling
delays and data-dependent delays. The total delay varia-
tion Azp includes these effects plus process and tempera-
ture variation within the chip.

The circuit has been designed in a commercial bipolar
process from Signetics called Qubic 1 [6]. The circuit is
implemented in single-level CML using a standard cell
technique. All the logic cells are OR/NOR gates, designed
using a single level of current switches.

The circuit has been fully designed, simulated. fabri-
cated, and tested. A photomicrograph of the chip is shown
in Fig. 9. The chip dimensions are approximately 4 X 6
mm. The inputs are at the left, and the outputs are at the
right. The number of input pads was reduced from 63 to
16 by wiring a few logic inputs to each pin. This reduc-
tion simplifies packaging and testing the prototype chip
while still allowing 2'° distinct inputs to be applied.

To test wave pipelining, a sequence of 40 000 test vec-
tors has been applied at various frequencies using a com-
mercial chip tester called a Trillium Delta-Master. The

tests show that the chips can wave pipeline at up to 250
MHz (clock period = 4.0 ns). Using constraint (1) on
maximum pipelining frequency described earlier, we can
show that the worst-case difference in path length Asp is
less than or equal to 2.75 ns. In contrast, the maximum
clock frequency using ordinary pipelining would be about
97 MHz (clock period = 10.25 ns).

At 250 MHz, the time between registers for a particular
wave is about 10 ns, but new waves are applied every
4 ns. To achieve this, the clock to the ending register is
delayed by about 2 ns compared to the clock to the begin-
ning register.

We used the following design flow:

1) First. a schematic netlist and the individual layout
cells were designed.

2) An initial fine-tuning pass using estimated capaci-
tances was optionally applied to minimize the im-
balances prior to rough tuning.

3) The circuit was rough tuned.

4) A place and routed core logic circuit was made from

the circuit schematics using a commercial auto-place

and route tool. Unfortunately, the tool was designed
to minimize total wiring area and was not intended
to control capacitances or minimize total delay.

Parasitic capacitances on each net were extracted.

A final fine-tuning pass was performed. Since all the

power levels of each gate have the same dimen-

sions, the power levels of each gate can be changed
without requiring any changes in the place and
route.

7) Power buses, bias voltage generators, input/output
buffers. and pads were added using manual layout
techniques.

N n
= -

Because we used a commercial place-and-route tool

40 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS. VOLL 120 NO. T JANUARY 1993

TABLE 1
RESUILTS OF VARYING Dyyy FOR A 63-811 CML Portianion CoUNTir (ALL DELAYS AR IN PS)

Longest

Dy Path Shortest Path AD Current
8500 8561 7447 LI (12209 of Dy) 207.5 mA
8500 (updated) 8546 7466 O8O ¢12.6% of Dy 206.6 mA
9000 9028 7860 1168 (12.9% 0f Dy) 187.7 mA
10 000 10 027 8568 1459 (14.6% of D) 162.2 mA
11500 11449 9698 1751 (1S.3% of Dy 1371 mA

whose optimization goal is total area. the length of cach
particular net is not optimized or even well controlled. In
fact. lines with the same fanout could vary by as much as
a factor of 5 or so in capacitance. The achievement of a
small delay variation due to design despite the wide dis-
tribution of capacitances demonstrates the flexibility of
these CAD techniques.

D. Tuning Experiments on Population Counter Design

Two trials were performed of steps 2 to 6 of the design
flow. The first trial used a two-step method. where the
circuit was first fine tuned using estimates of capacitances
derived from a simple floor plan of the sections of the
chip. Then the circuit was rough tuned to fill out the re-
maining imbalances. The placement was performed ac-
cording to the floor plan, and the routing was done using
an auto-router.

The second trial performed rough tuning using an in-
teger gate delay model without using an initial fine-tun-
ing pass. During rough tuning logic gates had delays of
1, and buffers could have delays between 1 and 3. The
layout was performed using automatic placement and
routing without a floorplan but using constrained loca-
tions for the global inputs and outputs.

The second trial uses more buffers but empirically
achieved a better balancing of the circuit. This might be
explained by two cffects: residual imbalances and tuning
fiexibility. In the first trial, fine tuning balances the circuit
as much as possible. so that some loops may have a resid-
ual imbalance which is smaller than the minimal buffer
delay and therefore cannot be balanced (from the rough
tuning algorithm’s point of view).

