
Jerome Fron Jerry Chih- Yuan Yang Maurizio Damiani Giovanni De Micheli

Center for Inte~rated Systems
Stanford University

Abstract

There has been intense research in using degrees of freedom (or don't care conditions) to optimize
sequential and combinational circuits. The scope of logic synthesis. however. is limited by the lack
of information being passed from high-level synthesis tools.

In this paper. we present a general framework to model the degrees of frea1om at the behavioral
level. in a fonn that can be used by sequential logic synthesis. Behavior is specified by a set of
concu"enl. inreraCling processes. Each process is described formally by its sel of execU/;on Iraces
[1]. and represented by an ",-automaton [2]. This type of description allows the inclusion of don 'I care
conditions in the specification by allowing multiple execution traces for a given input. Moreover. it
allows us to cast the synthesis problem into a language containment problem. and to provide a fonnal
description of these don't cares.

We have developed a prOtotype version of a synthesis system based on this framework. targeting the
synthesis of the control ponion of a circuiL Starting from a hardware description language HardwareC.
a specification is expressed in terms of a set of interconnected ",-automata. These ",-automata s~ify
the set of acceptable control schedules of a system. The synthesis process entails navigating thiS set.
and implicit state traversal algorithms can be used to this purpose. In this paper. we demonstrate the
feasibility of the approach by showing the possibility of traversing the state space of the specification
automata.

1 Introd uction

Logic synthesis systems have proven themselves effective for the optimization of complex functionaJ
blocks at the logic level. Theoretical understanding and engineering approaches have been thoroughly
explored and provide effective tools for optimization at the combinationaJ as we)) as at the sequentiaJ
JeveJ. A relevant component of the success of combinational and sequential logic synthesis is due to the
availability of precise formaJ models.

The overaJl effectiveness of a syntOOsis system would be improved by the possibility of extracting
don't care conditions from a high-level description. For example, ~ knowledge that a particular operation
can be scOOduled at different time points represents a degree of freedom for the control unit. and can be
used for its optimization.

The problem of extracting don't care information from high-level specifications is receiving increasing
interest. SeveraJ observations to this regard have been made by Bergamaschi in [3]. He presents a
description of don't cares associated with the various structuraJ elements of an R1L description of a
circuit. Such don't cares were derived. however, mostly by a structuraJ analysis of the circuit rather than
a fonnaJ approach.

WoJfintroduces in [4] the concept of belJavioraljillite state machine. Unlike ordinary FSMs. BFSMs
allow the compact modeling of slacks in the scheduling of operations. Other degrees of freedom. however,
such as the reordering of those operations, cannot be represented.

In this paper. we consider specifications in terms of concurrent, interacting. synchronous processes.
This specification style is used in several Hardware Description Languages. such as VHDL [5] and
HardwareC [6].

Following Hoare [1] and Dill [8], we formalize the notion of process by resorting to trace theory.
Each process is described by a set of input and output variables (for sholt. the process temu"nals), and by

a set of execution traces. Infonnally, a trace of a process is a sequence of symbols. recording the values
taken by its tenninals over time 1.

The appeal of trace theory relies in the fact that the enumeration of all the acceptable execution traces
for a system implies capturing all die degrees of freedom on its functionality. A drcuit satisfies ~
specifications if its execution traces are acceptable to the specifications. i.e. if they are contained in the
trace set of the specifications. The synthesis problem for a circuit can ~n be cast into that of finding a
minimum-cost realization that satisfies this containment property.

