HIGH-LEVEL SYNTHESIS
OF DIGITAL CIRCUITS

Giovanni De Micheli

Technical Report No. CSL-TR-92-551

November 1992

This research was sponsored by NSF and DEC under a PYI award.

HIGH LEVEL SYNTHESIS OF DIGITAL CIRCUITS
Giovanni De Micheli
Technical Report: CSL-TR-92-551
November 1992
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305-4055

Abstract

This tutorial surveys the state of the art in high-level synthesis of digital circuits.
It will be published in Advances in Computers, Volume 35, edited by M. Yovits.

Keywords and Phrases: high-level synthesis, scheduling, binding, datath and
control synthesis.

Copyright © 1992

by
Giovanni De Micheli

Contents

1

2

Introduction.

Circuit modeling.

21
22

Modeling languages.
Abstract models. . .

Compilation and behavioral optimization.

31
32

Compilation techniques.
Optimization techniques.
3.2.1 Data-flow based transformations. . .
3.2.2 Control-flow based transformations. .

Structural synthesis.

4.1
42

43
44

The design space.
Resources and constraints. .
42.1 Resources.
4272 Constraints.

Scheduling and binding. . .

Scheduling.

w

.—esoooq

13
14
14
15
16
18

5.1 Scheduling without resource constraints.
5.1.1 The ASAP and ALAP scheduling algorithms.
5.1.2 Scheduling under relative timing constraints. . . .
5.1.3 Relative scheduling.

5.2 Scheduling with resource constraints.
5.2.1 The Integer Linear Programming model.
§22 Listscheduling.
5.2.3 Other heuristic scheduling algorithms.

5.3 Scheduling algorithms for extended sequencing models. .
5.3.1 Scheduling and operation chaining.
5.3.2 Hierarchical scheduling.

5.3.3 Scheduling graphs with alternative paths.

Data-path synthesis and optimization.

6.1
6.2
6.3
64
6.5

Sharing and binding.
Resource sharing in non-hierarchical sequencing graphs. . . .
Resource sharing in hierarchical sequencing graphs.
Register sharing.
Other binding and sharing problems,

iii

7 Control synthesis.

7.1 Control synthesis for non-hierarchical sequencing graphs.
7.2 Control synthesis for hierarchical sequencing graphs
73 Control synthesis for unbounded-latency sequencing graphs

8 Synthesis of pipelined circuits.

8.1 Scheduling pipelined circuits.
8.2 Resource sharing and binding for pipelined circuits.

9 High-level synthesis systems.
9.1 The System Architect’s Workbench
9.2 The Olympus Synthesis System
9.3 The Cathedral Synthesis Systems

10 Conclusions.

11 Acknowledgements

iv

.........

51
51
52
52

54

1 Introduction.

As digital hardware sysiems become larger and more complex, engineers need even more powerful design tools.
Synthesis systems have been shown effective in providing an automated way, or a computer-assisted cnvironment,
for integrated circuit design.

Several advantages stem from using synthesis tools, starting from behavioral circuit models. First, high-levcl
modeling languages allow designers to conceptualize circuits in a self-documenting form, that can bc fairly indc-
pendent of the target technology and design style. This provides design portability and support for incremental
changes in later design revisions. At the same time, it makes circuit design available to a larger basc of engincers.
who master system design issues without being expert in specific circuit technologies.

The second advantage provided by synthesis tools is correctness and optimality. While design comectness is
relying in part on the software implementation of algorithms, and therefore hard to claim, it is obvious that the
reliability in handling large scale designs is higher when performed by aulomated means than when donc by human
‘beings. Design optimization at various levels is coupled to synthesis. High-level optimization is extremely critical
in achieving the best circuit implementation, because it affects the macroscopic circuit parameters.

Eventually, synthesis tools provide a shortening of design time, reducing both the design cost and the time 100
market. Both factors are crucial in the competitive marketplace of integrated circuits.

Computer-aided synthesis of digital circuit has been introduced gradually over the last two decades. At first
physical design tools, and later logic synthesis and optimization programs, became common in the design flow ol
integrated circuits. Recently, high-level synthesis techniques have been proposed and used for rescarch as well as
for some product-level design. While these techniques are not yet used ubiquitously, it is likely that they will have
positive impact on digital design methodology.

High-level synthesis is a broad term to define circuit synthesis from models that are more abstract and gencral
than logic ones. The circuit modeling problem is strongly related to high-level synthesis, becausc il defines the
boundary of this domain. High-level modeling is donc by means of Hardware Description Languages (HDLs), as
mentioned in Section 2.1. The lack of standardization of HDLs suitable for synthesis has been a major impediment
in the diffusion of high-level synthesis. We shall consider in Section 2.2 modeling issues with particular refcrence 10
abstract circuit models, based on graphs, that can serve as common basis for synthesis and that decouple synthesis
and optimization from the particular features of any given language.

High-level optimization is coupled to synthesis. Il is customary to gather optimization lechniques into two
classes. The former groups those optimizations that are independent on the circuit structure and that parallcl the
techniques used in software optimizing compilers. Such techniques are described in Section 3.

The latter class consists of the algorithms for creating and optimizing the data-path and the conirol-unit. Dawa-
path synthesis consists of binding the operations of the data-flow model to time slots and (o computational units.
The time-binding is often called scheduling of the operations. The physical binding is ofien called resource binding
and it may involve resource sharing. Control synthesis corresponds (o interpreting the control-flow of the model and
in constructing a control unit that activates the resources at the appropriate lime and with the appropriatc inpuls and
destinations. Scheduling, resource binding and control synthesis are described in Sections S, 6 and 7 respectively.
Structural synthesis and the related tasks are described first as applied to non-pipelined circuits, for the sake of
simplicity. Extensions to pipelined models are reported in Section 8.

We conclude this chapter by giving a short history of high-level synthesis and by describing and comparing
high-level synthesis systems in Section 9. This review will give the reader an idea about the state of the art in the

field, the success achieved by high-level synthesis and the present difficulties.

2 Circuit modeling.

Circuit modeling plays a fundamental role in defining the synthesis task as well as in capturing essential features of
a design. We consider in the sequel circuit models at both the functional and logic abstraction levels with behavioral
and structural flavors. At the former level, a circuit behavior can be captured by a set of tasks and a partial order
on the set of tasks. The tasks may be general in nature, involving arithmetic or logic functions. Similarly, a circuit
structure can be described by a partition into functional units and their interconnection. At the logic level, a circuit
behavior can be modeled in terms of states and transitions. A circuit structure can be stated in terms of logic gates
and their interconnection. Circuit behavior at the functional level, called shortly circuit behavior, is the staring point
for high-level synthesis.

Hierarchical models are often used 1o simplify the representation. The hierarchy can bc used to render a model
modular, by encapsulating some of its portions, as well as making possible the multiple usage of a (sub)-model by
means of a model call, The use of hierarchical models has been used extensively in software (e.g. subroutines).

2.1 Modeling languages.

Hardware Description Languages are ofien used 0 represent the circuit behavior or its structure. Modern HDLs.
such as VHDL [37], Verilog [53] and UDL/I [25], support both a behavioral and a structural modceling style. We
will consider the former only, because high-level synthesis is not required for structural modcls.

A natural question o ask is why standard programming languages, like C, cannot be used to madel hardwarc
behavior. They can indeed, but in a restricted domain. Functional models of processors can be defined as €
programs, compiled and executed for validating the correctness. It is questionable though how usclul they can he
for synthesis.

There are several differences between standard programming languages and modem HDLs. Thc major oncs
stem from the fact that hardware circuits can always provide parallel sireams of execution and that the precisc
timing of the execution of the operations may be very important in hardware. HDLs have explicit definition of 1/0
ports and provide some specification means for determining when some operations are executed and by which unit.
On the other hand, HDLs do not support complex memory reference mechanisms like pointers and structures.

Whereas the syntax of HDLs varies widely, most of them are procedural, with an imperative semantics. Therelore
the designer models a set of tasks by sequencing assignments to variabies by means of control-flow constructs, such
as branching, iteration and model call.

Digital circuits perform Boolean operations and their semantics is the same in hardware and in softwarc.
Similarly, the semantics of the HDL control-flow constructs parallels that of common programming languages. The
interesting differences between HDL and programming language semantics are related to the data types and to the
timing of the operations.

The fundamental data-type in HDLs is the Boolcan variable. When considering languages with imperative
semantics, variables may store information. They may be assigned multiple values, and they retain the last value
until the next assignment occurs. Therefore a hardwarc mechanism has to be associated with the storage, unless the
information of a variable is readily consumed. In this case, variables correspond to wires in the circuit. Otherwise.

they relate to more complex structures, such as registers (with possibly multiplexed inputs and enablcs). This side-
effect, i.e. modeling implicitly storage in imperative HDLs, is not a desirable feature, and complicatcs synthesis.

Other variables, often called meta-variables, can be used to simplify the representation. For cxample, meta-
variables can be integers that address elements of a vector. Iteration on meta-variables is permiticd. Note that
meta-variables do not have a hardware counterpart, and they are expanded in an early synthesis stage.

The timing semantics of HDLs is currently subject of wide discussion. Some HDLs, like VHDL and Verilog,
were conceived for circuit specification and simulation. Therefore their constructs are geared toward the efficicnt
support of event-driven simulation. Some constructs do not even have a hardware correspondence. - Models in
VHDL and Verilog specify circuit behavior as a set of sequential statements. Since the languages do not specify a
timing semantics, synthesis policies are used to interpret the timing behavior. This has the unfortunate side-cffect of
linking the semantics of hardware models to a policy and hence to a synthesis tool, at the expense of its generality.
Conversely, the UDL/I language as a formal hardware semantics. The timing of the operations in a UDL/I model
is linked to the states of an automaton, hence prescribing one execution interval for each opcration. Preciscness
is achieved at the expense of sacrificing some degrecs of freedom in interpreting the modcl and in lowering the
overall abstraction level.

2.2 Abstract models.

Abstract models capture the essential features of behavioral models, and decouple them from the language. Behav-
ioral models at the functional level of abstraction are specified in terms of tasks and their dependencies. A task is
often called an operation. For the sake of generality we assume that tasks can be also No-Operations (NOPs), i.c.
fake operations that execute instantaneously with no side effect and that can be used as placeholders. Dependencies
arise from several reasons. First, availability of data. When an input to an operation is the resull of another onc.
then the former operation depends on the latter. Second, serialization constraints. A task may havc to follow a
second one regardless of data-dependency. A simple example is provided by the two following operations: loading
data on a bus and raising a flag. The circuit modcl may require that the flag is raised after the data is loaded. Third.
dependencies may arise because two tasks share the same resource, that can service only one task at a time. Thus
one task has to perform before the other. Note though that in general dependencies due to resource sharing are not
part of the original circuit specification, because the way in which resources are exploited is rclated 10 the circun
implementation.

Many different models have been proposed to model the circuit behavior in terms of graphs. Wc consider in
this chapter only one model, called sequencing graph, that is a hierarchical combination of data-flow graphs. The
data-flow graph entities model the data-flow while the hierarchical linkage of the entities models the control flow.

Let us consider first a flat sequencing graph, i.e. a data-flow model. It represents operations and data dependen-
cies. I is a directed graph G(V, E) whose vertex set V = {v;;i =1,2,..., nops} iS in One o one correspondence
with the set of tasks. The directed edge set E = {(v;,vj);7,5 = 1.2,....,n4p,} is in correspondence with the
transfer of data from an operation to another one. Data-flow graphs are acyclic and can be made polar by adding
two vertices, called source and sink, that represent first and last tasks. They correspond to No-Operations and are
labeled by vo and vy respectively. Therefore the graph has n,p, + 2 vertices and subscript NV is interchangcable
with n,p, + 1. Appropriate edges are added to link the source and sink to the other vertices. We say that venex
v; is a predecessor (or immediate predecessor) of v; when there is a path (or an edge) with tail v; and head ;.
Similarly, we say that vertex v; is a successor (or immediate successor) of v; when there is a path (or an edge) with

8) 10

Figure 1: Example of sequencing graph.

tail v; and head v;. Note that paths in the graph represent concurrent (and not altemative) streams of operations.

Example 2.1. Consider the following program fragment, describing a set of computations.
zl = z+dx
ul = u—-(3-2.w.dz)-(3.y-dz)
yl = y+u-dz
¢c = z<a

The program describes a set of tasks, corresponding to simple operations like addition, subtraction, multiplication
and comparison. The sequencing graph representation of these tasks is shown in Figure 1. The first stalement
corresponds to vertex vio and the last to vy;. The third statement corresponds to vertices vg and vg. The remaining
vertices model the second statement. Note that alternative representations would be possible, by exploiting the
commutativity and associativity of addition and multiplication. O

Let us consider now hierarchical sequencing graphs. A sequencing graph entity has two kinds of vertices. Some
vertices model operations and are called simple vertices. Other vertices represent links to other scquencing graphs
entities in the hierarchy and are called complex vertices. Obviously, sequencing graph entities that arc lcaves of the
hierarchy have only simple vertices. Complex vertices represent model call, branching and iteration constructs.

A model call vertex is a pointer 10 another sequencing graph entity, at a lower level in the hierarchy. It models
a set of dependencies from its immediate predecessors to the source vertex of the called entity and another sct of
dependencies from the corresponding sink (o its immediaie successors.

Branching constructs can be modeled by a branching clause and branching bodies. A branching body is an
alternative partial order of tasks, that is selected according to the value of the branching clause. There arc as many

branching bodies as the possible values of the branching clause. Branching is modeled by associating a sequencing
graph entity to each branch body and a complex vertex to the branching clause. The selection of a branch body is
then modeled as a selective model call to the corresponding sequencing graph.

Iterative constructs are modeled by an iteration clause and an iteration body. An iteration (or loop) body is a
partial order of tasks, that is repeated as long as the itcrative clause is asserted. Iteration is modeled in sequencing
graphs through the use of the hierarchy, thus preserving the acyclic nature of the graph. Tteration is represcnted as
a repeated model call to the sequencing graph entity modeling the iteration body.

Example 2.2. We consider now an example of a sequencing graph, that has an iterative construct. The
example has been adapted from one proposed by Paulin et alii [45].

diffeq
{
read (z,y, u,dz,a
repeat {
zl =z +dz;
wl=u-(3-z-u.dr)-(3.y-dz);
yl=y+u.dz;
c=x<a;

z=zliu=uljy =yl

until (c¢)
write (y);

}

The corresponding sequencing graph is shown in Figure 2. The loop body indicated in the figure is the sequencing
graph entity shown in Figure 1. Note that the assignments r = zl;« = wl;y = yl; are not explicitly represented
in the graph. Note also that the assignment ¢ = z < a could be moved to the top graph entity in the hicrarchy.
These particular choices in representing the loop of the HDL model by the sequencing graph of Figures 2 and 1

are motivated by the desire of keeping this example similar to what has been presented in the lilerature. 11

The semantic interpretation of the sequencing graph model requires the notion of marking the vertices. A
marking denotes the state of the corresponding operation, which can be: i) waiting for execution; ii) executing; iii)
having completed execution. Firing an operation means starting its execution. Then, the semantics of the model is
as follows: an operation can be fired as soon as all its immediate predecessors have completed execution.

We assume that a model can be reset, by marking all the operations as waiting for execution. Then, the model
can be fired (i.e. executed) by firing the source veriex. The model has completed execution when the sink has
completed execution. A model is called re-entrant when the source is always fired after the sink has completed
execution. Note that the entity corresponding 10 an iteration body is a conditionally re-entrant model, where the
condition is set by the iteration clause. A model is a pipeline when the source is fired before the sink has complcted
execution.

Several attributes can be given to the vertices and edges of a sequencing graph model. A timed scquencing
graph model is one where each vertex is labeled by a delay. In the sequel, we refer L0 propagation delay as a

Figure 2. Example of hierarchical sequencing graph with an iteration construc

non-negative real number representing the delay through a combinational circuit implementing an operation. In the
particular case of synchronous circuits, we refer to execution delay as the integer number of synchronous cycles 10
execute the operation.

In general the delay of a veriex can be data-independent or data-dependent. Only data-independent delays can
be estimated before synthesis. Examples of operations with data-dependent delay are those that depend on extemal
data, such as data-dependent delay branching and iteration. An example of the former case is a branch 10 two
operations with different delays, where in the limit one branch body can be a No-Operation (e.g. a floating-point data
normalization requiring conditional data alignment.) An example of the latier is an iteration whose cxit condition
is data-dependent. An arithmetic divisor, based on an iterative algorithm, can be modeled by an itcrative construcl.
It is interesting to note that external synchronization can be modeled by an iteration of No-Operations, whosc cxil
clause is the value of an external signal.

Data-dependent delays can be bounded or unbounded. The former case applies o data-dependent dclay branch-
ing, where the maximum and minimum possible delay can be computed. It applies also to some itcration construcls.
where the maximum and minimum number of itcrations is known. The latter case is typical of somc itcration con-
structs, such as those modeling external synchronization.