Secondly. the initial fine-tuning pass in the first trial
may set some gates at near maximum or minimum power,
Denote one of these gates by X. It Xs output has an actual
capacitance after place and route which is not close o the
original estimate. it might be impossible to achieve the
delay assumed for X during rough tuning. Since the gate
was set close to minimum or maximum power originally.
it has limited tuning in one direction. Our implementation
of the algorithm increases the tuning flexibility by limit-
ing the power levels to a central subset of the entire range
during the first fine-tuning pass.

The second trial has even greater tuning flexibility
since all gates were assumed to have unit delay. No initial
fine-tuning pass was used prior to rough tuning.

In the second trial. scveral fine-tuning iterations were
made using the different values of Dy 4. Four runs were
made. and one additional run using Dyax = 8500 ps was
later made using a slightly updated version of the pro-
gram. The results are shown in Table III. The actual long-
est path does not exactly equal Dyax and sometimes
slightly exceeds it because the specified gate powers from
the linear program solution are rounded to the nearest
power level for each gate.

The empirical results highlight the fact that although
rough and fine tuning are individually optimal (in a pre-
viously defined sense) in minimizing the imbalances in
path delays. the tuning process including the effects of
actual versus estimated capacitances is heuristic and may
be amenable 1o experimentation.

VIIL. Susmary AND FUTURE DIRECTIONS

Wave pipelining can potentially increase a system’s
clock frequency by 2 to 3 times without using additional
pipeline registers. To maximize clock rate, we must min-
imize the variation in path length.

We have developed both rough-tuning and fine-tuning
algorithms and implemented these in computer programs.

The rough-tuning algorithm inserts delay elements such
that the circuit can be balanced by setting gate parame-
ters. Rough tuning constructs a spanning set of loops in a
graph representation of a circuit. then balances the loops
by inserting delay clements. By building the loops from a
longest path spanning tree. the loops can always be bal-
anced independently. A lincar program performing repad-
ding minimizes the number of delay elements required.
Rough tuning is guaranteed to balance the circuit within
some ADy depending on the available delay elements.

The fine-tuning algorithm uses a linear program to solve
fora set of gate drives that balances the circuit delays. The
lincar program corresponds to the problem of minimizing
the power consumption of the circuits subject to delay
constraints. Under certain assumptions, the algorithm can
guarantee that the final imbalance AD is less than or equal
to the remaining imbalance after rough tuning. In prac-
tice. rough tuning operates in conjunction with fine tuning
to design wave-pipelined circuits that have both minimal
added arca and minimal total power consumption.

The more complex case where the rising delay does
not cqual falling delay is a difficult problem for both
rough and fine tuning. Well-balanced solutions might not
even exist. The best that our methods can do is to guar-

WONG et al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

antee a reasonable bound on the difference AD in propa-
gation time under nominal conditions. In practice. AD is
usually small compared to 7p, so an efficient wave-pipe-
lined implementation can still be designed.

As shown in Appendix II, some technologies are easier
to use than others for wave pipelining. Static CMOS has
substantial pattern-dependent delay variations which re-
quire special techniques to circumvent. CML and super-
buffered ECL have good delay properties. ECL has the
advantage of small individually adjustable emitter-fol-
lowers with the disadvantage of unequal rise—fall delays.

Using the tuning algorithms, a demonstration wave
pipelining chip has been successfully designed, fabri-
cated, and tested. After tuning, the variation AD in path
delay due to design was much less than the nominal crit-
ical path delay Dyax. The actual fabricated chips show
an improvement in clock frequency of 2.5X using wave
pipelining.

This prototype chip plus chips from other researchers
[11], [18], [3] show that wave pipelining is a potentiaily
powerful and beneficial technique for increasing pipeline
rate. Future research for wave pipelining might include
additional logic resynthesis and layout techniques, novel
testing techniques, and larger wave-pipelined systems. In
addition, substantial benefits may arise from developing
gate structures that are designed specifically for wave
pipelining in both CMOS and bipolar.