In order to make a synthesis system practical, it is necessary to provide compact descriptions of b"ace
sets. In [2] and [7], the use of finite (J)-automata was proposed for describing trace sets. ~ automata
describe the desired functionality as well as ~ degrees of fr~om. ~y can be used to perfonn synthesis
by exploring directly the design space, or can be used as external don't cares for ~ local optimization
of an already existing design. In this respect. we provide in Section (4) a general representation resul.t.
We show that the degrees of freedom, or don 'I care °, associated to an implementation FSM embedded
synchronous circuit can be expressed in terms of an (J)-automaton . This (J)-automaton is the product [7]
of the (J)-automata of the specifications and of those representing the rest of the circuit

The use of don't care conditions to simplify interacting FSMs was first explored by Kim and
Newbom[IO]. This is later expanded in works by Devadas [II] and RtK> et al[12]. In this work,
we take the same general idea as Kim and Newborn, but apply a much more general environment to
perform optimization. In particular, we provide the degrees of freedom from a higher level of specifica-
tion than the logic level. Therefore, we show that the types of results achieved are not obtainable using
conventional interacting FSM techniques.

Currently, we are targeting conb"ol synthesis. Therefore the (J)-automata specify the control schedules
and communication protocol constraints among the -various processes. We implemented a preliminary
version of a synthesis tool based on the use of (J)-automata. The language HardwareC is used as a
front-end for entering a specification in terms of a set of interacting processes, each described by an
(J)-automaton .

We show empirically that automata of reasonably complex circuits can be efficiently represented and
manipulated, and that it is possible to b"averse efficiently their state space. The specification can then be
used as a metJ¥>d to synthesize a design from high-level specifications or to optimize an existing design
by eXb"acting relevant don 'I care conditions from ~ automata. For example, in the present case. it can
be applied to the synthesis/optimization of schedules and control units.

The rest of the paper is organized as follows. The next section inb"oduces the terminology associated
with traces and processes. Section (3) presents relationship between processes and don't cares. In
particular, we introduce a theorem describing the degrees of freedom of a sub-circuit with respect to its
environment. Section (4) talks about a set of b"ansformations that generate the automata specification of
a circuit from a high-level sequencing graph model. We give experimental results in Section (5). We
conclude ~ paper and describe future work in Section (6).

2 Hardware specifications by interacting processes.

Specifications of hardware in tenDS of interacting processes are fairly common. ~ are typically
desaibed in a programming Janguage style:

Example 1.

The following code specifies the behavior of two units sharing a bus. Each unit uses the
bus to fetch an instruction. and then to, write a result after an execution step.

PI: repeat (
send(bu8_reque8t);
while (!bus_rdy) wait;
fetctLooSi

P2: repeat (
send(bus_request);
while (lbus_rdy) wait;
fetch_bu.;-

IHO8e wu ~bJa11y interested in uyocblOnoUIlystems. 8nd Ihe~ro~ tra:es ~preseDIed seqUa1~ or evelllS.

Sc-2IWLS'93 Workshop Notes

execute;
send(bus_request);
while(!bus_rdy) wait;
write_bus;

execute;
send(bus_request);
while(lbus_rdy) wait;
write_bus;

))

c
A more formal view of a process can be obtained by examining directly the signals through which

it communicates with the environment. In the case of tre process PI of Example (I), these signals are
for example tre bus request signal 81 and tre bus ready signal rl. Over time, the pattern these signals
follow can be used to describe the process itself. For example, assuming that each line of code takes
exactly one clock period. a pattern

100010
010000

~I
r)

is a possible trajectory for 81 and rl. while

1 0 1 0 1 0 ...
0 1 0 0 0 0 ...

81
TI

is not. because two bus requests must be separated by at least three clock cycles. and by one bus ready
signal.

2.1 Terminology.
The notion of process is fonnalized here in the context of trace theory. A process is described by a set
of input and output variables (for short. the process terminals). and by a set of execution traces. For
example. the variables of process PI of Example (I) are 8) and T).

Infonnally. a trace of a synchronous process is an infinite ~uence of values taken on its input and
output ports over each clock cycle. Traces of a synchronous process allow multiple transitions to take
place between two consecutive clock edges. This would not be allowed in interleaving semantics. which
is typically used for modelling asynchronous processes [8].