A sequencing graph model with data-independent dclays can be characterized by its overall delay, called latenc:y.
When a sequencing graph entity has no complex vertices, then the latency is the length of the longest weighted path
(from source 10 sink). Since the graph is acyclic, such a computation can be efficiently done in (O(|/]) time. Lect
us consider now sequencing graphs with complex vertices with data-independent delays. The latency computation
can be performed by traversing the hierarchy bottom-up. The lalency of a model call vertex is the latency of the
corresponding graph entity. The latency of a branching veniex is the laiency of one of the corresponding bodics.
The latency of an iteration vertex is the latency of its body times the number of iterations. Thesc considerations
can be easily extended to the computation of latency bounds in presence of data-dependent boundcd delays. Graphs
with bounded delays (including data-independent) are called bounded-latency graphs. Otherwisc they are called

front-end optimization : back-end

| lex o PISE »| intermediate form codegen
(a)
behavioral
front-end optimization back-end

s-synthesis
I-synthesis

mapping

lex _ | parse intermediate form

(0)

Figure 3: Anatomies of software and hardware compilers.

unbounded-latency graphs, because the latency cannot be computed.

3 Compilation and behavioral optimization.

We explain in this Section how circuit models, described by HDL programs, can be transformed inlo sequencing
graphs, that will be used as starting point for synthesis in the following Sections. Most hardware compilation
techniques have analogues in software compilation. Since hardware synthesis followed the development of software
compilers, many techniques were borrowed and adapled from the rich field of compiler design [1]. Nevcertheless.
some behavioral optimizZation techniques are peculiar to hardware synthesis. We will briefly survey the general
issues on compilation, where the interested reader can find a wealth of literature, and we will concentrale on the
specific hardware issues.

A software compiler consists of a front-end that transforms a program into an intermediate form and a back-end
that translates the intermediate form into the machine code for a given architecture. The front-end is language
dependent, and the back-end varies according to the target machine. Most modern optimizing compilers improve
the intermediate form, so that the optimization is neither language nor machine dependent.

Similarly, a hardware compiler can be seen as consisting of a front-end, an optimizer and a back-end. The
back-end is much more complex than a software compiler, because of the requirements on timing and intcrface
of the intenal operations. The back-end exploits several techniques, that go under the generic names of structural
synthesis, logic synthesis and mapping. We describe the front-end in Section 3 and the optimization technigues in
Section 3.2.

3.1 Compilation techniques.

The front-end of a compiler is responsible for lexical and syntax analysis, parsing and creation of the intermediatc
form. A lexical analyzer is a component of a compiler that reads the source model and produces as an output a sct
of tokens that the parser then uses for syntax analysis. A lexical analyzer may also perform ancillary tasks, such as
stripping comments and expanding macros.

A parser receives a set of tokens. Its task is to verify first that they satisfy the syntax rules of the language.
The parser has knowledge of the grammar of the language and it generates a set of parse trees. A passe trec is a
tree-like representation of the syntactic structure of a language. Syntactic errors, as well as some semantic errors
(such as an operator applied to an incompatible operand), are detected at this stage. The error recovery policy
depends on the compiler and on the gravity of the error. Software tools can be used to create lexical analyzers and
parsers. The most commonly used ones are programs lex and yacc provided with the U N IXTM operating system.

While the front-end of a compiler for software and hardware are very similar, the subsequent stcps may he fairly
different. In particular, for hardware languages, diverse strategies are used according 10 their flavors.

The compilation of hardware models at the functional level involves a full semantic analysis, thal compriscs
data-flow and control-flow analysis and type checking. Semantic analysis is performed on the parse trecs in different
ways. A common one is flattening the parse trees and creating the intermediate form. In doing this, the scmantics
of the model is checked. Type checking has some peculiarity when compiling HDLs. Operations on vectors of
Boolean variables are checked for operand compatibility. Vectors may be padded with ones or zcroes to achicve
compatibility in some cases.

The overloading of the arithmetic and relational operators has to be resolved at this stage. First, all metavariables
need to be eliminated, by expanding the constructs that employ them, because metavariables have no corresponding
hardware semantics. The operators on integer metavariables (both arithmetic and relational) have the usual meaning.
By contrast, operations on Boolean vectors have to be mapped to hardware operators that do the corresponding
function. For example, the sum of two Boolean vectors has 10 be resolved as a link to an adder circuit. Similarly.
the comparison of two integers, o be implemented in hardware by Boolean vectors, has 10 be mapped 1o a link
10 a hardware comparator. Since the mapping 10 hardware resources is not always univalent, (because diffcrent
hardware implementations have different area/performance parameters) abstract hardware operators arc uscd at this
stage and the binding to hardware resources is dcferred 10 a later optimization stage (described in Scction 6.)

The semantic analysis of the parse trees leads to the creation of the intermediate form, that represents the
implementation of the original HDL program on an abstract machine. Such a machine is identificd by a sct of
operations and dependencies, and it can be represented graphically by a sequencing graph. The hardware model
in terms of an abstract machine is virtual in the sense that it does not distinguish the area and delay costs of the
operations. Therefore, behavioral optimization can be performed on such a model while abstracting the underlying
circuit technological parameters.

We assume here, for the sake of explanation and uniformity, that the sequencing graph modcl is uscd as
intermediate form. Note that other intermediate models could be used, with similar meaning but diffcrent aspects.
Similarly we assume here, for the sake of simplicity, that structured programming constructs arc used (c.g. no
unrestricted goto statements are employed), and that each model has a single entry and a single cxit points. This
allows us to interpret the hardware model as a sequencing graph that abides the definition given in Scction 2.2.

Whereas the hierarchical structure of the sequencing graphs is derived from the control-flow analysis of the
model, the graph topology is based on data-flow analysis. The parse trees for each assignment statement corre-

spond then to the vertices of each graph entity. The edges are inferred by considering data-flow and scrialization
dependencies. Each sequencing graph entity corresponds to a basic block in compiler jargon.

Data-flow analysis comprises several tasks, and it is used as a basis for behavioral optimization. It entails the
derivation of the variable life-times, i.e, the interval between their first definition (birth) and last reference (death).
Note that sequencing graphs do not model explicitly the fact that variables need storage during their lifetimes.
with a corresponding cost in terms of circuit implementation. When considering hardware models with imperative
semantics, multiple assignments to variable may occur. Variables preserve their values until the next assignment.
For hardware synthesis, it is often convenient 0 rename instances of variables, so that each instance has a single
assignment and, of course, to resolve the references appropriately. A scheme for variable renaming is presented in
reference [30].

3.2 Optimization techniques.

Behavioral optimization is a set of semantic-preserving transformations that minimize the amount of information
needed to specify the partial order of tasks. No knowledge about the circuit implementation style is required at this
stage. Behavioral optimization can implemented in different ways. It can be applied directly to the the parse trees.
or during the generation of the intermediate form, or even on the intermediate form itself, according to the differcnt
cases. For the sake of explanation, we consider here these transformations as applied Lo sequences of staicments.

Transformations for behavioral optimization of HDL models can be classified as data-flow and control-flow
oriented. The former group resembles most to the transformations applied in software compilers. They rely on
global data-flow analysis of the intermediate form.

3.2.1 Data-flow based transformations.

These transformations are dealt with in detail in most books on software compiler design [1] and {34]

Tree-height reduction. This transformation applies to the arithmeltic expression trees, and strives Lo achieve the
best-possible expression split into two-operand cxpressions, so that the parallelism available in hardware can be
exploited at best. It can be seen as a local transformation, applied 10 each compound arithmetic statement, or as
a global transformation, applied to all the compound arithmetic statcments in a basic block. Enough hardwarc
resources are postulated to exploit all the parallelism. If this is not the case, the gain of applying the transformation
is obviously reduced.

Example 3.1. Consider the following arithmetic assignment: z = a + b+ ¢+ d; that can be trivially split as:
r=a+b, z=1z+4c: r=z+d; Itrequires three additions in series. Alternatively, the féllowing split can be
done: p=a+b; ¢=c+d; z=p+yq; where the first two additions can be done in parallel if enough resources
are available (in this case, two adders). The second choice is better than the first one, because the corresponding

implementation cannot be inferior, for any possible resource availability. O

Constant and variable propagation. Constant propagation, also called constant folding, consists of detecting
constant operands and precomputing the value of the operation with that operand. Since the result may be again a
constant, then the new constant can be ‘propagatcd to those operations that use it as input.

Example 3.2, Consider the following fragment: a = 0; b=a+1; ¢ =2+b;. It can be replaced hy:
a=0, db=1; ¢=2,.0

Variable propagation, also called copy propagation, consists of detecting the copies of variables, i.e. the
assignments like z = y, and using the right-hand side in the following references in place of the lcft-hand side.
Data-flow analysis permits to identify the statements where the transformation can be done. In particular the
propagation of y cannot be done after a different reassignment to z. Variable propagation gives the opportunity to
remove then the copy assignment. Note that copy assignments may have been introduced by other ransformations.

Example 3.3. Consider the following fragment: a = z; b=a+1; ¢ = 2+ a;. It can be replaced by
a=1z; b=z+1, c=2sz; Sialement a = r; may then be removed by dead code elimination, il there are
no further references to a. O

Common subexpression elimination. The search for common logic subexpressions is best done by logic synthcsis
algorithms. The search for common arithmetic subexpressions relies in general on finding isomorphic patcrns in
the parse trees. This step is greatly simplified if the arithmetic expressions are reduced (0 two-inputl ones. Then.
this transformation consists of selecting a target arithmetic operation, and searching for a preceding onc of the same
type and with the same operands. Operator commulativity can be exploiled. Again, data-flow anatysis is uscd in
the search, to insure that in any matching expression the operands always take the same values. When a preceding
matching expression is found, then the target expression is replaced by a copy of the variable that is the result of
the preceding matching expression.

Example 34. Consider the following fragment: a = r+4+y; b=a+1; ¢= 1z +y;. It can be replaced
by: a=z+y; b=a+1; c=a; Note thal a variable copy has been introduced for variable «, Ihai can he
propagaled in the subsequent code. O

Dead code elimination. Dead code consists of all those operations that cannot be reached, or whosc result is never
referenced elsewhere. Such operations are detected by data-flow analysis and removed. Obvious cases are thosc
statements that would follow a procedure return stalement. Less obvious cases involve operations that just precede
a return statement and whose results arc not paramelers of the procedurc nor they affect any of its paramcters.

Example 3.5. Consider the following fragment: a = z; b==x+1; ¢ =24 z.. If variable o is no
referenced in the subsequent code, the first assignment can be removed. O

Operator strength reduction. Operator strength reduction means reducing the cost of implementing an opcralor
by using a simpler one. Even though in principle some notion of the hardware implementation is rcquired, very
often general considerations apply. For example, a multiplication by two (or by a power of two) can bhe replaced
by a shift. Shifters are always faster and smaller than multipliers in many implementations.

Example 3.6. Consider the following fragment: a = £3 b= 3+« r It can be replaced by
r<<]l; b=z+1¢. 0

10

Code motion. Code motion often applies to loop invariants, i.e. quantities that are computed insidc an iterative
construct but whose values do not change from iteration (o iteration. The goal is to avoid the repetitivc cvaluation
of the same expression.

Example 3.7. Consider the following iteration clause: for (i = 1;4 < a # b){ It can be transformed to:
t=as+b; for(i=Lig<t){ }.0O

.

3.2.2 Control-flow based transformations.

The following transformations are typical of hardware compilers. In some cases these transformations arc automated,
in others they are user-driven.

Model expansion. Writing structured models, by exploiting subroutines and functions, is useful for two main
reasons: modularity and re-usability. Modularity helps in highlighting a particular task (or set of tasks). Ofien.
calls to a model are done only once in a HDL model.

Model expansion consists in flattening locally the model call hierafchy. Therefore the called model disappears,
being swallowed by the calling one. A possible benefit is that the scope of some optimization techniques (at different
levels) is enlarged, yielding possibly a better final circuit. If the expanded model was called only once, there is no
negative counterpart. Nevertheless, in the case of multiple calls, a full expansion leads to an increasc in the size of
the intermediate code and o the probable loss of the possibility of hardware sharing.

Example 3.8. Consider the following fragment: z = a + b y = a=*b, z = foo(x.y) where
foo(p,g){t = ¢ —p; return(l);}. Then by expanding foo, we have: x =a+b, y=asbh; 2=4 - 0O

Conditional expansion. A conditional construct can be always transformed into a parallel construct with a test in
the end. Under some circumstances this transformation can increase the performance of the circuit. For example,
this happens when the conditional clause depends on some late-arriving signals. Unfortunately this transformation
precludes some possibilities for hardware sharing, because the operations in all bodies of the branching construct
have to be performed.

A special case applies to conditionals whose clauses and bodies are evaluation of logic functions. Then, the
conditional expansion is favorable because it allows us to expand the scope of logic optimization.

Example 3.9. Consider the following fragment: y = ab; if (¢) {xr =b+d;} else {r = bdi}. The
conditional statement can be flattened to: z = a(b + d) + a'bd and by some logic manipulation, the fragment can
be rewritten as: y = ab; z =y +d{a +5). O k

Loop expansion. Loop expansion, or unrolling, applies to iterative constructs with data-independent exit condi-
tions. The loop is replaced by as many instances of ils body as the number of operations. The benefit is again in
expanding the scope of other transformations. Needless to say, when the number of iterations is large. unrolling
may yield a large amount of code.

Example 3.10. Consider the following fragment: + = 0; for (i =131 <3i++ {x=r+n The
loop can be flattenedto: 2 =0; t=z+1;, z=7+4+2 z=1+3.0

Other transformations on loops are possible, such as moving the evaluation of the iterative clausc from the (op
to the bottom of the loop [54].

1n

Block-level transformations. Branching and itcrative constructs segment the intermediate code into basic blocks.
Such blocks correspond 1o the sequencing graph entities. Trickey studied the possibility of manipulating the sizc
of the blocks, by means of block-level transformations, that include block merging and expansions of conditionals
and loops. Even though he did not consider model expansion, the extension is straightforward. Hc assumed thal
operations in different blocks cannot overlap execution and that concurrency is limited only by the amount of
hardware resources available for parallel execution in each block.

Therefore, collapsing blocks may provide more parallelism and enhance the average performance. To find
the optimum number of expansions to be performed, he proposed five transformations, with rules Lo measure the
expected performance improvement. The rules can then be applied bottom-up in the hierarchy induced by the
control-flow hierarchy of the model. He proposed a linear-time dynamic programming algorithm, that returns an
optimum block-level structure. Unfortunately, the optimality is weakened by the assumptions on the model and on
the transformation rules. We refer the interested reader to reference [54] for further details.

4 Structural synthesis.

Structural synthesis is the creation of the macroscopic structure of a digital circuit. The starting point for structural
synthesis is a circuit behavioral view at the functional level, that can be fully captured by a sequencing graph. The
result of structural synthesis is a structural view, i.c. an interconnection of the major building blocks of a circuit.
In other words, structural synthesis transforms a partial order of operations into an interconnection ol opcrators and
a corresponding control circuit.

Structural synthesis may be performed in many ways, according o the assumptions on the hardware being
designed, the design style and the design goals. Thercfore a large varicty of problems, algorithms and tools have
been proposed, that fall under the umbrelta of structural synthesis. To be more specific, we address in this Scction
the synthesis problems for synchronous mono-phase digital hardware.

Even by focusing the structural synthesis task to one particular implementation style, the spectrum of solutions
is still very wide. Indeed, the designer’s goals in using a structural synthesis tool may be quite different. The major
ones are to preserve the specified behavior, while optimizing the performance or the arca of the implcmentation.
Some further clarifications are needed at this point. First, the area and performance can only be cstimated at this
stage, because only the macroscopic structure of the circuit is dealt with. Second, worst case bounds on arca
and on performance may be required. No maticr how fast a chip runs, its yield may drop abovc a certain size
and/or manufacturing may be unfeasible. Similarly, compact implementations that fall below a certain level of
performance may be irrelevant. Third, the circuit structure may be constrained to using some pre-specificd units
for some operations or o have auxiliary 1/O or test circuits in appropriate positions.

In general, the designer may be interested in exploring a set of trade-off points corresponding to arca/performance
estimates. The design space consists of all feasible structures that correspond to a given behavior. Structural
synthesis tools can be used to traverse the design space, by providing a designer with information about these
estimates. Alternatively, structural synthesis can compute one point of the design space corrcsponding o an
implementation that satisfies a particular optimality criterion.

We partition structural synthesis into two tasks. The former is the search for an optimal structurc in the design
space. Optimality can be defined according to differcnt criteria and possibly subject to constraints. The underlying
model is the sequencing graph model extended with annotations. The second task is to synthesize the data-path and
the control circuits corresponding to the chosen structure as interconnection of logic blocks.

12

le-time

Latency
™ ! (cycle-time =c)

T T Latenay
: Max
-y
x

—d

e
Figure 4: Sample points of the design evaluation space.

It is the goal of this Section to give an overview of the problems in structural synthesis and optimization. W¢
defer the detailed descriptions of the algorithms for scheduling, data-path synthesis (including resource hinding)
and control synthesis to Sections 5 6 and 7 respectively.

4.1 The design space.

Circuits are often graded in terms of their arca/performance trade-offs. The area consists of an estimatc of the olal
size. In the case of non-pipelined synchronous systems, performance is expressed in lerms of the cycle time (i.c.
the clock period) and the latency (i.c. the number of cycles to perform all the operations.) It may bc the case that
one of these (wo parameters is fixed (e.g. the cycle time matches the inverse of system operation frequency) and
the latter is derived as a function of the former. A third performance parameter is used in pipelined sysiem design:
the throughput. We defer the considerations on pipelined circuits until Section 8.

Informally speaking, the design space is the collection of all the feasible structures corresponding 10 a behavioral
model. Each structure is associated to a triple (area, latency, cycle-time) that characierizes the structure, The design
evaluation space is the ensemble of the corresponding triples, as shown in Figure 4.