APPENDIX |
DERIVING THE MINIMUM CLOCK PERIOD RELATION

The maximum pipeline rate is affected by technological
parameters. Here we derive relations for minimal clock
period as a function of variations in path length, clock
skew, rise—fall times, and the setup and hold time of the
storage elements. These relations are extensions upon
those stated in [4], [9], [8], and [15] in order to include
clock skew and rise—fall times. Reference [26] contains a
detailed clocking analysis of both wave and ordinary
pipelining.

A. Definitions

® g Setup time for registers or latches

* ty Hold time for registers or latches

® rrrans Length of transparent period for latches

* i Propagation time of the longest path in the
combinational logic

* Arp Maximum time difference between longest
and shortest paths over worst-case design,
process, and environment

e AC Worst-case uncontrolled clock skew

® fop Clock period

® frF Worst-case rise or fall time (10%-90% volt-

age swing) at the last logic stage.

B. Wave Pipelining Using Edge-Triggered Registers

1) Interference Fault Constraints:

One type of constraint arises because one wave cannot
race ahead and reach the end of the combinational logic

41

before the previous wave has been clocked into the ending
storage elements. Otherwise, the two waves would inter-
fere and the data of the previous wave would be lost.

At time 0, a clock pulse nominally arrives at the begin-
ning register A, and a new data wave leaves. Note that a
storage bit within register A may have a clock skew of up
to AC compared to another storage bit in 4.

We denote the time that a particular wave has to prop-
agate from A to the ending register B as the latency inter-
val ;. The clock pulse to capture the wave at B arrives
nominally at time 7, but could be skewed early or late.
Clock skew is defined as potentially occurring between
individual storage bits in 4 and B. The minimum latency
interval between the clocking of any bit in A and any bit
in B is 1, — AC, and the maximum clocking interval is
1+ AC.

Due to the propagation delay of the combinational
logic, the earliest that the data wave could begin to arrive
at register B is tp — Aip after starting from register 4. The
latest that the data wave could arrive is fp after starting
from A.

For simplicity, we begin by assuming that all transi-
tions occur with zero rise and fall times.

Since the longest possible propagation delay plus setup
time must be less than the minimum latency interval (see
Fig. 10):

IL — Ac > ip + fs. (2)

This long-path constraint on the latency interval ¢, is
identical to the long-path constraint on clock period for
ordinary pipelining (i.e.. not wave pipelining) in edge-
triggered register systems.

Another constraint must be used to prevent consecutive
waves from interfering (see Fig. 11). Suppose that wave
| nominally starts from A at time O and is nominally
clocked into B at time t;. A worst case clock skew be-
tween registers 4 and B and between individual bits of 4
can be modeled by assuming that some bits of A4 start at
a time AC before the nominal. If the last bit of 4 is clocked
at time 0, then the first bit is clocked at time —AC. Wave
2 nominally starts at time r¢p, but part of wave 2 could
potentially start at time tcp — AC compared to the start of
wave 1, due to clock skew within register 4. The earliest
that wave 2 could begin to interfere at register B is then
tp — Afp + tep — AC:

tp — Atp + tep — AC > 1 + ty. 3)

By adding constraints (2) and (3) and solving for tcp,
we get the following relation for the clock period:

tep > Atp + 2% AC + 15 + 1. 4)

Now suppose that the stage of logic that is connected
to the inputs of register B has a worst-case rise-fall
transition time fzg. Inequality (3) is then changed because
the earliest signal of the next wave can begin to interfere
with the current wave when the transition between waves
begins.

This transition begins at a time fxp before the next wave

42 123

Clock 1

TRANSANCTIONS ON CONIPU LER NIDED BESIGN O

b—t.-ac——
F— > t—t,]
Clock 2 *ﬂ : |
. ok
Fig. 10. Anillustrution ot timing constraint / AC gy A EAT RSN

pipelining using edge triggered registers. Clock [starts the wave from te
beginning repister. and clock 2 captures the wave at the ending register

L t —-

r . —

Clock 1

lac|

Clock 1
Skewed

—teo——< to sty ——]

Itul
—
Clock 2 J
Figo T1o An illustration of tming constraint 7, Ao qe AYS
o+ I forwive pipelining using edge-triggerec enisters. Clock 1 st
the wave from the beginning register. and clock 2 aphres the wave ar il

ending register

actually arrives at B. Since the carliest signal of wave 2
must not interfere with the clocking of wave |

Ip = Afp + 10 = AC 1y > 1, 4, ()

i
This changes the inequality for 704 10 the tollow g,

fep > Arp 4+ 2% AC F a0 by, oy

3

(O

Another constraint arises becatse one wave cannot be
allowed to intertere with another wave mnside a section of
combinational fogic. The constraint must be satistied at
every signal node X in the circuit (called an inrernal V1Y
nal node) 1o prevent two waves from colliding.