Traces can be of finite or infinite length. Finite-length traces. originally considered by Hoare. represent
only partial executions of a process. A trace of length n can represent an execution only up to the time-
point n. Certain imponant properties of a process. such as Ii veness or fairness properties. ~uire a
description in terms of infinite-length traces [8].

Definition 1.

Let B = {a, I}. The set of all possible sequences over B is de.noted by Bill. To model a
system with inputs and outputs, let I be tile set of inputs -ports, and 0 be tile set of output
ports. Let A = (I U 0).

A synchronous trace T, or trace for short, is an element of the set

(~)IAI (1)

c
A process is represented as a set of possible execution traces:

Definition 2..

A process P is a set of traces. 0

IWLS'93 Workshop Notes 5c-J

Finite representations of processes are however necessary for their rapid manipulation. ",-Automata
have been proposed for d1is PW'POse in a verification context [9].

An ",-automaton is described by a finite set S of states. a subset So ~ S of initial states. and a
transition relation 6' : S x E - 2$. computing the set of possible next states coITesponding to each state
and input symbol. A ron of an automaton over a sequence UO,... , Un,. .. of input symbols is a sequence
of states So,.. . , Sn, . .. such that So E So and for every n ~ 0 Sn+ 1 E 6'(Sn, Un). The description of an
automaton is completed by an acceptance role. ~ acceptance rule decides if a sequence of symbols
belongs to a trace set. based on which states are visited during a run of the sequence. Several flavors
of acceptance rules exist in the literature [2]. Their distinction is immaterial for our PW'POses. as long
as the intersection of the two processes can be computed essentially by the traditional product rule for
automata.

The product of two ",-automata A 1 and A2 is indicated by A = A 1 ~ A2. lnfonnally. a product
machine A has the state space d1at is the Cartesian product of A 1 and A2. and the transition function is
the logical conjunction of A 1 and A2. A formal definition for a product can be found in [7]

"-3

Figure I: Automata for the processes PI and P2 of Example (1). F indicate initial states.

Example 2.
The automata of Fig. (1) describe the behavior of the processes PI and P2 of Example.

(1). At each clock tick. each process can decide whether to execute the line or to idle. ~
idling transitions are represented by the unlabeled self-loops in the state diagram. Labels
indicate the execution of ~ corresponding instruction. 0

2.2 Environment constrain~.
When synthesizing a system, it is necessary to take into account its interactions with the environment
A system needs to communicate with other modules through handshaking protocols, or may need to use
memory and hardware resources that are shared with the environment

Such interactions impose constraints on ~ systems (i.e. protocols must be satisfied). as well as
information that can be used during synthesis. For example. knowing that the design interfaces by means
of a specific protocol implies that only certain input sequences will be received through the input pins.

Example 3.

Sc-4IWLS'93 Workshop Notes

Proa..'..

Figure 2: Automaton for the bus of Example (3).

The two processes PI and P2 interface to a bus. To prevent simultaneous reads and writes
on the bus, the bus protocol forces signals T I and T2 to be mutually exclusive. Again, only
some sequences of values of TI and T2 can occur. The possible execution traces for the bus
are representoo by the tN-automaton of Fig. (2). 0

Example (3) outlinoo that environment constraints can be modeloo by proces~ (trace sets) as well.
The specifications S can therefore be cast in general in the fonn of a product of several tN-automata

Sit each of which represents a process or a constraint:

S = @f:ISi (2)

Figure 3: Product automaton for Example (4). Each transition shows the logic values of slrlS2r2. Each
state shows which corresponding state in (PI. P2. bus) are being traversOO. Dashed transition illustrate a
starvation trace for P2.

Example 4.

For PI, P2, and the bus, the composite automaton S that represents the set of acceptable
traces is shown in Figure (3). Note that the bus protocol successfully enforces the mutual

IWLS'93 Workshop Notes 5c-5

exclusion requirement However. we can detect a bug in the protocol by noticing that there
are traces where both processes would starve (Dashed transitions show a trace where Pz is
starved). 0

Processes and don't cares.3

The end result of syntresis is a circuit implementation whose tenninal behavior satisfies the specifications.
In a synchronous environment. such circuits are described by finite-state machines. In general. more than
one state machine satisfies the specifications.