13

Realistic design examples have shown that the design evaluation space is not a smooth surface. This is duc
to two reasons. First, the design space is a finite set of points, because the macroscopic structure of a circuit has
a coarse grain. For example, a hypothetical circuit may have one or two multipliers, and its area would jump in
correspondence of this choice. Second, there are several non-linear effects that are compounded in dctermining the
area, latency and cycle-time as a function of the structure of the circuit.

The goal of structural optimization is to minimize one or more of the entries in the triple, under possibly some
bounds on the remaining ones. Therefore, structural synthesis involves a constrained multi-criteria optimization
problem. Due to the lack of compactness of the design space and of smoothness of the design evaluation space, the
solution methods are fairly involved and rely on a combination of techniques that solve some related sub-problems.

4.2 Resources and constraints.

Hardware behavior is described by the set of the operations, their relations and by the inner models of the operations
themselves. The operations and their relations can be rcpresented by a sequencing graph, that captures the operations
and their partial order.

The operations are preformed in hardware by operators, called resources. Resource models are also required by
structural synthesis. It is important to remark that a circuit constructed by structural synthesis does not contain only
resources. Indeed, it comprises also steering logic circuits, (e.g. multiplexers and busses), to send the data o the
appropriate resources at the appropriate time, registers 10 hold data across cycle boundaries, and control circuits (o
sequence and synchronize the operations.

Constraints are also an integral part of the hardware model. Timing constraints, such as operation serialization
and bounds on the separation between two operations can be seen as pant of the required behavior. They can
be described as additional relations added to the sequencing graph models. Other constraints, such as arca or
performance bounds, can be seen as frontiers that dclimit the design space. They are not part of the hardware
behavior, but they are part of the hardware specifications.

4.2.1 Resources.

Hardware resources are the circuits that implement the operations, corresponding to the vertices. A classification
of the resources can be done according to the type of operations. Namely:

o Functional resources yield a result as a function of some input data. Examples are arithmetic operators (c.g
adders, multipliers, ...), combinational and sequential logic functions.

e Memory resources store data. Examples are registers, read-only and read-write memory arrays.

e Interface resources support internal communication (e.g. busses) and external input/output functions, tha
allow the circuit to communicate with the external environment.

In addition, when considering hierarchical sequencing graph models, complex vertices may represent calls 1o other
sequencing models. These models themselves, once synthesized in hardware, can be seen as combinational or
sequential logic functions and treated as functional resources.

Functional resources represent the widest class of hardware operators. Indeed, there are as many kinds of
these resources as there are many ways of implementing operations in hardware. Most algorithms for structural
optimization exploit different choices and combinations of functional resources in the traversal of the design space.

14

Memory resources include registers and memory arrays, whose access can easily be modeled as transfer of data
across circuit ports. Therefore an ofien used paradigm for memory resources is not to describe them cxplicitly in
the sequencing graph model but assume that their usage is implied by the behavioral model.

Interface resources include busses, that may be used as a major means of communication insidc a data-path.
External I/O resources are in general standard circuits, and access to them can also be modeled as transfer of data
across circuit ports.

We say that a circuit is resource-dominated if the total area and delay depend mainly upon the arca and delay
of the resources. This is the case of most DSP circuits, that employ several standard resources, such as arithmetic
units. Conversely, the parameters of ASIC circuits depend often on control and on application-specific logic units.
Structural synthesis of resource-dominated circuits benefits from simpler estimation methods.

4.2.2 Constraints.

Constraints in structural synthesis can be classified into two major groups: interface constraints and implementation
constraints. Interface constraints are part of the hardware behavior. To understand the reason for this, we must
view the circuit interface as a partition boundary between the behavior and the environment. This partition forces
some implementation choices (o be dictated by the environment, such as the size and the timing of the data transfer.
The size of the data being transferred is related to the number of 1/O pins of the chip. It is a hardware constraint
that is generally related to the size of the port variables of the model. The timing of the data being transferred can
be specified by means of detailed timing constraints, that specify the minimum and or maximum dclay between
any pair of operations, and in particular 1/O operations. Detailed timing constraints are described in Section 5.1.2
as well as the algorithms to validate their consistency and to enforce them.

Implementation constraints reflect the desire of the designer to achicve a structure with some propertics. Ex-
amples are area constraints and performance constraints, in terms of the cycle time (i.e. the clock period) and the
latency (i.e. the number of cycles to perform all the operations.)

A different type of implementation constraints is the resource mapping constraint. In this casc, a particular
operation is constrained to be implemented by a given resource. These constraints are motivated by the designer’s
previous knowledge, or intuition, that one particular choice is the best and that other choices do not nced investiga-
tion. Structural synthesis with resource mapping constraints is often refcrred to as synthesis from partial structurce
[26]. Design systems that support such a feature allow a designer Lo specify a system in a wide spectrum of ways.
ranging from a full behavioral model to a structural one. This modeling capability may be uscful to leverage
previously designed components.

A common overall goal in structural synthesis is 10 maximize the circuit performance (e.g. minimizc laency
and/or cycle-times) under area constraints. Area estimation may be very complex, because it involves the compu-
tation of the resource usage, the steering and control logic usage, the register count and the wiring. Arca and delay
estimation are dealt with in Section 4.4.

Often the area is approximated by the functional resource usage. This approximation is justificd in the casc
of resource dominated circuits, because of the reasons outlined above. It is far less justified for other kinds of
circuits, including ASICs. Since structural synthesis techniques were investigated first on computational systems.
the approximation is very common.

As a result, the problem of optimizing the performance under resource constraints has received a large atiention.
For general circuits, it is a heuristic approach to solve the corresponding area-constrained problem. Therefore, the
maximum number of resource instances of a given Lype is often specificd as part of the constraints. Synthesizing

15

TIME 4 Ei iij/?

Figure 5: Scheduled sequencing graph.

a structure under varying resource bounds can be seen as a way of determining a set of points of interest of the
design space.

4.3 Scheduling and binding.

We assume that the structural synthesis problems can be formulated by using a hardware model in lcrms of:
e A (possibly hierarchical) sequencing graph.
o A set of functional resources, fully characterized in terms of area and execution delays.

o A set of constraints.

Structural synthesis consists first of placing the operations in time and in space, i.e. determining the time intcrval
for their execution and their mapping to the resources. Second, structural synthesis constructs the data-path and
control circuits. We show now that the first task is equivalent to annotating the sequencing graph with additional
information. For the sake of simplicity, we assume first non-hierarchical sequencing graph modcls with bounded
delays. The extension to hierarchical models is straightforward.

Scheduling is the task of associating a start time o each operation of the model.

Let the execution delays of the operations, i.c. the number of cycles needed for execution, bc denoted by the
set DE = {d; ; i=0,1,...,N}. A schedule of a sequencing graph is a function ¢ : VV — Z*, where (1) = 1/,
denotes the operation start time such that t; > ¢; + d; V i, s.t. (vj.v;) € E. A scheduled sequencing graph is
a vertex weighted sequencing graph, where each veriex is labeled by its start time. When timing constraints arc
specified, then the schedule must be consistent with them (See Section 5.1.2) .

Example 4.1. Consider the a sequencing graph of Figure 1. A scheduled sequencing graph is shown in
Figure 5. All vertices have a start time corresponding to the index of the band that includes them. O

16

Let us consider now the relations among the operations and the resources. We define fype of an operation
the type of computation it performs. It may be an arithmetic operation, such as addition or multiplication, or an
application-specific operation. More formally we define the type as a function 7 : V — Y, where V' is a set of
enumerated types, such as {add, multiply, divide}.

We can extend the notion of type to the functional resources. We call resource-type set the set of resource typces.
An operation can be matched to a resource when their type is the same. Obviously, a feasible implementation requires
that there are resources for all the types of operations in the specification. Therefore, without loss of gencrality, we
can identify the resource-type set with the set Y. In the sequel, we identify this set with its enumeration, i.c. we
set Y = {1,2,...,n,.,}, where n,., = |Y|. It is obvious that No-Operations do not require any binding to any
resource. Therefore, when referring to a binding, we consider the set of vertices excluding the source and sink. i.c.
V={visi=1,2,...,n0p,}.

It is interesting to note that there may be more than one operation with the same type. In this case, resource
sharing may be applied. Similarly there may be more than one resource with the same type (¢.g a ripplc-carry and
a carry-look-ahead adder). In this case, a resource selection (or module selection) problem arises.

A fundamental concept that relates operations to resources is binding. It specifies which resourcc lmpleman\
an operation. A resource binding is a mapping 3 : V — Y x Z%, where f(v;) = (t, j) denotes that the operation
corresponding to v; € V, with type 7 (v;) = t, is implemented by the j'* instance of resource type / € Y for cach
i=1,2,...,0p,.

A simple case of a binding is that of using dedicated resources. In this case, each operation is bound to one
resource, and the resource binding 3 is a one-to-one function.

Example 4.2. Consider the scheduled sequencing graph of Figure 5. There are 11 operation. Assume that
11 resources are available. In addition, assume thal the resource types are {multiplier, ALU}, where the ALI’
can perform addition, subtraction and comparisons. We label the multiplier as type 1, the ALU as 1ype 2. We
need 6 instances of the multiplier type and 5 instances of the ALU type. Then B(vi) = (1,1), A(v2) = {1.2).
B(vs) = (1,3) andsoon. O

A resource binding may associate one instance of a resource-type to more than one operation. In this casc, that
particular resource is shared. A necessary condition for a resource binding to produce a valid circuit implemcentation
is that the operations corresponding to shared resource do not execute concurrently.

Example 4.3. Itis obvious that the resource usage of the previous example is not efficient. Indeed only four
multipliers and two ALU are required by the scheduled sequencing graph of Figure 5. This is shown in Figure 6.
Now B(»1) = (1,1), B(v2) = (1,2), B(v3) = (1,2) and so on. O

When binding constraints are specified, a resource binding must be compatible with them. In particular, a
partial binding may be part of the original specification. This corresponds to specifying a binding for a subsct of the
operations U C V . A resource binding is compatible with a partial binding when its restriction to the operations
U is identical to the partial binding itself.

Bounds on the maximum usage of a resource are often specified. We denote by {a; ; i = 1.2...., 1.} the
maximum usage of each resource type. These bounds represent the allocation ! of instances for each resource type.

1The term allocation has often been misused in the literature. Some authors refer 1o binding as allocation. We prefer 10 use the 1eon
*resource bounds’ and 'binding’ in this chapter, and we shall not usc the term "allocation’ at all.

TIMx 3

Figure 6: Scheduled sequencing graph with resource binding.

A resource binding is compatible with resource bounds when B(v;) = (t,j) satisfies j < «, for cach operation
vi; 1=1,2,...,n5,.

A scheduled and bound sequencing graph is a feasible structure when it satisfies all the constraints that arc
specified. We can now formalize the concept of the design space, by defining it as the collection of all feasible
structures. Each feasible structure can be labeled with area and latency estimates using the criteria shown in Section
4.4. The former can be approximated by the sum of the areas of all the bound instances of each resource type. The
latter can be computed as the start time of the sink vertex, i.e. ¢n, which corresponds to the length of the schedule.

It is important to remark that the present formulation characterizes the design space in terms of arca and latency.
but it is also a function of the cycle-time parameter. Indeed the dependency on the cycle-time is duc 10 the
computation of the execution delays. By considering different values of the cycle-time, the corresponding execution
delay vary and so do the corresponding feasible structures.

4.4 Estimation.

Accurate area and delay estimation is not a simplc task. Much of the complexity of the structural synthcsis problems
is due to the difficulty of estimating the impact of a high-level decision on the structure of a circuit on the final
arca and performance.

Let us consider first resource-dominated circuits. A simple model is to assume that the area and the delay of the
resource dominate, so that other factors can be neglected. This is a valid assumption in the case of DSP circuits.

The area estimate of a structure is the sum of the areas of the bound resource instances. Equivaicnlly, the total
area is a weighted sum of the resource usage. A binding specifies fully the total area, but it is not nccessary o
know the binding 10 determine the area. Indeed, it is just sufficient to know how many instances of cach resource
are used.

The latency of a circuit can be determined by its schedule. It is the start time ¢t 5 of the sink operation. In
the case that no constraints on the resource usage are imposed, then the latency can be derived directly from the

18

sequencing graph by computing the length of the longest weighted path.
Let us consider now general circuits, and let us consider in more detail the area and delay estimation probicm.

Registers. All data that is transferred from a resource to another across a cycle boundary must be stored into some
register. An upper bound on the register usage can then be derived by examining a scheduled sequencing graph.
This bound is in general loose, because the number of registers can be minimized, as shown in Scction 6.4. The
binding information is needed for evaluating and/or performing the register optimization. Therefore. the accuraic
estimation of the number of registers requires both scheduling and binding,

The effect of registers on the evaluation of the cycle-time is easy to compute. In fact, their set up and propagation
delay times must be added to the propagation delays of the combinational logic. It is more efficient to consider a
reduced cycle-time in all the computations, that already discounts set up and propagation delays.

Steering logic. Steering logic affects the area and the propagation delay. While the area of multiplexcrs can
be easily evaluated, their number requires the knowledge of the binding. Similarly, multiplexers add propagation
delays to the resources, and the overall propagation delay must not exceed the cycle-time times the exccution delay.
Busses can also be used to steer data. In this case appropriate models should be used.

Wiring. Wiring contributes to the area and to the delays. The wiring area overhead can be cstimated from
the structure, once a binding is known, by using models that are appropriate of the physical design style of the
implementation. The wiring delays are crucial. As in the case of steering logic, they add propagation delays
and we must insure that the overall propagation delay is bounded. Unfortunately, estimating thc wiring requires
the knowledge of the structure (i.. the binding) as well as the placement of the physical implementation of the
resources. Fast floor-planners have been used. Alternatively, statistical wiring models have been used. In this casc,
it has been shown that the average interconnection length is proportional to the total number of blocks o the o
power, where 0 < a < 1. The wiring delay and area track with the average interconnection length. We refer the
interested reader to reference {47] for a detailed analysis of the wiring area and delay estimation.

Control logic. The control circuit contributes to the overall area and delay, because some control signals can be parl
of the critical path. Recently, the interest in synthesizing control-dominated circuits, such as some communication
ASICs, has exposed the importance and difficulty of the problem. Simple models for estimating the size of the
control circuit can be based on the latency. Consider bounded-latency non-hierarchical sequencing graphs. Rcad-only
memory based implementations of the control units require an address space wide enough 0 accommodate all control
steps and a word-length commensurate to the number of resources being controlled. Hard-wired implementations
can be modeled by finite-state machines with as many states as the latency. Unfortnately, these models may
provide loose bounds, because many optimization techniques can be applied (o the controller, such as word-length
reduction by encoding and state encoding. In addition, general models for sequencing graphs require more complex
contro] units, as shown in Section 7, and estimating accurately the area and extracting the critical sub-path in the
controller is a difficult task.

19

5 Scheduling.

Scheduling is a very important task in high-level synthesis. Whereas a sequencing graph denotes the partial order
of the operations to be performed, the scheduling of a sequencing graph determines the detailed starting time for
each operation. As a result, the degree of concurrency of the operations is determined by the scheduling task.

The start time of the operations must satisfy the original dependencies of the sequencing graph. These depen-
dencies limit the amount of parallelism of the operations, because any pair of operations related by a sequential
dependency (or a chain of dependencies) may not execute concurrently. As a limiting case, a scheduled sequencing
graph may be such that the operations are fully serialized with respect 1o each other.

Scheduling a sequencing graph determines the concurrency of the resulting design, and therefore it affects its
performance. By the same token, the maximum number of concurrent operations of a given type during the entirc
schedule is a lower bound on the number of required hardware resources for that operation. Thercfore the choice
of a schedule affects also the area of the implementation.

The number of resources of a given type may be constrained from above, to satisfy some requircments related
to the physical design. For example, a circuit with a prescribed size may have at most one floating point muiti-
plier/divider. When resource constraints are imposed, the number of operations of a given type that can overlap in
time is limited by the number of resources of that type. Therefore tight bounds on the resources correlate 1o seri-
alized implementations. A spectrum of solutions may be obtained by scheduling a sequencing graph with diffcrem
constraints. This is indicative of the possible area-performance trade-off points in the design spacc.

We consider first sequencing graphs that are not hierarchical. We analyze the scheduling problem without
resource constraints in Section 5.1 and with resource constraints in Section 5.2. We consider then cxiensions 10 the
model in Section 5.3. We assume that execution delays are known, i.e. that all operations have data-independent
delays. Exceptions are described in Section 5.1.3.

5.1 Scheduling without resource constraints.

We consider here scheduling with no resource constraints. Let us denote by T = {t; ; i = 0,1,.... N} the start
time for the operations, i.e. a set of integer numbers denoting the cycle in which a particular operation starts. The
latency of the schedule is the number of steps to exccute the entire schedule, or equivalently the start time of the
sink Z5. An unconstrained schedule is a set of values of the start times T, that satisfies the sequencing relations

relations, ie. t; > t;+d; Vi,j st (vj,v;) € E. The minimum latency unconstrained scheduling problem can
be defined as follows.

Definition 5.1 Given a set of operations V with integer delays DE and a partial order on the operations . find
an integer labeling of the operations ¢ : V — Z*, such thatt; = ¢(v;), t; 2t +d; Vi jsit (vjv;) € and
ty is minimum.

The unconstrained scheduling problem can be solved in polynomial time. Before considering the algorithms for
its solution, we would like to comment on the relevance of the problem.