The following definitions are required

® Iy Propagation time of the longest path from the
global inputs to an internal signal node X,

® Iy Worst-case rise-tall time at X

® fys Minimum time that X must be stable for the
next stage of logic to operate correctly

¢ Ary Maximum time difference between the fongest

and shortest paths leading from the global
inputs to node X. Az, is always less than or
equal to Az,

The latest that a wave could arrive at X s 7 The car
liest that the next wave could begin 1o arrive at X s ¢y
Aty — 1ge + tep — AC. In this case. AC is included be-
cause the second signal may originate from a different
storage bit than the first signal and the two bits may be
skewed by as much as AC.

To avoid interference. the next wave muast arrive at least

SETEORATED CTRCUIIS AND SYSTENNS. VO 120 NOL 1. JANUARY 1993

Iy later:

Iy gy <0y Ay -ty tep — AC (7)

Sinplitving vields the second constraint on clock period

S

fop = Ay AC g T+ gy (8)

During the design process. cach section of combina-
tonal fogic is made balanced in delay as far as possible.
he goal of minimizing Arp includes minimizing Aty for
all signals X. Ax a result. the goal of satistying inequality
18) iy usually no more stringent than satistying inequality
16)

O Wave Pipclining Using Transparent Larches

Similar constraints can be stated for wave pipelining
using transparent latches.

Letsz, denote the beginning ol the transparent period for
the beginning latch A,

Suppose that minimal restrictions are placed when the
stiegnals from the previous logic section arrive at the be-
vinning latch. In other words. the logic section before the
hegmning Tatch might produce outputs at any time up to
the end of the transparent period minus a seiup time. i.c..
Me 4+ 7 ae 7. In the worst case. the transparent
period minus a setup time must be considered an addi-
tonal tme uncertainty . sinee o wave could arrive at the
hegimning latch trom the previous logic section between

and 1, 1R A~ 7y Then the waves leaving the be-
cinning latch could depart at any time within a period of
length 75 (s /i Thus an additional safety margin of
frass oy must be allowed between waves. This uncer-
ranty may be reduced it the designer can make tighter
hounds on the departure time from the beginning latch.
For mstance. it nught be possible to guarantee that the
waves arrive at the beginning lateh carlier than rpg g — f¢
m the transparent period. See {26] for more details on
when this safety margin can be reduced.

I huerterence Fault Constraints: The following con-
straint ensures that the second wave does not race ahead
and terfere with the tirst wave at the ending latches:

top > Aty = 200 AC v 10 = 1y = g F (rass — 1)

9)
which simplities o

fep > Ay - 2w AC L ke o Frrasse (10)

The next constraint applies for all internal signals X and
cnsures that the second wave does not interfere with the
first wave at any point within the combinational logic:

Iev > Ay AC + 1y + Iy * (frpans — 19). (1)

Inaddition. the long-path constraint on the latency in-
tervals between latches is wdentical to the long-path con-
straint in ordinary pipelining using single-phase clocking
and transparent latches. See |26] for details.

WONG et al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

Since frrans is included in the clock period, it is ad-
vantageous to keep it small.

AppPENDIX 11
WHICH TECHNOLOGY IS BEST FOR WAVE PIPELINING?

Some integrated circuit technologies are better than
others for wave pipelining. Ideally, a technology should
possess the following properties:

1) Many points of finely controlled speed adjustment
which have predictable effects;

2) The same gate delay whether the output is rising or
falling;

3) No variation in gate delay depending on input pat-
tern;

4) No variation in gate delay depending on previous
input patterns;

5) Zero contribution to A7p due to process- and tem-
perature-induced variations within a chip;

6) The standard goals of high noise immunity, low
power, high density, and high speed.