3.1 Sequential optimization using don't cares.

In practice. the optimization of iarge synchronous circuits is carried out by isolating small sub-circuits
and optimizjng them separately. In oth~ words. a s~chronous circuit implementation is often regarded
as an interconnection of FSM circuits. denoted by {M j, j = 1,..., N J. each of which is optimized
independently. The existence of degrees of freedom in the specifications and the embedding of the sub-
circuit in a larger circuit gives rise to don't care conditions that can be used in its optimization. much the
same way as in the combinational case.

In ord~ to derive a representation of the don't cares associated to an embeddoo sub-circuit Mi. it
is convenient to represent also the functionality of all sub-circuits implementation by processes. Each
process can be described by an ",-automaton A j. where j = 1,2,..., N. The state diagram of each A j
can be readily obtained from that of M j by removing the distinction between inputs and outputs.

The behavior of ~ circuit implementation is thus described by the process

(3)c = ~f=lAj

The following resu)t links tre don't cares associated with a sub-circuit imp)ementation M i to external
specifications and to the processes A j of the rest of the network:

Theorem 3.1 Let S be the process describulg all possible trace sets of tile be.lraviol: Let A be the set of
automata describing the circuit M implementation of the design. The degrees of freedom of sub-circuit
M i is its set of possible t'.xecution traces, denoted by the ",-automaton D i:

D. = S ~ (~f-I.;~.Aj) (4)

The proof. although not difficult. is lengthy and trerefore ominoo here.

...""A

Figure 4: Block diagram for extended example

The theorem says that the don'l care of a sub-circuit can be found by knowing the specifications for
the entire circuit and the interaction of the sub-circuit with its environment. Note that while Theorem
(3.1) is similar to the Kim and Newborn procedure in appearance. there is additional power offered by our
framework. In particular. the automata specification gives the set of all at;ceptable traces for the behavior.
so it allows the exploration of design solutions that are not usually reachable by nonnal FSM analysis.
The framework can be used in conjunction with other techniques for interacting FSM optimization. since
it presents the relevant optimization infonnation at a higher level.

We iJlustrate a possible optimization using automata framework with the following extended example.

5c-6IWLS' 93 Workshop Notes

.) Cat

Figure 5: (a) and (b) show the specification automata SA and Ss for blocks A and B. Each transition
shows the logic values of RQST. AC](. DON E. (c) shows the composite specification automaton S.

3.2 Extended don'r care example
For the purposes of illustrating Theorem (3.1). we use a fairly simple communication example. The block
diagram of me example is in Figure(4). The specification of the tWo process involved is briefty stated:

. Block A - Sends a RQST signal betWeen zero to three cycles. It then waitS (up to infinite time) for
an AC](signal. Finally. after a possibly infinite time. block A outputS a DONE signal. Shown
by Figure(5.a)

. Block B - AwaitS (up to infinite time) for the RQST signal. It then outputS AC](signal within
one or two cycles. It then waitS infinitely for the DONE signal. Shown by Figure(5.b)

The complete set of allowed interaction between the two processes can be found by taking the product
automaton. This is shown in Figure (S.c).

Now. assume via some independent synthesis process. an FSM implementation is generated for each
of the blocks. The FSMs are shown in Figure (6). The FSMs. when connected. can indeed communicate.
It can be easily verified that IA. lB. and IA @ IB are all contained by S. and therefore d1ey meet the
specification.

The goal is to optimize both I A and I B by using the number of states as a cost function. First. we
optimize IA. This is done by first extracting its don't care conditions. Following Theorem 3.1. we first
form the product i&lf=IJ~iAj. Since there are only two FSMs under consideration. this product is just
JR.- We then find the degrees of freedom for block A by D A = S 0 f B. DAis shown in Agure (7. a).