It is obvious that the problem is important when the number of resources of a given type affects only marginally
the overall quality of the solution. An example is the case in which the area cost of the resources is small comparcd
to the overhead of wiring and multiplexing the data to the resources being shared. In this case, the usc of dedicatced
resources is preferred. A similar situation is when the operations require resources of different Lypes, so that there
is just a resource for each operation.

Unconstrained scheduling is also used when the decision on resource sharing and their binding (o operations is
done prior to scheduling. In this case, the area cost of an implementation is defined before and independently from
the scheduling step. Eventually unconstrained scheduling can be used to derive bounds on latency for constrained
problems. By relaxing the resource constraints, a lower bound can be computed, because the minimum latency of
a schedule under some resource constraint is obviously at least as large as the latency computed with unlimited
resources. Conversely, by assuming dedicated resources, an upper bound can be computed. These bounds arc uscful
in simplifying the solution of the constrained problem.

5.1.1 The ASAP and ALAP scheduling algorithms.

We consider here the minimum latency scheduling problem. This problem can be solved in polynomial time

by topologically sorting the vertices of the sequencing graph. This approach has been called As Soon As Possible
(ASAP) scheduling algorithm, because the start time for each operation is the minimum allowed by the dependencics.
The algorithm can be summarized by the following program:

ASAP (G(V,E))
{
Schedule vp by setting to = 0;
repeat {
Select a vertex v; whose predecessors are all scheduled,;
Schedule v; by setting ¢; = max t; +dj;
jstvjiv,;)EE
}

until (v is scheduled)

The computational complexity of the algorithm is O(|E}).

We consider now the case in which a schedule must satisfy an upper bound on the latency, denoted by A, The
problem may be solved by executing the ASAP scheduling algorithm and verifying that t y < A.

If a schedule exists that satisfies the latency bound J, it is possible then to explore the range ol values of the
start times of the operations that meet the bound. The ASAP scheduling algorithm yields the minimum values of

the start times. A complementary algorithm, the As Late As Possible (ALAP) scheduling algorithm provides the
corresponding maximum values. Here is a description of the algorithm.

ALAP(G(V,E),)
{
Schedule vy by setting ty = A;
repeat {
Select vertex v; whose successors are all scheduled;

Schedule v; by setting t; = min 1 —d;;
jat(viv;)EE

until (vy is scheduled) ;

21

TIME 1

.: 1 -
§ i Y
3 6 % Ay
TIME 2 1 Y
i K
} %

T Hh 55

hhh

Figure 7: ALAP Schedule under a latency constraints of four steps.

}

The computational complexity of the algorithm is O(|E}).

The ALAP scheduling algorithm is also used for unconstrained scheduling. In this case, the latency bound A
is chosen to be the length of the schedule computed by the ASAP algorithm, i.e. A = {n5. An important quantity
used by some scheduling algorithm is the mobility of an operation, denoted by 4 ;, corresponding 0 the dilfcrence
of the start times computed by the ALAP and ASAP algorithms. Zero mobility implies that an operation can be
started only at one given time step in order to meet the overall latency consiraint. When the mobility is larger than
zero, then it measures the span of the time interval in which it may be started.

Example 5.1. An example of ASAP schedule is shown in Figure 5 for the sequencing graph of Figure 1. An
example of ALAP schedule is given in Figure 7, under the assumption that the schedule should satisfy a latcncy
bound of four steps. By comparing the two schedule, it is possible 1o deduce that the mobility of operations |
through 5 is zero, i.e. they are on the critical path. The mobility of operations 6 and 7 is one, while the mohility
of the remaining ones is two. O

The ASAP and ALAP algorithms are often used to derive bounds for resource constrained scheduling. In this
case, the ASAP algorithm can be used to derive lower bounds on the start time of operations (by relaxing the
resource constraints) and an upper bound ¢y on the latency (by assuming dedicated resources). Upper bounds on
the start times of the operations can be computed by the ALAP algorithm with A =t n.

5.1.2 Scheduling under relative timing constraints,

We consider in this Section relative timing constraints, that bind the lime separation between opcrations pairs.
regardless of their absolute value. Such constraints are very useful in hardware modeling, becausc the absolulc
schedule is not known a priori. Minimum timing constraints between any two operations can be used to insure
that an operation follows another by at least a prescribcd number of time steps, regardless of the cxistence of a

22

dependency between them. It is often also important to limit the maximum distance in time between (wo opcrations
by means of maximum timing constraints. The combination of maximum timing constraints with the minimum
timing constraint permits us 0 specify the exact distance in time between two operations and, as a special casc.
their simultaneity. For example, consider a circuit with two independent streams of operations, thal arc constrained
to communicate simultaneously to the external circuits by providing two pieces of data at two interfaces. The cycle
in which the data are made available is irrelevant although the simultaneity of the operations is important. This
requirement can be captured by setting a minimum and a maximum timing constraint of zero cycles between the
two write operations.
We define more formally the timing constraints as follows:

e A minimum timing constraint [;; > 0 implies that: t; > t; + &;
A maximum timing constraint u;; > 0 implies that: ¢; < ¢; + u;;

A schedule under timing constraints is a set of start times for the operations satisfying the requircments stated
in Definitions 5.1 and 5.3, and in addition:)

2t +h; VY
L <t +u; Vug; 2)

A consistent modeling of minimum and maximum timing constraints can be done by means of a constraint
graph G.(V., E.) , that is an edge-weighted directed graph derived from the sequencing graph as follows. The
constraint graph G.(V., E.) has the same vertex set as G(V, E) and its edge set includes the edge set /2. Such
edges are weighted by the the delay of the operation corresponding to their tail. The weight on the cdge (v;. v;) is
denoted by w;;. Additional edges are related to the timing constraints. For every minimum timing constraint /;,,
we add a forward edge (v;, v;) in the constraint graph with weight equal to the minimum value w';; = l;; > 0. For
every maximum liming constraint u;;, we add a backward edge (v;, v;) in the constraint graph with weight equal
to the negative of the maximum value w;; = —u;; < 0, because t; < t; + u;; implies {; > 1; — ;. Note that
the overall latency constraint can be modeled as a maximum timing constraint ug x between the source and sink
vertices.

Example 5.2. Consider the example in Figure 8. A minimum timing consiraint requires operation r4 t0 take
place at least los = 3 cycles after operation vo has started. A maximum timing constraint requires operation v3 o

take place at most u3 = 3 cycles after operation v has started. Note that the constraint graph has a hackward
edge with negative weight (e.g. —3). O

The presence of maximum timing constraints may prevent the existence of a consistent schedule, as in the casce
of the latency constraint. In particular, the requirement of an upper bound on the time distance beiween the start
time of two operations may be inconsistent with the time required to execute the first operation, plus possibly the
time required by any sequence of operations in between. Similarly, minimum timing constraints may also conflict
with maximum timing constraint.

A criterion to determine the existence of a schedule is to consider in tum each maximum timing constraint
u;;. The longest weighted path in the constraint graph between v; and v; (that determines the minimum separation
in time between operations v; and v;) must be less than or equal to the maximum timing constraint u;;. As a

23

0
O]
..s‘ ..“.
S 2 [IME
3
MAX
TIME
3 4
O

s
o
&
K
" N N

Figure 8: Example of a constraint graph, with a minimum and a maximum timing constraint. The number inside a
vertex represents its execution delay.

consequence, any cycle in the constraint graph going through (v, v;) must have negative or zero weight. Thereforc,
a necessary condition for the existence of the schedule is that the constraint graph does not have strictly positive
cycles. We state without proof that the condition is also sufficient [30].

The existence of a schedule under timing constraints can be checked using the Bellman-Ford algorithm. It is
often the case that the maximum timing constraints are fewer compared to the number of edges in the constraint
graph. Then, relaxation-based algorithms like Liao-Wong’s {36] can be more efficient. When a schedule exists, thc
length of the longest path from the source to a vertex is also the minimum start time. Thus the Bellman-Ford or
the Liao-Wong algorithms provide also the schedule.

Example 5.3. A schedule for the constraint graph of the previous example, satisfying timing constraints,
given by the following table.

“ Vertex " Start time "

v 0
n 0
) 0
v3 2
vs 3
UN 8

o

5.1.3 Relative scheduling.

We extend the notion of scheduling to the case of operations with unbounded delays. Such operations may modcl
synchronization primitives, or data-dependent operations, such as the computation of the quotient of two numbers
using iterative methods. While their execution delay is unknown, we assume that a completion signal is issucd
when the operation has finished its execution. The scheduling problem can be still modeled by a scquencing graph

24

......

Figure 9: Example of a sequencing graph, with a synchronization operation with unknown dclay.

G(V, E) , where a subset of the vertices has unspecified execution delay. Such vertices, as well as the source
vertex, provide a frame of reference for determining the start time of the operations.

Definition 5.2 The anchors of a consiraint graph G(V, E) consist of the source vertex vg and all vertices with
unbounded delay, and are denoted by A C V.

The start time of the operations cannot be determined on an absolute scale in this case. Nevertheless the start
time of the operations can be computed as a function of the completion signals of the anchors and of the schedule
of the operations relative to the anchors.

Example 5.4, Consider the sequencing graph of Figure 9. There are three operations with known delay
v, v2, v3 and one synchronization operation, denoted by a. Let us assume that the execution delay of a multiply
operation is 2 and of an addition is 1. The start times in the graph depend on the start time of the source vertex
to and on the completion signal of the synchronization operation. Such a signal arrives at time 1 , + d,, where /,
is the time at which the synchronizer is activated and d, is the unknown synchronization delay. The start limes of
v; and v2 can be computed with reference to to. Namely, v, can start at o and v can start at o + 2. The third
operation can start no earlier than the synchronization signal at time ¢, + d, and no earlier than 1o + 2. i.c. its
start time is maz{lo + 2;ta +da}. O

We summarize here the computation of the start times by means of the relative scheduling approach. We refer
the interested reader to reference [30] for details. The anchors capture the unknown factors that affect the activation
time of an operation. If we generalize the definition of the start time of a vertex in terms of partial schedules relative
to the completion time of each anchor then it is possible to completely characterize the temporal relationships among
the operations. In particular, let t? be the schedule of operation v; with respect to anchor ¢, compulcd by taking

25

the subgraph induced by the successors of a, assuming that a is the source of the graph and that all anchors have
zero execution delay. Let d, be the unbounded unknown execution delay of anchor a. The start time of a vericx
v; is computed recursively as follows:

t =gw€a;{ta+d.,+t?} (3)

In practice, a subset of the anchors A, called relevant anchor set is sufficient to determine the start time (30].
Note that if there are no operations with unbounded delays, then the start times of all operations will be specificd
in terms of time offsets from the source vertex, which reduces to the traditional scheduling formulation.

A relative schedule is a collection of schedules with respect to each anchor, or equivalently a set of offsets with
respect to the relevant anchors for each vertex. From a practical point of view, the start times of Eq. 3 cannot be
computed. However, the offset values and the anchor completion signals are sufficient to construct a control circuit
that activates the operations at the appropriate times.

Relative scheduling can be performed under timing constraints. The constraint graph formulation still applies
although the weights on the edges whose tails are anchors are unknown. Also in this case a schedulc may or may
not exist under timing constraint. It is important to be able to assess the existence of a schedule for any value of
the unbounded delays, because these values are not known when the schedule is computed. We call a sequencing
graph well-posed when it has this important property. Relative scheduling can be applied to well-posed graphs, 10
determine the start times of the operations. An important issue, is the verification of the well-poscdness propery.
Related algorithms are reported in reference [30].

5.2 Scheduling with resource constraints.

Scheduling under resource constraints is an important and difficult problem o solve. Resource constraints sicm
from the fact that they give a rough measure of the area utilization, for some applications. Consider for cxample
DSP filters, that use extensively bit-parallel addition and multiplication. The overall area of the implementation is
affected mainly by the number of resources. Therefore, a maximum number of adders and of muliipliers can be
required to insure physical feasibility of the implementation or as a way of determining an area-pcrformance trade-
off point in the design space. Ideally, the entire design space can be characterized by solving the scheduling problem
under different resource constraints. In practice two difficulties arise. First, the resource-constrained scheduling
problem is intractable, and only near-optimal solutions can be found for problems of reasonable size. Second, the
area-performance trade-off points are affected by other quantities, related to the area and delay of multiplexers. the
length of the wires and the number of registers.

A resource-constrained scheduling problem is one such that the number of resources of any given type arc
bounded from above by a set of integers {a;;k = 1,2,...,n,.,}. Therefore the operations are scheduled in such
a way that the number of executing operations of a given type in every schedule steps does not exceed the bound.
The minimum latency resource-constrained scheduling problem can be defined as follows.

Definition 5.3 Given a set of operations V with integer delays DE, a partial order on the operations I., and upper
bounds {ar;k = 1,2,...,n,c,}. find an integer labeling of the operations ¢ : V — Z* such that 1; = p(r;).
ti > t;+d; Vijst (vi,v) € E, {ulT(vi) = k and t; < j < t; + di}| < ax for each operation-type
k=1,2,...,n.e and schedule step j, and ty is minimum.

When all the resources are of a given type (e.g. ALUSs), then the problem reduces to the classical multiprocessor
scheduling problem. The minimum latency multiprocessor scheduling problem is intractable.

§.2.1 The Integer Linear Programming model.

A formal model of the scheduling problem under resource constraints can be achieved by using binary decision
variables with two indices: X = {zi;i=1,2,...,N;l=1,2,...,L}. The number L represents an upper bound
on the latency, because the schedule latency is unknown. The bound can be computed by using a fast heuristic
scheduling algorithm, such as a list scheduling algorithm (Section 5.2.2). In the sequel, we denote the summations
over all operations as 3 (instead of 3"1v,) and those over all schedule steps as Y, (instead of 3~ L) for the sake
of simplicity.

The binary variable, z;;, is TRUE (i.e. 1) only when operation v; starts in step [of the schedule, ie. [= ;.
Equivalently, we can write z,;; = §(¢;, 1), where &(p, q) is the Kronecker delta notation. Therefore the start time of
operation v; can be stated in terms of z;; as: t; = 3, { - zq.

The following model expresses the constraints on the schedule in terms of the binary variables. First, operations
start only once:

Sz =1 i=12...N “
1

Second, the sequencing relations represented by G(V, E') must be satisfied. Therefore, t; > t;+d; Vi, j x14r
E implies:)

Zl-zn > Zl-zﬂ-l-dj i j= l_,2,...,N si(vj,y;)€EFE (5)
) f '

Third, the resource bounds must be met at every schedule time step. An operation v; is execuling at timc step
j when Ef:,'.. di+1Zit = 1. Therefore the number of all the operations executing at step j of type & must he
lower than or equal to the bound a;. Namely:

Jj
> Y zasa k=120 j=01,.tx (6)
$ 3.1.T(vi)=k I=j-di+1

Let us denote by ¢ the vector whose entries are the start times. Then, the minimum latency scheduling problem
under resource constraints can be stated as follows:

min ||t}] such that

Sza = 1i=12.. N Lo
i
Zl-zn—zl-zj:-—dj > 0i4,;=12 N s.t.(vj,v;)eE 4
1 1
J
Z z: £ < ax k= 2, Nyoss j=0.l,.. IN N

ist.T(vi)=k I=j-—d;41

The choice of the norm of vector ¢ to be minimized relates to slightly different goals. The infinity norm
corresponds to0 minimize the maximum entry of ¢, i.e. i{nx. Therefore the objective function to minimize is:

27

3_;1-z 1. The first order norm corresponds to minimizing the sum of the entries in ¢, i.e. finding the earliest start
times such that the constraint equations are satisfied. This is equivalent to minimize) ;> ,/ - x;;. Note that both
cases correspond to minimizing a weighted sum of the variables X

It is interesting to remark that detailed timing constraints can be incorporated in the model by adding the
corresponding constraints equation in terms of t; = Y, [- zy;.

From a practical point of view, it is possible to focus on the interesting values of z ;. Indeed, the ASAP and
ALAP algorithms give bounds for the start time of any operation, say v;, as mentioned earlier. Let {; be the
start time for v; computed by the ASAP algorithm and ¢! the one computed by the ALAP algorithm. Then »; is
necessarily zero for [< t and | > t}. Therefore the summations with argument z;; can be restricted to Z;L,:.

Example 5.5. Let us consider again the sequencing graph of Figure 1. We assume that there are two types
of resources: a multiplier and an ALU that performs addition/subtraction and comparison. Both resources execute
in one cycle. We also assume that the upper bounds on the number of both resources is 2; i.e. ¢y = 2 and a3 = 2.

The full set of constraints for solving the minimum latency problem can be derived in a straightforward way.
Instead, we would like to show how a simplified set of constraints can be derived, that fully characterizes the start
times in a minimum latency solution.

By using a heuristic algorithm we find an upper bound on the latency of 4 steps. By executing the ASAP and
ALAP algorithm on the unconstrained model, we can derive bounds on the start times. Note that the schedule of
the ALAP algorithm, shown in Figure S, already shows that the constrained schedule of 4 steps is an oplimum
one.)