Let us examine CMOS, ECL, CML, and super-buffered
ECL with respect to these goals.

A. CMOS

Static CMOS (see Fig. 12) is not naturally well suited
for wave pipelining because the gate delay depends on the
input pattern. Any parallel transistor arrangement will
have variable delay, due to the varying amount of resis-
tance. A series transistor arrangement also has variable
delay because the capacitance that must be charged de-
pends on which transistor in the series is the last to begin
conducting. The number of waves possible in an ordinary
static CMOS design would be limited by these effects.
Many Bi-CMOS gate structures also cause the same type
of data-dependent delays.

Fortunately, other researchers are developing tech-
niques to help alleviate this problem. Gray er al. [10],
[11] and Klass and Mulder [13]. [14] have developed
CMOS circuit methodologies for maximizing the number
of waves. Their design methods can potentially achieve a
high degree of wave pipelining in CMOS, in spite of the
delay variations discussed above. Lien and Burleson [18]
describe the use of wave pipelining in domino CMOS
logic.

B. ECL

A basic ECL gate is shown in Fig. 13. The delay is
controlled by adjusting the “‘tail current’” by sizing the
resistors proportionately. A gate can have multiple inde-
pendently adjustable emitter-followers for different fan-
outs.

The logic section of the gate has fairly balanced rise-
fall delay, but the emitter-follower section has rising de-
lays which are much shorter than falling delays. This can
be partially overcome by using a modified emitter-fol-

43

CMOS NOR

Out=A+8B

Gnd

Fig. 12. CMOS gate.

Vdd
Out
Out2
Vbias
R
i
Gnd
Gnd
(a) (b)

Fig. 13. ECL gate. (a) Logic section. (b) Emitter follower.

Vdd

R2
Out2

Vbias

R1

Gnd

Fig. 14. Modified emitter-follower.

lower which slows down the rising delay (see Fig. 14).
Higher tail currents also reduce the difference in delays.
An example of a stacked ECL structure is shown in
Fig. 15. In stacked structures, the transition speed de-
pends somewhat on the input patterns. The intermediate
node x can be charged to different voltages just prior to
switching, thus causing variations in delay. For instance,

44 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 120 NO. . JANUARY 1993

Vdd

Out —

-

v

—— Out = (A + ByC + D)

-
Vretl [

N |

} Vhias

|

Gnd

Fig 15

suppose the voltage were higher on the reference side for
both the upper and lower levels. Now suppose that the A
input of the upper level rose momentarily. This would
charge the intermediate node X to a higher voltage. This
would be additional charge to be drained when the lower
level switches. thus slowing down the gate.

We simulated some typical stacked structures in Qubic
1. and found that for any particular input-output transi-
tion, the best-case delay was at least 82% of the worst-
case delay [26], [2]. This 18% variation is substantial.
but a reasonable degree of wave pipelining is still possible
[26].

C. CML

One way to eliminate the unbalanced rise-fall delay in
ECL is not to use emitter-followers. Instead. the output
of one ECL logic stage is directly connected to the next
in a logic family called CML. In non-wave-pipelined de-
signs, CML is often somewhat slower than ECL because
both rising and falling transitions are through limited cur-
rent devices. In contrast. ECL has a fast rising delay that
can be used effectively with inverting logic. However., a
faster rising delay is not advantageous for wave pipelin-
ing.

Since there are no emitter-followers. one cannot inde-
pendently adjust each fanout except by using additional
gates as buffers. A buffer gate costs three transistors and
three resistors. compared to an emitter-follower of two
transistors and onc resistor. In addition. no wired or is
possible.

Logic section of stacked ECL structure

D. Super-Buffered ECL

There are high-performance ECL buffers which have
balanced delay. By using dynamic techniques. such cir-
cuits have fast transitions in both directions, i.e.. faster
than the static current source can achieve. A circuit pre-
sented by Coy er al. |5] is repcated in Fig. 16 in a mod-
ified torm.

The advantage of super-buftered ECL is that it is very
fast and has balanced delay with less power consumption
(since the static current sources can be smaller). Unfor-
tunately. each buffer costs four transistors, two resistors.
and one capacitor. compared to an emitter-follower of two
transistors and onc resistor.