Since D A contains all degrees of freedom for fA. it naturally contains the trace formed by fA 0 lB. Since
the goal is to find a more optimal solution than the current implementation. we do not consider the trace
IA 181 lB. This trace is representOO by dash lines. The solid transitions left are the possible degrees of
freedom that have not been explorOO. It is clear that the balded transition will yield the fewest states in
die transition graph.

We then perform the same procedure on lB. For uniformity sake. we use die un-optimized IA.
DB. found by IA 181 S. is shown in Figure (7.b). We again use dashed transitions to indicate the
current implementation's trace. The only unexplored transition turns out to be a more optimal choice.
The optimized versions of fA and IB are shown in Figure (8). By using conventional FSM reduction
techniques. it is not clear that such degrees of fr~om can be explored. In particular. note that for fA. the
second and third stateS are eliminated. giving a final implementation of three states. For lB. die second

Sc-7IWLS'93 Workshop Notes

... (c)

Figure 6: (a) and (b) show FSM implementations IA . IB for blocks A and B. Distinction between input
and output is remoYoo. (c) shows the product I A @ lB.

state is eliminated. giving a final of three states. Also. note all the idle transitions are eliminated as well.
The resulting optimum FSMs for A and B are identical. and can communicate without any blocking.

In general. several different implementations can satisfy the sp«ification. Corresponding to the san1C
input sequence. the original IA and the optimized I A would respond differently. i.e. they would exhibit
a different terminal behavior on the outputs.

Without the sp«ification information. the optimization would not have been possible. The states
could be eliminated from the implementation FSMs only because the states :Ire deemed unnecessary by
the specification. For this reason. no current interacting FSM algorithms can reach the same result

Algorithms for finding the minimum cost once given the degrees of freedom are still under devel-
opment. Theorem (3.1) indicates that local optimization based on don't cares from automata can be
performed provided that the state space of the product automaton of the specifications and the local
machines M j , j = {I,..., N} can be efficientl y traversed.

In this paper. we first present the empirical results that show the feasibility of a state space traversal
of the specification automaton. This is the subject of Section (5).

4 Implementation.
An implementation of the framework presented above is under development using HardwareC as the
input HDL [6]. HardwareC describes hardware in terms of concurrent sequential processes, with the
possibility of specifying ti.ming and data-dependent synchronization constraints among the processes.

These processes are translated into an l4l-automaton representation. This latter representation consti-
tutes d1e eventual Jonna! specification of the hardware under synthesis. Each process P is in particular
associaiOO a pair of input and output signals, named startp and donep, respectively. Each process is
idle until receiving a pulse on its input .~tart p. The termination of execution is signaled by a pulse on
donep, after which the process returns to its idle state.

HardwareC allows the specification of timing constraints between operations. An operation is called
here an elementary process. A timillg constraint between two elementary processes PI and P2 is any
constraint placed on ~ traces of dor&epl and startn.

The timing constraints considered in HardwareC are essentially of interval type: a process n must
be started no sooner than 11,2 clock periods and no later than UI,2 clock periods after Pi is done. These
timing constraints are summarized in a sequencing graph. The HardwareC sequencing graph also supports
control structures (i.e. conditional and loop structures). The detailed description of the sequencing graph

5c"""8IWLS'93 Workshop Notes

(8) (b)

Figure 7: (a) and (b) show D A and DB. Dashed transition represent current implementation's trace. All
solid transitions are unexplored degrees of freedom. Bold transition represents the optimal transition.

..

Figure 8: (a) and (b) show optimized versions of I A and lB. with the eliminated states in dashed circles.

can be found in [6]. In the rest of this section we illustrate the transfonnation of these consttaints into
an automata format

4.1 Construction of the ~-automata from the sequenc.ing graph.
The rest of this section illustrates the construction of WJ-automata corresponding to the followjng bwlding
blocks of the sequencmg graph:

. An interval-type timing constraint;

. ~ conditional execution of a process;

. The modeling of an OR-scheduled process. An OR-scheduled process is the tennination condition
for conditionals where only one of the conditional branches needs to complete.