Let us consider the constraints in this situation. First, all operations must start only once.

mn

ra

rn

Te

!
-t

Ts4

6 + Te2

4

m+rn

f

5+t + I8

I + T93 + T4 W
z101 + Z102 + Z103 =
Tna2+rn3zt+zne =

TN

Note that the last constraint implies that the start time of the sink vertex is 4, i.e. the overall latency is 4

We consider then the constraints based on sequencing. Namely

za+2zq —2zn—3xn+1 < O

Ty + 220+ 3203 — 2z ~ 3zn —4za+1 < O

z101 + 27102 + 32103 — 2rn2 -3z -4rne+1 < 0
4rs4—-4zny < O

225 + 3z93 + 4794 — 4T N4

IA A
o

2zn2+3zus— 44— 4T N

Finally we consider the resource constraints:

sn+znt+zatn < 2
tn+retrnte < 2
n+ze < 2

zi00 < 2

T+ Tw2+2Inz < 2

T+ 2+ T032+2u3 < 2
zsa + T2+ 2ne <2

Any set of start times satisfying these constraints is valid. For the sake of illustration, let us assume now that the
heuristic algorithm would have given us a bound on the latency of 5 steps. We want to find out if the bound is
tight. In this case, the larger mobility of the operations would lead to a larger set of constraints. We leave as an
exercise to the reader to derive the constraints equation. We just remark that the uniqueness constraint on the start
time of the sink vertex would be z v+ + s = 1 and the objective function would be min (4. x x4 + 5 rns).
Therefore, assuming that all the new constraint equations are satisfied, the optimum solution would imply » x4 = 1
and z ys = 0, i.e. a schedule of four steps. O

So far we have considered the minimum-latency scheduling problem under resource constraints. The dual
problem is the minimwn-resource scheduling under latency consirainis, that can be formalized as follows:

min ||g|| such that
Z.‘L‘” = 1 i=l,2,...,N
1

S w3 teu-di 2 04,j=12...,Nast(v,w)eEE
1 i

Slizi; < A j=0, ..t
i

where the last constraint equation bounds the latency instead of the resource usage.
Note the choice of the norm of veclor g to be minimized relates again 10 slightly different goals, for example
the sum of the resources. A slightly different formulation may incorporate weights for the resources.

Example 5.6. Let us consider again the sequencing graph of Figure 1, with the assumptions used in the
previous example. Let us assume that the multiplier costs five times as much as an ALU in terms of arca. We
assume that an upper bound on the latency is A = 4.

The uniqueness constraints on the start time of the operations and the sequency dependency constraints arc the
same of the previous example. The resource constraints are in terms of the unknown variables @ | and a;.

mt+rntzatzIn <

29

TIME 1

TIME 2

TIME 3

TIME 4

Figure 10; Scheduled sequencing graph under latency constraints that minimizes a weighted resource cost.

tnt+zetzntrzn < a4
n+za <

zw) < a2

Zn+zwat+Ina £ @

za+zp2+Ti0s2+Ins . @

s+ Zuz+zue < a2

The objective function o minimize is 5- a1 + 1 - a2. A solution is shown in Figure 10. O

The ILP formulation of the scheduling problem is attractive for two reasons. First its solution is an optimum,
i.e. it provides an exact solution to the scheduling problem. Second, it makes possible 0 use general purpose
packages for solving the optimization problems. In some cases, a linear programming solution is sought first, and
then transformed into an optimal integer solution by using a branch and bound algorithm. The numbcr of variables
X is (nops + 1) - L. Gebotys et alii developed a set of tighter bounds that help reducing the number of relevant
variables and constraints, and therefore enhanced the applicability of the approach [17]. Practical implementations
of ILP schedulers have been shown to be efficient for medium scale examples, but to fail to solve problem with
hundreds of binary variables or more.

§2.2 List scheduling.

The minimum latency resource-constrained scheduling problem and the minimum resource latency-constrained onc
are known to be intractable. Therefore, heuristic algorithms have been developed. We consider in this Section a
family of algorithms called list scheduling algorithms.

We consider first the minimum latency scheduling problem, under resource constraints.

The following algorithm is a framework for the minimum latency problem that is an extension of Hu’s algorithm
{21] to handle multiple operation types. It can be described as follows:

30

LISTL(G(V,E),a)

Seti=1;
repeat {
for each resource type k = 1,2,...n,., {
Determine candidate operations U;
Select s < a; vertices among the candidates U,
Schedule the s; selected vertices in step f;

izi4l

until (v is scheduled) ;

The candidate operations are those whose predecessors have already been scheduled early enough, so that the
operation is completed. Namely: {U C V;v; € U/ when t; + dy < ;; v € pred(v;)}. The algorithm complexity
is O(nop,). It computes a schedule that satisfies the resource constraints by construction. However, the computed
schedule may not have minimal length.

The list scheduling algorithms are classified according to the selection step. A priority list of the operations is
used in choosing among the operations, based on some heuristic urgency measure. The algorithm is called greedy
scheduling when the selection is random.

A common priority list is to label the vertices with length of their longest path to the sink vertices and to rank
them in decreasing order. Therefore, most urgent operations are scheduled first. Note that when the operations have
unit delay and when there is only one resource type (i.e. n.., = 1), then the algorithm is the samc as Hu's and it
yields an optimum solution for tree-like sequencing graphs.

Detailed timing constraints can be handled by list scheduling, by modifying the priority list 10 reflect the
proximity of an unscheduled operation 10 a deadline.

Example 5.7.
Let us consider the sequencing graph of Figure 1. Let us assume that we have a | = 3 multipliers and w2 = | ALU,
performing addition, subtraction and comparisons. Let us assume that the multipliers take (wo cycles o exccuie
and the ALU 1.

We consider first a'list schedule, where the priority function is based on the length of the longest path o the sink
vertex. Then the operations are scheduled as follows: '

H Time step “ M;l.t;pl.y operali; " ALU operation H

1 V10206 v10
2 V10206 vy
3 vIvyvg -

4 v3v7Ug -

5 - V4
6 - vy
7 - vs

11

It is possible to verify that the schedule has minimum latency.

Consider now a greedy scheduling approach, where operations v 2, vs. vs are scheduled at the first step. Then, the
schedule would require at least 8 steps, and it would not be optimal. O

List scheduling can also be applied to the latency-constrained minimum resource problem. In this case, the slack
of an operation can be used to rank the operations, where the slack is the difference between the latest possible
start time computed by an ALAP schedule and the current schedule step under consideration. The lower the slack,
the higher the urgency in the list is. Operations with zero slack are always scheduled. The remaining ones arc
scheduled only if the number of required resources does not increase. Ties are broken using the urgency list.

LISTR(G(V,E),A)
{
Compute the earliest possible schedule by ASAP (G(V, E)),
Compute the latest possible schedule by ALAP (G(V, E), A);
Seti=1;
repeat {
Compute the slacks of the operations;
for each resource type k = 1,2,...n,¢, {
Schedule at step ¢ the candidate operations with zero slack;
Schedule at step i the candidate operations that do not require additional resources:

i=zi4 l;

until (vy is scheduled) ;

}

Overall list scheduling algorithms have been widely used in synthesis systems. The experimental results have
shown that the algorithm can be applied to large graphs. Solutions have been shown not to be much diffcrent in
latency from the optimum ones, for those (small) examples whose optimum solutions are known.

5.23 Other heuristic scheduling algorithms.

Several other heuristic scheduling algorithms have been proposed. Some are derived from software design tech-
niques. Example of thesc algorithms are trace scheduling and percolation scheduling. The lauer has been used
in different forms in various synthesis systems, even though some of its implementations were morc restrictive in
scope and power than the original algorithm. Percolation scheduling uses a transformational approach, that moves
operations from one control step to another. This has to be contrasted to the list and force-dirccled scheduling
approaches, that are constructive.

A commonly used heuristic scheduling algorithm is force-directed scheduling, that was proposed by Paulin
and Knight [45]). It can be considered as an extension to the list scheduling approach, where operations are still
scheduled for increasing time steps. The major contribution of the force-directed scheduling approach is that it
considers a global function in the candidate selection process, namely the probability distribution of operation-type
across the schedule. This function models the likelyhood that a resource is used at any given sicp. A uniform

32

distribution means that an operation-type is evenly scattered in the schedule and it relates to a good measurc of
utilization of that resource. The objective in force-direcied schedule is then to schedule the operations so that the
distributions are as uniform as possible. To this aim, the priority of an operation is based on a mcasure, called
force, of the operation concurrency. We refer the interested reader 1o reference [45] for details.

5.3 Scheduling algorithms for extended sequencing models.
§.3.1 Scheduling and operation chaining.

Combinational hardware resources have an intrinsic propagation delay that can be used to compute the execution
delay, by dividing it by the clock cycle and rounding-up the result. By having computed the execution delays of
the operations in terms of cycle times, the previous scheduling model and algorithms can be used. Unfortunatcly
some inefficiencies may surface by using this approach.

Example 5.8. Assume thal two operations in a sequence require 20ns to execute and that the target cycle
time is 50ns. Then, the execution delay of both operations is 1 time unit, and the sequence of the two opcrations
takes 2 time steps in the schedule. The operations could be instead be assigned to the same control step. (1

Chaining is the task of combining more than one operation in a control step. Chaining can be performed before
scheduling, and then the combined operations can be assigned to the same vertex in G(V, E) . Else, chaining can
be performed concurrently with scheduling. The latter approach is followed when resource constraints have to he
taken into account.

Let us consider the ILP model, and let us assume in this Section that the delays D = {d;;i = 1.2..... W |
are the propagation delays. Let us denote by F the set of vertex pairs (v;, v;) such that v; is a successor of ¢,,
the sum of the delays of the vertices on some path between v; and v; exceeds the cycle time, and the sum ol the
delays from v; to v does not, when v, is any successor of v; and a predecessor of v;.

Then, to model the chaining problem within the ILP scheduling framework, we must adapt the sequencing
dependency relations (5) to the following two:

Sleza2) l-zu+d ij=12, N st(vj,w)€E 3y
i i

and

Steza214) l-zji+dj ij=12,....N st(v;vu)€F (14)
) I

With this modifications, the ILP model can be used to solve chaining in conjunction with either resource-
constrained or latency-constrained scheduling. The ASAP, ALAP, list and force-directed scheduling algorithms can
be extended to incorporate chaining in a straightforward way.

Example 5.9. Consider the sequencing graph of Figure 11 (a). Let us assume a cycle-time of 6fins. Lat
us also assume unconstrained resources. Then, an ASAP algorithm would assign to the first time step all those
vertices whose predecessor are scheduled and that arc heads of paths from the source, with weight less than 60).
These vertices are represented in Figure 11 (b) above the top dark line. Then, the ASAP algorithm would do the
assignment of the operations to step 2, by repeating the same computation after having eliminated the vertices

i3

Figure 11: (a) Sequencing graph. The numbers inside the circles denote the propagation dclay. (h) Scheduled
sequencing graph. Required cycle time is 60.

scheduled at step 1. The operations assigned to step 2 are those in between the dark lines. The remaining one is
assigned to step 3. O

It is worth-while to note that in the standard chaining problem the cycle-time is given. A related problem is to
find the oplimum operation chaining that minimizes the cycle-time, given a specified latency. Such a problem is
equivalent to retiming [35), when resource and timing constraints are neglected.

5.3.2 Hierarchical scheduling.

We consider now sequencing graphs that are hierarchical and that support branching and iterative constructs. We
assume that the delays are data-independent. We show how the algorithms can be extended to this general model.

Hierarchical scheduling can be solved by traversing the hierarchy bottom-up, and by solving the corresponding
scheduling problem at each level of the hierarchy. A simplifying assumption that can be used to handlc the hierarchy
is that no resource sharing is done across different graph entities in the hierarchy, and that constraints apply within
each graph entity. With this model, each graph can be scheduled independently. The latency and the resource usage
of a schedule can be passed to the next level up in the hicrarchy: the latency corresponds to the delay of the calling
vertex and the resource usage (o its types. (Obviously a calling vertex may have more than one Lype, because it
relates to the resources that are needed in the execution of the called graph.) This model can be extended (o handie
the hierarchy induced by the branching and iterative constructs. In the latter case, the delay of an itcration veriex
is the latency of the scheduled loop body times the number of iterations. '

§3.3 Scheduling graphs with alternative paths.

We assume in this Section that the sequencing graph contains alternative paths, related to branching structures. This
extended sequencing graph can be obtained from our former model, by expanding the branching vertices, i.c. by
replacing them by the called graphs. The mutual exclusive graphs representing the body of a branch give risc to
alternative paths in the graph.

An exact formulation for the scheduling problem can be achieved by a slight modification of the ILP model. 1n
particular, the resource constraints expressed by inequality (6), must reflect that operations in altemative branches
can be scheduled in the same steps without affecting the resource constraints. More precisely, incquality (6) can be
restated as follows:

j
' E e'en%) -Z Za < ax k=1,2,...,0.¢: j=ovll--- N 1s)
i,8.0.T(v)=k I=j—de 4l

where the E(i) C V is the subset of operations that includes v; and all operations that are mutually exclusive to
v;. The above equation can be transformed into a linear constraint as follows:

J
Z za<ar k=12, ,nees J=0,1,...,tN i=1,2 16)
e€E(i)s.t. T (v,)=k I=j—de+1

Camposano proposed a specialized scheduling algorithm that exploits the alternative paths in a scquencing graph.
called As Fast As Possible, or AFAP [6]. In this approach, the sequencing graph rcpresents allernative llows of
operations, instead of parallel ones. Namely, fork vertices (i.e. vertices with more than one successor) represent
branching conditions and not parallel streams. In addition, chaining is considered in conjunction with scheduling.

The AFAP algorithm schedules first each path independently. Since paths are altermative, then resource con-
straints apply only within each individual path. Resource constraints may limit the amount of operation chaining in
any single step. Note that operations in a path are alrcady ordered. Timing constraints can also be applied to cach
path. Camposano proposed a scheduling algorithm based on the search for the intersection of the constraints that
delimit the time-step boundaries. Scheduling each path corresponds to determining the cuts in each path, where a
cut is a subset of adjacent operations in a path such that any can define a schedule siep boundary.

Once the paths are scheduled, they are merged together. Another graph is derived, where the cuts are represented
by vertices and their intersection by edges. A clique in the graph corresponds to a subset of operations that can be
started at some time step. Therefore a minimum clique covering of the graph provides a minimum latency solution.
Since the graph has no particular property, the computational complcxity of the approach is limited by solving the
clique-covering problem, which is intractable, and by the fact that the number of paths may grow cxponentially
with the number of vertices in the sequencing graph. However, an implcmentation of this algorithm with an exact
solution of the covering problem has given good results [6]. The formulation fits processor synthcsis problems.
where a large amount of alternative paths is related to executing different (alternative) instructions.

Example 5.10. Consider the example of Figure 11(a). Assume that the paths are alternative and thal the
only constraint is to meet a cycle-time of 60ns. There are four alternative paths, corresponding to operations with
indices 1,3,5,6 ; 1,3,5,7 ; 2,4,5,6 and 2,4,5,7. By analyzing the first path, it is clear that a cut is required. It can
be done after operation v, or after v3 or after vs. We indicate this cut by ¢y = {1,3,5}. A similar analysis of the
second paths suggests that a cut is required after v3 or vs, i.e. c2 = {3,5}. The other cuts are c3 = {2}, 1 = {2}

35

G —A)
&

Figure 12: Intersection graph of the cuts with a clique cover. The clique cover corresponds to the intersection of
the operations in the cuts and denote the last operation of a schedule step.

and cs = {4,5}. Note that the last two cuts are related to the last path. Let us consider now the intersection graph
corresponding to the cuts and shown in Figure 12. The clique cover indicates that operations v 2 and vs arc the last
before starting a new time step. This implies that the schedule has to conform to that of Figure 11(b). O

6 Data-path synthesis and optimization.

Data-path synthesis is a generic term that involves several tasks. At the high-level, data-path synthesis and opti-
mization comprise resource and register binding. These task involve a functional model of a data-path in lerms
of a sequencing graph, a set of resources and registers, and a set of relations among them. Al the circuit level,
data-path connectivity synthesis involves the selection and the binding of steering logic circuits and bus interfaces.
The interface signal of the data-path to the control circuit and external ports are also identified in this siep. At the
physical level, data-path synthesis consists of generating the corresponding layout.

Physical synthesis algorithms are not described here. We would like to mention that different approaches have
been used, according to different design styles, namely bus-oriented, macro-cell based, or array-based dala-paths.
In the first case, a data-path generator constructs the data-path as a stack of bit-slices according to a predefincd
patiern. An example is the bus-oriented data-path synthesized by the SYCO compiler [12], that has an architeclure
similar to the M68000 processor. Macro-cell based data-paths are typical of DSP. Module generators are used 1o
synthesize the resources, that need be placed and wircd. This method has been used by the Cathedral-11 compiler
[15]. This approach is more fiexible than using bus-oriented data-path synthesis with respect 10 the choice of a
resource set, especially when application-specific resources are needed (c.g. arithmetic operators with non-standard
word lengths). Unfortunately, this style ofien leads to a less efficient wiring distribution. Eventually, in the casc
of array-based data-paths, logic and physical synthesis techniques are applied to the data-path. Thus, the data-path
is treated no differently than other portions of the design. In general, bit-sliced data-paths consumc lcss arca and
perform better than data-paths designed in a macro-cell based or amray-based style. The diffcrence in performance
may be small though, as compared to manual design, when data-path oplimization is used.

We concentrate in the sequel on binding of resources and registers on scheduled sequencing graphs. A resource
sharing is the assignment of a resource 10 more than one operation. The primary goal of resource sharing is Lo
reduce the size of a circuit, by allowing multiple non-concurrent operations to share the same hardwarc opcrator.
Resource sharing is often mandatory to meet specified upper bounds on the circuit area (or resource usage).

Resource binding is the explicit definition of a mapping between the operations and the resources. A binding may
imply that some resources are shared. Resource binding (or partial binding) may be an original circuit specification
and thus some sharing may be defined explicitly in the hardware description. Resource usage constraints may inler
implicitly some resource sharing, even though they may not imply a particular binding.