£, General Remarks on the Current Steering
Technologies

In ECL., CML. and super-buffered ECL, the use of
stacked structures increases logic density but reduces the
number of waves somewhat. One should consider using a
reduced supply voltage 1o conserve power if stacked
structures are not used.

The effect on Ary of process and temperature-induced
variations within one chip should be similar for all the
current-steering technologices.

Careful attention should be paid to the power and
ground networks during design. Voltage drops should be
small: otherwise. the result would be equivalent to shift-
ing the reference voltages. This would cause a difference
in gate speed depending on whether the input is rising or
talling.

WONG er al.: DESIGNING HIGH-PERFORMANCE DIGITAL CIRCUITS

Vdd

Out =1In

Vclamp

Rbias

Gnd

Gnd Gnd

Fig. 16. Super-buffered emitter-follower. The capacitor C boosts the base
voltage of the pull-down transistor to provide a dynamic pull-down current
on Out.

F. Conclusions and Tradeoffs

If standard design techniques were used. static and dy-
namic CMOS would not be intrinsically as well suited for
wave pipelining as ECL and CML. Using special design
techniques to minimize the impact of delay dependencies.
other researchers have been designing and fabricating
wave-pipelined circuits in CMOS with some promising
results [13], [14], [10], [11], [18]. Bipolar ECL, CML,
and super-buffered ECL offer a range of tradeoffs between
area, absolute speed, wave-pipelining potential, power,
and number of independent adjustments:

e ECL has medium area density but has unbalanced
rise—fall delay and fairly high power consumption.

e CML has high area density and balanced delays with
medium power consumption. However, it offers
fewer points of adjustment than ECL, unless addi-
tional buffer gates are used.

e Super-buffered ECL is very fast and has balanced de-
lay, medium power consumption, and the same num-
ber of adjustments as ECL. However, buffers con-
sume more area than emitter-followers.

To help decide among the various current-switching
technologies, one needs to consider the fanout in the cir-
cuit. For high-fanout circuits. the need to adjust each fan-
out independently would favor ECL, since it has small
buffers.

ACKNOWLEDGMENT

The other members of our research groups at Stanford
have been very supportive. Frederic Mailhot did a won-
derful job of building and maintaining the interface tools
to the SLIF netlist language. Special thanks to Gary Be-
wick for much technical help and many enlightening dis-
cussions.

The wave pipelining demonstration chips were fabri-
cated at Signetics, Inc. using their Qubic 1 Bi-CMOS pro-
cess. Special thanks should be given to Ken-Sue Tan, Pe-

45

ter Baltus, Victor Akylas, Charlotte Skeeters, Douglas
MacArthur, Frank Feng, Hedy Chen, Henry Wong, Bill
Mack, Uzi-Bar Gadda, Joseph Kosteleck, Reda Razouk,
Ron Cline, and others at Philips Research and Signetics
for helping with the design, simulation, and fabrication
of the demonstration circuits.

The physical layout of the demonstration chip was per-
formed using CAD tools provided by the Silicon Design
Division of Mentor Graphics, Inc. Rick Sedlak did a su-
perb job of CAD support. The high-speed testing of the
chips was performed at Trillium, Inc. Robert Huston,
Gerry Labonville, and Thomas Berry at Trillium have
helped tremendously.

Michael Saunders, Walter Murray, and Arthur Veinott,
Jr. at Stanford were generous in their advice about prac-
tical considerations of solving optimization problems.
Mark Horowitz was very helpful in pointing out pitfalls
and in particular analyzing technology considerations. He
thought of the modified ECL emitter-follower and sug-
gested the use of super-buffered ECL.

REFERENCES

1] S. Anderson. J. Earle. R. Goldschmidt. and D. Powers, *‘The IBM
system/360 model 91 floating point execution unit,”” /BM J. Res. De-
velop.. vol. 11, no. 1, pp. 34-53. Jan. 1967.

2] G. Bewick, private communication, 1991.

[3] T. Chappell, et al. **A 2-ns cycle, 3.8-ns access 512-kb CMOS ECL
SRAM with a fully pipelined architecture.”” IEEE J. Solid-State Cir-
cuits, vol. 26, pp. 1577-1585, Nov. 1991.