IWLS t 93 'Workshop Notes 5c-9

~-Mi. '-M-(O,Ma-M8)
c-;;::--~ ~ ""'---~

II \..-;
"

~

~ /<
~

Figure 9: General automaton body for modeling minimum and maximum time constraints between two
elementary processes Vi and Vj

Representation of timing constraints.
Interval-type timing constraints are represented by automata like the one shown in Fig. (9).

The automaton recognizes sequences of values on the signals Donepi. Startpj fonned by a pu!se
on Donepi followed by a pulse on Startpj. The duration of each pulse must be exactly 1 clock cycle.
Moreover. Startpj must trail Donepi by at least Mi1t clock cycles and at most Max clock cycles.

Figure 10: Acceptable waveforms for the signals Done PI, Start P2.

The possible waveforms are illustrated in Fig. (10).

Conditional execution of processes.

Values of data signals can impose conditions on the execution of processes: a process Pi (associated with
¥i) can fire only if it satisfies its timing constraints aim a condition C ooIds true. This is represented by
a labeled edge on the sequencing graph, as shown in Fig. (II-a). The corresponding automaton is shown
in Fig. (II-b). Notice in particular that the condition for firing P2 is sampled at the time point where
Donepi = 1.

The "OR" activation constraint.

Consider the situation of Fig. (12). Process PI (denoted by can fire either because of P2 OR because
ofP3.

Automata representing this type of constraint do not have a regular and simple structure. and therefore
they are currently not modeled by a separate automaton. Rather. the following construction is employed.
We refer again to the situation of Fig. (12). The activation condition for P. is the union of the Done
signals of its predecessors. In this case.

Startpl = DonePl + DonePJ

Sc-lOIWLS'93 Workshop Notes

(a) If repr8eolAtiOD (e) VI->V3 ..,onwOD with C(b) Vl->V2aUfOD»I0D wilb C

Figure 11: ConU'ol structure example: if statement

~~
I"

\

~
Figure 12: The "OR" Synchronization consb"aint.

4.2 Global representation of the system.

Having translated each process and each execution constraint into an automaton. the specifications reduce
to a collection of ~-automata .

Each automaton is mapped into a synchronous circuit. The circuit has an output taking value 1
corresponding to valid transitions of the automaton. and zero otherwise.

Example S.

The automaton of Fig. (13-a) represent a timing constraint (a minimum delay of 1 clock
cycle) on StartP2 with r.e\Sf.eCJ to Donepl. Its valid transitions are described by the function
Out = Donerl (QO+ Q 1) + StartP2(QO+ Q 1). The automaton is represented by the circuit
of Fig. (13-b). 0

Given a collection of automata. the only valid transitions are those for which all output functions take
value 1. The function describing the valid transitions of the system are therefore the logic AND of the
functions Out of the individual automata.

5 Experimental Results.

The traversal of the state space of the product automaton can be perfonned by a state traversal of
the corresponding circuit constrained to valid transitions only. In this section we present preliminary
experimental results on state-space traversal. To be able to traverse the state-space is imponant since it
is the implicit representation of the degrees of freedom of the behavior.

IWLS'93 Workshop Notes 5c-ll

(a) (b)

Figure 13: Example on timing constraint and con-esponding automata

We conducted two different sets of experiments. The first set consisted of building the automata
for large basic scheduling structures and verifying the traversability of their state space. The structures
considered were:

. Serial scheduling of a number of processes;

. Para1lel scheduling of a number of process;

. Conditional execution of a process;

The reason behind these experiments is to understand the bounds on the CPU time and memory space
re(luirements for these basic scheduling constructs. This information can then be used in estimating a
priori the requirements for more complex structures.