In general, the overall area and performance depend on the total number of resource instances and regisiers,
the steering logic circuits (e.g. multiplexers) and the wiring. Precise models take all these factors into account. in
some cases, as in the case of resource-dominated circuits, the models can be simplified and made dependent only
upon the total number of resources and registers. As a consequence, circuit performance is not affecied by resource
binding. Even though this assumption may seem crude, it is often viable for some classes of circuits, such as DSPs.
that rely on several instances of few, well-characterized resources and storage elements. In this Section, ve consider
sharing and binding for resource-dominated circuits only. We refer the reader to reference [30] for the gencral casc.

6.1 Sharing and binding.

We call resources those hardware operators that are explicitly modeled in a sequencing graph. They include the
functional resources and those interface resources, such as I/Os, that are defined explicitly in the sequencing graph
model. We refer to registers as to those used to store the intermediate values of the variables. Nolc that registers
are implied, but not represented, by the sequencing graphs.)

Two (or more) operations may be bound to the same resource if they are not concurrent and they have the same
type. A necessary and sufficient condition for non-concurrency is that the operations are scheduled in differcnt
time-steps or if they are alternative, i.e. they are part of different bodies of a branching construct. Two operations
are said to be compatible when this condition is met and when they have the same type. Therefore, an analysis
of the sequencing graph is sufficient to determine thc compatibility of two or more operations for sharing. Wc
postpone this analysis to the following two Sections and we concentrate now on the the compatibility issuc.

Definition 6.1 The resource compatibility graph G 4 (V, E) is a graph whose vertex set V = {v;,i = 1.2..... Nope |
is in one 1o one correspondence with the operations and whose edge set E = {{v;,v;}i,j = 1.2.... n...} denotes
the compatible operations pairs.

A group of mutually compatible operations corresponds to a subset of vertices that are all mutually connected
by edges, i.. 10 a clique. Therefore a maximal set of mutually compatible operations is representcd by a maximal
clique in the compatibility graph.

An optimal resource sharing is one that minimizes the number of required resource instances. Since we can
associate a resource instance to each clique, than thc problem is equivalent to finding the minimum number of
cliques that cover the graph, i.e. that implement all the operations. Note that the unweighted clique covering and
clique partitioning problems are equivalent, because a partition is a cover and a cover identifies partitions with the
same cardinality.

Example 6.1. Let us consider as an example the scheduled sequencing graph of Figure 10. We assume again

that there are two resource types: a multiplier and an ALU, that performs addition, subiraction and comparison.
The compatibility graph is shown in Figure 13. Examples of compatible operations are {v 1, v3} and {r4. #5} among
others. Examples of maximal cliques are the subgraphs induced by {v 1. v3, 1}, {v2, 5, va} and {ra. s r10. 411).
These cliques, in addition to {vs} cover the graph. Four resources are needed, corresponding to two multipliers
and two ALUs. O

An altemative way of looking at the problem is to consider the conflict between operalion pairs. Two operation:
have a conflict when they are not compatible. Conflicts can be represented by conflict graphs.

37

Figure 13: Compatibility graph.

Definition 6.2 The resource conflict graph G_(V, E) is a graph whose vertex set V = {v;,i = 1.2..... Nops } @S
in one 10 one correspondence with the operations and whose edge set E = {{vi,v;} i,j = 1.2,....0,.} denotes
the conflicting operations pairs.

It is obvious that the conflict graph is the complement of the compatibility graph. A set of mutually compatiblc
operations corresponds to a subset of vertices that are not connected by edges, also called independent set of
G_(V,E) . A proper vertex coloring of the conflict graph provides a solution to the sharing problem: each color
corresponds 1o a resource instance. An optimum resource sharing corresponds to a vertex coloring with a minimum
number of colors.

The clique partitioning and vertex coloring problems have been studied extensively. Both problcms are in-
tractable for general graphs, and exact and heuristic solution methods have been proposed. According to specific
circuit type under consideration, the compatibility graph can be sparser than the conflict graph (or vice versa). In
this case, clique partitioning (or vertex coloring) may be easier 10 solve.

In some particular cases, it is possible to exploit the structure of the sequencing graph to derive compatibility
and conflict graphs with special properties, that make the partitioning and coloring tractable. This will he considered
in the following Section.

6.2 Resource sharing in non-hierarchical sequencing graphs.

A fiat sequencing graph is acyclic and polar. Each source to sink path represents a parallel stream of operations. We
denote by T = {t; ; i = 1,2,...,n0p,} the start time for the operations and by DE = {d; ; i=1.2..... Nopa)} the
set of execution delays. Data-dependent delays are not considered here because the sequencing graph is assumcd
to be scheduled. We refer the interested reader to refcrence [30] for the general case. The type of an operation is
represented by T(v;); i = 1,2,...,n4p,.

Two operations are then compatible if they have the same type and if they are not concurrent. Therefore, the
compatibility graph G ,.(V, E) is described by the following set of edges: E = {{v,v;}} T(vi) = T(rj) and ({1, +
d; > 1) or (t; +dj > 1)), i,j = 1,2....,n0p. }. Such a graph can be constructed by traversing the scquencing
graph in O(|V|2) time. This graph is a comparability graph because it has a transitive orientation property. Indeed, a
corresponding directed graph could be derived by assigning an orientation to the edges compatible with the relations
((ti +di > t) or (t; +dj 2 1)), i,5 = 1,2,...,n0p,} that are transitive.

The search for a minimum clique cover of a comparability graph can be achieved in polynomial timc, hy
transforming it into a minimum-flow problem [18].

38

Figure 14: Transitive orientation of the compatibility graph.

Example 6.2. All operations have unit execution delay. Let us consider operation v, with 1, = |. Now
T(v1) = multiplier. Then, all the operations whose type is a multiplier and whose start time is larger than or
equal to 2 are compatible with v;. (Obviously, no operation can be compatible by having a start time less than
or equal to zero). Such operations are {v3, ve, 17, vg}. The corresponding vertices are incident to edges that stem
from v;. The compatibility graph can be constructed by visiting each opcration and checking for others with the
same type with non-overlapping execution intervals.

Note that a directed graph could be constructed, having the compatibility graph as underlying graph. The oricniation
is determined by comparing the start times. In this case, it would have the edges {(v1, v3), (v1, v6), (1. 7). (e1. vn)]
among others. Note also that the relations {(v1,v3).(v3,v7)} imply {(v1,v7)}, because ordering is a transitive
relation. Hence the compatibility graph is a comparability graph. The transitive orientation of the compatibility
graph is shown in Figure 14, O

Let us consider now the conflict graph. Two operations conflict if their type is different or if their exccution
overlaps. Let us assume first that all operations have the same type and consider the execution inicrvals for cach
operation {[ti,t; +d; — 1} i = 1,2,...,n4p,}. The conflict graph is a graph whose edge set denolcs an interscction
among intervals, hence it is an interval graph.

The search for a minimum coloring of an interval graph can be achieved in polynomial time. A few algorithms
can be used, including the left-edge algorithm [47). When operations have different types, it is morc convenient 10
color the interval subgraphs induced by the operations of each type.

6.3 Resource sharing in hierarchical sequencing graphs.

Let us now consider hierarchical sequencing graphs. A simplistic approach to resource sharing is 10 perform it
independently within each sequencing graph entity. Such an approach is overly restrictive, becausc it would not
allow sharing resources in different entities. Therefore we consider here resource sharing across the hicrarchy levels.

Let us first restrict our attention 10 sequencing graphs where the hierarchy is induced by model calls. We need
to distinguish here between single and multiple model calls. In both cases, model calls make the scquencing graph
representation modular. Moreover, in the latter case, model calls express also the sharing of the application specific
resource corresponding to the model.

We consider single model calls first. The concept of compatibility can be extended to hierarchical compatibility.
Two non-concurrent complex vertices imply the compatibility of the vertices with the same type in the graph entitics
corresponding to the called models. Unfortunately, concurrency of complex operations does not necessarily imply
conflicts of the operations in the called models. Therefore this model does not fully caplure the compatibility
property of the operations.

39

mi m2

° : :
*

*
*

(&) :

Figure 15: Hierarchical conflicts and compatibility.

Example 6.3. Consider a model a that has two operations: an addition followed by a multiplication. Consider
also a model b that has two operations: a multiplication followed by an addition. Assume that the addition has a
unit delay and the multiplication two unit delays. When a model m1 has a call to model a followed by a call (o
model b, then a and b are not concurrent and the corresponding additions and multiplications are compatible.
When another model m2 has two calls to a and b that partially overlap, say with start times t, = 1 and , = 2,
then by the above argument the additions and the multiplications are not compatible. Indeed the mulliplications
are not compatible while the additions are! Both situations are shown in Figure 15. O

Therefore the appropriate way of computing the compatibility of operations across different levels of the hierarchy
is to expand the hierarchy itself, by replacing the complex vertices by the graphs of the corresponding modcls.
Such an expansion can be done explicitly, or implicitly by computing the execution intervals of each opcration with
respect 10 the source operation of the top model in the hierarchy. As a result, a complete compatibility graph can
be generated, with the property of being a comparability graph. Similar considerations apply to the conflict graph
computation.

Let us consider now multiple model calls, that alrcady represent a resource sharing. Such multiple model calis
can be part of the circuit specification, that embeds the notion of application-specific resource sharing. Altcrnatively.
the multiple model call can model a binding derived by applying resource sharing while traversing the hierarchy
top-down. We question the possibility of sharing those resources, that are part of the shared maodel, with other
compatible resources in the overall sequencing graph model.

Example 64. Consider a model a that has two operations: an addition followed by a multiplication. Assume
that model m3 has two calls to model q, that are not concurrent, scheduled at times 1 and § respectively. Assume
also that model a has three other multiplication operations. We question the sharing of the multipliers across the
hierarchy. A sequencing graph fragment (related 10 m3), the execution intervals and the conflict graph for the
multiplier are shown in Figure 16. Note that the double call to a results in two non-contiguous intervals for the
multiplier in a. As a result, the conflict graph is not an intersection among intervals, and therefore nol an interval
graph. It is not even a chordal one, as shown in the picture. O

Also in this case, 1o model completely the compatibility of the operations inside the called models, the hicrarchy
must be expanded. Note though that multiple model calls represent now shared models, and therefore their internal

40

TIME 1 @ 8
+
TIME 2 o ° °

TME 3 C) l 3 T o °
TIME 4 @ L-—
TMES (& D ‘ & |
L
(s) (®) (¢)

Figure 16: Hierarchical conflicts. (a) sequencing graph segments. (b) execution intervals. (¢) non-chordal conflict
graph.

resources are implicitly shared. While the computation of the compatibility and conflict graphs is still straightfor-
ward, such graphs are no longer necessarily comparability and interval graphs. Therefore their cliquc partitioning
and vertex coloring are now intractable problem, and heuristic algorithms must be used.

Iterative constructs, that can be unrolled, can also be expanded. Similar considerations apply. Note that cach
resource in a loop corresponds to fmany resource instances when the loop is unrolied. These instances arc sharcd
among each other and can be possibly shared with other compatible ones in the overall sequencing graph model.
Note that model call inside a loop body becomes a multiple call when the loop body is unrolied.

Let us consider now the branching constructs. When considering operation pairs in two alternative branching
bodies, their compatibility corresponds to having the same type. A complication arises in modeling the compatibility
across the hierarchy, i.e. checking for compatibility of the operations in a sequencing graph entily and in thosc
modeling the branching bodies. Expanding the branching hierarchy yields graphs with alternative paths, that have
different properties than the extended data-flow graphs. Such graphs can still be traversed in O(V'|?) time to
compute the compatibility (or conflict) graphs. In this case, two operations are compatible if they have the same
type and they are either non-concurrent or alternative. Now the compatibility graph is not necessarily a comparability
graph and the conflict graph may not be an interval graph and not even a chordal one.

Example 6.5. Consider the sequencing graph of Figure 17 (a). We assume that all the operations takc 2 lime
units to execute and that the start times are the following: {1, = 11, = 3; 1. = tq4 = 2. The intervals arc shown
in Figure 17 (b) and the conflict graph in figure Figure 17 (c). Note that the aliernative nature of operations « and
d makes them compatible and prevent a chord {v ., va} to be present in the conflict graph. D

6.4 Register sharing.

We consider in this Section those registers that hold the values of temporary variables. Each variable has a lifetime
that is the interval from its birth to its death, where the former is the time in which the value is gencrated as an

41

() (b) (©

\j

Figure 17: Conditional execution. (a) sequencing graph segments. (b) execution intervals. (c) non-chordal conflicl
graph.

output of an operation and the latter is the latest time in which the variable is referenced as an input 10 an operation.
We assume that those variables with multiple assignments within one model are aliased, so that each variablc has
a single lifetime interval in the frame of reference corresponding to sequencing graph entity where it is referenced.
Note that the lifetimes can be data-dependent, for example due to branching and iterative constructs.

Whereas an implementation that associates a register to each variable suffices, it is obviously incfficient. Indced
variables that are alive in different intervals, or under alternative conditions, can share the samc regisier. Such
variables are called compatible.

The register compatibility and conflict graphs are defined analogously 0 the resource compaltibility and conflict
graphs. The problem of minimizing the number of registers can be cast in a minimum clique partitioning problcm
of the compatibility graph or into a minimum coloring problem of the conflict graph. We consider now how these
graphs are generated and their properties.

Let us consider first non-hicrarchical scquencing graphs. In this model, a conflict between two variables
corresponds 1o a life-time overlap. Since in this model the variable lifetimes are intervals, then the conflict graph
is an interval graph and its complement is a comparability graph. Therefore, optimum register sharing can be
computed in polynomial time, for example by optimum coloring using the left-edge algorithm.

Let us now consider sequencing models of iterative bodies. In this case, some variables are alive across the
iteration boundary. For example, the loop counter variable. The cyclicity of the lifetimes is modcled accurately by
circular graphs, that represent the intersection of arcs on a circle. The register sharing problem can then be cast as
a minimum coloring of a circular graph, that unfortunately is intractable. Branch-and-bound or heuristic algorithms
can be used. Stok [50] has shown that this problem can be transformed into a multi-commodity flow problem, and
then solved by a primal algorithm.

The register sharing problem can be extended to cope with hierarchical models. The compatibility and conflict
graphs can be derived by applying similar considerations to hierarchical resource sharing. In particular, interval
conflict graphs can be derived from hierarchical models with only single model calls, by considering the variable
lifetimes with reference to the start time of the sequencing graph eniity in the top model in the hicrarchy. For
general graphs, compatibility and conflict graphs can still be derived by traversing the hierarchy and comparing the
variable lifetimes. In the general case the compatibility and conflict graphs are not comparability and intcrval graphs

42

respectively, and therefore the corresponding optimal register sharing problem is intractable. Springer and Thomas
[49] have shown that polynomial-time colorable conflict graphs can be achieved by enforcing some restrictions on
the model calls and on the branch types.

6.5 Other binding and sharing problems.

Other binding and sharing problems stem from the use of particular circuits, such as memory arrays. busses, and
interfaces.

Some design styles use multi-port memories to store the values of the variables. Such memories arc also referred
to as general-purpose registers (GPRs), common to RISC architectures. Let us assume the memory has a ports
for either read and write requiring one cycle per access. A binding problem consists of computing the minimum
number of ports a required to access as many variables as needed. Balakrishnan et alii [2) considered the dual
problem. They assumed a fixed number of ports and they maximized the number of variablcs to be stored in the
multi-port memory, subject to the port limitation. Both problems can be formulated as ILPs.

Busses act as transfer resources that feed data to functional resources. The operation of writing a specific bus can
be modeled explicitly as a vertex in the sequencing graph model. In this case, the compatible (or conflicting) data
transfers may be modeled by compatibility (or conflict) graphs, as in the case of functional resources. Alternatively,
busses may not be explicitly described in the sequencing graph model. Their (optimal) usage can be then derived
by exploiting the data transfers. Since busses have no memory, we consider only the transfers of data within cach
schedule step (or across two adjacent schedule steps, when we assume that the bus transfer is interlcaved with the
computation). Two problems then arise. First, to find the minimum number of busses to accommodate all (or part
of) the data transfers. Second, find the maximum number of data transfers that can be done through a given numbcer
of busses. Both problems can be modeled again by ILPs.

7 Control synthesis.

We consider in this Section the synthesis of the control units. From a circuit implementation point of view, we
can classify the control-unit model as microcode-based or hard-wired. The former implementation style stores the
control information into a read-only memory (ROM) array, while the latter uses a hard-wired sequential circuit
consisting of an interconnection of a combinational circuit and registers. From a logic stand-point, synchronous
implementation of control can be modeled as a finite-state machine . Both implementation styles can be modciled
as such, because a read-only memory and a synchronous counter behave as a finite automaton as well as an
interconnection of combinational logic gates and synchronous registers.

The interface between the data-path and the control circuit is provided by the signals that enable the registers,
and that control the steering circuits (i.e. multiplexers and busses). Sequential resources requirc an activation
(and sometimes a reser) signal. Data-dependent operations must provide a completion signals. The enscmbic
of these control points are identified during the synthesis of the data-path. In addition, the control unit requires
some condition signals from the data-path, that are needed o evaluale the clauses of some branching and ilerative
constructs.