[4] L. Cotten, "*Maximum rate pipelined systems,”
Spring Joint Computer Conf.. 1969, pp. 581-586.

15] B. Coy. A. Mai, and R. Yuen, "*A 13.000 gate 3 layer metal bipolar
gate array.” in Proc. Custom Integrated Circuits Conf., 1988, pp.
20.1.1-20.1.3.

16] J. L. de Jong. et al.. **Single-polysilicon layer advanced super high-
speed Bi-CMOS technology.”” in Proc. IEEE Bipolar Circuits and
Technology Meeting. Minneapolis, MN, Sept. 1989, pp. 182-185.

|7] L. Chua, C. Desoer, and E. Kuh. Linear and Nonlinear Circuits.
New York: McGraw-Hill, 1987, pp. 695-715.

|8] B. Ekroot, “Optimization of pipelined processors by insertion of
combinational logic delay.”” Ph.D. dissertation, Stanford Univ., Dept.
Elect. Eng., Stanford. CA. Sept. 1987.

[9] B. Fawcett, "*Maximal clocking rates for pipelined digital systems.”’
Coordinated Science Lab.. Univ. of Illinois, Urbana. Rep. R-706,
Dec. 1975.

[10] C. T. Gray ef al.. A high-speed CMOS FIFO using wave pipelin-
ing.”" Dept. Elect. and Comp. Eng.. North Carolina State Univ., Ra-
leigh. Tech. Rep. NCSU-VLSI-91-01, Jan. 1991.

[11] C. T. Gray et al.. “Theoretical and practical issues in CMOS wave

pipelining.” in Proc. VLSI "91. Aug. 1991, Edinburgh. U.K.. pp.

9.2.1-9.2.10.

D. Joy and M. Ciesielski. **Placement for clock period minimization

with multiple wave propagation.”” in Proc. 28th Design Automation

Conf.. San Francisco, CA. June 1991, pp. 640-643.

[13] F. Klass and J. M. Mulder, **CMOS implementation of wave pipe-
lining," Delft Univ. of Technology. Delft. The Netherlands, Tech.
Rep. 1-68340-44(1990)02, Dec. 1990.

[14] —. **Use of CMOS technology in wave pipelining,”” in Proc. 5th
Conf. VLSI Design. Bangalore. India. Jan. 1992, pp. 303-308.

[15] P. Kogge. The Architecture of Pipelined Computers. New York:
McGraw-Hill. 1981.

|116] E. Lawler. Combinatorial Optimization: Networks and Matroids.
New York: Holt. Rinchart, and Winston, 1976, pp. 129-133.

[17] C. Leiserson, F. Rose, and J. Saxe. **Optimizing synchronous cir-
cuitry by retiming.”* in Proc. 3rd CalTech Conf. Very Large Scale
Integration. 1983, pp. 87-116.

in Proc. AFIPS

[12

16 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. YOI 12, NO. 1.

[18] W. Lien and W. Burleson. *Wave-domino logic: Timing analysis
and applications.” presented at the IEEE Int. Symp. Circuits and Sys-
tems. San Diego. CA. May 1992

[191 Q. Lin and P. Xia. ""The design and implementation of a very fast
experimental pipelining computer.”™ J. Comp. Sci. Technol . Beijing.
China. vol. 3. no. L. pp. 1-6. 1988,

1201 D. Muarple. “*Performance optimization of digital VLSI circuits.”™
Ph.D. dissertation. Dept. Elect. Eng.. Stanford Univ.. Stantord. CA.
Sept. 1986.

121} B. Murtagh and M. Saunders. "MINOS 5.1 User's Guide. ™ Systems
Optimization Laboratory. Operations Rescarch. Stanford Uniy
Stanford. CA. Tech. Rep. SOL 83-20R. Jun. 1987

[22] A. Veinott. Jr.. private communication. 1989

23] S. Waser and M. Fiynn. Introduction 1o Arithmetic for Digital Svs-
tems Designers. New York: Holt. Rinehart. and Winston. 1982

[24] D. Wong. G. De Micheli, and M. Flynn. “Inserting active delay
clements (o achieve wave pipelining.”" in Proc. . Conf. Compuicr-
Alded Design "89. Sunta Clara. CA. 1989, pp. 270-273: Dep. Elect.
Eng.. Stantord University . Stanford. Computer Systems Luboratory
Tech. Rep. CSL-TR-89-386. 1989,