The second set of experiments consisted of verifying the traversability of the state space of automata
extracted from a set of existing high-level synthesis benclunark examples.

We adopt the technique for implicit state enumeration of FSMs using BDDs [13][14][15] as our
representation model for automata. Because the reachable state space js represented usjng a BDD. the
key figure of merjt js the size of the BDD representing the set of reachable states. The number of states
reachable is also important. since traversal through those states to find a mjnjmum cost solution will be
an jssue in optimjzation.

The section is concluded by an analysis of jmplementation issues and on possible jmprovements.

5.1 First set of experiments.

I Nb processes I States visited I ODD size I CPUz I
14 30 0.9
18 38 1.5
22 46 1.9
26 54 2.2
104 214 47.8
206 414 343.4

Table 1: Automata characteristics for processes in series

We considered first a sequencing graph consisting of a linear chain of vertices and edges (as in Fig.
(1». This siblation corresponds to. for example. a chain of arithmetic operations. Each edge in the graph
is modeled by the edge-automaton described earlier.

IWLS'93 WorkshoD Notes 5c-12

The experimental results are illustrated in Table (1). Nb proce~ represents the number of processes
in the chain. Nb states and BDD size refer to the number of states traversed and the size of the resulting
BDD, respectively. Table (1) indicates that the number of states grows linearly with the length of the
chain.

The second structure we considered consisted of a set of parallel processes (for example, a set ofparallel read/write operations), eventually synchronized by a .. join" construct.

Table 2: Experimental results for processes in parallel

Table 3: Automata characteristics for conditional processes.

Unlike the previous case, the number of states visited grows at exponential rate. It is worth noting,
however, that the BDD representing the set of reachable states remains remarkably small, and d1e CPU
time is likewise well contained.

The final structure we considered was the control structure of nested "IF' statements. Table (3) shows
that again CPU time and BOD size are very contained even for large-sized problems.

S.2 Selected benchmark results

We now present prelimjnary experimental results collected on some high-level synthesis benchmarks.
The benchmarks were initially written in HardwareC. Their sequencing graphs were derived and the

automata modeling the timing and synchronization constraints were constructed. In Table (4), column
Nb. edges indicates the number of edges in the sequencing graph, corresponding to ~ number of
automata that were constructed.

All benchmark processes perfonn reasonably complex tasks. Most benchmarks implement control or
communication protocols. For example, encode and decode perfonn the handshaking and computation for
an error correcting system[6]. DMAJ'CVd, xmit.bit. rcvd.bit and others are 311 communication processes
for an ethernet controller [16]. Table (4) indicates that for 311 such benchmarks. the state space can be
traversed quickly and represented compactly. as the sizes of the BDDs are all less than 100) nodes.

Sc-13IWLS'93 Workshop Notes

:r; x a mol eL_..!!! ;-~~~-~ - ~ '
2351 540 ! 492.5

16273 1071242.7124 2m i 10.1
356985 265 13.8

509 238 26.3
22722 I 232 295.3
6762 413 384.6

79808 501 198.5
104 210 61.8

5866 1151 265.1

Table 4: Automata characteristics for selectoo high-level synthesis benchmarks

5.3 Improvements.

The major bottleneck in traversing the automata is the construction of the BDD corresponding to the
set of valid transitions. Currently. we are investigating three ways to overcome this difficulty: The first
way is to avoid the explicit construction of the global Out function (which defines U1e set of all valid
transitions within all the automata) by looking at implicit methods. The second way is to reduce U1e
number of edges in U1e sequencing graph. This would result in a reduction in U1e number of automata. and
can be accomplis~. for example. by removing redundant edges in the sequencing graph. Algorithms
for removing redundant edges in a sequencing graph were presented by Ku el aI. [6]. The third way
consists of investigating better variable ordering heuristics for the BDD construction. possibly tailored to
the type of problem at hand.