Example 7.1. Figure 18 shows an example of the interconnection between the data-path and control.
The data-path provides signals to the control unit related to the execution of alternative control flows, such as

43

DATAPATH j

activation
REG e

1 ‘ activation | CONTROL
+ UNIT

_ activation

Z
ALU /- ' condition

i activation

REG

Figure 18: Example of interface signals betwecn data-path and control.

the overflow signal from the ALU. The control unit provides the activation signals to the ALU that select the
appropriate operation, as well as the activation signals that select the multiplexers and enables the registers. O

Control synthesis for non-hierarchical graphs with data-independent delays requires the specification of the
activation signals only. Hierarchical graphs, modcling branching and iteration, must also take into account the
condition signals. Control units for unbounded-delay operations require handling the completion signals, as well as
the others. Therefore, we shall analyze increasingly complex models for control.

7.1 Control synthesis for non-hierarchical sequencing graphs.

We consider in this Section the synthesis of the control unit for a scheduled sequencing graph that is bound 0 the
resources. The knowledge of a schedule allows us 1o determine the time frame of the operations. The binding
determines the control points of the data-path. We assume that the sequencing graph is not hierarchical (i.c. all
vertices are simple) and that all the operations have data-independent delays. We assume that each operation can
be started by an activation signal, that triggers the start of of the functional resource and/or steers data inlo (and/or
out from) a functional, memory, or interface resource. We assume that there are n,.; activation signals (o control.
Let us consider first the microcode-based implementation style. A microcoded implementation can be achicved
by using a memory that has as many words as the latency ¢5. Each word is in one-10-one correspondence with a
schedule step. Therefore the ROM must have as many address bits as ny;; = [loga tn]. A synchronous counter
with ny;; bits is used to address the ROM. The counter has a reset signal, that clears the counitcr, so that it can
address the first word in memory, corresponding to the first operations to be executed. When the scquencing graph
models a set of operations that must be iterated, then the last word of the schedule clears the counter. The counter
runs on the system clock. The only exiernal control signal provided by the environment is the counter reset. By
raising that signal, the overall circuit halis and resets. By lowering il, it starts execution from the first operation.
Let us consider now hard-wired control implementations. The synthesis of a Moore-type finite-state machine
from a scheduled sequencing graph is straightforward. Indeed, such a machine has as many states as the laicncy
tny (i.e. schedule length), and the state set S = {s; ; i = 1,2,...,tn} is in one to one correspondence with the
schedule steps. State transitions are unconditional and only among state pairs (s;,si41); 7= 1.2..... (In — 1)

44

reset reset

1,2,6,8,10

3,7,9,11

reset

Figure 19: Example of state diagram for hard-wired control.

An unconditional transition (s n, s1) provides for repetitive execution of the schedule. Conditional transitions into
s; from all the other states, controlled by a reset signal, provide the start and reset capability. The output function
of the finite-state machine in each state s; ; 1 = 1,2, ...ty activates those operations whose start time is /;. Mor¢
specifically, the activation signal for the control point k. k = 1,2,... . n,a instate s; ; i = 1.2.... InN is & 4,
where 6; ; denotes a Kronecker delta function. A hard-wired control unit can be obtained by synthesizing the finite-
state machine model using standard techniques [12] and in particular by encoding the states and by implementing
the combinational logic in the appropriate style (e.g. sparse logic, PLA, et cetera). It is straightforward that a binary
encoding of the finite-state machine states and a completely-specified two-level combinational logic representation
correspond to the microcode-based implementation specification. Conversely, a microcode-based implementation
can be transformed into hard-wired control by re-encoding the states and by casting the combinational logic function
stored in the ROM into the desired circuit style.

Example 7.2, Consider again the scheduled sequencing graph of Figure 5. The state transition diagram
of the finile-state machine implementing a hard-wired control unit is shown in Figure 19. The numbers hy the
vertices of the diagram are the reference to the activation signals. O

7.2 Control synthesis for hierarchical sequencing graphs.

Hierarchical sequencing graphs represent model calls, branching and iteration through the hierarchy. In this Section,
we assume that the graphs have bounded latency, and therefore each vertex has a known, fixed execution delay.

Let us consider first model calls and their control implementations. We can assume that cvery scquencing
graph entity in the hierarchy has a corresponding local control unit. Since a sequencing graph enlity represcnts a
model that may be shared, we need to make the following assumption. Each control unit has its own activation
signal, that controls the stepping of the counter or the finite-state machine transitions and that gates the activation
signals to the resources. Therefore, asserting the activation signal for a control unit block corresponds (o executing
the related operations. Lowering the activation signal corresponds to halting all operations. We recall that in our
previous models, the controller resets itself after having executed the last operation. An additional reser signal may
be provided to each control unit in the hierarchy.

The hierarchical control implementation can be achieved as follows. The execution of a complex vertex.
corresponding to a model call, is translated to sending an activation signal to the corresponding controller. That

45

act
2
conTROL |2
ONIT
reset act DATAPATH
bk |
CONTROL
act
UNIT
reset
R ey

Figure 20: Example of interconnecting a hierarchical control structure.

reset
CONTROL act
clause UNIT
act IDATAPATH
Pt § -
COWROI, act
TUNIT
reset !
D' LCONTROL act
UNIT
reset
—

Figure 21: Example of interconnecting a hierarchical control structure.

signal is asserted for the duration of execution of the called model, i.e. as long as its local latency. Note that the
controller of the calling model continues ils execution, because the model call is in general concurrent with other
operations. An example is shown in Figure 20.

The interconnection of the local control-unit blocks corresponding to the different sequencing graph entities in
the hierarchy can be done regardless of the implementation style, as long as the activation signal is provided. The
activation signal of the root model can be used to start the hardware. Allernatively, it can always be asserted and
the circuit can be started by pulsing the reset line. Note that call to (and return from) a model docs not reguirce an
additional control step with this scheme.

Let us consider now branching operations. A branch is represented in the hierarchical sequencing graph modcl
by a selective model call, controlled by the branching clause. Therefore, a sraightforward implementation can
be achieved by activating the control-unit blocks corresponding to a body of a branch by the conjunction of the
activation signal with the branch clause value, as shown in Figure 21. For this control scheme to be correct, we
must assume that the branching clause does not change during the execution of the branch itsclf. Therefore, the
value of the clause may have to be temporarily stored.

The control for an iteration complex vertex can be done in a similar way. The loop body can be scen as a model
call that is repeated a finite and known number of iimes. Since we already assume that each control-unit block
resets itself when all operations have finished execution, it suffices to assert the activation signal for the loop body
controller as long as the iteration has to last. Recall that the latency of an iteration complex vertex is the product of

the loop body latency times the number of execution. This number, which in this case is known at synthesis time.
is the duration of the activation signal.

7.3 Control synthesis for unbounded-latency sequencing graphs.

Unbounded-latency sequencing graph contain unbounded-delay operations, that provide completion signals to notify
the end of execution. We will assume that the completion signal is raised during the last cycle of exccution of an
operation, so that no control step is wasted in detecting a completion and starting the successor operations. Similarly,
the control-unit of an unbounded-latency graph is assumed to provide its own completion signal, 10 denote the end
of execution of all the operations. This completion signal is used when composing control-unit blocks 10 form a
more complex controller, as in the case of hierarchical graphs.

There are three approaches to synthesize a control unit for unbounded-latency graphs. The first one is Lhe
clustering method, that clusters the graph into bounded-latency subgraphs. The number of clusters dcpends on the
number of unbounded-delay operations. The method is efficient (in tlerms of control unit area) when this number
is small. Control implementations can be microcode-based or hard-wired. The second approach, called adaptive
control synthesis, is reminiscent of some control synthesis techniques for self-timed circuits. Tt leads to a hard-wired
implementation and it is efficient when the number of unbounded-delay operations is high. The third method is
based on relative scheduling. We describe here the first method only. We refer the interesied rcader 1o reference
[30] for the others.

The clustering method consists of extracting bounded-latency subgraphs, whose control can be synthesized as
shown in the previous Sections. Consider the unbounded-delay vertices in the graph one at a time, in a sequence
compatible with the partial order represented by the graph itself. Let S C V' be the subset of vertices that arc not
unbounded delay vertices nor are their successors. Then the subgraph induced by S can be made polar, by adding
a sink vertex representing a No-Operation and edges from the vertices in S with no successors 10 the sink. Then
this subgraph can be scheduled and its control unit can be generated with a microcoded or hard-wircd styic. The
vertices S can be then deleted from the graph and the unbounded-delay vertex under consideration replaced by
No-Operation, that is now the source vertex of the subgraph induced by the remaining vertices.

A synchronizer is added to the control unit in correspondence Lo the unbounded-delay vertex previously under
consideration. 'ﬁle synchronizer is a control primilive, that can be implemented by a simple finite-state machine
. The synchronizer takes as input the completion signal of the controller of the subgraph just extracted and the
completion signal of the unbounded-delay operation itself. The synchronizer issues an activation signal to the
controller of the subsequent operations. The synchronizer memorizes the arrival of both completion signals into
two independent states. The activation signal is asserted either in coincidence of both completion signals or when
one completion signal is received and the finite-state machine is in the state that memorizes the arrival of the other
one at some previous time step.

Example 7.3. Consider the graph of Figure 9. The set S is equal to {v1,v2}. The subgraph induced
by S consists of vertices {v1, v2}. The subgraph can then be scheduled and its control unit built. Afler deleting
{1, 1}2, va} the remaining cluster has only vertex v, and its schedule and control-block can be easily synthesized.
The overall hard-wired control implementation is described by a state transition diagram in Figure 22. The shaded
area on the left controls operations of the cluster {v;.v2}. The shaded area on the right is a synchronizer circuil,
that operates as follows. Its reset state is s,. A transition s, — s is caused by the completion of the controller
of the first cluster, while a transition s, — s. is caused by the completion of the unbounded-dclay operation.

47

e

completion
p— - — ——

completion

e

b

activation

Figure 22: State transition diagram for a sequencing graph with two clusters and a synchronizcr.

When the synchronizer is in s, (or in s.) and the the completion of the unbounded-delay operation (or of the
controller of the first cluster) is detected, the synchronizer issues the activation signal and goes to state « .. if the
two completion signals are simultaneous, there is a state transition to s ¢ and the activation is asseried. I'!

8 Synthesis of pipelined circuits.

Pipelining is a common technique to enhance the circuit performance. In a pipeline implementation, the circuit is
partitioned into a linear array of stages, each concurrently executing a task on a different set of data and feeding its
results to the following stage. Pipelining has been applied to general purpose as well as signal/image processors. In
the former case, pipeline design is complicated because it must be efficient while running on different instruction
streams. Pipelined DSP design may be simpler, because often the processor executes a fixed algorithin.

At present, synthesis techniques for pipelined circuits are still in their infancy. In particular, synthesis techniques
for data-paths have been proposed, under some limiting assumptions, such as neglecting pipeline stalling, stage
bypasses and variable data rates. As a result, present synthesis techniques are of interest to the DSP designer
community and are still immature for processor design. Therefore we consider in this Section only simple pipclincd
circuits, that can be modeled by pipelined sequencing graphs, as described in Section 2.2.

We recall that in a pipelined sequencing graph the source vertex is fired at a constant rate, called throughput.
The inverse of the rate, i.e. the lime separation between two successive firing of the source vertcx, normalized Lo
the cycle-time, is called data introduction interval (or DII). The data introduction interval is smalicr than, or cqual
to, the latency.

Let us assume that the data introduction interval is a proper fraction of the latency. Then, al any given time,
there are multiple instances of the circuit behavior (i.e. partial order of tasks) executing concurrenily. They arc
equal to the quotient latency/DII, that corresponds also to the number of stages in the pipeline.

Example 8.1. Figure 23 shows two instances of the sequencing graph, representing a functionally pipelined
circuit with DI = 2. If we assume that the operations have unit execution delays and that the number of resources
is not constrained, then the sequencing graph can still be scheduled in 4 steps, i.e. the latency is 4. However, input
and output data will be requested and made available at every other cycle. Therefore the throughput has doubled.
o

The design evaluation space for pipelined circuits can be characterized by four parameters: the throughput, the
latency, the cycle-time and the area. Structural synthesis of a pipelined circuit involves a multi-crilcria optimization

48

Figure 23: Two instances of a sequencing graph representing a functionally pipelined implementation. (The source
and sink vertices have been omitted.)

problem, with four objective functions.

The number of required resources in pipelined implementations depend on the data introduction interval. Indeed.
since several operations are executing concurrently in different pipe-stages, less hardware sharing is possiblc.
Conversely, an upper bound on the resource usage implies a lower bound on the data introduction inierval. These
bounds are useful in determining the frontier of the design space, and the values of DII of interest. By exploring
the resource usage and latency for different values of the DII (usually a few), the design space can be characterized
and an efficient solution chosen. The limiting cases are those in which the DII matches the latency (unpipclincd
circuit) and when the DII is unity (maximum rate pipcline).

The scheduling and binding problems are more complex in the case of pipelined circuits, because scveral
operations may be executing concurrently in different stages of the pipeline. Scheduling pipelined circuits undcer a
required DII constraint will be described in Section 8.1 and binding in Section 8.2.

Control synthesis for pipelined circuits is more complex. Present synthesis research efforts have dealt with static
pipelines and data-independent delay operations. Control synthesis of sequencing graphs with data-independent delay
operations can be achieved by extending the techniques shown in Sections 7.1 and 7.2. The opcrations with starl
time t;i4xprrik=1,2,..., [tn/DII] are activated by word 7 (of a microcoded implementalion) or at state s; (of
a hard-wired implementation). Unresolved and difficult control synthesis issues are related to the global control of
the pipeline, that would handle stalling, flushing and bypasses. This is the subject of ongoing rescarch.

8.1 Scheduling pipelined circuits.

We consider in this Section the extensions of the scheduling algorithms to the case of pipelincd models. This
problem is referred to in the literature as functional pipelining.

A formal model for counting the sharable resources can be derived again in terms of the ILP model. Constraint
(6) of Section 5.2.1 needs to be modified because the operations at steps j + pDII;p € Z*,V, arc executed

49

CrO—C O ¢
R

Figure 24: Compalibility graph for DII = 2.

simultaneously and cannot be shared. If we denote by L the latency, or an upper bound on the latency when this
is unknown, the constraint on the number of resources used at each step j is:

W(L-j)/D11] j+pDII1
Z E Z zp<ar k=1,2,...,np05; J=0,1,....0x (17)
p=0 i 5. T(v))=k I=j~di+1+pDIi
Heuristic scheduling algorithms can support functional pipelining. For example, list scheduling algorithm can
be used to solve the resource constrained scheduling problem with a given DII. The equation above can be used
to check whether the resource bound is violated at any given step, and therefore to determine the schedulable
candidates. An example of such a list scheduling algorithm was implemented in program Schwa [44}, where
operation chaining is done concurrently with scheduling and where the priority function is based on the sum of the
operation propagation delays from the candidate to the sink vertex.

8.2 Resource sharing and binding for pipelined circuits.

Resource sharing in pipelined implementations is limited by the pipeline throughput. Indeed, by increasing the
throughput we increase the concurrency of the operations and therefore their conflicts. We comment in this Scction
on resource-dominated circuits only.

To be more specific, let us consider a scheduled sequencing graph. For the sake of simplicity, lct us assume that
all the operations have unit execution delay. Then, any operation with start time t;,j = 0,1,....1x is concurrent
with any other operation with start time ¢ j+pDII,p = 0,1,...[tx/DI1I]. This allows us to construct compatibility
and conflict graphs, and to achieve a binding with minimum (or near minimum) area cost, for a given schedule and
data-introduction interval. In addition, given a schedule and a latency f n-, an array of binding and arca evaluations
can be achieved for a set of DIIs.

Example 8.2. Consider the pipelined scheduled sequencing graph of Figure 23, with DII=2. The
corresponding compatibility graph is shown in Figure 24, that can be contrasted to the compatibility graph for the
non-pipelined implementation (DII = 4) shown in Figure 25. The compatibility graph for DII=1 has no edges.
(Note the the compatibility graph shown in Figure 25 differs from the graph of Figure 13, because they relate o
different schedules.) O

When considering hierarchical sequencing graphs, special attention has to be paid for branching constructs.
Indeed, when the branch bodies are expanded in the sequencing graph, operations in different alternative branches
are compatible when they have the same type. However, sharing pairs of compatible exclusive operations in diffcrent

QOO @
o'z;.o og‘a

Figure 25: Compatibility graph for DII = 4,

time steps, may create deadlocks in the pipeline when they form wwisted pairs. Therefore special aliention has 10
be paid for these cases. We refer the interested to [22] for further details.

9 High-level synthesis systems.

Several contributions have been done to the field, and it is impossible to comment on all of them herc. Somce
specialized books [9, 10, 15] describe in detail the most relevant results. We would like 1o present here a brict
history of this area, and to describe the most salient features of some systems.

Early work in the field was related to compiling register-transfer level representations into logic circuits. The
Expl system, developed in the seventies at Carnegie-Mellon University, was the first that considered series/parallel
trade-offs. Successive efforts at CMU concentrated on converting behavioral models in the 1ISPS language into logic
circuits, while addressing many of the fundamental problems related to scheduling and binding. Al thc same timc.
the Mimola system was developed at the University of Kiel, Germany, and could synthesize a CPU and microcode
from an input specification. Later the system was ported 10 Honeywell, where it is now used.

The field matured in the eighties, when a few synthesis systems were developed at several locations. The most
notable examples are the ADAM system at University of Southern California, the CADDY/CALLAS system at the
University of Karlsruehe, McPitts at MIT and the VSS system at University of California at Irvinc. Rescarchers
at Carleton University developed several algorithms for high-level synthesis. Similarly, researchers at AT&T Bell
Laboratories, General Electric, and at IBM T.J.Watson contributed algorithms and programs, including the Yorktown
Silicon Compiler [15] and HIS.