[25] —. ~Designing high-performance digital circuits using wave pipe-
lining.”" in Proc. VLSI '89. Munich. Germuny . Aug. 1989 pp. 24|
252,

[26] D. Wong. “Technivues for designing high-performance digital cir-
cuits using wave pipelining.” Ph.D. dissertation. Dep. Elect. Eng..
Stanford Univ.. Stanford. CA, Aug. 1991, also Computer Systems
Lab. Tech. Rep. CSL-TR-92-308. Stanford. Univ.. Stantord. CA.

[27] D. Wong. G. De Micheli. M. Flvan. and R. Huston. A bipolar
population counter using wave pipelining o achieve 2.5 normul
clock frequency.” TEEE J. Solid-State Circuits. vol, 27. May 1992,
pp. 745-753: ulso in Proc. 1992 Int. Solid-State Circuits Conf.. 1992,
pp. 56-57.

Derek C. Wong (S'88-M'92) received the B.S
degree in electrical engineering from the Univer-
sity of California. Berkeley. in 1985, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University. Stanford. CA. in 1986 and
1991 respectively.

He is a Post-Doctoral Fellow in the Department
of Electrical Engineering at Stantord. Since 1988.
he has conducted research on techniques for de-
signing circuits using wave pipelining. He has de
veloped novel CAD algorithms for designing wave

"

pipelined circuits and an LSI chip demonstrating wave pipelining. He has
also published an algorithm for high-speed division and an architecture for
high-speed logic resolution. His current research interests are in high-speed
digital systems. computer organization. CAD. and multimedia.

JANUGARY (943

Giovanni De Micheli (S'79-M'80-SM'89) re-
ceived the Dr. Eng. degree (summa cum laude) in
nuclear engineering from the Politecnico di Mil-
ano. Italy. in 1979, and the M.S. and Ph.D. de-
grees in electrical engineering and computer sci-
ence from the University ot California at Berkeley
in 1980 and 1983, respectively.
: He is an Associate Professor of electrical en-
gincering and computer science at Stanford Uni-
? versity. Stanford. CA. From 1984 to 1986 he was
with the IBM T.], Watson Rescarch Center.
Yorktown Heights. NY. as Project Leader of the Design Automation
Warkstation Group. Previously he held positions at the Department of
Electronics. Politecnico di Milano. and Harris Semiconductor. Melbourne.
FL. His rescarch interests include several aspects of computer-aided design
ol integrated circuits. especially automated synthesis. optimization. and
verification of VLSI circuits. He i co-editor of Design Systems for VLS
Circuits: Logic Synthesis and Silicon Compilation (Norwell. MA: Mar-
tinus-Nijhotf. 1987). He was also co-director of the Advanced Study In-
stitute on Logic Synthesis and Silicon Compilation. held in L' Aquila. Italy.
under the sponsorship of NATO in 1986 and 1987, He is Associate Editor
for the IEEE TRANSACTIONS 0N CIRCUTTS AND SYSTEMS and Inreeration:
the VLSI Journal. He was technical and general chairman of the Interna-
tonal Conterence on Computer Design (ICCAD) in 1988 and 1989 re-
spectively. He hus served as a member of the technical committee of the
ICCAD. ICCD. and DAC. He has also served as a member of the executive
committee of the New York Chapter of the Computer Society in 1985 and
1986,
Dr. De Micheli received the 1987 Best Paper Award of the IEEE TRANS
ACTIONS ON COoMPUTER-AIDED DEsIGN oF ICAS and a Best Paper Award at

the 20th Design Automation Conference in June 1983,

Michael J. Flynn (M'56-SM'79-F'R0) is pro-
fessor of electrical engineering at Stantord Uni-
versity. For ten vears. he worked at IBM Corpo-
ration in computer organization and design. He
was also @ fuculty member at Northwestern and
Johns Hopkins Universities. and the Director of
Stanford™s Computer Systems Laboratory from
1977 to 1983, He has served as vice president of
the Computer Society and was the founding chair-
man of the Technical Committee on Computer Ar-
chitecture. as well as ACM's Special Interest
Group on Computer Architecture.