6 Future Work and Acknowledgements

In this paper. we have presented a framework for modeling degrees of freedom at the behavioral level
basOO on automata. In particular. we presented a method to model hardware as a set of interacting sequen-
tial processes. where a process is defined by a set of acceptable execution traces. Hardware specifications
(in particular including degrees of freedom) are thus ultimately modeled by a set of automata.

We have presented a preliminary implementation of this approach. in which we translate a hardware
description language (HardwareC) into an automata-based specification. We show that the state space of
the resulting automata can be traversed quickly and manipulated using implicit state enumeration methods
basOO on BODs.

We have showed that this formulation can model reasonably complex systems. consisting of several
processes and synchronization constraints.

In the next phase. we plan to develop a set of algorithms to perform synthesis and optimization by
extracting d1e don', care information that exist in Ire automata.

The authors would like to thank Jerry Burch for his clarification on the definition for traces. and David
Filo for his suggestions on the extended example. This research is sponsored in part by NSF/ARPA under
grant MIP 91-15-432.

References
[1] C. A. R. Hoare. Communicaling Sequenlial Proceses. Prenlice Halllnlernalional, 1985.

[2] Y. OJoueka, "Theories of aUlomata on omega-lapes, a simplified approach," Journal 01 Computer Systems
ScieIICt. vol. 8. W. 117-141, 1974.

Sc-14IWLS' 93 Workshop Notes

[3] R. A. Bergamaschi and D. L. A. Kueblmann, "Control optimization in high-level synthesis using behavioral
. don't cares," in Proceedings of the Design Automation COnference, (Anaheim, CA), pp. 657~1, June 1992.

[4] W. Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu, "The princeton university behavioral synthesis
system," in Proceedings of the Design Automation Coriference, (Anaheim, CA), pp. 182-187, June 1992.

[5] R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware Description and Design. Kluwer Academic Pub-
lishers, 1989.

[6] D. C. Ku and G. De Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Constraints.
Kluwer Academic Publishers, June 1992.

[7] R. P. Kurshan and K. L. McMillan, "Analysis of digital circuits through symbolic reduction," IEEE Transac-
tions on CADIIG4S, vol. Vol. 10, no. No. II, Nov. 1991.

[8] D. L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed.independent Circuits. The Mrr
Press, 1988.

[9] E. Macii, B. Plessier, and F. Somenzi, "Verification of systems containing counters," in ICCAD, Proceedings
of the International Coriference on Computer.AidedDesign, pp. 179-182, Nov. 1992.

[10] J. Kim and M. M. Newborn, "The simplification of sequential machines with input restrictions," IEEE Trans.
actions on Computers, pp. 1440-1443, Dec. 1972.

[11] S. DeVadas, "Optimiung interacting finite state machines using sequential don't cares," IEEE Transactions on
CADllCAS, vol. 10, no. 12, pp. 1473-1484, Dec. 1991.

[12] J..K. Rho, G. Hachtel, and F. Somenzi, "Don't care sequences and the optimization of interacting finite state
machines," in ICCAD, Proceedings of the International Coriference on Colnputer.Aided Design, pp. 418-421,
1991.

[13] O. Couden and J. Madre, "A unifioo framework for the formal verification of sequential circuits," in ICCAD,
Proceedings of the International Coriference on Computer.Aided Design, pp. 126-129, Nov. 1990.

[14] H. Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni.Vincentelli, "Implicit state enumeration of finite
state machines using BOO's," in ICCAD, Proceedings of the International Coriference on Computer.Aided
Design. pp. 130-133, Nov. 1990.

[IS] H. Cho. G. Hachtel. S.-W. Jeong, B. Plessier. E. Shwarz, and F. Somenzi, "Atpg aspects of fsm verification,"
in ICCAD, Proceedings of the International Conference on Colnputer.Aided Design. pp. 134-137. Nov. 1990.

[16] R. Gupta and C. C::.elbo. "Ethernet contrOller design," in private communications. 1991.

5c-15IWLS'93 Workshop Notes