At present, several systems are in development and in use at some major corporations. CAD vendor companics
market systems that synthesize circuits from VHDL and Verilog descriptions, performing resource sharing and
control synthesis, but not yet scheduling. Hence, such systems cannot be classified as high-level synihcsis sysicms
to a full extent.

We describe now three systems that are archetypes of different high-level synthesis styles and that address
different classes of target circuits. In particular we review the CMU System Architect’s Workbench, Stanford
Olympus Synthesis System and the family of Cathedral Systems developed at IMEC, Belgium.

9.1 The System Architect’s Workbench

Research at Camnegie Mellon University on high level system specifications opened the way 10 a sct of tools for
high-level synthesis, developed over more than one decade. These tools, are now collected under the name of System

s1

Architect's Workbench [51). Their purpose is to explore architectural choices. Hardware systems arc described in
ISPS or Verilog, that can be simulated and compiled into an intermediate data-flow format called Value Trace (VT).
The Value Trace can be edited graphically, to perform operations such as partitioning and expansion of selected
blocks. It can be annotated, to provide a link between the behavioral specification and the corresponding structural
domain by program Coral.

Synthesis in the System Architect’s Workbench is in terms of hardware resources, i.e. predefined library
macrocells, such as ALUs, adders and multipliers. Recently, the system has been extended to cope with target
implementations in terms of Field-Programmable Gate Arrays.

The workbench consists of a set of tools. Aparty is an automatic partitioner, based on a cluster search. Cstep
is responsible for deriving the hardware control portion: it is based on a list scheduling algorithm, under resourcc
constraints. Emucs is a global data allocator, that binds resources based on the interconnection cost. Busser
synthesizes the bus interconnection, by optimizing the hardware using a clique covering algorithm. Sugar is a
dedicated tool for microprocessor synthesis. Il recognizes some specific components of a processor (¢.8. an
instruction decode unit) and takes advantage of these structures in synthesis. All the tools are interfaced 0 cach
other, and they have been used successfully for a few years.

9.2 The Olympus Synthesis System

The Olympus Synthesis System, developed at Stanford University, is a vertically integrated set ol ools for the
synthesis of digital circuit designs. The system is specifically designed to support synthesis of Application-Specific
Integrated Circuits from behavioral-level descriptions, written in a hardware description language called /ardwareC.
HardwareC is a language with both procedural and declarative semantics and a C-like syntax [30].

The Olympus system supports synthesis with timing constraints at the behavioral, structural and logic levels.
A front-end tool, called Hercules, performs parsing and behavioral-level optimization. The circuil behavior can
be simulated at the functional level by program Ariadne, that interprets the sequencing graph modcls. Program
Theseus provides a waveform display facility. Program Hebe performs structural synthesis. It strives 10 computc
a minimal-area implementation subject to performance requirements, modeled as relative timing constraints. Hebe
applies the relative scheduling algorithm after having bound resources to operations. If a valid schedule cannot be
found that satisfies the timing constraints, a new resource binding is tried. Binding and scheduling are ilerated until
a valid solution is found, unless Hebe determines that the constraints cannot be met and need 10 be relaxed. Dciails
are reported in reference [30].

A logic synthesis and simulation program, called Mercury, and a library binding tool, Ceres, completc the
system, as shown in Figure 26. The system has been used to design three ASIC chips at Stanford University and
it has been tested against benchmark circuits for high-level synthesis.

9.3 The Cathedral Synthesis Systems

The Cathedral project was developed at IMEC, in connection with the Catholic University of Leuven in Belgium
and other partners under the auspices of project Esprit of the European Community. Cathedral rejects the idca of the
existence of a general purpose silicon compiler, in analogy with the present lack of software compilers for multiplc
source languages and back-ends. Therefore, Cathedral is designed to map behavioral descriptions of a particular class
of designs, namely Digital Signal Processors (DSP), into a particular hardware model. Cathedral-1 is a hardwarc
compiler for bit-serial digital filters. Cathedral-1] is a synthesis sysiem for single-chip concurrent bil-paralic

52

HERCULES
Bebuvioral Synthesis

ARIADNE :
Behavioral Simulation }

HEBE : THESEUS
Swuctura) Syutbesia Waveform Display

Logic Syothesis Pramewark

CERES %
Technology Mapping |

f NETLIST ;

Figure 26: The Olympus Synthesis System.

processors. Typical applications are speech synthesis and analysis, digital audio, modems; eic ... Cathedral-ill
targets hard-wired bit-sliced architectures, intended for the implementation of algorithms in real-time video, image
and communication domain, The data-paths consist of application-specific units, that are compositions of functional
resources tailored to a specific application [42). Cathedral-1V is used for implementing very repetitive algorithms
for video processing. Cathedral-I and II have been described extensively in the literature [15].

The general design methodology in Cathedral-II is called "meet in the middle” strategy. Therc are two scts
of tasks in the system. The former is compiling behavioral descriptions into an interconnection of instances of
primitive modules, such as arithmetic components. The latter is a set of parametrizable module generators for these
modules, that construct the physical layout and that can be viewed as a set of procedures called by the high-level
compiler. The basic components of the architecture are six execution units, which are prototypes of data-path.
memories, 1/O units and controllers.

Hardware description is done in the Silage language. Hardware compilation includes the following tasks: sysicm
partitioning into processes and protocols; data-path synthesis, i.e. mapping partitioned behavior into exccution-units
while minimizing the interconnection busses; control synthesis based on a microcode style. The data-path synthesis
step is done with the aid of an architecture knowledge data-base. Control synthesis is based on a heuristic scheduling
algorithm. The physical layout is achieved by invoking the module generators. These modulcs can he seen as a
library of high-level cells. They are designed to be portable across different technologies.

53

10 Conclusions.

High-level synthesis and optimization techniques provide a means of raising the abstraction level of the input
description of a circuit and performing coarse-grain area/performance trade-offs. As a result, higher productivity is
expected as well as higher quality circuits, because the design space can be thoroughly explored.

High-level synthesis involves computationally intractable problems. Hence heuristic algorithms are usually
applied, in particular to the scheduling and binding problems. Design systems have been constructcd based on
the algorithms described here. They have been successfully used for circuit design in both research and product
development.

Several issues are still open in this field and require further investigation. First, the definition of a commonly
accepted language for synthesis, with precise hardware semantics as well as support for interface description. Indecd.
timing waveforms at interfaces are an integral part of design specifications and graphics can be more expressive
than text in this case. Second, the improvement of the algorithms for performance-oriented design, with particular
reference to synthesis and optimization of pipelined circuits. Last, but not least, the intcgration of high-lcvel
synthesis with logic and physical synthesis, that would permit accuraie estimation of area and dclay parameciers and
their use in earlier stages of high-level optimization.

The trend toward larger circuit integration and sysiem-level design mandates increasingly higher modeling
abstractions and corresponding synthesis systems. High-level synthesis techniques will be crucial components of
those CAD systems used lo design compelitive circuits and systems. Much fundamental and applicd rescarch is
needed to solve the open problems and to insure the availability and cfficiency of such systems to a largc community
of electronic designers.

11 Acknowledgements

This survey has been sponsored by NSF, jointly with DEC, under a Presidential Young Investigator Award.

References

[1) A.Aho, R.Sethi and J.Ultman, Compilers: Principles, Techniques and Tools, Addison Weslcy, 1988

[2] Balakrishnan, A.Majumdar, D. Banerji, J.Linders and J.Majithia, ”Allocation of Multiport Mcmorics in Daia
Path Synthesis”, /[EEE Transactions on CAD, vol. CAD-7, no. 4, pp. 536-540, April 1988.

(3] T.Blackman, J.Fox and C.Rosebrugh, "The Sik Silicon Compiler: Language and Features™ Proi:. ACMIIEET
Design Automation Conference, June 1985, pp.232-237.

(4] F. Brewer, D. Gajski, Knowledge Based Control in Micro Architecture Design, Proceeding 24'* DAC p.
203-209, June 1987.

(5] R. Camposano, R. A. Bergamaschi, Synthesis Using Path-based Scheduling Algorithms and Exercises, Pro
ceedings of 27'* Design Automation Conference, Orlando, FL, June 1990, pp. 450-455.

[6] R.Camposano, "Path-Based Scheduling for Synthesis™, IEEE Transaction on CAD, VYol CAD-10, No. pp.
85-93, January 1990,

[7) R. Camposano, W. Rosenstiel, Synthesizing Circuits from Behavioral Descriptions, IEEE Trans. on CAD, Vol
8, No. 2, Feb 1989, pp. 171-180.

{8] R. Camposano, W. Rosenstiel, "Synthesizing Circuits from Behavioral Descriptions”, [EEE Transactions on
CAD, Vol 8, No. 2, Feb 1989, p. 171-180.

{9] R. Camposano and W.Wolf, Editors, High-Level VLSI Synthesis, Kluwer Academic Publisher, 1991

(10] R. Camposano and R.Walker, Editors, A Survey of High-Level Synthesis Systems, Kluwer Academic Publisher,
1991

(11] R. Camposano, L.F. Saunders, R.M. Tabet, High-Level Synthesis from VHDL, IEEE Design&Test of Computers.
March, 1991

[12]) G.De Micheli, P.Antognetti and A.Sangiovanni-Vincentclli, Editors, Design Systems for VLSI Circuits: Logic
Synthesis and Silicon Compilation, M Nijhoff, 1987.

(13} G. De Micheli, D. Ku, F. Mailhot, T. Truong, The Olympus System for Digital Design, IEEE Design & Tesi
October 1990, pp. 37-53.

[14] D.Gajski N.Dutt, A.Wu and S.Lin, High-Level Synthesis, Kluwer, 1992,
[15) D.Gajski, Silicon Compilation, Addison Wesley, 1988.

[16] B.Pangrle and D. Gajski, "Design Tools for Intelligent Silicon Compilation”, JEEE Transactions non CAD, vol.
CAD-6, no. 6, pp. 1098-1112, November 1987.

[17]) C. Gebotys and M. Elmasry, Optimal VLSI Architectural Synthesis, Kluwer Academic Publishers, 1992,
[18] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.

[19] G.Goossens, J.Vandewalle and H.De Man, "Loop Optimization in Register-Transfer level scheduling for DSP
systems”, Proceedings of the ACMIIEEE Design Automation Conference, 1989, pp. 826-831.

[20] L. Hafer, A. Parker, "Automated Synthesis of Digital Hardware”, /EEE Transaction on Computers, Vol C-31
No 2, February 1982.

(21] T.C.Hu, "Parallel Sequencing and Assembly Linc Problems™, Operations Research, No. 9, pp. 841-84R,

[22] K.Hwang, A.Casavant, M.Dragomirecky and M. d’Abreu, "Constrained Conditional Resourcc Sharing in
Pipeline Synthesis”, ICCAD, Proceedings of the International Conference on Computer-Aided Design, pp.
52-55, 1988.

[23] J.Huisken, H.Janssen, P.Lippens, O.McArdle, R.Segers, P.Zegers, A. Delaruelle and J. van Mcerbergen, Effi
cient Design of Systems on Silicon with PYRAMID, in Logic and Architecture Synthesis for Silicon Compilers,
North Holland, Amsterdam, 1989.

[24] C.-T.Hwang, J.-H. .Lee and Y-C Hsu, "A Formal Approach to the Scheduling Problem in High-1.cvel Synthe
sis”, IEEE Transaction on CAD, Vol CAD-10, No. 4, pp. 464-475, April 1991,

55

[25) O.Karatsu, "VLSI Design Standardization Effort in Japan, Proceedings of the Design Automation Conferencc
1989, pp.50-55.

[26] D.Knapp "Synthesis from Partial Structure”, in D. Edwards, Editor, Design Methodologies for VLSI and
Computer Architecture, pp. 35-51, Elsevier Science Publications, 1989.

[27] D. W. Knapp, Manual Rescheduling and Incremental Repair of Register-Level Datapaths, Proc ICCAD-89.
Santa Clara, CA, Nov 1989, pp 58-61.

(28] D.W. Knapp Feedback Driven Datapath Optimization in Fasolt ICCAD-90, Santa Clara, Califomia, Novembcer
1990, pp.300-303

[29] T. Kowalski, An Artificial Intelligence Approach to VLSI Design, Boston, MA; Kluwer Acadcmic Publishers.
1985.

(30} D.Ku, G.De Micheli, High-Level Synthesis of ASICS under Timing and Synchronization Constraints, Kluwer
1992.

[31] D. Ku, G. De Micheli, Relative Scheduling Under Timing Constraints, Proceedings of 21'" Design Automation
Conference, Orlando, Florida, June, 1990.

[32) D.Ku and G. De Micheli, *“ Relative Scheduling under Timing Constraints: Algorithms for High-Level Syn.
thesis of Digital Circuits” /EEE Transactions on CAD/ICAS, Vol. 11, No. 6, April 1992, pp. 696-718.

[33]) D. Ku, G. De Micheli, "Constrained Resource Sharing and Conflict Resolution in Hebe”, Integration.
VLSI Journal, Vol. 12, No. 2, December 1991, pp. 131-166.

[34] D. Kuck, The Structure of Computers and Computation, Wiley, 1978.

{35] C. Leiserson, F. Rose, and J. Saxe. “Optimizing Synchronous Circuitry by Retiming.” Proceedings of the 3rd
CalTech Conference on Very Large Scale Integration, 1983.

{36] Y.Liao and C. Wong, “An Algorithm to Compact a VLSI Symbolic Layout with Mixcd Constraints”, IEET
Transactions on CAD/ICAS, Vol CAD-2, No. 2, April 1983, pp.62-69.

[37] R.Lipsett, C. Schaefer and C.Ussery, VHDL: Hardware Description and Design, Kluwer, 1991

[38] M. McFarland, A .Parker and R. Camposano, The High-level Synthesis of Digital Systems, Procecdings of the
IEEE, Vol. 78, No. 2, February 1990, pp. 301-318.

{39] M. J. McFarland, "Reevaluating the Design Space for register Transfer Hardware Synthesis™, /ICCAD, Pro-
ceedings of the International Conference on Computer-Aided Design, pp. 184-187, 1987.

(40] M. J. McFarland, "Using Bottom-Up Design Techniques in the Synthesis of Digital Hardwarc from Abstrac
Behavioral Descriptions”, Proceedings 23'* Design Automation Conference, June 1986, p. 474-480.

[41] P.Michel, U.Lauther and P.Duzy, The Synthesis Approach to Digital System Design, Kluwer, 1992.
{42] S.Note, W.Geurts, F.Chattor and H.DeMan, "Cathedral-I1I: Architecture-driven High-level Synihesis for High
throughput DSP applications”, Proc. Des Auwtom. Conf, 1991, pp. 597-602.

56

[43] A. Parker, J. Pizarro, M. Mlinar, MAHA: A Program for Data Path Synthesis, Proceedings 23'* Design
Automation Conference, June 1986, p. 461-466.

[44) N.Park and A.Parker "Sehwa: A Software Package for Synthesis of Pipelines from Behavioral Specifications’
IEEE Transaction on CAD, Vol CAD-7, No. 3, pp. 356-370, March 1988.

(45) P.Paulin and J.Knight, "Force-Directed Scheduling for the Behavioral Synthesis of ASIC's”, IELFE. Transaction
on CAD/ICAS, Vol CAD-8, No. 6, pp. 661-679, July 1989.

[46] P. G. Paulin, J. P. Knight, E. F. Girczyc, HAL: A Multi-Paradigm Approach to Automatic Data-path Synthesis.
Proceedings 23'* Design Automation Conference, June 1986, pp. 263-270.

[47] B.Preas and M.Lorenzetti, Physical Design Automation of VLSI Systems, Benjamin Cummings Wosley, 1988.

(48] J.Southard, "MacPitts, An Approach 1o Silicon Compilation”, /[EEE Computer, Vol 16, No. 12, December
1983, pp. 59-70.

[49] D. Springer and D.Thomas, “Exploiting the Special Structure Of Conflict and Compatibility Graphs in High-
Level Synthesis”, ICCAD, Proceedings of the International Conference on Computer-Aided Design, pp.254
259, 1990.

[50) L. Stok, Architecture Synthesis and Optimization of Digital Systems, Ph.D. Dissertation, Eindhoven University
The Netherlands, 1991.

[51] D.Thomas, E.Lagnese, R.Walker, J.Nestor, J.Rajan and R.Blackburn, Algorithmic and Register Transfer Leve
Synthesis: The System Architect’s Workbench, Kluwer Academic Publisher, 1990

[52] D. Thomas, C. Hitchcock I11, T. Kowalski, J. Rajan, R. Walker, Automatic Data Path Synthesis, IEEE Compulcr
magazine, December 1983.

[53] D.Thomas and P. Moorby, The Verilog Hardware Description Language, Kluwer, 1991

{54] H.Trickey, "Flamel: A High-Level Hardware Compiler”, IEEE Transaction on CADI/ICAS, vol. CAD-6. No.
2, pp.259-269, March 1987.

{55] C. Tseng, D. Siewiorek, ”Automated Synthesis of Data Paths in Digital Systems”, JEEE Transaction on CAD.,
Vol CAD-S, pp. 379-395, July 1986.

[56) G.Zimmermann, "The MIMOLA Design System: Detailed Description of the Software System. Proc 16th
Des Autom. Conf, 1979, pp 56-63.

57

